Page 11234..1020..»

MarketsandMarkets 4th Annual Bioprocessing of Advanced Cellular Therapies & Regenerative Medicine Congress – Galus Australis

By daniellenierenberg

In the 4th edition of MarketsandMarkets Bioprocessing of Advanced Cellular Therapies & Regenerative Medicine, we would be focusing on the pre-clinical, manufacturing, clinical and regulatory aspects of cell therapies and regenerative medicine. This Congress event will be held on 10th and 11th March 2020 in London -UK

Since the past three editions of Bioprocessing of Advanced Cellular Therapies and Regenerative Medicine, MarketsandMarkets aims to provide a demonstrative approach to the latest developments in technologies of bioprocessing of cellular therapies.

What to expect:

The 4th edition of MarketsandMarkets Bioprocessing of Advanced Cellular Therapies & Regenerative Medicine would be concentrating on the pre-clinical, manufacturing, clinical and regulatory facets of cell therapies and regenerative medicine. The prime importance would be given on discussing topics such as tissue engineering, car-T cell-based immunotherapies, automated manufacturing, allogeneic therapies, from challenges in supply chain management and regulatory concern, point of view.

The conference will be useful for all the respective stakeholders of Advanced Cellular Therapies, majorly Pharma/Biotech delegates, Solution provider Delegates and Academic Delegates. The event will host VPs, directors, managers, leaders, engineers, scientists, academic heads, students which will boost the networking capacity of the attendees.

Download Agenda at https://www.reportsnreports.com/events/4th-annual-marketsandmarkets-bioprocessing-of-advanced-cellular-therapies-regenerative-medicine-congress/

Conference Agenda:

The two-day conference will have a list of agenda:

Key Pointers 4th Annual MarketsandMarkets Bioprocessing of Advanced Cellular Therapies & Regenerative Medicine Congress

Conference Registration

Lets get you sorted! Choose which applies best to you @ https://www.reportsnreports.com/events/4th-annual-marketsandmarkets-bioprocessing-of-advanced-cellular-therapies-regenerative-medicine-congress/register

Continued here:
MarketsandMarkets 4th Annual Bioprocessing of Advanced Cellular Therapies & Regenerative Medicine Congress - Galus Australis

To Read More: MarketsandMarkets 4th Annual Bioprocessing of Advanced Cellular Therapies & Regenerative Medicine Congress – Galus Australis
categoriaCardiac Stem Cells commentoComments Off on MarketsandMarkets 4th Annual Bioprocessing of Advanced Cellular Therapies & Regenerative Medicine Congress – Galus Australis | dataDecember 9th, 2019
Read All

AgeX Therapeutics Issues Year-End Letter to Shareholders – BioSpace

By daniellenierenberg

The letter follows.

Dear AgeX Stockholders,

In this, our first year as a public company, we have built a foundation for a revolutionary company in the fields of cell therapy and tissue regeneration. To date, conventional pharmaceutical approaches to the chronic degenerative conditions associated with aging have provided little benefit, often only offering relief from the symptoms of disease, rather than targeting underlying disease processes. Our belief is that this is about to change through harnessing the power of new cellular and molecular technologies. We aim to lead this coming revolution with our pioneering technologies which could generate and deliver new cells to patients through our cell therapy focus, and which may reverse the age of cells already in the body through our iTR platform. We believe that our new technologies will lead to true cell regeneration and replacement to potentially cure degenerative diseases by targeting aged or damaged cells, tissues and organs.

Over the last year, we have worked hard to achieve certain goals to set the fundamental basis to create shareholder value going forward:

To optimize shareholder value, we have undertaken a strategic review of our business opportunities, and we have four key take-away messages for the coming year and beyond:

UniverCyte would potentially be game-changing for the whole cell therapy industry by allowing the transplantation of non-self, donor cells into all patients without the need for powerful immunosuppressant drugs, which are associated with serious side effects, including infections and cancers, as well as kidney and liver toxicity. The UniverCyte platform aims to utilize a proprietary, novel, modified form of the powerful immunomodulatory molecule HLA-G, which in nature seems to be a dominant player in protecting a baby from destruction by the mother's immune system during pregnancy, the only known physiological state of immune tolerance toward foreign tissue in humans.

On the other hand, our pluripotent stem cell-based PureStem platform could potentially overcome numerous industry barriers. PureStem cells would have eight potential advantages compared to other adult stem cell- or pluripotent stem cell-based therapies, including lower manufacturing costs, industrial scalability, off-the-shelf usage, high purity, non-tumorgenicity, young age (so they are not prone to the disadvantages associated with older cells), aptitude for permanent cell engraftment, and potential to manufacture any human cell type.

We have two in-house product candidates, both targeting highly prevalent diseases of old age, with a high unmet medical need, and which are for multi-billion-dollar markets. Our lead internal program going forward will be AgeX-BAT1, which is brown fat cells for the treatment of type II diabetes. The last year has seen significant investment in cell therapy product candidates for diabetes by investors and large biotech. Earlier this year, we published a paper, Clonal Derivation of White and Brown Adipocyte Progenitor Cell Lines from Human Pluripotent Stem Cells, in the peer-reviewed scientific journal Stem Cell Research & Therapy, which showed that our PureStem platform generated highly pure, identifiable and scalable brown adipose cells, expressing active adipokines. Our second internal program will be AgeX-VASC1, composed of vascular endothelial progenitor cells for tissue ischemia, such as peripheral vascular disease and potentially cardiac and CNS ischaemia. Once we have a UniverCyte-modified pluripotent stem cell cGMP master cell bank, we will re-derive universal versions of AgeX-BAT1 and AgeX-VASC1 and then work to establish proof-of-concept in animal models.

We care deeply about our mission and the needs of our stockholders. We appreciate your support and the dedication of our scientists and employees as we forge a new future for medicine. We invite you to join us for the Annual Meeting of Stockholders on Monday, December 30, 2019. For those of you who cannot attend in person, our corporate update from that meeting will be webcast for your convenience.

Sincerely,

Michael D. West, Ph.D.

Gregory Bailey, M.D.

Chief Executive Officer

Chairman of the Board

About AgeX Therapeutics

AgeX Therapeutics, Inc. (NYSE American: AGE) is focused on developing and commercializing innovative therapeutics for human aging. Its PureStem and UniverCyte manufacturing and immunotolerance technologies are designed to work together to generate highly-defined, universal, allogeneic, off-the-shelf pluripotent stem cell-derived young cells of any type for application in a variety of diseases with a high unmet medical need. AgeX has two preclinical cell therapy programs: AGEX-VASC1 (vascular progenitor cells) for tissue ischemia and AGEX-BAT1 (brown fat cells) for Type II diabetes. AgeXs revolutionary longevity platform induced Tissue Regeneration (iTR) aims to unlock cellular immortality and regenerative capacity to reverse age-related changes within tissues. AGEX-iTR1547 is an iTR-based formulation in preclinical development. HyStem is AgeXs delivery technology to stably engraft PureStem cell therapies in the body. AgeX is developing its core product pipeline for use in the clinic to extend human healthspan and is seeking opportunities to establish licensing and collaboration agreements around its broad IP estate and proprietary technology platforms.

For more information, please visit http://www.agexinc.com or connect with the company on Twitter, LinkedIn, Facebook, and YouTube.

Forward-Looking Statements

Certain statements contained in this release are forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any statements that are not historical fact including, but not limited to statements that contain words such as will, believes, plans, anticipates, expects, estimates should also be considered forward-looking statements. Forward-looking statements involve risks and uncertainties. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the business of AgeX Therapeutics, Inc. and its subsidiaries, particularly those mentioned in the cautionary statements found in more detail in the Risk Factors section of AgeXs Annual Report on Form 10-K and Quarterly Reports on Form 10-Q filed with the Securities and Exchange Commissions (copies of which may be obtained at http://www.sec.gov). Subsequent events and developments may cause these forward-looking statements to change. AgeX specifically disclaims any obligation or intention to update or revise these forward-looking statements as a result of changed events or circumstances that occur after the date of this release, except as required by applicable law.

View source version on businesswire.com: https://www.businesswire.com/news/home/20191209005356/en/

Continue reading here:
AgeX Therapeutics Issues Year-End Letter to Shareholders - BioSpace

To Read More: AgeX Therapeutics Issues Year-End Letter to Shareholders – BioSpace
categoriaCardiac Stem Cells commentoComments Off on AgeX Therapeutics Issues Year-End Letter to Shareholders – BioSpace | dataDecember 9th, 2019
Read All

Autologous Stem Cell and Non-Stem Cell Based Therapies Market share, size, opportunities, producers, growth factors by 2026 – Health Opinion

By daniellenierenberg

Autologous Stem Cell and Non-Stem Cell Based Therapies Market Report 2018-2026includes a comprehensive analysis of the present Market. The report starts with the basic Autologous Stem Cell and Non-Stem Cell Based Therapies industry overview and then goes into each and every detail.

Autologous Stem Cell and Non-Stem Cell Based Therapies Market Report contains in depth information major manufacturers, opportunities, challenges, and industry trends and their impact on the market forecast. Autologous Stem Cell and Non-Stem Cell Based Therapies also provides data about the company and its operations. This report also provides information on the Pricing Strategy, Brand Strategy, Target Client, Distributors/Traders List offered by the company.

Description:

Autologous stem-cell transplantation (also known as autogeneic, autogenic, or autogenous stem-cell transplantation or auto-SCT) is the autologous transplantation of stem cellswhich is, transplantation in which the undifferentiated cells or stem cells (cells from which other types of cells develop) are taken from a person, accumulated, and given back to the same person later. Even though it is most often executed by means of hematopoietic stem cells (antecedent of cells that forms blood) in hematopoietic stem cell transplantation, in some cases cardiac cells are used productively to fix the damages due to heart attacks. Stem cell transplantation can be of two types Autologous stem-cell transplantation and allogenic stem cell transplantation. In the later, the recipient and the donor of stem cells are dissimilar people. In a good number of allogeneic transplants, the stem cells are taken from a donor whose cell type matches closely with the patients cell type.

Autologous Stem Cell and Non-Stem Cell Based Therapies Market competition by top manufacturers/players, with Autologous Stem Cell and Non-Stem Cell Based Therapies sales volume, Price (USD/Unit), Revenue (Million USD) and Market Share for each manufacturer/player; the top players including: NeoStem, Inc., Aastrom Biosciences, Fibrocell Science, Inc., Genzyme Corporation, BrainStorm Cell Therapeutics, Regeneus Ltd., and Dendreon Corporation.

Get Free Sample Copy Of This Report @ https://www.coherentmarketinsights.com/insight/request-sample/523

Important Features that are under offer & key highlights of the report:

What all regional segmentation covered? Can the specific country of interest be added?Currently, the research report gives special attention and focus on the following regions:North America (U.S., Canada, Mexico), Europe (Germany, U.K., France, Italy, Russia, Spain etc), South America (Brazil, Argentina etc) & Middle East & Africa (Saudi Arabia, South Africa etc)** One country of specific interest can be included at no added cost. For inclusion of more regional segment quote may vary.

