Page 11234..1020..»

Induced Pluripotent Stem Cells and Their Potential for …

By daniellenierenberg

Curr Cardiol Rev. 2013 Feb; 9(1): 6372.

1Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA

2Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA

1Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA

1Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA

2Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA

3Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA

1Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA

2Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA

3Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA

Received 2012 Jun 11; Revised 2012 Jul 31; Accepted 2012 Aug 27.

Induced pluripotent stem (iPS) cells, are a type of pluripotent stem cell derived from adult somatic cells. They have been reprogrammed through inducing genes and factors to be pluripotent. iPS cells are similar to embryonic stem (ES) cells in many aspects. This review summarizes the recent progresses in iPS cell reprogramming and iPS cell based therapy, and describe patient specific iPS cells as a disease model at length in the light of the literature. This review also analyzes and discusses the problems and considerations of iPS cell therapy in the clinical perspective for the treatment of disease.

Keywords: Cellular therapy, disease model, embryonic stem cells, induced pluripotent stem cells, reprogramm.

Induced pluripotent stem (iPS) cells, are a type of pluripotent stem cell derived from adult somatic cells that have been genetically reprogrammed to an embryonic stem (ES) cell-like state through the forced expression of genes and factors important for maintaining the defining properties of ES cells.

Mouse iPS cells from mouse fibroblasts were first reported in 2006 by the Yamanaka lab at Kyoto University [1]. Human iPS cells were first independently produced by Yamanakas and Thomsons groups from human fibroblasts in late 2007 [2, 3]. iPS cells are similar to ES cells in many aspects, including the expression of ES cell markers, chromatin methylation patterns, embryoid body formation, teratoma formation, viable chimera formation, pluripotency and the ability to contribute to many different tissues in vitro.

The breakthrough discovery of iPS cells allow researchers to obtain pluripotent stem cells without the controversial use of embryos, providing a novel and powerful method to "de-differentiate" cells whose developmental fates had been traditionally assumed to be determined. Furthermore, tissues derived from iPS cells will be a nearly identical match to the cell donor, which is an important factor in research of disease modeling and drug screening. It is expected that iPS cells will help researchers learn how to reprogram cells to repair damaged tissues in the human body.

The purpose of this paper is to summarize the recent progresses in iPS cell development and iPS cell-based therapy, and describe patient specific iPS cells as a disease model, analyze the problems and considerations of iPS therapy in the clinical treatment of disease.

The methods of reprogramming somatic cells into iPS cells are summarized in Table . It was first demonstrated that genomic integration and high expression of four factors, Oct4/Sox2/Klf4/c-Myc or Oct4/Sox2/Nanog/LIN28 by virus, can reprogram fibroblast cells into iPS cells [1-3]. Later, it was shown that iPS cells can be generated from fibroblasts by viral integration of Oct4/Sox2/Klf4 without c-Myc [4]. Although these iPS cells showed reduced tumorigenicity in chimeras and progeny mice, the reprogramming process is much slower, and efficiency is substantially reduced. These studies suggest that the ectopic expression of these three transcription factors (Oct4/Klf4/Sox2) is required for reprogramming of somatic cells in iPS cells.

Various growth factors and chemical compounds have recently been found to improve the induction efficiency of iPS cells. Shi et al., [5] demonstrated that small molecules, able to compensate for Sox2, could successfully reprogram mouse embryonic fibroblasts (MEF) into iPS cells. They combined Oct4/Klf4 transduction with BIX-01294 and BayK8644s and derived MEF into iPS cells. Huangfu et al., [6, 7] reported that 5-azacytidine, DNA methyltransferase inhibitor, and valproic acid, a histone deacetylase inhibitor, improved reprogramming of MEF by more than 100 folds. Valproic acid enables efficient reprogramming of primary human fibroblasts with only Oct4 and Sox2.

Kim et al. showed that mouse neural stem cells, expressing high endogenous levels of Sox2, can be reprogrammed into iPS cells by transduction Oct4 together with either Klf4 or c-Myc [19]. This suggests that endogenous expression of transcription factors, that maintaining stemness, have a role in the reprogramming process of pluripotency. More recently, Tsai et al., [20] demonstrated that mouse iPS cells could be generated from the skin hair follicle papilla (DP) cell with Oct4 alone since the skin hair follicle papilla cells expressed endogenously three of the four reprogramming factors: Sox2, c-Myc, and Klf4. They showed that reprogramming could be achieved after 3 weeks with efficiency similar to other cell types reprogrammed with four factors, comparable to ES cells.

Retroviruses are being extensively used to reprogram somatic cells into iPS cells. They are effective for integrating exogenous genes into the genome of somatic cells to produce both mouse and human iPS cells. However, retroviral vectors may have significant risks that could limit their use in patients. Permanent genetic alterations, due to multiple retroviral insertions, may cause retrovirus-mediated gene therapy as seen in treatment of severe combined immunodeficiency [25]. Second, although retroviral vectors are silenced during reprogramming [26], this silencing may not be permanent, and reactivation of transgenes may occur upon the differentiation of iPS cells. Third, expression of exogenous reprogramming factors could occur. This may trigger the expression of oncogenes that stimulate cancer growth and alter the properties of the cells. Fourth, the c-Myc over-expression may cause tumor development after transplantation of iPS derived cells. Okita et al. [10] reported that the chimeras and progeny derived from iPS cells frequently showed tumor formation. They found that the retroviral expression of c-Myc was reactivated in these tumors. Therefore, it would be desirable to produce iPS cells with minimal, or free of, genomic integration. Several new strategies have been recently developed to address this issue (Table ).

Stadtfeld et al. [16] used an adenoviral vector to transduce mouse fibroblasts and hepatocytes, and generated mouse iPS cells at an efficiency of about 0.0005%. Fusaki et al. [22] used Sendai virus to efficiently generate iPS cells from human skin fibroblasts without genome integration. Okita et al. [27] repeatedly transfected MEF with two plasmids, one carrying the complementary DNAs (cDNAs) of Oct3/4, Sox2, and Klf4 and the other carrying the c-Myc cDNA. This generated iPS cells without evidence of plasmid integration. Using a polycistronic plasmid co-expressing Oct4, Sox2, Klf4, and c-Myc, Gonzalez et al., [28] reprogrammed MEF into iPS cells without genomic integration. Yu et al. [29] demonstrated that oriP/EBNA1 (EpsteinBarr nuclear antigen-1)-based episomal vectors could be used to generate human iPS cells free of exogenous gene integration. The reprogramming efficiency was about 36 colonies/1 million somatic cells. Narsinh et al., [21] derived human iPS cells via transfection of human adipocyte stromal cells with a nonviral minicircle DNA by repeated transfection. This produced hiPS cells colonies from an adipose tissue sample in about 4 weeks.

When iPS cells generated from either plasmid transfection or episomes were carefully analyzed to identify random vector integration, it was possible to have vector fragments integrated somewhere. Thus, reprogramming strategies entirely free of DNA-based vectors are being sought. In April 2009, it was shown that iPS cells could be generated using recombinant cell-penetrating reprogramming proteins [30]. Zhou et al. [30] purified Oct4, Sox2, Klf4 and c-Myc proteins, and incorporated poly-arginine peptide tags. It allows the penetration of the recombinant reprogramming proteins through the plasma membrane of MEF. Three iPS cell clones were successfully generated from 5x 104 MEFs after four rounds of protein supplementation and subsequent culture of 2328 days in the presence of valproic acid.