What all companies are currently profiled in the report?The report Contain the Major Key Players currently profiled in this market.** List of companies mentioned may vary in the final report subject to Name Change / Merger etc.

Can we add or profiled new company as per our need?Yes, we can add or profile new company as per client need in the report. Final confirmation to be provided by the research team depending upon the difficulty of the survey.** Data availability will be confirmed by research in case of a privately held company. Up to 3 players can be added at no added cost.

Can the inclusion of additional Segmentation / Market breakdown is possible?Yes, the inclusion of additional segmentation / Market breakdown is possible to subject to data availability and difficulty of the survey. However, a detailed requirement needs to be shared with our research before giving final confirmation to the client.** Depending upon the requirement the deliverable time and quote will vary.

Get PDF Brochure of Research Report @ https://www.coherentmarketinsights.com/insight/request-pdf/523

Autologous Stem Cell and Non-Stem Cell Based Therapies Market Dynamics in the world mainly, the worldwide 2018-2026 Autologous Stem Cell and Non-Stem Cell Based Therapies Market is analyzed across major global regions. CMI also provides customized specific regional and country-level reports for the following areas:

Region Segmentation:

North America (USA, Canada and Mexico)Europe (Germany, France, UK, Russia and Italy)Asia-Pacific (China, Japan, Korea, India and Southeast Asia)South America (Brazil, Argentina, Columbia etc.)Middle East and Africa (Saudi Arabia, UAE, Egypt, Nigeria and South Africa)

Further in the report, the Autologous Stem Cell and Non-Stem Cell Based Therapies market is examined for Sales, Revenue, Price and Gross Margin. These points are analyzed for companies, types, and regions. In continuation with this data, the sale price is for various types, applications and region is also included. The Autologous Stem Cell and Non-Stem Cell Based Therapies industry consumption for major regions is given. Additionally, type wise and application wise figures are also provided in this report.

Quick Buy This Premium Report From Here: https://www.coherentmarketinsights.com/insight/buy-now/523

In this study, the years considered to estimate the market size of 2018-2026 Autologous Stem Cell and Non-Stem Cell Based Therapies Market are as follows:History Year: 2015-2017Base Year: 2017Estimated Year: 2018Forecast Year 2018 to 2026

Excerpt from:
Autologous Stem Cell and Non-Stem Cell Based Therapies Market share, size, opportunities, producers, growth factors by 2026 - Health Opinion

To Read More: Autologous Stem Cell and Non-Stem Cell Based Therapies Market share, size, opportunities, producers, growth factors by 2026 – Health Opinion
categoriaCardiac Stem Cells commentoComments Off on Autologous Stem Cell and Non-Stem Cell Based Therapies Market share, size, opportunities, producers, growth factors by 2026 – Health Opinion | dataDecember 9th, 2019
Read All

The Ins and Outs of Organ Donation – The Wire

By daniellenierenberg

Organ donation involves removing a healthy organ from a donor and transplanting it into the body of a recipient who has a diseased organ that has failed irreversibly. The recipients survival often depends on getting an organ transplant.

There is a large need for organs by people affected with end-stage ailments, like diseases of the liver, lung, heart and kidney. A major obstacle to treating such people is that there arent enough donated organs around the world. In many countries, including in the West, the number of patients in the waiting list for organ transplants has progressively increased compared to the number of donor organs available.

And while the number of donors per million people is very low in many parts of the world, about 20-30 per million, its many times lower than this in India: less than 0.5 donor per million. Experts have estimated that a few lakh organs are required per year in India, although no more than 2-3% of this requirement is really met. The severe shortfall may need more effective propaganda, retrieval and use of donated organs.

There are also personal, religious and cultural barriers that make it hard for people to accept the idea of organ donation. Most religions dont appear to oppose organ donation, but people are often uncertain about these recommendations and so they are reluctant to donate. Judaism and Islam prohibit the desecration of corpses and stress on a complete body, timely rituals and burial within 24 hours after death. People may not prefer to donate organs of their near and dear after death, due to the mutilating effect of dissecting the body and removing its parts.

There are often logistical issues as well. Due to a lack of awareness of the donation procedure and its consequences, most people prefer receiving organs from live, instead of recently deceased, donors.

* * *

Organ donation came to be thanks to advances in surgical procedures that allowed doctors to replace a diseased or dying organ with a healthy foreign organ. These advances reflected the rise of the exchangeability of body parts. That is, clinicians began to view the body as a collection of organs and independent entities, such that they could be removed from one body and placed in another. By contrast, the older and more traditional view of the body regarded it as a complex, indivisible whole interacting with its environment. As the idea of exchangeability gained traction, organs became commodities with market value.

Also read:The Seamy Underbelly of Organ Transplantation in India

The advent of organ transplantation was a landmark in the history of medicine. Researchers had developed transplantation surgeries for small animals such as dogs, pigs and goats well before the 20th century. The organs in the human body that doctors most transplant are the kidney, heart and liver.

Murray and Merrill performed the first kidney transplant in the 1950s, from one monozygotic twin to another. Since the twins were genetically identical, they survived and lived for eight years after the procedure.

The first heart and liver transplants were undertaken in the mid-1960s. Christian Bernard, the famous South African surgeon, performed the first heart transplant in 1967, from a 25-year-old who was brain dead after an accident and to a 50-year-old man suffering from heart failure. In the same year, other doctors performed more than 100 heart transplants around the world, but the recipients in these transplants didnt live for more than a few days after. There were problems related to the health of the transplanted organs and the aftereffects of surgery.

An American surgeon named Thomas Starzl performed the first liver transplant in the mid-1960s. The first patient died immediately and after the surgery; a few more patients who received transplanted organs also died from infections and other illnesses within a few weeks.

Corneal grafts are a very well-known and effective form of organ or tissue donation. The cornea, which is the transparent structure on the front of the eye, consists of multiple layers of cells designed to be transparent. The cornea refracts light towards the eyes lens, located just behind it. Its relatively simpler to transplant cornea because it lacks blood vessels (i.e. since one doesnt need to restore blood vessels in the grafted tissue).

Another advantage is that the cornea is in a state of immune privilege: it is relatively protected from immune responses. So persons who undergo a corneal transplant dont need lifelong treatment with systemic drugs to suppress the immune system.

Corneal donation and transplantation have continuously evolved in theory and practice, and have a high rate of success. Franz Reisinger first attempted corneal grafts in the early 19th century, trying to transplant animal corneas into humans. He failed in repeated attempts. Reisinger also coined the term keratoplasty, which means surgery to the cornea.

Also read:Why Moral Exhortations Alone Will Not Boost Organ Donation in India

Only a few years later, Samuel Bigger, an Irish surgeon, treated a gazelle that had been blinded by a corneal scar by transplanting cornea from another gazelle.

A Viennese ophthalmologist named Edward Zirm performed the first successful corneal graft between two humans in the early 20th century.

* * *

One possible reason why organ transplants often dont have long-term success is the recipient. A person who is already sick due to a failed heart or liver is not likely to respond well to major surgery, and may have difficulty recovering from it. Similarly, an older patient may not be able to withstand the effects of surgery.

Another important factor is the recipients immune system, which could reject the donated organ. In 1979, doctors who just performed a liver transplant used a drug called cyclosporine to dampen the bodys immune response and thus spare the transplanted organ from attack. This occasion was a new step in the history of liver transplants. Cyclosporine improved the survival of over 70% of patients up to at least one year after surgery, and many patients survived for up to five yrs. Doctors have followed up with newer, better drugs to improve patients health outcomes since.

A third issue relates to an ethical question that researchers have flagged: a living donor has to undergo a major surgical procedure to donate an organ, and such procedures carry their own risks. Moreover, close relatives of a patient may be under pressure to agree to donate their organs, so they may not be necessarily free to decide for themselves. Another issue regards commercialisation: its very easy to provide monetary incentives to the poor and convince them to donate an organ in return. In such circumstances, the decision to donate an organ will not have been the result of free choice where it should be.

Such a market for kidneys is all too visible in India, where one finds advertisements for the sale of kidneys with hospitals involved in the business. Often, poor people are ready to donate their organs to make a lakh or two. Apart from theft and the black market for organs, monetary compensation for organs is legal in some parts of the world.

* * *

An alternative to overcome the shortage of organs for transplants is a xenotransplant: transplanting animal organs into humans. The principal animals that can potentially donate to humans are monkeys, since theyre most closely related to humans.

However, due to differences between the sizes of monkey and human organs, researchers have also considered pigs, whose organs are closer in dimensions as well as because pigs are easy to breed. Researchers are currently exploring these procedures in experiments.

Also read:Why Does Spain Lead the World in Organ Donation?

Another alternative for intact organs is stem cells, which scientists can grow in controlled environments, such as in a laboratory, and develop into miniature organs, or organoids. Using bioengineering techniques, they removed cells from an intact organ, such as a lung or trachea, such that the cells retain a skeleton of proteins and carbohydrates. Next, they populate these cells with stem cells and maintained them in a laboratory so that different types of cells grow inside the container. For example, scientists have grown multilayered corneas in a dish using a culture of stem cells and certain biomolecules.

Such advances in preserving and engineering tissues are help plug the gap between the demand for and supply of organs.

* * *

Its very important to preserve and properly store organs to ensure theyre in the best possible condition and retain their nature following transplantation. One particular concern here stems from the time and temperature of storage, which need to be carefully controlled to remain within specific limits depending on the organ and the type of death. Maintaining the right conditions ensures the organ remains viable after the recipient has received it. A heart may be stored for up to four hours, the lungs for up to six hours and the kidneys for longer periods, up to 18 hours.

A critical question to be addressed with regard to organ donation is the distinction between brain death and cardiac, or circulatory, death. A brain-dead patient will still have a functioning heart and may be on life support. However, brain-death means brain function has been completely and irreversibly lost.

For an organ donor, a criterion of either brain death or cardiac death may be taken under the definition of death. Indian law mentions two possibilities. One is in the Registration of Births and Deaths Act and the other, in the Transplantation of Human Organs and Tissues (THOT) Act. The former defines death as the permanent disappearance of all evidence of life at any time after live-birth has taken place. The THOT Act, on the other hand, defines a deceased person as one in whom permanent disappearance of all evidence of life occurs, by reason of brain stem death or in a cardiopulmonary sense, at any time after live-birth has taken place.

In many countries, both forms of death are considered acceptable for organ donation.

Chitra Kannabiranleads research on molecular genetics at the L.V. Prasad Eye Institute, Hyderabad.

Read the original post:
The Ins and Outs of Organ Donation - The Wire

To Read More: The Ins and Outs of Organ Donation – The Wire
categoriaCardiac Stem Cells commentoComments Off on The Ins and Outs of Organ Donation – The Wire | dataDecember 9th, 2019
Read All

Meditation increases blood flow in the heart, PET scans show – Health Imaging

By daniellenierenberg

Schneider noted that prior research has established psychosocial stress as a risk factor for coronary heart disease. However, stress reduction techniques arent typically included in cardiac rehabilitation.

In their study, the researchers randomly divided 56 patients into four groups: cardiac rehab, transcendental meditation, transcendental meditation plus cardiac rehabilitation or normal care.

According to the research, 37 patients completed the study. Of that group, patients who practiced transcendental meditation and cardiac rehabilitation increased their myocardial blood flow by 20.7%. PET scans also revealed a 12.8% increase in those who completed mediation alone. Cardiac rehab improved flow by 5.8%, while usual treatment decreased that metric by 10.3%.

Read more:
Meditation increases blood flow in the heart, PET scans show - Health Imaging

To Read More: Meditation increases blood flow in the heart, PET scans show – Health Imaging
categoriaCardiac Stem Cells commentoComments Off on Meditation increases blood flow in the heart, PET scans show – Health Imaging | dataDecember 8th, 2019
Read All

With another $26M, Japan’s Heartseed aims to advance iPSC-derived regenerative medicine for heart failure – BioWorld Online

By daniellenierenberg

With another $26M, Japan's Heartseed aims to advance iPSC-derived regenerative medicine for heart failure  BioWorld Online

Originally posted here:
With another $26M, Japan's Heartseed aims to advance iPSC-derived regenerative medicine for heart failure - BioWorld Online

To Read More: With another $26M, Japan’s Heartseed aims to advance iPSC-derived regenerative medicine for heart failure – BioWorld Online
categoriaCardiac Stem Cells commentoComments Off on With another $26M, Japan’s Heartseed aims to advance iPSC-derived regenerative medicine for heart failure – BioWorld Online | dataDecember 8th, 2019
Read All

CALQUENCE Significantly Prolonged the Time Patients Lived Without Disease Progression or Death in Previously Untreated Chronic Lymphocytic Leukemia -…

By daniellenierenberg

WILMINGTON, Del.--(BUSINESS WIRE)--AstraZeneca today presented results from the interim analysis of the Phase III ELEVATE TN trial, showing that CALQUENCE (acalabrutinib) combined with obinutuzumab or as monotherapy significantly improved progression-free survival (PFS) compared to chlorambucil plus obinutuzumab, a standard chemo-immunotherapy treatment, in patients with previously untreated chronic lymphocytic leukemia (CLL).

The Independent Review Committee (IRC)-assessed results were presented at the 2019 American Society of Hematology Annual Meeting and Exhibition in Orlando, US. At a median follow-up of 28.3 months, CALQUENCE in combination with obinutuzumab or as a monotherapy significantly reduced the risk of disease progression or death by 90% and 80%, respectively, vs. chlorambucil plus obinutuzumab.

In an exploratory analysis, CALQUENCE in combination or alone demonstrated consistent PFS improvements across most pre-specified subgroups of patients with high-risk disease characteristics, including the unmutated immunoglobulin heavy-chain variable gene (IGHV), del(11q) and complex karyotype. Overall, the safety and tolerability profile of CALQUENCE observed in the ELEVATE TN trial was consistent with its known profile.

Jos Baselga, Executive Vice President, Oncology R&D said: On the heels of approvals in the US, Australia and Canada, these full results provide further evidence that CALQUENCE, as a new treatment option for patients with chronic lymphocytic leukemia, demonstrates remarkable efficacy and a favorable tolerability profile. These results also provide, for the first time, post-hoc analysis data exploring the potential progression-free survival benefit of adding obinutuzumab to a BTK inhibitor versus BTK inhibitor monotherapy in a randomized trial.

Dr. Jeff Sharman, Director of Research at Willamette Valley Cancer Institute, Medical Director of Hematology Research for The US Oncology Network, and a lead author of the ELEVATE TN trial, said: In the detailed results from the ELEVATE TN trial comparing CALQUENCE to a commonly used chemo-immunotherapy treatment regimen, CALQUENCE demonstrated a clinically meaningful improvement in progression-free survival, while maintaining its known tolerability and safety profile. These are encouraging results for a patient population that is known to face multiple comorbidities, and where tolerability is a critical factor in their treatment.

Summary of key efficacy results as assessed by IRC from the ELEVATE TN trial at median follow-up of 28.3 months:

Efficacy measure

CALQUENCE plusobinutuzumab

N = 179

CALQUENCEmonotherapyN = 179

Chlorambucil plusobinutuzumabN = 177

PFS

Number of events (%)

14 (7.8)

26 (14.5)

93 (52.5)

Median (95% CI), months

NR(NE, NE)

NR(34.2, NE)

22.6(20.2, 27.6)

HR (95% CI)

0.10 (0.06, 0.17)

0.20 (0.13, 0.30)

-

p-value

<0.0001

<0.0001

-

Estimated PFS at 24 months, %

93

87

47

ORR

ORR, n (%)(95% CI)

168 (93.9)(89.3, 96.5)

153 (85.5)(79.6, 89.9)

139 (78.5)(71.9, 83.9)

p-value

<0.0001

=0.0763

-

OS

Number of events (%)

9 (5.0)

11 (6.1)

17 (9.6)

Median (95% CI), months

NR (NE, NE)

NR (NE, NE)

NR (NE, NE)

HR (95% CI)

0.47 (0.21, 1.06)

0.60 (0.28, 1.27)

-

p-value

=0.0577

=0.1556

-

CI, Confidence Interval; NR, Not Reached; NE, Not Evaluable; HR, Hazard Ratio; ORR, Overall Response Rate, OS, Overall Survival

Adverse events (AEs) led to treatment discontinuation in 11.2% of patients treated with CALQUENCE in combination with obinutuzumab and 8.9% of patients treated with CALQUENCE monotherapy versus 14.1% of patients treated with chlorambucil plus obinutuzumab.

With over two years of follow-up, 79% of patients in both the CALQUENCE-containing arms remain on CALQUENCE as a monotherapy. In the CALQUENCE combination arm (n=178), the most common AEs of any grade (30%) included headache (39.9%), diarrhea (38.8%) and neutropenia (31.5%). In the CALQUENCE monotherapy arm (n=179), the most common AEs of any grade (30%) included headache (36.9%) and diarrhea (34.6%). In the chlorambucil plus obinutuzumab arm (n=169), the most common AEs of any grade (30%) included neutropenia (45.0%), infusion-related reaction (39.6%) and nausea (31.4%).

Other AEs of clinical interest (%)1

CALQUENCE plusobinutuzumabN = 178

CALQUENCEmonotherapyN = 179

Chlorambucil plusobinutuzumabN = 169

Any

Grade 3

Any

Grade 3

Any

Grade 3

Atrial fibrillation

3.4%

0.6%

3.9%

0%

0.6%

0%

Major bleeding

2.8%

1.7%

1.7%

1.7%

1.2%

0%

Hypertension

7.3%

2.8%

4.5%

2.2%

3.6%

3.0%

Infection

69.1%

20.8%

65.4%

14.0%

43.8%

8.3%

SPM excluding NMSC

See original here:
CALQUENCE Significantly Prolonged the Time Patients Lived Without Disease Progression or Death in Previously Untreated Chronic Lymphocytic Leukemia -...

To Read More: CALQUENCE Significantly Prolonged the Time Patients Lived Without Disease Progression or Death in Previously Untreated Chronic Lymphocytic Leukemia -…
categoriaCardiac Stem Cells commentoComments Off on CALQUENCE Significantly Prolonged the Time Patients Lived Without Disease Progression or Death in Previously Untreated Chronic Lymphocytic Leukemia -… | dataDecember 8th, 2019
Read All

Spinning Disk Confocal Microscope Market Growth Fueled by Reviving Techniques to Treat Heart Failure with Cardiac Regenerative Medicine – MENAFN.COM

By daniellenierenberg

(MENAFN - iCrowdNewsWire) Dec 5, 2019

Cardiac failure is an insidious disease with the mortality rate as high as that of cancer around the globe. Heart failure affecting at least 26 million people worldwide in 2017 and is increasing in prevalence. The only medical treatment for heart failure is cardiac transplantation, although the shortage of donor poses a serious problem. Cell transplantation therapy with regenerative cardiomyocytes is the only solution to minimize the higher mortality rates, which requires detailed information at the level of individual cardiomyocytes. Spinning disk confocal microscopy has emerged as a new high-tech method in cardiovascular medicine for exploring the stem cells for regenerating damaged organs. This innovative microscopic technology can be used to create 3D images of the structures within living cells. Higher-efficiency imaging at lower laser powers includes less photobleaching and phototoxicity, yet cost-effective than other confocal microscopes which are the prominent features of the spinning disk confocal microscopes (SDCM). Furthermore, technological advancements in microscopy and increasing spending on the research & development are the key factors fueling the spinning disk confocal microscope market share.

The global spinning disk confocal microscope market size was valued at $245 million as of 2018 and is expected to grow with a CAGR of 3.6% throughout the forecast period 2019-2025.

Extensive Usage of Spinning Disk Confocal Microscope in the Evaluation of Various Eye Diseases

Spinning disk confocal microscope is an imaging technique which eliminates out-of-focus light efficiently and improves the image contrast, making it easier to resolve small and dim structures in the living cell. This technique is ideal for imaging poor signals at high magnification and provides prolonged life imaging with minimal photodamage. SDCM is widely used in the evaluation of various eye ailments and is predominantly useful for imaging, identification, and detailed analysis of cornea cells. Cataract accounts for the world's leading vision impairment cause, affecting approximately 12.6 million people and 52.6 million people who live with severe to mild blindness worldwide. The confocal microscope helps to provide valuable information about wound healing in the postsurgical cornea, especially after keratorefractive and transplant surgery, which in turn, creates a huge opportunity for the growth of the spinning disk confocal microscope market share. Besides, in the pharmaceutical industry, increasing usage of this confocal microscopy in the classification of systems such as tablets, film coatings and colloidal systems, which in turn, spur the growth of the spinning disk confocal microscope market size.

Application of Spinning Disk Confocal Microscopy in Bio-imaging

Confocal microscopy allows the analysis of specimens without physical sectioning when these specimens are fluorescently labeled, then more color differentiation is possible. Besides, it allows the 3D reconstruction of the live cells and organisms. For instance, researchers of the State University of New York Downstate Medical Center have found that hypoxia, the condition of lack of oxygen in the body or region of the body tissues to sustain bodily functions is because of abnormal blood flow. This, in turn, is responsible for half of the seizure-related neuronal degeneration cases in epilepsy. Consequently, the microscopic technique enables the researchers to detect abnormality in the vasodynamics of brain. Instances as such are increasing the demand for the spinning disk confocal microscope market in bio-imaging.