A similar approach has also been demonstrated to be able to generate human iPS cells from neonatal fibroblasts [31]. Kim et al. over-expressed reprogramming factor proteins in HEK293 cells. Whole cell proteins of the transduced HEK293 were extracted and used to culture fibroblast six times within the first week. After eight weeks, five cell lines had been established at a yield of 0.001%, which is one-tenth of viral reprogramming efficiency. Strikingly, Warren et al., [24] demonstrated that human iPS cells can be derived using synthetic mRNA expressing Oct3/4, Klf4, Sox2 and c-Myc. This method efficiently reprogrammed fibroblast into iPS cells without genome integration.

Strenuous efforts are being made to improve the reprogramming efficiency and to establish iPS cells with either substantially fewer or no genetic alterations. Besides reprogramming vectors and factors, the reprogramming efficiency is also affected by the origin of iPS cells.

A number of somatic cells have been successfully reprogrammed into iPS cells (Table ). Besides mouse and human somatic cells, iPS cells from other species have been successfully generated (Table ).

The origin of iPS cells has an impact on choice of reprogramming factors, reprogramming and differentiation efficiencies. The endogenous expression of transcription factors may facilitate the reprogramming procedure [19]. Mouse neural stem cells express higher endogenous levels of Sox2 and c-Myc than ES cells. Thus, two transcription factors, exogenous Oct4 together with either Klf4 or c-Myc, are sufficient to generate iPS cells from neural stem cells [19]. Ahmed et al. [14] demonstrated that mouse skeletal myoblasts endogenously expressed Sox2, Klf4, and c-Myc and can be easily reprogrammed to iPS cells.

It is possible that iPS cells may demonstrate memory of parental source and therefore have low differentiation efficiency into other tissue cells. Kim et al. [32] showed that iPS cells reprogrammed from peripheral blood cells could efficiently differentiate into the hematopoietic lineage cells. It was found, however, that these cells showed very low differentiation efficiency into neural cells. Similarly, Bar-Nur et al. found that human cell-derived iPS cells have the epigenetic memory and may differentiate more readily into insulin producing cells [33]. iPS cells from different origins show similar gene expression patterns in the undifferentiated state. Therefore, the memory could be epigenetic and are not directly related to the pluripotent status.

The cell source of iPS cells can also affect the safety of the established iPS cells. Miura et al. [54] compared the safety of neural differentiation of mouse iPS cells derived from various tissues including MEFs, tail-tip fibroblasts, hepatocyte and stomach. Tumorigenicity was examined. iPS cells that reprogrammed from tail-tip fibroblasts showed many undifferentiated pluripotent cells after three weeks of in vitro differentiation into the neural sphere. These cells developed teratoma after transplantation into an immune-deficient mouse brain. The possible mechanism of this phenomenon may be attributable to epigenetic memory and/or genomic stability. Pre-evaluated, non-tumorigenic and safe mouse iPS cells have been reported by Tsuji et al. [55]. Safe iPS cells were transplanted into non-obese diabetic/severe combined immunodeficiency mouse brain, and found to produce electrophysiologically functional neurons, astrocytes, and oligodendrocytes in vitro.

The cell source of iPS cells is important for patients as well. It is important to carefully evaluate clinically available sources. Human iPS cells have been successfully generated from adipocyte derived stem cells [35], amniocytes [36], peripheral blood [38], cord blood [39], dental pulp cells [40], oral mucosa [41], and skin fibroblasts (Table ). The properties and safety of these iPS cells should be carefully examined before they can be used for treatment.

Shimada et al. [17] demonstrated that combination of chemical inhibitors including A83-01, CHIR99021, PD0325901, sodium butyrate, and Y-27632 under conditions of physiological hypoxia human iPS cells can be rapidly generated from adipocyte stem cells via retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Miyoshi et al., [42] generated human iPS cells from cells isolated from oral mucosa via the retroviral gene transfer of Oct4, Sox2, c-Myc, and Klf4. Reprogrammed cells showed ES-like morphology and expressed undifferentiated markers. Yan et al., [40] demonstrated that dental tissue-derived mesenchymal-like stem cells can easily be reprogrammed into iPS cells at relatively higher rates as compared to human fibroblasts. Human peripheral blood cells have also been successfully reprogrammed into iPS cells [38]. Anchan et al. [36] described a system that can efficiently derive iPS cells from human amniocytes, while maintaining the pluripotency of these iPS cells on mitotically inactivated feeder layers prepared from the same amniocytes. Both cellular components of this system are autologous to a single donor. Takenaka et al. [39] derived human iPS cells from cord blood. They demonstrated that repression of p53 expression increased the reprogramming efficiency by 100-fold.

All of the human iPS cells described here are indistinguishable from human ES cells with respect to morphology, expression of cell surface antigens and pluripotency-associated transcription factors, DNA methylation status at pluripotent cell-specific genes and the capacity to differentiate in vitro and in teratomas. The ability to reprogram cells from human somatic cells or blood will allow investigating the mechanisms of the specific human diseases.

The iPS cell technology provides an opportunity to generate cells with characteristics of ES cells, including pluripotency and potentially unlimited self-renewal. Studies have reported a directed differentiation of iPS cells into a variety of functional cell types in vitro, and cell therapy effects of implanted iPS cells have been demonstrated in several animal models of disease.

A few studies have demonstrated the regenerative potential of iPS cells for three cardiac cells: cardiomyocytes, endothelial cells, and smooth muscle cells in vitro and in vivo. Mauritz [56] and Zhang [57] independently demonstrated the ability of mouse and human iPS cells to differentiate into functional cardiomyocytes in vitro through embryonic body formation. Rufaihah [58], et al. derived endothelial cells from human iPS cells, and showed that transplantation of these endothelial cells resulted in increased capillary density in a mouse model of peripheral arterial disease. Nelson et al. [59] demonstrated for the first time the efficacy of iPS cells to treat acute myocardial infarction. They showed that iPS cells derived from MEF could restore post-ischemic contractile performance, ventricular wall thickness, and electrical stability while achieving in situ regeneration of cardiac, smooth muscle, and endothelial tissue. Ahmed et al. [14] demonstrated that beating cardiomyocyte-like cells can be differentiated from iPS cells in vitro. The beating cells expressed early and late cardiac-specific markers. In vivo studies showed extensive survival of iPS and iPS-derived cardiomyocytes in mouse hearts after transplantation in a mouse experimental model of acute myocardial infarction. The iPs derived cardiomyocyte transplantation attenuated infarct size and improved cardiac function without tumorgenesis, while tumors were observed in the direct iPS cell transplantation animals.