North America Holding Major Share of the Spinning Disk Confocal Microscope Market

North America generated 34.4% of the spinning disk confocal microscope market global revenue in 2018. Growing adoption of the confocal microscope in living cell imaging, increasing application in dentistry, and government funding and policies for medical research are key factors triggering the growth of the spinning disk confocal microscope market in this region. For instance, as part of the 2019 budget, Canadian government has decided to spend approximately $4 billion on basic medical research and this funding is given to The Stem Cell Network, a non-profit organization in Ottawa which is active into clinical applications research. Also, Genome Canada, a non-profit organization in Ottawa which supports genomic research, will get about $77 million from the government for medical research. Thus, these increasing investments in research activities is boosting the North American spinning disk confocal microscope market.

Life Sciences Observing Lucrative Opportunities in the Global Spinning Disk Confocal Microscope Market

The application segment that will be creating the most lucrative opportunities for the spinning disk confocal microscope market is life sciences. This application segment is projected to grow at a CAGR of 32.3% through to 2025. To observe the internal workings of cellular processes in the living cells, this procedure is widely used by researchers in life science. Spinning disk confocal microscope use lower light levels and provide accurate cell physiology through real-time image acquisition. Thus, the cell study is aiding the growth of the life sciences segment in the global spinning disk confocal microscope market.

Talk to one of our sales representative about the full report by providing your details in the link below:

https://www.industryarc.com/support.php?id=18554

The Major Players in the Spinning Disk Confocal Microscope Market :

Prominent players in the spinning disk confocal microscope market include Bruker Corporation, Confocal.nl, Leica Microsystem, Nikon Corporation, Olympus Corporation, and ZEISS Group.

Bruker Corporation, an American-based scientific instruments manufacturer for molecular and materials research has launched its high-speed Atomic Force Microscopy (AFM) system for life science microscopic applications on Jan 29, 2019. AFM features advanced bio-imaging with high speed and high resolution. These properties of the AFM system can provide researchers to perform experiments on individual cells and allow Bruker to follow dynamic processes on cellular and molecular levels in real-time. Secondly, Confocal.nl, Dutch-based microscopes manufacturer has launched new Re-scan Confocal Microscopy (RCM) modules on April 10, 2019. This new module features integrated optimized de-convolution and high scan speed.

Mergers and acquisitions are the other key strategies adopted by the players to stay ahead of their competitors. Bruker Corporation, an American-based scientific instruments manufacturer for molecular and materials research has announced its acquisition with Hain Lifescience GmbH, German-based molecular diagnosis systems developer on Aug 24, 2018. With this acquisition, Bruker has expanded its capabilities in microbial and viral pathogen detection and offering solutions for human genetic diseases. Such mergers and acquisitions aid the market players to expand their geographical boundaries and accentuate their footprint into the global spinning disk confocal microscope market.

Related Reports:

Microscopy Devices Market

https://www.industryarc.com/Report/116/Microscopy-Devices-Market.html

Surgical Microscopes Market

https://www.industryarc.com/Report/18476/surgical-microscopes-market-research-report-analysis.html

About IndustryARC:

IndustryARC primarily focuses on Cutting Edge Technologies and Newer Applications market research. Our Custom Research Services are designed to provide insights on the constant flux in the global supply-demand gap of markets. Our strong team of analysts enables us to meet the client research needs at a rapid speed, with a variety of options for your business. Any other custom requirements can be discussed with our team, drop an e-mail to[email protected]to discuss more about our consulting services.

MENAFN0512201900703403ID1099375804

Continued here:
Spinning Disk Confocal Microscope Market Growth Fueled by Reviving Techniques to Treat Heart Failure with Cardiac Regenerative Medicine - MENAFN.COM

To Read More: Spinning Disk Confocal Microscope Market Growth Fueled by Reviving Techniques to Treat Heart Failure with Cardiac Regenerative Medicine – MENAFN.COM
categoriaCardiac Stem Cells commentoComments Off on Spinning Disk Confocal Microscope Market Growth Fueled by Reviving Techniques to Treat Heart Failure with Cardiac Regenerative Medicine – MENAFN.COM | dataDecember 6th, 2019
Read All

PHATED to be: Yale researchers give shape to big data – Yale News

By daniellenierenberg

Scientists now have the ability to collect massive amounts of data on lifes most fundamental processes, such as the intricate choreography whereby a handful of embryonic stem cells give rise to trillions of specialized cells throughout the human body. But data doesnt always translate into knowledge unless the relationship of recorded data points can be presented in accurate, meaningful and visible ways.

The lab of Yales Smita Krishnaswamy, associate professor of genetics and computer science, has developed a new algorithm called PHATE that overcomes many of the shortcomings of existing data visualization tools, which are more susceptible to noise and distortion in the relationship of data points.

The panel above shows how PHATE visualizes the differentiation of human embryonic stem cells into neuronal cells, neural stem cells, cardiac cells, and endothelial cells, as compared to the visualizations created by three other technologies.A cleaner, more detailed representation is helpful, for example, for generating promising new hypotheses.

The researchers work is described Dec. 3 in the journal Nature Biotechnology.

Here is the original post:
PHATED to be: Yale researchers give shape to big data - Yale News

To Read More: PHATED to be: Yale researchers give shape to big data – Yale News
categoriaCardiac Stem Cells commentoComments Off on PHATED to be: Yale researchers give shape to big data – Yale News | dataDecember 6th, 2019
Read All

Stem Cell Therapy Market Robust pace of Industry during 2017-2025 – News Description

By daniellenierenberg

Stem Cell Therapy Market: Snapshot

Of late, there has been an increasing awareness regarding the therapeutic potential of stem cells for management of diseases which is boosting the growth of the stem cell therapy market. The development of advanced genome based cell analysis techniques, identification of new stem cell lines, increasing investments in research and development as well as infrastructure development for the processing and banking of stem cell are encouraging the growth of the global stem cell therapy market.

To know Untapped Opportunities in the Market CLICK HERE NOW

One of the key factors boosting the growth of this market is the limitations of traditional organ transplantation such as the risk of infection, rejection, and immunosuppression risk. Another drawback of conventional organ transplantation is that doctors have to depend on organ donors completely. All these issues can be eliminated, by the application of stem cell therapy. Another factor which is helping the growth in this market is the growing pipeline and development of drugs for emerging applications. Increased research studies aiming to widen the scope of stem cell will also fuel the growth of the market. Scientists are constantly engaged in trying to find out novel methods for creating human stem cells in response to the growing demand for stem cell production to be used for disease management.

It is estimated that the dermatology application will contribute significantly the growth of the global stem cell therapy market. This is because stem cell therapy can help decrease the after effects of general treatments for burns such as infections, scars, and adhesion. The increasing number of patients suffering from diabetes and growing cases of trauma surgery will fuel the adoption of stem cell therapy in the dermatology segment.

Global Stem Cell Therapy Market: Overview

Also called regenerative medicine, stem cell therapy encourages the reparative response of damaged, diseased, or dysfunctional tissue via the use of stem cells and their derivatives. Replacing the practice of organ transplantations, stem cell therapies have eliminated the dependence on availability of donors. Bone marrow transplant is perhaps the most commonly employed stem cell therapy.

Osteoarthritis, cerebral palsy, heart failure, multiple sclerosis and even hearing loss could be treated using stem cell therapies. Doctors have successfully performed stem cell transplants that significantly aid patients fight cancers such as leukemia and other blood-related diseases.

Get Discount on Latest Report @ CLICK HERE NOW

Global Stem Cell Therapy Market: Key Trends

The key factors influencing the growth of the global stem cell therapy market are increasing funds in the development of new stem lines, the advent of advanced genomic procedures used in stem cell analysis, and greater emphasis on human embryonic stem cells. As the traditional organ transplantations are associated with limitations such as infection, rejection, and immunosuppression along with high reliance on organ donors, the demand for stem cell therapy is likely to soar. The growing deployment of stem cells in the treatment of wounds and damaged skin, scarring, and grafts is another prominent catalyst of the market.

On the contrary, inadequate infrastructural facilities coupled with ethical issues related to embryonic stem cells might impede the growth of the market. However, the ongoing research for the manipulation of stem cells from cord blood cells, bone marrow, and skin for the treatment of ailments including cardiovascular and diabetes will open up new doors for the advancement of the market.

Global Stem Cell Therapy Market: Market Potential

A number of new studies, research projects, and development of novel therapies have come forth in the global market for stem cell therapy. Several of these treatments are in the pipeline, while many others have received approvals by regulatory bodies.

In March 2017, Belgian biotech company TiGenix announced that its cardiac stem cell therapy, AlloCSC-01 has successfully reached its phase I/II with positive results. Subsequently, it has been approved by the U.S. FDA. If this therapy is well- received by the market, nearly 1.9 million AMI patients could be treated through this stem cell therapy.

Another significant development is the granting of a patent to Israel-based Kadimastem Ltd. for its novel stem-cell based technology to be used in the treatment of multiple sclerosis (MS) and other similar conditions of the nervous system. The companys technology used for producing supporting cells in the central nervous system, taken from human stem cells such as myelin-producing cells is also covered in the patent.

Global Stem Cell Therapy Market: Regional Outlook

The global market for stem cell therapy can be segmented into Asia Pacific, North America, Latin America, Europe, and the Middle East and Africa. North America emerged as the leading regional market, triggered by the rising incidence of chronic health conditions and government support. Europe also displays significant growth potential, as the benefits of this therapy are increasingly acknowledged.

Asia Pacific is slated for maximum growth, thanks to the massive patient pool, bulk of investments in stem cell therapy projects, and the increasing recognition of growth opportunities in countries such as China, Japan, and India by the leading market players.

Request TOC of the Report for more Industry Insights @CLICK HERE NOW

Global Stem Cell Therapy Market: Competitive Analysis

Several firms are adopting strategies such as mergers and acquisitions, collaborations, and partnerships, apart from product development with a view to attain a strong foothold in the global market for stem cell therapy.

Some of the major companies operating in the global market for stem cell therapy are RTI Surgical, Inc., MEDIPOST Co., Ltd., Osiris Therapeutics, Inc., NuVasive, Inc., Pharmicell Co., Ltd., Anterogen Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Holostem Terapie Avanzate S.r.l.

About TMR Research:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Contact:

TMR Research,

3739 Balboa St # 1097,

San Francisco, CA 94121

United States

Tel: +1-415-520-1050

Here is the original post:
Stem Cell Therapy Market Robust pace of Industry during 2017-2025 - News Description

To Read More: Stem Cell Therapy Market Robust pace of Industry during 2017-2025 – News Description
categoriaCardiac Stem Cells commentoComments Off on Stem Cell Therapy Market Robust pace of Industry during 2017-2025 – News Description | dataDecember 6th, 2019
Read All

MarketsandMarkets – 4th Annual Bioprocessing of Advanced Cellular Therapies & Regenerative Medicine Congress – Hitz Dairies

By daniellenierenberg

In the 4th edition of MarketsandMarkets Bioprocessing of Advanced Cellular Therapies & Regenerative Medicine, we would be focusing on the pre-clinical, manufacturing, clinical and regulatory aspects of cell therapies and regenerative medicine. This Congress event will be held on 10th and 11th March 2020 in London -UK

Since the past three editions of Bioprocessing of Advanced Cellular Therapies and Regenerative Medicine, MarketsandMarkets aims to provide demonstrative approach to the latest developments in technologies of bioprocessing of cellular therapies.