Strategies to enhance the purity of iPS derived cardiomyocytes and to exclude the presence of undifferentiated iPS are required. Implantation of pre-differentiation or guided differentiation of iPS would be a safer and more effective approach for transplantation. Selection of cardiomyocytes from iPS cells, based on signal-regulatory protein alpha (SIRPA) or combined with vascular cell adhesion protein-1 (VCAM-1), has been reported. Dubois et al. [60] first demonstrated that SIRPA was a marker specifically expressed on cardiomyocytes derived from human ES cells and human iPS cells. Cell sorting with an antibody against SIRPA could enrich cardiac precursors and cardiomyocytes up to 98% troponin T+ cells from human ESC or iPS cell differentiation cultures. Elliott et al. [61] adopted a cardiac-specific reporter gene system (NKX2-5eGFP/w) and identified that VCAM-1 and SIRPA were cell-surface markers of cardiac lineage during differentiation of human ES cells.

Regeneration of functional cells from human stem cells represents the most promising approach for treatment of type 1 diabetes mellitus (T1DM). This may also benefit the patients with type 2 diabetes mellitus (T2DM) who need exogenous insulin. At present, technology for reprogramming human somatic cell into iPS cells brings a remarkable breakthrough in the generation of insulin-producing cells.

Human ES cells can be directed to become fully developed cells and it is expected that iPS cells could also be similarly differentiated. Stem cell based approaches could also be used for modulation of the immune system in T1DM, or to address the problems of obesity and insulin resistance in T2DM.

Tateishi et al., [62] demonstrated that insulin-producing islet-like clusters (ILCs) can be generated from the human iPS cells under feeder-free conditions. The iPS cell derived ILCs not only contain C-peptide positive and glucagon-positive cells but also release C-peptide upon glucose stimulation. Similarly, Zhang et al., [63] reported a highly efficient approach to induce human ES and iPS cells to differentiate into mature insulin-producing cells in a chemical-defined culture system. These cells produce insulin/C-peptide in response to glucose stimuli in a manner comparable to that of adult human islets. Most of these cells co-expressed mature cell-specific markers such as NKX6-1 and PDX1, indicating a similar gene expression pattern to adult islet beta cells in vivo.

Alipo et al. [64] used mouse skin derived iPS cells for differentiation into -like cells that were similar to the endogenous insulin-secreting cells in mice. These -like cells were able to secrete insulin in response to glucose and to correct a hyperglycemic phenotype in mouse models of both T1DM and T2DM after iPS cell transplant. A long-term correction of hyperglycemia could be achieved as determined by hemoglobin A1c levels. These results are encouraging and suggest that induced pluripotency is a viable alternative to directing iPS cell differentiation into insulin secreting cells, which has great potential clinical applications in the treatment of T1DM and T2 DM.

Although significant progress has been made in differentiating pluripotent stem cells to -cells, several hurdles remain to be overcome. It is noted in several studies that the general efficiency of in vitro iPS cell differentiation into functional insulin-producing -like cells is low. Thus, it is highly essential to develop a safe, efficient, and easily scalable differentiation protocol before its clinical application. In addition, it is also important that insulin-producing b-like cells generated from the differentiation of iPS cells have an identical phenotype resembling that of adult human pancreatic cells in vivo.

Currently, the methodology of neural differentiation has been well established in human ES cells and shown that these methods can also be applied to iPS cells. Chambers et al. [65] demonstrated that the synergistic action of Noggin and SB431542 is sufficient to induce rapid and complete neural conversion of human ES and iPS cells under adherent culture conditions. Swistowsk et al. [66] used a completely defined (xenofree) system, that has efficiently differentiated human ES cells into dopaminergic neurons, to differentiate iPS cells. They showed that the process of differentiation into committed neural stem cells (NSCs) and subsequently into dopaminergic neurons was similar to human ES cells. Importantly, iPS cell derived dopaminergic neurons were functional as they survived and improved behavioral deficits in 6-hydroxydopamine-leasioned rats after transplantation. Lee et al. [67] provided detailed protocols for the step-wise differentiation of human iPS and human ES into neuroectodermal and neural crest cells using either the MS5 co-culture system or a defined culture system (Noggin with a small-molecule SB431542), NSB system. The average time required for generating purified human NSC precursors will be 25 weeks. The success of deriving neurons from human iPS cells provides a study model of normal development and impact of genetic disease during neural crest development.

Wernig et al., [68] showed that iPS cells can give rise to neuronal and glial cell types in culture. Upon transplantation into the fetal mouse brain, the cells differentiate into glia and neurons, including glutamatergic, GABAergic, and catecholaminergic subtypes. Furthermore, iPS cells were induced to differentiate into dopamine neurons of midbrain character and were able to improve behavior in a rat model of Parkinson's disease (PD) upon transplantation into the adult brain. This study highlights the therapeutic potential of directly reprogrammed fibroblasts for neural cell replacement in the animal model of Parkinsons disease.

Tsuji et al., [55] used pre-evaluated iPS cells derived for treatment of spinal cord injury. These cells differentiated into all three neural lineages, participated in remyelination and induced the axonal regrowth of host 5HT+ serotonergic fibers, promoting locomotor function recovery without forming teratomas or other tumors. This study suggests that iPS derived neural stem/progenitor cells may be a promising cell source for treatment of spinal cord injury.

Hargus et al., [69] demonstrated proof of principle of survival and functional effects of neurons derived from iPS cells reprogrammed from patients with PD. iPS cells from patients with Parkinsons disease were differentiated into dopaminergic neurons that could be transplanted without signs of neuro-degeneration into the adult rodent striatum. These cells survived and showed arborization, and mediated functional effects in an animal model of Parkinsons disease. This study suggests that disease specific iPS cells can be generated from patients with PD, which be used to study the PD development and in vitro drug screen for treatment of PD.

Reprogramming technology is being applied to derive patient specific iPS cell lines, which carry the identical genetic information as their patient donor cells. This is particularly interesting to understand the underlying disease mechanism and provide a cellular and molecular platform for developing novel treatment strategy.

Human iPS cells derived from somatic cells, containing the genotype responsible for the human disease, hold promise to develop novel patient-specific cell therapies and research models for inherited and acquired diseases. The differentiated cells from reprogrammed patient specific human iPS cells retain disease-related phenotypes to be an in vitro model of pathogenesis (Table ). This provides an innovative way to explore the molecular mechanisms of diseases.

Disease Modeling Using Human iPS Cells

Recent studies have reported the derivation and differentiation of disease-specific human iPS cells, including autosomal recessive disease (spinal muscular atrophy) [70], cardiac disease [71-75], blood disorders [13, 76], diabetes [77], neurodegenerative diseases (amyotrophic lateral sclerosis [78], Huntingtons disease [79]), and autonomic nervous system disorder (Familial Dysautonomia) [80]. Patient-specific cells make patient-specific disease modeling possible wherein the initiation and progression of this poorly understood disease can be studied.

Human iPS cells have been reprogrammed from spinal muscular atrophy, an autosomal recessive disease. Ebert et al., [70] generated iPS cells from skin fibroblast taken from a patient with spinal muscular atrophy. These cells expanded robustly in culture, maintained the disease genotype and generated motor neurons that showed selective deficits compared to those derived from the patients' unaffected relative. This is the first study to show that human iPS cells can be used to model the specific pathology seen in a genetically inherited disease. Thus, it represents a promising resource to study disease mechanisms, screen new drug compounds and develop new therapies.