What to expect:

The 4th edition of MarketsandMarkets Bioprocessing of Advanced Cellular Therapies & Regenerative Medicine would be concentrating on the pre-clinical, manufacturing, clinical and regulatory facets of cell therapies and regenerative medicine. The prime importance would be given on discussing topics such as tissue engineering, car-T cell-based immunotherapies, automated manufacturing, allogeneic therapies, from challenges in supply chain management and regulatory concern, point of view.

The conference will be useful for all the respective stakeholders of Advanced Cellular Therapies, majorly Pharma/Biotech delegates, Solution provider Delegates and Academic Delegates. The event will host VPs, directors, managers, leaders, engineers, scientists, academic heads, students which will boost the networking capacity of the attendees.

Download Agenda at https://www.reportsnreports.com/events/4th-annual-marketsandmarkets-bioprocessing-of-advanced-cellular-therapies-regenerative-medicine-congress/

Conference Agenda:

The two-day conference will have a list of agenda:

Key Pointers 4th Annual MarketsandMarkets Bioprocessing of Advanced Cellular Therapies & Regenerative Medicine Congress

Conference Registration

Lets get you sorted! Choose which applies best to you @ https://www.reportsnreports.com/events/4th-annual-marketsandmarkets-bioprocessing-of-advanced-cellular-therapies-regenerative-medicine-congress/register

Read the original post:
MarketsandMarkets - 4th Annual Bioprocessing of Advanced Cellular Therapies & Regenerative Medicine Congress - Hitz Dairies

To Read More: MarketsandMarkets – 4th Annual Bioprocessing of Advanced Cellular Therapies & Regenerative Medicine Congress – Hitz Dairies
categoriaCardiac Stem Cells commentoComments Off on MarketsandMarkets – 4th Annual Bioprocessing of Advanced Cellular Therapies & Regenerative Medicine Congress – Hitz Dairies | dataDecember 6th, 2019
Read All

Year in Review: Respiratory Infection – MedPage Today

By daniellenierenberg

Continuing improvements in influenza prevention, including progress toward a "universal" flu vaccine, as well as newly approved treatment options for nosocomial pneumonia and new evidence about different methods to prevent or shorten the course of flu, dominated the headlines in infectious respiratory illnesses this year.

Inching Toward 'Universal' Flu Vaccine

An experimental candidate for a flu vaccine covering many strains, and that therefore wouldn't have to be reformulated every year, was announced by the NIH in April. The vaccine, developed at the National Institute of Allergy and Infectious Diseases, is designed to "display part of hemagglutinin (HA), an influenza protein, on the surface of a microscopic nanoparticle made of nonhuman ferritin," a protein found in all living cells, the agency said. HA comprises a head and a stem, but this candidate vaccine will contain a stem only. It's hoped to protect against influenza subtypes within "group 1," which includes both H1 and H5 influenza strains.

A universal flu vaccine is a major part of President Trump's initiative announced in September to overhaul flu vaccine development in the U.S. The order called for reduced reliance on current egg-based flu vaccines, and expanding capacity for alternative production methods such as cell-based vaccine technology, and also directed a search for more broadly protective vaccine candidates that can be used from year to year.

"What this [executive order] does is very useful, spells out the steps that can be taken and makes it a national priority," Andrew Pavia, MD, co-chair of the Infectious Diseases Society of America's Treatment Guidelines Panel, and chief of pediatric infectious diseases at the University of Utah, told MedPage Today. "But to make it happen, it's going to require money. That's the next step we need to hear about."

But for now, current flu shots are effective, according to research in February from Clinical Infectious Diseases, which estimated that vaccinations during the 2017-2018 flu season prevented 7 million infections and over 8,000 deaths. Despite this, the CDC found in October that only a little over half of pregnant women who were pregnant during flu season said they received the flu shot.

More Insights Into Flu Prevention

When it comes to preventing flu, choose antiseptic hand soap over alcohol-based hand sanitizers, according to research published in September in mSphere. The study examined samples of mucus from patients who tested positive for influenza A. While both the CDC and World Health Organization recommend hand hygiene practices with ethanol-based disinfectants for 15-30 seconds, the authors said this disinfection time is insufficient for not-yet-dried mucus, and current standard procedures calling for alcohol hand rubs to prevent flu outbreaks are not adequate.

For healthcare workers, ordinary medical masks were as effective in protecting against respiratory infections, including the flu as more expensive N95 respirators, according to a randomized trial published in JAMA in September, with researchers arguing that laboratory-confirmed respiratory infection was a "more relevant" endpoint compared to laboratory-confirmed influenza.

And once a patient has the flu, an earlier course of antiviral medication Tamiflu was found to cut the risk of death in some severe cases, according to research published in February in Clinical Infectious Diseases. While there was no decrease in overall influenza-associated mortality with an earlier course of oseltamivir versus a later course, there was an observed effect on patients with influenza A/H3N2.

New Treatment Options for Pneumonia

Several treatments showed promise for nosocomial pneumonia. Oral or intravenous Xenleta (lefamulin), a first-in-class, semi-synthetic pleuromutilin antibiotic, was approved for the treatment of community-acquired bacterial pneumonia in August. The FDA gave lefamulin its Qualified Infectious Disease Product Designation, speeding up the product's review.

A new indication for Zerbaxa (ceftolozane/tazobactam) for hospital-acquired and ventilator acquired pneumonia was approved in June. Zerbaxa was first approved in 2014 for complicated urinary tract and intra-abdominal infections.

In October, phase III data from cefiderocol, a new -lactam antibiotic, showed non-inferiority for 14-day all-cause mortality in hospitalized pneumonia patients compared to high-dose meropenem.

Cefiderocol was approved under the name Fetroja for complicated urinary tract infections in November, though it includes a warning about higher all-cause mortality in critically ill patients with multidrug-resistant Gram-negative bacterial infections, including among patients with nosocomial pneumonia -- an issue that an FDA advisory panel raised at an earlier meeting.

Earlier in the year, an FDA advisory panel voted that intramuscular bacitracin injections have no value for its recommended indication. Bacitracin injection once was a standard treatment for infants with pneumonia and collection of pus in the plural cavity, or empyema that are caused by staphylococci that are susceptible to the drug. But while clinicians largely abandoned it decades ago, the treatment technically remains approved. The committee didn't recommend that injectable bacitracin be pulled from the market entirely, though, because it still has use in some surgical applications.

Short Courses of Antibiotics and Pneumonia Outcomes

A study in the Annals of Internal Medicine in July provided some real world evidence behind the "shorter is better" theory for antibiotics when treating pneumonia. Researchers found that more than two-thirds of patients received antibiotics longer than the shortest duration consistent with recommended guidelines, and most of this was due to excess prescribing at discharge.

An accompanying editorial urged clinicians to "overcome inertia and tradition and change practice" in light of the evidence about short-course therapy. Specifically, they referenced the more than 45 randomized controlled trials and two meta-analyses that found "no difference in efficacy" between shorter and traditional therapy across a variety of infections, including pneumonia.

In November, a randomized trial in the New England Journal of Medicine found that adding a 2-day course of amoxicillin-clavulanate for patients who received targeted hypothermia resuscitation due to sudden cardiac arrest nearly halved the occurrence of ventilator-associated pneumonia during the first 7 days of hospitalization, compared to patients who received placebo. There was no significant difference between the two groups in other outcomes, however, including late ventilator-associated pneumonia, ICU length of stay, and mortality at day 28.

ACIP Updates Vaccine Guidance

In June, the CDC's Advisory Committee for Immunization practices voted to accept new guidance for the pneumococcal vaccine, 13-valent pneumococcal conjugate (PCV13, Prevnar) for older adults. The new policy said that PCV13 was recommended based on shared decision-making for this population who did not have an immunocompromising condition and had not received PCV13 before. These recommendations were formally added to the 2020 adult vaccination schedule in October.

Guidance for the flu vaccine, however, remained unchanged, other than the customary updating of its components. Confusion over the word "contraindication" with regard to the live attenuated influenza vaccine briefly derailed the panel's October meeting, with members ultimately agreeing to use the words "not recommended" for certain patient groups. The ACIP continues to recommend vaccination against flu for all people ages 6 months and older without such concerns.

Other research this year included:

HF Admissions Spike in Step with Flu

FluMist Flopped for Kids During Recent Flu Seasons

Whoopi Goldberg's Pneumonia Nightmare

Vaccinations, Flu Shots, and Multiple Sclerosis

Few CAP Patients Get Urinary Antigen Testing

Infection in Pregnancy Ups Child's Autism, Depression Risk

2019-12-06T13:30:00-0500

More here:
Year in Review: Respiratory Infection - MedPage Today

To Read More: Year in Review: Respiratory Infection – MedPage Today
categoriaCardiac Stem Cells commentoComments Off on Year in Review: Respiratory Infection – MedPage Today | dataDecember 6th, 2019
Read All

Professor Recognized For Cardiac Regeneration Research – WPI News

By daniellenierenberg

Glenn Gaudette, William Smith Deans Professor of Biomedical Engineering at Worcester Polytechnic Institute (WPI), has been named a fellow of theNational Academy of Inventors(NAI), the organization announced today. Gaudette is the founding director of the WPI Myocardial Regeneration Lab, where he has pioneered the use of plants as scaffoldingfor heart regeneration.

The NAI Fellows Program highlights academic inventors who have demonstrated a spirit of innovation in creating or facilitating outstanding inventions that have made a tangible impact on quality of life, economic development and the welfare of society. Election to NAI Fellow is the highest professional distinction accorded solely to academic inventors.

I am honored and humbled to be selected as a Fellow of the NAI. This prestigious recognition is a reflection of amazing collaborators, fantastic students, risk-taking funding organizations and a supportive family that I have been fortunate to benefit from, said Gaudette. Today, significant engineering and science advancements require a focus on creating value for society, work that flourishes in an open and collaborative environment like the one I enjoy at WPI.

As director of the Myocardial Regeneration Lab, Gaudette focuses broadly on cardiovascular regeneration techniques, but more specifically on developing better ways to deliver cells to damaged myocardium as well as better techniques to analyze cardiac mechanics. He has authored over 75 publications, including a co-edited book on cardiovascular regeneration, has four issued patents, and founded a company based on the technology developed in his laboratory. His research, which is supported by the National Institutes of Health and the National Science Foundation, aims to develop a treatment for the millions of Americans suffering from myocardial infarction and other cardiovascular diseases.

As a member of the NAI 2019 Fellows, Gaudette joins 168 educators and researchers representing 136 universities and governmental and nonprofit research institutes worldwide. Collectively, they hold over 3,500 issued U.S. patents. Among the 2019 Fellows are six recipients of the U.S. National Medal of Technology & Innovation or U.S. National Medal of Science and four Nobel Laureates, as well as recipients of other honors and distinctions. Their collective body of research covers a range of scientific disciplines including neurobehavioral sciences, horticulture, photonics and nanomedicine.

To date, NAI Fellows hold more than 41,500 issued U.S. patents, which have generated over 11,000 licensed technologies and companies, and created more than 36 million jobs. In addition, over $1.6 trillion in revenue has been generated based on NAI Fellow discoveries.

On April 10, 2020, the 2019 NAI Fellows will be inducted at the Heard Museum in Phoenix, Arizona as part of the Ninth Annual NAI Meeting. Laura A. Peter, Deputy Under Secretary of Commerce for Intellectual Property and Deputy Director of the United States Patent and Trademark Office (USPTO),will provide the keynote address for the induction ceremony. At the ceremony, Fellows will be formally inducted by Peter and NAI President Paul R. Sanberg in recognition of their outstanding achievements.

In addition to being named an NAI Fellow, Gaudette is a Fellow of the American Institute for Medical and Biological Engineering. His teams research usingspinach leavesas scaffolds for growing human heart cells has been featured by media outlets throughout the world, including the BBC, theWashington Post,and Time.com. The work was named one of the top medical breakthroughs of the year byBoston Magazineand was the seventh most popular story of 2017 inNational Geographic. He has also worked on a novel technology using fibrin sutures to deliver stem cells to targeted areas of the body to repair diseased or damaged tissue, including cardiac muscle damaged by a heart attack.Outside the lab, Gaudette teaches biomedical engineering design and innovation, biomechanics and physiology. He promotes the development of the entrepreneurial mindset in his students through support provided by the Kern Family Foundationand serves as the director of the Value Creation Initiative at WPI.In 2015, he was named Faculty Member of the Year by the Kern Entrepreneurial Engineering Network (KEEN).

Link:
Professor Recognized For Cardiac Regeneration Research - WPI News

To Read More: Professor Recognized For Cardiac Regeneration Research – WPI News
categoriaCardiac Stem Cells commentoComments Off on Professor Recognized For Cardiac Regeneration Research – WPI News | dataDecember 3rd, 2019
Read All

Global Synthetic Stem Cells Market :Industry Analysis and Forecast (2018-2026) – The Market Expedition

By daniellenierenberg

Global Synthetic Stem Cells Marketwas valued at US$ 7.97 Mn in 2017, and is expected to reach at US$ 37Mn by 2026, at CAGR of 22.62% during forecast period.

Different Applications of adult stem cells in regenerative medicines have made huge attention and interest among doctors and hospitals at large. There is huge scope for stem cells in the treatment of cardiology and neurology.

Explain and define synthetic stem cells market Forecast the synthetic stem cells market, by region Forecast the synthetic stem cells market, by application Detailed research of factors influencing on synthetic stem cells market (drivers, restraints, opportunities and challenges) Critical analysis of industry trends, prospects and contribution to the synthetic stem cells market Analysis of synthetic stem cells market for stake holders Forecasting of market size by different geographic segment of synthetic stem cells market.

REQUEST FOR FREE SAMPLE REPORT:https://www.maximizemarketresearch.com/request-sample/22622

Driving factors that influence Synthetic Stem Cell Market include ethical values of embryonic stem cells, the risk of tumour formation and risk of rejection due to immune to natural stem cells. Stem cell work by promoting endogenous healing; that is, they heal damaged parts of tissue in repairing itself by secreting paracrine factors. While stem cell treatment is more effective, they are also linked with the same risks of both tumour growth and immune rejection. It is the major driving force for synthetic stem cells.

The largest market share of the synthetic stem cells market is occupied by cardiovascular diseases, the fact is first synthetic stem cells was invented to cure cardiac tissue.North America has a large market share of synthetic stem cells in the region. The Asia Pacific and European region have almost equal market share. Rest of the world have least market share as compared to the other regions.Key players operating in the Synthetic stem cells market are Sangamo Therapeutics, Athersys, Pluristem Therapeutics, Cellular Biomedicine Group, Vericel, BrainstormCell Therapeutics, Caladrius Biosciences, Cytori Therapeutics, Cesca Therapeutics, VistaGen Therapeutics.

The report covers total market for synthetic stem cells has been analysed based on the Porters five forces model. The impact of the different market factors, such as drivers, restraints, and opportunities, challenges key issues SWOT analysis, and technology forecasting is also illustrated in the report.

DO INQUIRY BEFORE PURCHASING REPORT HERE:https://www.maximizemarketresearch.com/inquiry-before-buying/22622

Scope of Global Synthetic Stem Cells Market:

Global Synthetic Stem Cells Market, by Application:

Cardiovascular Disease Neurological Disorders Cancer Diabetes Gastrointestinal Musculoskeletal Disorders

Global Synthetic Stem Cells Market, by Region:

North America Europe Middle East & Africa Asia Pacific South America

Key Players Operating In Global Synthetic Stem Cells Market:

Sangamo Therapeutics Athersys Pluristem Therapeutics Cellular Biomedicine Group Vericel BrainstormCell Therapeutics Caladrius Biosciences Cytori Therapeutics Cesca Therapeutics VistaGen Therapeutics

Browse Full Report with Facts and Figures of Synthetic Stem Cells Market Report at:https://www.maximizemarketresearch.com/market-report/synthetic-stem-cells-market/22622/

MAJOR TOC OF THE REPORT

Chapter One: Synthetic Stem Cells Market Overview

Chapter Two: Manufacturers Profiles

Chapter Three: Global Synthetic Stem Cells Market Competition, by Players

Chapter Four: Global Synthetic Stem Cells Market Size by Regions

Chapter Five: North America Synthetic Stem Cells Revenue by Countries

Chapter Six: Europe Synthetic Stem Cells Revenue by Countries

Chapter Seven: Asia-Pacific Synthetic Stem Cells Revenue by Countries

Chapter Eight: South America Synthetic Stem Cells Revenue by Countries

Chapter Nine: Middle East and Africa Revenue Synthetic Stem Cells by Countries

Chapter Ten: Global Synthetic Stem Cells Market Segment by Type

Chapter Eleven: Global Synthetic Stem Cells Market Segment by Application

Chapter Twelve: Global Synthetic Stem Cells Market Size Forecast (2019-2026)

About Us:

Maximize Market Research provides B2B and B2C market research on 20,000 high growth emerging technologies & opportunities in Chemical, Healthcare, Pharmaceuticals, Electronics & Communications, Internet of Things, Food and Beverages, Aerospace and Defense and other manufacturing sectors.

Contact info:

Name: Lumawant Godage

Organization: MAXIMIZE MARKET RESEARCH PVT. LTD.

Email:sales@maximizemarketresearch.com

Contact: +919607065656/ +919607195908

Website: http://www.maximizemarketresearch.com

Read more from the original source:
Global Synthetic Stem Cells Market :Industry Analysis and Forecast (2018-2026) - The Market Expedition

To Read More: Global Synthetic Stem Cells Market :Industry Analysis and Forecast (2018-2026) – The Market Expedition
categoriaCardiac Stem Cells commentoComments Off on Global Synthetic Stem Cells Market :Industry Analysis and Forecast (2018-2026) – The Market Expedition | dataDecember 3rd, 2019
Read All

Stem cells may trigger immune repair to mend hearts – BioNews

By daniellenierenberg

2 December 2019

Stem cell therapies may become redundant in repairing cardiac function after a heart attack, suggests a new study in mice.

It showed how stem cell treatments can heal hearts by triggering an immune response which can be achieved by using a chemical instead.

'This work is paradigm-shifting because it demonstrates a mechanism to explain a perplexing phenomenon that has intrigued cardiologists as a result of decades of cardiac stem cell trials,' Dr Jonathan Epstein at the University of Pennsylvania's Perelman School of Medicine in Philadelphia told The Scientist.

Stem cell therapies to repair damaged heart tissue are currently being tested in human clinical trials. In these treatments, human stem cells are injected into the heart and this leads to an improvement in heart function. However, how this works is not fully understood.

One possibility is that the injected stem cells are incorporated into the heart tissue and repair the damage. However, the latest study, published in the journal Nature, suggests that this may not be the case. Instead, the study indicated that the repair is actually a result of triggering the innate immune response.

Researchers injected different types of stem cell or a chemical inducer (zymosan) of the innate immune response into an experimental mouse model of heart disease. They saw improvement in heart function that was similar in all cases, and showed that this repair occurs via activation of macrophage cells of the innate immune system.

'The innate immune response acutely altered cellular activity around the injured area of the heart so that it healed with a more optimised scar and improved contractile properties,' said Dr Jeffery Molkentin at the University of Cincinnati and Cincinnati Children's Hospital Medical Centre, Ohio, who led the study. 'The implications of our study are very straightforward and present important new evidence about an unsettled debate in the field of cardiovascular medicine.'

The work could open up new possibilities for optimising the treatments currently in development, as well as alternative new therapies.

'If there is a chemical off-the-shelf, it would be a much more feasible therapy [than stem cell transplants],'Dr Kory Lavine at Washington University in St Louis, Missouri, told Nature News.

Excerpt from:
Stem cells may trigger immune repair to mend hearts - BioNews

To Read More: Stem cells may trigger immune repair to mend hearts – BioNews
categoriaCardiac Stem Cells commentoComments Off on Stem cells may trigger immune repair to mend hearts – BioNews | dataDecember 2nd, 2019
Read All

Can intermittent fasting help you live long? – Times of India

By daniellenierenberg

If are fasting intermittently or taking long food breaks, here's the news for you. A new study presented at the 2019 American Heart Association Scientific Sessions in Philadelphia has found the good health outcomes of intermittent fasting for cardiac catheterisation patients.The study showed that patients who practised intermittent fasting lived longer than those who didn't. In addition, they are less likely to be diagnosed with heart failure. Cardiac catheterisation is a procedure used to diagnose and treat certain cardiovascular conditions. "It is another example of how we're finding that regular fasting can lead to better health outcomes and longer lives," said the study's principal investigator Benjamin Horne, PhD, director of cardiovascular and genetic epidemiology at the Intermountain Healthcare Heart Institute.Researchers asked 2,001 intermountain patients undergoing cardiac catheterization from 2013 to 2015 a series of lifestyle questions, including whether or not they practised routine intermittent fasting. They then followed up with those patients 4.5 years later and found that routine intermittent fasters had a greater survival rate than those who did not.Because people who fast routinely also are known to engage in other healthy behaviours, the study also evaluated other parameters including demographics, socioeconomic factors, cardiac risk factors, comorbid diagnoses, medications and treatments, and other lifestyle behaviours like smoking and alcohol consumption.Correcting statistically for these factors, long-term routine fasting remained a strong predictor of better survival and lower risk of heart failure, according to researchers. While the study does not show that fasting is the causal effect for better survival, these real-world outcomes in a large population do suggest that fasting may be having an effect and urge continued study of the behaviour. "While many rapid weight loss fasting diets exist today, the different purposes of fasting in those diets and in this study should not be confused with the act of fasting," said Dr Horne. "All proposed biological mechanisms of health benefits from fasting arise from effects that occur during the fasting period or are consequences of fasting," he added.Why long-term intermittent fasting leads to better health outcomes is still largely unknown, though Dr Horne said it could be a host of factors. Fasting affects a person's levels of haemoglobin, red blood cell count, human growth hormone, and lowers sodium and bicarbonate levels, while also activating ketosis and autophagy - all factors that lead to better heart health and specifically reduce risk of heart failure and coronary heart disease. "With the lower heart failure risk that we found, which is consistent with prior mechanistic studies, this study suggests that routine fasting at a low frequency over two-thirds of the lifespan is activating the same biological mechanisms that fasting diets are proposed to rapidly activate," Dr Horne noted.Researchers speculate that fasting routinely over a period of years and even decades conditions the body to activate the beneficial mechanisms of fasting after a shorter length of time than usual.