Similarly, three other groups reported their findings on the use of iPS cells derived cardiomyocytes (iPSCMs) as disease models for LQTS type-2 (LQTS2). Itzhaki et al., [72] obtained dermal fibroblasts from a patient with LQTS2 harboring the KCNH2 gene mutation and showed that action potential duration was prolonged and repolarization velocity reduced in LQTS2 iPS-CMs compared with normal cardiomyocytes. They showed that Ikr was significantly reduced in iPS-CMs derived from LQTS2. They also tested the potential therapeutic effects of nifedipine and the KATP channel opener pinacidil (which augments the outward potassium current) and demonstrated that they shortened the action potential duration and abolished early after depolarization. Similarly, Lahti et al., [73] demonstrated a more pronounced inverse correlation between the beating rate and repolarization time of LQTS2 disease derived iPS-CMs compared with normal control cells. Prolonged action potential is present in LQT2-specific cardiomyocytes derived from a mutation. Matsa et al., [74] also successfully generated iPS-CMs from a patient with LQTS2 with a known KCNH2 mutation. iPS-CMs with LQTS2 displayed prolonged action potential durations on patch clamp analysis and prolonged corrected field potential durations on microelectrode array mapping. Furthermore, they demonstrated that the KATP channel opener nicorandil and PD-118057, a type 2 IKr channel enhancer attenuate channel closing.

LQTS3 has been recapitulated in mouse iPS cells [75]. Malan et al. [75] generated disease-specific iPS cells from a mouse model of a human LQTS3. Patch-clamp measurements of LQTS 3-specific cardiomyocytes showed the biophysical effects of the mutation on the Na+ current, withfaster recovery from inactivation and larger late currents than observed in normal control cells. Moreover, LQTS3-specific cardiomyocytes had prolonged action potential durations and early after depolarizations at low pacing rates, both of which are classic features of the LQTS3 mutation.

Human iPS cells have been used to recapitulate diseases of blood disorder. Ye et al. [13] demonstrated that human iPS cells derived from periphery blood CD34+ cells of patients with myeloproliferative disorders, have the JAK2-V617F mutation in blood cells. Though the derived iPS cells contained the mutation, they appeared normal in phenotypes, karyotype, and pluripotency. After hematopoietic differentiation, the iPS cell-derived hematopoietic progenitor (CD34+/CD45+) cells showed the increased erythropoiesis and expression of specific genes, recapitulating features of the primary CD34+ cells of the corresponding patient from whom the iPS cells were derived. This study highlights that iPS cells reprogrammed from somatic cells from patients with blood disease provide a prospective hematopoiesis model for investigating myeloproliferative disorders.

Raya et al., [76] reported that somatic cells from Fanconi anaemia patients can be reprogrammed to pluripotency after correction of the genetic defect. They demonstrated that corrected Fanconi-anaemia specific iPS cells can give rise to haematopoietic progenitors of the myeloid and erythroid lineages that are phenotypically normal. This study offers proof-of-concept that iPS cell technology can be used for the generation of disease-corrected, patient-specific cells with potential value for cell therapy applications.

Maehr et al., [77] demonstrated that human iPS cells can be generated from patients with T1DM by reprogramming their adult fibroblasts. These cells are pluripotent and differentiate into three lineage cells, including insulin-producing cells. These cells provide a platform to assess the interaction between cells and immunocytes in vitro, which mimic the pathological phenotype of T1DM. This will lead to better understanding of the mechanism of T1DM and developing effective cell replacement therapeutic strategy.

Lee et al., [80] reported the derivation of human iPS cells from patient with Familial Dysautonomia, an inherited disorder that affects the development and function of nerves throughout the body. They demonstrated that these iPS cells can differentiate into all three germ layers cells. However gene expression analysis demonstrated tissue-specific mis-splicing of IKBKAP in vitro, while neural crest precursors showed low levels of normal IKBKAP transcript. Transcriptome analysis and cell-based assays revealed marked defects in neurogenic differentiation and migration behavior. All these recaptured familial Dysautonomia pathogenesis, suggesting disease specificity of the with familial Dysautonomia human iPS cells. Furthermore, they validated candidate drugs in reversing and ameliorating neuronal differentiation and migration. This study illustrates the promise of disease specific iPS cells for gaining new insights into human disease pathogenesis and treatment.

Human iPS cells derived reprogrammed from patients with inherited neurodegenerative diseases, amyotrophic lateral sclerosis [78] and Huntingtons disease 79, have also been reported. Dimos et al., [78] showed that they generated iPS cells from a patient with a familial form of amyotrophic lateral sclerosis. These patient-specific iPS cells possess the properties of ES cells and were reprogrammed successfully to differentiate into motor neurons. Zhang et al., [79] derived iPS cells from fibroblasts of patient with Huntingtons disease. They demonstrated that striatal neurons and neuronal precursors derived from these iPS cells contained the same CAG repeat expansion as the mutation in the patient from whom the iPS cell line was established. This suggests that neuronal progenitor cells derived from Huntingtons disease cell model have endogenous CAG repeat expansion that is suitable for mechanistic studies and drug screenings.

Disease specific somatic cells derived from patient-specific human iPS cells will generate a wealth of information and data that can be used for genetically analyzing the disease. The genetic information from disease specific-iPS cells will allow early and more accurate prediction and diagnosis of disease and disease progression. Further, disease specific iPS cells can be used for drug screening, which in turn correct the genetic defects of disease specific iPS cells.

iPS cells appear to have the greatest promise without ethical and immunologic concerns incurred by the use of human ES cells. They are pluripotent and have high replicative capability. Furthermore, human iPS cells have the potential to generate all tissues of the human body and provide researchers with patient and disease specific cells, which can recapitulate the disease in vitro. However, much remains to be done to use these cells for clinical therapy. A better understanding of epigenetic alterations and transcriptional activity associated with the induction of pluripotency and following differentiation is required for efficient generation of therapeutic cells. Long-term safety data must be obtained to use human iPS cell based cell therapy for treatment of disease.

These works were supported by NIH grants HL95077, HL67828, and UO1-100407.

The authors confirm that this article content has no conflicts of interest.

Read more:
Induced Pluripotent Stem Cells and Their Potential for ...

To Read More: Induced Pluripotent Stem Cells and Their Potential for …
categoriaCardiac Stem Cells commentoComments Off on Induced Pluripotent Stem Cells and Their Potential for … | dataOctober 16th, 2021
Read All

Introduction to Stem Cell Therapy

By daniellenierenberg

J Cardiovasc Nurs. Author manuscript; available in PMC 2014 Jul 21.

Published in final edited form as:

PMCID: PMC4104807

NIHMSID: NIHMS100185

1Department of Bioengineering, University of Illinois at Chicago

2Department of Physiology and Biophysics and Department of Bioengineering, University of Illinois at Chicago

1Department of Bioengineering, University of Illinois at Chicago

2Department of Physiology and Biophysics and Department of Bioengineering, University of Illinois at Chicago

Stem cells have the ability to differentiate into specific cell types. The two defining characteristics of a stem cell are perpetual self-renewal and the ability to differentiate into a specialized adult cell type. There are two major classes of stem cells: pluripotent that can become any cell in the adult body, and multipotent that are restricted to becoming a more limited population of cells. Cell sources, characteristics, differentiation and therapeutic applications are discussed. Stem cells have great potential in tissue regeneration and repair but much still needs to be learned about their biology, manipulation and safety before their full therapeutic potential can be achieved.