Visit link:
Can intermittent fasting help you live long? - Times of India

To Read More: Can intermittent fasting help you live long? – Times of India
categoriaCardiac Stem Cells commentoComments Off on Can intermittent fasting help you live long? – Times of India | dataNovember 29th, 2019
Read All

Stem cells do help restore heart function but in a different way – News-Medical.net

By daniellenierenberg

A new study published in the journal Nature shows that stem cells do work well to repair the damaged heart but in an entirely different manner than was originally supposed. The study shows that stem cells, whether living or dead, when injected into the area of damage in the heart in mice, activate an intense acute inflammation. This triggers the classic wound healing response which finally results in the partial or complete recovery of mechanical function of the injured area.

Stem cells are a hot new area of intensive research in almost every field of medical science. These cells are characterized by their property of self-renewal and ability to differentiate into many different types of cells. They have long been thought to stimulate tissue repair and regeneration by differentiating into the native tissue cells that were injured in the given organ or tissue.

In this microscopic histology image, macrophage immune cells (shown in red and green) flock to the injured region of a damaged mouse heart three days after researchers injected adult heart stem cells within the yellow dotted area. Researchers report Nov. 27 in Nature that stem cell therapy helps hearts recover from heart attack by triggering an innate immune response that alters cell activity around the injured area so that it heals with a more optimized scar and improved contractile properties.

Stem cells cause inflammation which is due to macrophage activation. Macrophages are the early warning system of the immune response. They tell the body when stem cells are seen where they are normally absent, in this case. The resulting inflammation causes secondary wound healing that ends in a slight improvement in heart function after a heart attack. The CCR2+ and CX3CR1+ macrophages cause acute inflammation.

The macrophages, along with other nonspecific immune cells, are part of the innate immune response which is the first to react to an antigen or invader. Once this response sets in, the cells around the injured area begin to show a new pattern and level of activity. This eventually causes the scar that is forming to become healthier, resulting in better contractility of the heart tissue in the damaged part.

Earlier research in 2014 by the same team, published in the same journal, provided the basis for the current study. In the prior study, the scientists injected c-kit positive stem cells into the damaged heart. They expected that these cells would replace cardiomyocytes but it did not happen. This made the researchers ask how actually stem cell therapy worked. To answer this question, they designed a new way of looking at stem cells used as treatment.

They used 2 commonly used types of heart stem cells, namely, mononuclear cells from the bone marrow and cardiac progenitor cells. They looked at the data they had on these cells, testing it and revalidating it, under several different conditions. They were surprised to see that the heart grew stronger if either of the two stem cells were injected, but also if dead stem cells or an inert chemical called zymosan was injected. Zymosan is chemically inert but can provoke innate immunity.

The researchers found that whatever injection was used, the acute sterile immune response that set in caused a difference in the formation of the connective tissue that makes up the extracellular matrix, an important component of the extracellular environment. As a result, the border zone extracellular matrix is reduced. In addition, this inflammation also improved the scars mechanical strength. Cardiac fibroblasts became more active. This was observed because injected hearts produced a significantly greater change in passive force over increasing stretch, a profile that was more like uninjured hearts.

To achieve this healing the chemical or stem cells must be injected straight into the heart, right around the damaged area. In most cases of previous stem cell research for ischemic heart damage, the injections have been into the circulation, citing patient safety. This could be the reason why so many trials have shown inconsistent results they were badly designed. Researcher Jeffery Molkentin sums it up: Our results show that the injected material has to go directly into the heart tissue flanking the infarct region. This is where the healing is occurring and where the macrophages can work their magic.

And in the case of zymosan, they were interested to note that the beneficial effect produced by injecting this chemical into the damaged area was a little greater and lasted a little longer than when stem cells (dead or alive) were used.

The researchers say, The implications of our study are very straight forward and present important new evidence about an unsettled debate in the field of cardiovascular medicine. They plan to find new and better ways to harness this healing potential of these stem cells and molecules, or even the macrophages themselves. For instance, looking at the intense inflammation triggered by the injection of any of the three agents, the team would like to test the possibility of polarizing macrophages, or forming a biological queue of macrophages that will be able only to heal thus exploiting the healing resources of this immune cell type.

If they succeed, it could change the way heart disease is treated in the future.

Journal reference:

Vagnozzi, R.J., Maillet, M., Sargent, M.A. et al. An acute immune response underlies the benefit of cardiac stem-cell therapy. Nature (2019) doi:10.1038/s41586-019-1802-2, https://www.nature.com/articles/s41586-019-1802-2

View original post here:
Stem cells do help restore heart function but in a different way - News-Medical.net

To Read More: Stem cells do help restore heart function but in a different way – News-Medical.net
categoriaCardiac Stem Cells commentoComments Off on Stem cells do help restore heart function but in a different way – News-Medical.net | dataNovember 29th, 2019
Read All

Novoheart to Co-develop First of its Kind Human Heart-in-a-Jar Model of Heart Failure with AstraZeneca – GlobeNewswire

By daniellenierenberg

VANCOUVER, British Columbia, Nov. 26, 2019 (GLOBE NEWSWIRE) -- Novoheart (Novoheart or the Company) (TSXV: NVH; FWB: 3NH), a global stem cell biotechnology company, is pleased to announce a collaboration with global biopharmaceutical company AstraZeneca, in an effort to develop the worlds first human-specific in vitro, functional model of heart failure with preserved ejection fraction (HFpEF), a common condition especially among the elderly and in women, with the reported prevalence approaching 10% in women over the age of 80 years.1

Heart failure (HF) is a global pandemic with an estimated 64.3 million cases worldwide in 2017, with an increasing trend in prevalence2. The annual global economic burden of HF is estimated at over US$100 billion3. Accounting for approximately 50% of HF cases, HFpEF in particular is a major and growing public health problem worldwide, with its pathological mechanisms and diverse etiology poorly understood. Due to these complexities, models of the disease available to date, including various animal models, have limited ability to mimic the clinical presentation of HFpEF4. Therefore, drug developers lack an effective tool for preclinical testing of drug candidates for efficacy, and as a result, clinical outcomes for HFpEF have not improved over the last decades, with no effective therapies available.

In collaboration with the Cardiovascular, Renal and Metabolism therapy area of AstraZeneca, the initial phase of the project aims to establish a new in vitro model, leveraging Novohearts proprietary 3-D human ventricular cardiac organoid chamber (hvCOC) technology, that reproduces key phenotypic characteristics of HFpEF. Also known as human heart-in-a-jar, the hvCOC is the only human engineered heart tissue available on the market to date that enables clinically informative assessment of human cardiac pump performance including ejection fraction and developed pressure. Unlike animal models, engineered hvCOCs can be fabricated with specific cellular and matrix compositions, and patient-specific human induced pluripotent stem cells (iPSCs), that allow control over their physical and mechanical properties to mimic those observed in HFpEF patient hearts. Together with Novohearts proprietary hardware and software, this aims to provide a unique assay for understanding the mechanisms of HFpEF, identification of new therapeutic targets, and assessment of novel therapeutics for treating HFpEF patients. Novoheart will exclusively own the intellectual property rights to the newly developed HFpEF hvCOC model.

We are delighted to partner with AstraZeneca, an organization which has long invested in cardiovascular research and is committed to bringing new therapeutic solutions to patients with heart failure, said Novoheart CSO, Dr. Kevin Costa. We look forward to co-developing this new HFpEF hvCOC model into a powerful new tool in the worldwide battle against heart failure.

Regina Fritsche Danielson, Senior Vice President, Head of Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, said, There are significant unmet treatment needs in patients with heart failure with preserved ejection fraction. By combining Novohearts proprietary hvCOC model with our expertise in heart failure, we aim to create the first in vitro model reproducing phenotypic characteristics of heart failure with preserved ejection fraction. This could bridge the gap between in vivo animal models and clinical trials to help accelerate the drug discovery process by providing human-specific preclinical data.

1 Heart Fail Clin. 2014; 10(3):377388.2 Lancet. 2018; 392:1789-1858.3 Int J Cardiol. 2014; 171(3):368-76.4 JACC Basic Transl Sci. 2017; 2(6):770-789.

About Novoheart:

Novoheart is a global stem cell biotechnology company pioneering an array of next-generation human heart tissue prototypes. It is the first company in the world to have engineered miniature living human heart pumps that can revolutionize drug discovery, helping to save time and money for developing new therapeutics. Also known as 'human heart-in-a-jar', Novohearts bio-artificial human heart constructs are created using state-of-the-art and proprietary stem cell and bioengineering approaches and are utilized by drug developers for accurate preclinical testing of the effectiveness and safety of new drugs, maximizing the successes in drug discovery whilst minimizing costs and harm caused to patients. With the recent acquisition of Xellera Therapeutics Limited for manufacturing Good Manufacturing Product (GMP)-grade clinical materials, Novoheart is now developing gene- and cell-based therapies as well as next-generation therapeutics for cardiac repair or regeneration.

For further information, please contact:Ronald Li, CEOinfo@novoheart.com

For media enquiries or interviews, please contact:Media Relationsmedia@novoheart.com

Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

Cautionary Note Regarding Forward-Looking Statements

Information set forth in this news release may involve forward-looking statements under applicable securities laws. Forward-looking statements are statements that relate to future, not past, events. In this context, forward-looking statements often address expected future business and financial performance, and often contain words such as "anticipate", "believe", "plan", "estimate", "expect", and "intend", statements that an action or event "may", "might", "could", "should", or "will" be taken or occur, or other similar expressions. By their nature, forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements, or other future events, to be materially different from any future results, performance or achievements expressed or implied by such forward-looking statements. Such factors include, among others, the risks identified in under the heading Risk Factors in Novohearts annual information form for the year ended June 30, 2019 or other reports and filings with the TSX Venture Exchange and applicable Canadian securities regulators. Forward-looking statements are made based on management's beliefs, estimates and opinions on the date that statements are made and the respective companies undertakes no obligation to update forward-looking statements if these beliefs, estimates and opinions or other circumstances should change, except as required by applicable securities laws. Investors are cautioned against attributing undue certainty to forward-looking statements.