Stem cells have the ability to build every tissue in the human body, hence have great potential for future therapeutic uses in tissue regeneration and repair. In order for cells to fall under the definition of stem cells, they must display two essential characteristics. First, stem cells must have the ability of unlimited self-renewal to produce progeny exactly the same as the originating cell. This trait is also true of cancer cells that divide in an uncontrolled manner whereas stem cell division is highly regulated. Therefore, it is important to note the additional requirement for stem cells; they must be able to give rise to a specialized cell type that becomes part of the healthy animal.1

The general designation, stem cell encompasses many distinct cell types. Commonly, the modifiers, embryonic, and adult are used to distinguish stem cells by the developmental stage of the animal from which they come, but these terms are becoming insufficient as new research has discovered how to turn fully differentiated adult cells back into embryonic stem cells and, conversely, adult stem cells, more correctly termed somatic stem cells meaning from the body, are found in the fetus, placenta, umbilical cord blood and infants.2 Therefore, this review will sort stem cells into two categories based on their biologic properties - pluripotent stem cells and multipotent stem cells. Their sources, characteristics, differentiation and therapeutic applications are discussed.

Pluripotent stem cells are so named because they have the ability to differentiate into all cell types in the body. In natural development, pluripotent stem cells are only present for a very short period of time in the embryo before differentiating into the more specialized multipotent stem cells that eventually give rise to the specialized tissues of the body (). These more limited multipotent stem cells come in several subtypes: some can become only cells of a particular germ line (endoderm, mesoderm, ectoderm) and others, only cells of a particular tissue. In other words, pluripotent cells can eventually become any cell of the body by differentiating into multipotent stem cells that themselves go through a series of divisions into even more restricted specialized cells.

During natural embryo development, cells undergo proliferation and specialization from the fertilized egg, to the blastocyst, to the gastrula during natural embryo development (left side of panel). Pluripotent, embryonic stem cells are derived from the inner cell mass of the blastoctyst (lightly shaded). Multipotent stem cells (diamond pattern, diagonal lines, and darker shade) are found in the developing gastrula or derived from pluripotent stem cells and are restricted to give rise to only cells of their respective germ layer.

Based on the two defining characteristics of stem cells (unlimited self-renewal and ability to differentiate), they can be described as having four outcomes or fates3 (). A common fate for multipotent stem cells is to remain quiescent without dividing or differentiating, thus maintaining its place in the stem cell pool. An example of this is stem cells in the bone marrow that await activating signals from the body. A second fate of stem cells is symmetric self-renewal in which two daughter stem cells, exactly like the parent cell, arise from cell division. This does not result in differentiated progeny but does increase the pool of stem cells from which specialized cells can develop in subsequent divisions. The third fate, asymmetric self-renewal, occurs when a stem cell divides into two daughter cells, one a copy of the parent, the other a more specialized cell, named a somatic or progenitor cell. Asymmetric self-renewal results in the generation of differentiated progeny needed for natural tissue development/regeneration while also maintaining the stem cell pool for the future. The fourth fate is that in which a stem cell divides to produce two daughters both different from the parent cell. This results in greater proliferation of differentiated progeny with a net loss in the stem cell pool.

Four potential outcomes of stem cells. A) Quiescence in which a stem cell does not divide but maintains the stem cell pool. B) Symmetric self-renewal where a stem cell divides into two daughter stem cells increasing the stem cell pool. C) Asymmetric self-renewal in which a stem cell divides into one differentiated daughter cell and one stem cell, maintaining the stem cell pool. D) Symmetric division without self-renewal where there is a loss in the stem cell pool but results in two differentiated daughter cells. (SC- Stem cell, DP-Differentiated progeny)

The factors that determine the fate of stem cells is the focus of intense research. Knowledge of the details could be clinically useful. For example, clinicians and scientists might direct a stem cell population to expand several fold through symmetrical self-renewal before differentiation into multipotent or more specialized progenitor cells. This would ensure a large, homogeneous population of cells at a useful differentiation stage that could be delivered to patients for successful tissue regeneration.

Pluripotent stem cells being used in research today mainly come from embryos, hence the name, embryonic stem cells. Pre-implantation embryos a few days old contain only 10-15% pluripotent cells in the inner cell mass (). Those pluripotent cells can be isolated, then cultured on a layer of feeder cells which provide unknown cues for many rounds of proliferation while sustaining their pluripotency.

Recently, two different groups of scientists induced adult cells back into the pluripotent state by molecular manipulation to yield induced pluripotent stem cells (iPS) that share some of the same characteristics as embryonic stem cells such as proliferation, morphology and gene expression (in the form of distinct surface markers and proteins being expressed).4-8 Both groups used retroviruses to carry genes for transcription factors into the adult cells. These genes are transcribed and translated into proteins that regulate the expression of other genes designed to reprogram the adult nucleus back into its embryonic state. Both introduced the embryonic transcription factors known as Sox2 and Oct4. One group also added Klf4 and c-Myc4, and the other group added Lin28 and Nanog.6 Other combinations of factors would probably also work, but, unfortunately, neither the retroviral carrier method nor the use of the oncogenic transcription factor c-Myc are likely to be approved for human therapy. Consequently, a purely chemical approach to deliver genes into the cells, and safer transcription factors are being tried. Results of these experiments look promising.9

Multipotent stem cells may be a viable option for clinical use. These cells have the plasticity to become all the progenitor cells for a particular germ layer or can be restricted to become only one or two specialized cell types of a particular tissue. The multipotent stem cells with the highest differentiating potential are found in the developing embryo during gastrulation (day 14-15 in humans, day 6.5-7 in mice). These cells give rise to all cells of their particular germ layer, thus, they still have flexibility in their differentiation capacity. They are not pluripotent stem cells because they have lost the ability to become cells of all three germ layers (). On the low end of the plasticity spectrum are the unipotent cells that can become only one specialized cell type such as skin stem cells or muscle stem cells. These stem cells are typically found within their organ and although their differentiation capacity is restricted, these limited progenitor cells play a vital role in maintaining tissue integrity by replenishing aging or injured cells. There are many other sub-types of multipotent stem cells occupying a range of differentiation capacities. For example, multipotent cells derived from the mesoderm of the gastrula undergo a differentiation step limiting them to muscle and connective tissue; however, further differentiation results in increased specialization towards only connective tissue and so on until the cells can give rise to only cartilage or only bone.

Multipotent stem cells found in bone marrow are best known, because these have been used therapeutically since the 1960s10 (their potential will be discussed in greater detail in a later section). Recent research has found new sources for multipotent stem cells of greater plasticity such as the placenta and umbilical cord blood.11 Further, the heart, until recently considered void of stem cells, is now known to contain stem cells with the potential to become cardiac myocytes.12 Similarly, neuro-progenitor cells have been found within the brain.13

The cardiac stem cells are present in such small numbers, that they are difficult to study and their function has not been fully determined. The second review in this series will discuss their potential in greater detail.

Since Federal funding for human embryonic stem cells is restricted in the United States, many scientists use the mouse model instead. Besides their ability to self-renew indefinitely and differentiate into cell types of all three germ layers, murine and human pluripotent stem cells have much in common. It should not be surprising that so many pluripotency traits are conserved between species given the shared genomic sequences and intra-cellular structure in mammals. Both mouse and human cells proliferate indefinitely in culture, have a high nucleus to cytoplasm ratio, need the support of growth factors derived from other live cells, and display similar surface antigens, transcription factors and enzymatic activity (i.e. high alkaline phosphatase activity).14 However, differences between mouse and human pluripotent cells, while subtle, are very important. Although the transcription factors mentioned above to induce pluripotency from adult cells (Oct3/4 and Sox2) are shared, the extracellular signals needed to regulate them differ. Mouse embryonic stem cells need the leukemia inhibitory factor and bone morphogenic proteins while human require the signaling proteins Noggin and Wnt for sustained pluripotency.15 Surface markers used to identify pluripotent cells also differ slightly between the two species as seen in the variants of the adhesion molecule SSEA (SSEA-1 in mouse, SSEA-3 & 4 in humans).16 Thus, while pluripotency research in mouse cells is valuable, a direct correlation to the human therapy is not likely.

Last, but certainly not least, a big difference between mouse and human stem cells are the moral and ethical dilemmas that accompany the research. Some people consider working with human embryonic stem cells to be ethically problematic while very few people have reservations on working with the mouse models. However, given the biological differences between human and mouse cells, most scientists believe that data relevant for human therapy will be missed by working only on rodents.

Cell surface markers are typically also used to identify multipotent stem cells. For example, mesenchymal stem cells can be purified from the whole bone marrow aspirate by eliminating cells that express markers of committed cell types, a step referred to as lineage negative enrichment, and then further separating the cells that express the sca-1 and c-Kit surface markers signifying mesenchymal stem cells. Both the lineage negative enrichment step and the sca-1/c-Kit isolation can be achieved by using flow cytometry and is discussed in further detail in the following review. The c-Kit surface marker also is used to distinguish the recently discovered cardiac stem cells from the rest of the myocardium. A great deal of recent work in cardiovascular research has centered on trying to find which markers indicate early multipotent cells that will give rise to pre-cardiac myocytes. Cells with the specific mesodermal marker, Kdr, give rise to the progenitor cells of the cardiovascular system including contracting cardiac myocytes, endothelial cells and vascular smooth muscle cells and are therefore considered to be the earliest cells with specification towards the cardiovascular lineage.17 Cells at this early stage still proliferate readily and yet are destined to become cells of the cardiovascular system and so may be of great value therapeutically.

Scientists are still struggling to reliably direct differentiation of stem cells into specific cell types. They have used a virtual alphabet soup of incubation factors toward that end (including trying a variety of growth factors, chemicals and complex substrates on which the cells are grown), with, so far, only moderate success. As an example of this complexity, one such approach to achieve differentiation towards cardiac myocytes is to use the chemical activin A and the growth factor BMP-4. When these two factors are administered to pluripotent stem cells in a strictly controlled manner, both in concentration and temporally, increased efficiency is seen in differentiation towards cardiac myocytes, but still, only 30% of cells can be expected to become cardiac.18

Multipotent cells have also been used as the starting point for cell therapy, again with cocktails of growth factors and/or chemicals to induce differentiation toward a specific, desired lineage. Some recipes are simple, such as the use of retinoic acid to induce mesenchymal stem cells into neuronal cells,19 or transforming growth factor- to make bone marrow-derived stem cells express cardiac myocyte markers.20 Others are complicated or ill-defined such as addition of the unknown factors secreted by cells in culture. Physical as well as chemical cues cause differentiation of stem cells. Simply altering the stiffness of the substrate on which cells are cultured can direct stem cells to neuronal, myogenic or osteogenic lineages.21 Cells evolve in physical and chemical environments so a combination of both will probably be necessary for optimal differentiation of stem cells. The importance of physical cues in the cells environment will be discussed in greater detail in the final review of this series. Ideally, for stem cells to be used therapeutically, efficient, uniform protocols must be established so that cells are a well-controlled and well-defined entity.

Pluripotent stem cells have not yet been used therapeutically in humans because many of the early animal studies resulted in the undesirable formation of unusual solid tumors, called teratomas. Teratomas are made of a mix of cell types from all the early germ layers. Later successful animal studies used pluripotent cells modified to a more mature phenotype which limits this proliferative capacity. Cells derived from pluripotent cells have been used to successfully treat animals. For example, animals with diabetes have been treated by the creation of insulin-producing cells responsive to glucose levels. Also, animals with acute spinal cord injury or visual impairment have been treated by creation of new myelinated neurons or retinal epithelial cells, respectively. Commercial companies are currently in negotiations with the FDA regarding the possibility of advancing to human trials. Other animal studies have been conducted to treat several maladies such as Parkinsons disease, muscular dystrophy and heart failure.18,22,23

Scientists hope that stem cell therapy can improve cardiac function by integration of newly formed beating cardiac myocytes into the myocardium to produce greater force. Patches of cardiac myocytes derived from human embryonic stem cells can form viable human myocardium after transplantation into animals,24 with some showing evidence of electrical integration.25,26 Damaged rodent hearts showed slightly improved cardiac function after injection of cardiac myocytes derived from human embryonic stem cells.21 The mechanisms for the gain in function are not fully understood but it may be only partially due to direct integration of new beating heart cells. It is more likely due to paracrine effects that benefit other existing heart cells (see next review).

Multipotent stem cells harvested from bone marrow have been used since the 1960s to treat leukemia, myeloma and lymphoma. Since cells there give rise to lymphocytes, megakaryocytes and erythrocytes, the value of these cells is easily understood in treating blood cancers. Recently, some progress has been reported in the use of cells derived from bone marrow to treat other diseases. For example, the ability to form whole joints in mouse models27 has been achieved starting with mesenchymal stem cells that give rise to bone and cartilage. In the near future multipotent stem cells are likely to benefit many other diseases and clinical conditions. Bone marrow-derived stem cells are in clinical trials to remedy heart ailments. This is discussed in detail in the next review of this series.

Pluripotent and multipotent stem cells have their respective advantages and disadvantages. The capacity of pluripotent cells to become any cell type is an obvious therapeutic advantage over their multipotent kin. Theoretically, they could be used to treat diseased or aging tissues in which multipotent stem cells are insufficient. Also, pluripotent stem cells proliferate more rapidly so can yield higher numbers of useful cells. However, use of donor pluripotent stem cells would require immune suppressive drugs for the duration of the graft28 while use of autologous multipotent stem cells (stem cells from ones self) would not. This ability to use ones own cells is a great advantage of multipotent stem cells. The immune system recognizes specific surface proteins on cells/objects that tell them whether the cell is from the host and is healthy. Autologous, multipotent stem cells have the patients specific surface proteins that allow it to be accepted by the hosts immune system and avoid an immunological reaction. Pluripotent stem cells, on the other hand, are not from the host and therefore, lack the proper signals required to stave off rejection from the immune system. Research is ongoing trying to limit the immune response caused by pluripotent cells and is one possible advantage that iPS cells may have.