Read the original post:
Novoheart to Co-develop First of its Kind Human Heart-in-a-Jar Model of Heart Failure with AstraZeneca - GlobeNewswire

To Read More: Novoheart to Co-develop First of its Kind Human Heart-in-a-Jar Model of Heart Failure with AstraZeneca – GlobeNewswire
categoriaCardiac Stem Cells commentoComments Off on Novoheart to Co-develop First of its Kind Human Heart-in-a-Jar Model of Heart Failure with AstraZeneca – GlobeNewswire | dataNovember 29th, 2019
Read All

Toddler Bravely Cheats Death After He Survived Rare Cancer And Its Treatment – The Digital Weekly

By daniellenierenberg

Hailie and Treylin Hyman saw the bruising on their baby girls leg as a symbol that the active 1-year-old was getting to walk.

But as a blood test would following disclose and reveal, little Maci was suffering from an extremely unusual blood cancer that scared her life outwardly a risky treatment a practice nearly as serious as the disease.

At the start, it was very scary, Hailie Hyman told the reports.

Terrifying periods followed the diagnosis, punctuated by one crucial difficulty after another, starting the Boiling Springs couple to wonder if Maci would remain and survive or not.

The Hymans course started last February at Macis 1-year-old well-child checkup.

We had no clue anything was incorrect, her mom told. But they did a normal (blood test) and a few hours later, we attended a call telling her platelets were very low.

The Hymans was transferred to a hematologist who gained other abnormalities in Macis blood and listed a bone marrow biopsy to examine further.

During the treatment, the child endured an aneurysm in an artery and progressed into cardiac arrest. The medical team gave CPR for 20 minutes before she was steadied, her mom told.

Later, in the Emergency room, she underwent internal bleeding, too.

It was difficult, she told. There were many times that I would just pray and pray and pray.

Initially considering Maci had leukemia, doctors finally discovered she had myelodysplastic syndrome or MDS.

The situation occurs when abnormal cells in the bone marrow leave the patient weak and unable to make adequate blood.

In children, its more uncommon still. Most people are diagnosed in their 70s.

Maci had to produce regular blood transfusions, antibiotics, and other medicines to struggle the MDS, Bryant stated. But the only support for a remedy was a stem cell transplant.

The transplant is very risky.

Its also laden with possibly life-threatening difficulties, including graft vs. host disease, which happens when immune cells from the donor strike the patients body, Bryant told. Other difficulties incorporate permanent kidney damage and gastrointestinal problems.

There were so many moments during her initial months that it appeared like she would not survive, Bryant stated. So the fact that she is here is a miracle.

Macis family got an anonymous donor by the National Marrow Donor Program, participating many individuals to register in the process, Bryant told.

Maci was admitted to MUSC on June 5 and discharged on Oct. 14.

See the rest here:
Toddler Bravely Cheats Death After He Survived Rare Cancer And Its Treatment - The Digital Weekly

To Read More: Toddler Bravely Cheats Death After He Survived Rare Cancer And Its Treatment – The Digital Weekly
categoriaCardiac Stem Cells commentoComments Off on Toddler Bravely Cheats Death After He Survived Rare Cancer And Its Treatment – The Digital Weekly | dataNovember 29th, 2019
Read All

South Carolina toddler survives rare cancer and the risky procedure used to treat it – USA TODAY

By daniellenierenberg

Hailie Hyman holds her daughter Maci, 1, before an appointment at the Prisma Health Pediatric Hematology Oncology Center Monday, Nov. 4, 2019.(Photo: JOSH MORGAN/Staff)

GREENVILLE, S.C.Hailie and Treylin Hyman saw the bruising on their baby girls leg as a sign that the active 1-year-old was learning to walk.

But as a blood test would later reveal, little Maci was actually suffering from an extremely rare blood cancer that threatened her life without a risky treatment - atreatmentalmost as dangerous as the disease.

In the beginning, it was very scary, Hailie Hyman told The Greenville News.

I couldnt think of anything but the bad things, she confessed. It was all about the statistics. And the statistics arent good.

Terrifying months followed the diagnosis, punctuated by one critical complication after another, leaving the Boiling Springs couple to wonder if Maci would survive.

Somehow, though, the blue-eyed toddler pulled through.And now her family is looking forward to a special Thanksgiving with much to be grateful for.

Alyssa Carson is 18 and has a pilot's license: She wants to be in the crew that colonizes Mars

The Hymans journey began last February atMacis 1-year-old well-child checkup.

We had no idea anything was wrong, her mom said.But they did a routine (blood test) and a couple of hours later, we got a call saying her platelets were very low.

The Hymans were referred to a hematologist who found other abnormalities in Macis blood and scheduled a bone marrow biopsy to investigate further.

Hailie Hyman holds her daughter Maci, 1, before an appointment at the Prisma Health Pediatric Hematology Oncology Center Monday, Nov. 4, 2019.(Photo: JOSH MORGAN/Staff)

During the procedure, the child suffered an aneurysm in an artery and went into cardiac arrest. The team performed CPR on her for 20 minutes before she was stabilized, her mom said.

Later, in the pediatric intensive care unit, she suffered internal bleeding, too.

It was really hard, she said. There were many nights that I would just pray and pray and pray.

Initially believing Maci had leukemia, doctors subsequently determined she had myelodysplastic syndrome, or MDS.

The condition occurs when abnormal cells in the bone marrow leave the patient unable to make enough blood, according to the American Cancer Society.

Its rare, afflicting as few 10,000 Americans a year, though the actual number is unknown.

Maci Hyman, 1, interacts with hospital staff before an appointment at the Prisma Health Pediatric Hematology Oncology Center Monday, Nov. 4, 2019.(Photo: JOSH MORGAN/Staff)

In children, its rarer still. Most people arediagnosed in their 70s.

We were told that just four out of 1 million children get it every year, Hailie Hyman said.

That made the diagnosis elusive at first, said Dr. Nichole Bryant, a pediatric hematologist-oncologist with Prisma Health-Upstate, formerly Greenville Health System.

Shes the only one Ive seen in my career, she said.

Maci had to have regular blood transfusions, antibiotics and other medications to fight the MDS, Bryant said. But the only hope for a cure was a stem cell transplant at the Medical University of South Carolina in Charleston.

When they said that was the only treatment plan for MDS, I of course went to Google, Hailie Hyman said. I read about transplant patients and ...all the complications. It was terrifying. But no matter how many bad things I saw, we had to do it. There is no other option.

The transplantis extremely risky.

Hailie Hyman looks at a fish tank with her daughter Maci, 1, before an appointment at the Prisma Health Pediatric Hematology Oncology Center Monday, Nov. 4, 2019.(Photo: JOSH MORGAN/Staff)

First, high doses of chemotherapy are given to destroy the diseased bone marrow, leaving the patient without an immune system, so fighting infections becomes a challenge. Then healthy donor marrow is infused.

Its also fraught with potentially life-threatening complications, including graft vs. host disease, which occurs when immune cells from the donor attack the patients body, Bryant said. Other complications include permanent kidney damage and gastrointestinal problems.

They have to go to hell and back, she said. But its the only option for long-term survival.

Maci had a really rough start, suffering lots and lots and lots of complications, Bryant said.

Her kidneys failed, so she wound up on dialysis. When she couldnt breathe on her own, she was put on a ventilator. And because she couldnt eat, she had to be tube fed.

Hailie Hyman looks at a fish tank with her daughter Maci, 1, before an appointment at the Prisma Health Pediatric Hematology Oncology Center Monday, Nov. 4, 2019.(Photo: JOSH MORGAN/Staff)

She had blistering sores in her mouth and throughout her GI tract, her mom said. Because her liver wasnt functioning properly, her abdomen filled up with fluid that had to be drained. She was bleeding so profusely in her lungs that one of them collapsed.

Maci, who was sedated through much of it, was put on full life support, she said.

That night we almost lost her, her mom said. We were in the hallway crying our eyes out. We didnt know what do to or think. It was pretty scary for a while.

Somehow, Maci made it.

There were so many times during her first months that it seemed like she would not survive, Bryant said. So the fact that she is here ... is really a miracle.

Macis family found an unrelated donor through the National Marrow Donor Program, enlisting hundreds of other people to join the registry in the process, Bryant said.

Nichole Bryant, M.D.(Photo: Provided)

It was an important part of their journey that maybe didnt directly benefit Maci, she said. But if everybody did that, we wouldnt have difficulty finding a donor for anybody.

Doctors have no explanation for why Maci got MDS. She didnt carry the genetic mutation for it and there is no family history.

She is a rare child - and not in a good way, her mom said, adding,Youve got to laugh sometimes or youre going to cry.

A dying man wanted one last beer with his sons: The moment resonated with thousands

Maci was admitted to MUSC on June 2 and released on Oct. 14.

The Hymans, both 22, spent the entire time in Charlestonwhile Hailies mom cared for their older daughter, Athena, now 2.

Treylins employer held his welding job open for him. And other friends and family members did what they could to help.

We had many, many people very generously donate to us to cover expenses at home and living expenses where we were, Hailie Hyman said.

We are thankful for everyone who helped us through it the cards, the gifts, the donations. Every single cent is greatly appreciated.

Maci's doing well, but recovery from a transplant can take months to years, Bryant said.

Her kidneys are functioning again so she was able to come off dialysis. But she still must take many medications, including anti-rejection drugs that suppress her immune system and leaveher at risk for infection. And she still must be tube fed.

She is miles ahead of where she was two months ago, Bryant said. But she still has a long way to go. Its a long, long road.

Macis mom says she can be up and playing one day and flopped over on the couch another. She still experiences a lot of nausea and vomiting, but is doing well compared to where she was.

Hailie Hyman pulls her daughter Maci, 1, in a wagon in the hallway before an appointment at the Prisma Health Pediatric Hematology Oncology Center Monday, Nov. 4, 2019.(Photo: JOSH MORGAN/Staff)

So as the nation pauses to give thanks this Thanksgiving, she says the family will be countingtheir many blessings family andfriends, Gods mercy, andthe doctors and nurses who saved Macis life.

She has battled a lot and overcome a lot, she said. I have no doubt she will be able to get through.

Want to know more about becoming a marrow donor? Go to bethematch.org.

Follow Liv Osby on Twitter:@livgnews

104-year-old woman bags first buck: 'Never underestimate the power of our senior citizens'

Indiana hospital sued: More than 1,000 patients potentially exposed to HIV or hepatitis

Read or Share this story: https://www.usatoday.com/story/news/health/2019/11/28/south-carolina-toddler-survives-rare-blood-cancer-risky-procedure/4321002002/

Read more:
South Carolina toddler survives rare cancer and the risky procedure used to treat it - USA TODAY

To Read More: South Carolina toddler survives rare cancer and the risky procedure used to treat it – USA TODAY
categoriaCardiac Stem Cells commentoComments Off on South Carolina toddler survives rare cancer and the risky procedure used to treat it – USA TODAY | dataNovember 28th, 2019
Read All

Page 11234..1020..»