The promises of cures for human ailments by stem cells have been much touted but many obstacles must still be overcome. First, more human pluripotent and multipotent cell research is needed since stem cell biology differs in mice and men. Second, the common feature of unlimited cell division shared by cancer cells and pluripotent stem cells must be better understood in order to avoid cancer formation. Third, the ability to acquire large numbers of the right cells at the right stage of differentiation must be mastered. Fourth, specific protocols must be developed to enhance production, survival and integration of transplanted cells. Finally, clinical trials must be completed to assure safety and efficacy of the stem cell therapy. When it comes to stem cells, knowing they exist is a long way from using them therapeutically.

Supported by NIH (HL 62426 and T32 HL 007692)

Visit link:
Introduction to Stem Cell Therapy

To Read More: Introduction to Stem Cell Therapy
categoriaCardiac Stem Cells commentoComments Off on Introduction to Stem Cell Therapy | dataOctober 16th, 2021
Read All

Human Mesenchymal Stem Cells (hMSC) – PromoCell

By daniellenierenberg

Mesenchymal Stem Cells (MSC), also termed Mesenchymal Stromal Cells, are multipotent cells that can differentiate into a variety of cell types and have the capacity for self renewal. MSC have been shown to differentiate in vitro or in vivo into adipocytes, chondrocytes, osteoblasts, myocytes, neurons, hepatocytes, and pancreatic islet cells. Optimized PromoCell media are available to support both the growth of MSC and their differentiation into several different lineages. Recent experiments suggest that differentiation capabilities into diverse cell types vary between MSC of different origin.

PromoCell hMSC are harvested from normal human adipose tissue,bone marrow, andumbilical cord matrix (Whartons jelly) of individual donors.

The cells are tested for their ability to differentiate in vitro into adipocytes, chondrocytes, and osteoblasts. OurhMSC show a verified marker expression profile that complies with ISCT* recommendations, providing well characterized cells.

*ISCT (International Society for Cellular Therapy) Cytotherapy (2006) Vol. 8, No. 4, 315-317

NEW: Our hMSC are now also available from HLA-typed donors.

Available formats:

Go here to see the original:
Human Mesenchymal Stem Cells (hMSC) - PromoCell

To Read More: Human Mesenchymal Stem Cells (hMSC) – PromoCell
categoriaCardiac Stem Cells commentoComments Off on Human Mesenchymal Stem Cells (hMSC) – PromoCell | dataOctober 16th, 2021
Read All

Autologous Stem Cell Based Therapies Market Consumption Status and Prospects Professional Market Research Report 2025 – Northwest Diamond Notes

By daniellenierenberg

The Autologous Stem Cell Based Therapies market report delivers a complete analysis of critical aspects such as the predominant trends and growth opportunities that will assure considerable returns in the ensuing years. Also, it offers various solutions to tackle the present and upcoming challenges in the industry vertical. Besides, the document expounds the size and share of market segments including the product landscape, application spectrum, and geographical ambit. Furthermore, it discusses the after-effects of COVID-19 pandemic on this domain, uncovering the top revenue generating strategies for the approaching years.

Key pointers from case studies on COVID-19 impact:

Overview of the regional assessment:

Request Sample Copy of this Report @ https://www.nwdiamondnotes.com/request-sample/37424

Other vital inclusions in the Autologous Stem Cell Based Therapies market report:

Research Objective:

Why to Select This Report:

Key questions answered in the report:

Request Customization on This Report @ https://www.nwdiamondnotes.com/request-for-customization/37424

The rest is here:
Autologous Stem Cell Based Therapies Market Consumption Status and Prospects Professional Market Research Report 2025 - Northwest Diamond Notes

To Read More: Autologous Stem Cell Based Therapies Market Consumption Status and Prospects Professional Market Research Report 2025 – Northwest Diamond Notes
categoriaCardiac Stem Cells commentoComments Off on Autologous Stem Cell Based Therapies Market Consumption Status and Prospects Professional Market Research Report 2025 – Northwest Diamond Notes | dataOctober 16th, 2021
Read All

Merck and Eisai Receive Positive EU CHMP Opinions for KEYTRUDA (pembrolizumab) Plus LENVIMA (lenvatinib) in Two Different Types of Cancer – Business…

By daniellenierenberg

KENILWORTH, N.J. & TOKYO--(BUSINESS WIRE)--Merck (NYSE: MRK), known as MSD outside the United States and Canada, and Eisai today announced that the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency has adopted positive opinions recommending approval of the combination of KEYTRUDA, Mercks anti-PD-1 therapy, plus LENVIMA (marketed as KISPLYX in the European Union [EU] for the treatment of advanced renal cell carcinoma [RCC]), the orally available multiple receptor tyrosine kinase inhibitor discovered by Eisai, for two different indications. One positive opinion is for the first-line treatment of adult patients with advanced RCC, and the other is for the treatment of adult patients with advanced or recurrent endometrial carcinoma (EC) who have disease progression on or following prior treatment with a platinum-containing therapy in any setting and are not candidates for curative surgery or radiation. Decisions on the CHMPs recommendations will be given by the European Commission for marketing authorization in the EU, and are expected in the fourth quarter of 2021. If approved, this would be the first combination of an anti-PD-1 therapy with a tyrosine kinase inhibitor approved for the treatment of two different types of cancer in the EU.

The positive CHMP opinions are based on data from two pivotal Phase 3 trials: CLEAR (Study 307)/KEYNOTE-581 evaluating the combination in adult patients with advanced RCC and KEYNOTE-775/Study 309 evaluating the combination in certain patients with advanced EC.

In CLEAR/KEYNOTE-581, KEYTRUDA plus LENVIMA demonstrated statistically significant improvements versus sunitinib in the efficacy outcome measures of overall survival (OS), reducing the risk of death by 34% (HR=0.66 [95% CI, 0.49-0.88]; p=0.0049) versus sunitinib, and progression-free survival (PFS), reducing the risk of disease progression or death by 61% (HR=0.39 [95% CI, 0.32-0.49]; p<0.0001) with a median PFS of 23.9 months versus 9.2 months for sunitinib. Additionally, the confirmed objective response rate was 71% (95% CI: 66-76) (n=252) for patients who received KEYTRUDA plus LENVIMA versus 36% with sunitinib (95% CI: 31-41) (n=129).

In KEYNOTE-775/Study 309, KEYTRUDA plus LENVIMA demonstrated statistically significant improvements in the studys dual efficacy outcome measures of OS, reducing the risk of death by 38% (HR=0.62 [95% CI, 0.51-0.75]; p<0.0001) with a median OS of 18.3 months versus 11.4 months for chemotherapy (investigators choice of doxorubicin or paclitaxel), and PFS, reducing the risk of disease progression or death by 44% (HR=0.56 [95% CI, 0.47-0.66]; p<0.0001), with a median PFS of 7.2 months versus 3.8 months for chemotherapy (investigators choice of doxorubicin or paclitaxel).

KEYTRUDA plus LENVIMA demonstrated a survival benefit for advanced renal cell carcinoma in the first-line setting and represents an important potential new treatment option for these patients. Additionally, KEYTRUDA plus LENVIMA is the first anti-PD-1 and tyrosine kinase inhibitor combination to demonstrate a survival benefit in advanced endometrial carcinoma patients, and the benefit was shown regardless of mismatch repair status, said Dr. Gregory Lubiniecki, Vice President, Clinical Research, Merck Research Laboratories. We are pleased that the CHMP has recognized the important role of the combination therapy in these difficult-to-treat cancers.

We appreciate the positive opinions rendered by the EU CHMP recommending approval of KEYTRUDA plus LENVIMA in advanced renal cell carcinoma and advanced endometrial carcinoma, underscoring the potential significance of the outcomes observed in the CLEAR/KEYNOTE-581 and KEYNOTE-775/Study 309 trials, said Dr. Takashi Owa, President, Oncology Business Group at Eisai. We are grateful to the patients who participated in these studies, their families and clinicians. Their commitment made these meaningful milestones possible.

The safety of KEYTRUDA in combination with axitinib or LENVIMA in advanced RCC, and in combination with LENVIMA in advanced EC has been evaluated in a total of 1,456 patients with advanced RCC or advanced EC. In these patient populations, the most frequent adverse reactions were diarrhea (58%), hypertension (54%), hypothyroidism (46%), fatigue (41%), decreased appetite and nausea (40% each), arthralgia (30%), vomiting, weight decreased, dysphonia and abdominal pain (28% each), proteinuria (27%), palmar plantar erythrodysesthesia syndrome and rash (26% each), stomatitis and constipation (25% each), musculoskeletal pain and headache (23% each) and cough (21%).

About Renal Cell Carcinoma (RCC)

Worldwide, it is estimated there were more than 431,000 new cases of kidney cancer diagnosed and more than 179,000 deaths from the disease in 2020. In Europe, it is estimated there were more than 138,000 new cases of kidney cancer diagnosed and more than 54,000 deaths from the disease in 2020. Renal cell carcinoma is by far the most common type of kidney cancer; about nine out of 10 kidney cancer diagnoses are RCC. Renal cell carcinoma is about twice as common in men as in women. Most cases of RCC are discovered incidentally during imaging tests for other abdominal diseases. Approximately 30% of patients with RCC will have metastatic disease at diagnosis. Survival is highly dependent on the stage at diagnosis, and the five-year survival rate is 13% for patients diagnosed with metastatic disease.

About Endometrial Cancer

Endometrial cancer begins in the inner lining of the uterus, which is known as the endometrium and is the most common type of cancer in the uterus. Worldwide, it was estimated there were more than 417,000 new cases and more than 97,000 deaths from uterine body cancers in 2020 (these estimates include both endometrial cancers and uterine sarcomas; more than 90% of uterine body cancers occur in the endometrium, so the actual numbers for endometrial cancer cases and deaths are slightly lower than these estimates). In Europe, it is estimated there were more than 130,000 new cases and more than 29,000 deaths in 2020. The five-year relative survival rate for metastatic endometrial cancer (stage IV) is estimated to be approximately 17%.

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-programmed death receptor-1 (PD-1) therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,600 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications in the U.S.

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is:

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS 1)] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic HNSCC with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult patients with relapsed or refractory classical Hodgkin lymphoma (cHL).

KEYTRUDA is indicated for the treatment of pediatric patients with refractory cHL, or cHL that has relapsed after 2 or more lines of therapy.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC):

Non-muscle Invasive Bladder Cancer

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High or Mismatch Repair Deficient Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options.

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC).

Gastric Cancer

KEYTRUDA, in combination with trastuzumab, fluoropyrimidine- and platinum-containing chemotherapy, is indicated for the first-line treatment of patients with locally advanced unresectable or metastatic HER2-positive gastric or gastroesophageal junction (GEJ) adenocarcinoma.

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after 2 or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy.

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic esophageal or GEJ (tumors with epicenter 1 to 5 centimeters above the GEJ) carcinoma that is not amenable to surgical resection or definitive chemoradiation either:

Cervical Cancer

KEYTRUDA, in combination with chemotherapy, with or without bevacizumab, is indicated for the treatment of patients with persistent, recurrent, or metastatic cervical cancer whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of adult patients with advanced renal cell carcinoma (RCC).

KEYTRUDA, in combination with LENVIMA, is indicated for the first-line treatment of adult patients with advanced RCC.

Endometrial Carcinoma

KEYTRUDA, in combination with LENVIMA, is indicated for the treatment of patients with advanced endometrial carcinoma that is not MSI-H or dMMR, who have disease progression following prior systemic therapy in any settings and are not candidates for curative surgery or radiation.

Tumor Mutational Burden-High Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [10 mutations/megabase] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

Cutaneous Squamous Cell Carcinoma

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) or locally advanced cSCC that is not curable by surgery or radiation.

Triple-Negative Breast Cancer

KEYTRUDA is indicated for the treatment of patients with high-risk early-stage triple-negative breast cancer (TNBC) in combination with chemotherapy as neoadjuvant treatment, and then continued as a single agent as adjuvant treatment after surgery.

KEYTRUDA, in combination with chemotherapy, is indicated for the treatment of patients with locally recurrent unresectable or metastatic TNBC whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test.

Selected Important Safety Information for KEYTRUDA

Severe and Fatal Immune-Mediated Adverse Reactions

KEYTRUDA is a monoclonal antibody that belongs to a class of drugs that bind to either the PD-1 or the PD-L1, blocking the PD-1/PD-L1 pathway, thereby removing inhibition of the immune response, potentially breaking peripheral tolerance and inducing immune-mediated adverse reactions. Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue, can affect more than one body system simultaneously, and can occur at any time after starting treatment or after discontinuation of treatment. Important immune-mediated adverse reactions listed here may not include all possible severe and fatal immune-mediated adverse reactions.

Monitor patients closely for symptoms and signs that may be clinical manifestations of underlying immune-mediated adverse reactions. Early identification and management are essential to ensure safe use of antiPD-1/PD-L1 treatments. Evaluate liver enzymes, creatinine, and thyroid function at baseline and periodically during treatment. For patients with TNBC treated with KEYTRUDA in the neoadjuvant setting, monitor blood cortisol at baseline, prior to surgery, and as clinically indicated. In cases of suspected immune-mediated adverse reactions, initiate appropriate workup to exclude alternative etiologies, including infection. Institute medical management promptly, including specialty consultation as appropriate.

Withhold or permanently discontinue KEYTRUDA depending on severity of the immune-mediated adverse reaction. In general, if KEYTRUDA requires interruption or discontinuation, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Consider administration of other systemic immunosuppressants in patients whose adverse reactions are not controlled with corticosteroid therapy.

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis. The incidence is higher in patients who have received prior thoracic radiation. Immune-mediated pneumonitis occurred in 3.4% (94/2799) of patients receiving KEYTRUDA, including fatal (0.1%), Grade 4 (0.3%), Grade 3 (0.9%), and Grade 2 (1.3%) reactions. Systemic corticosteroids were required in 67% (63/94) of patients. Pneumonitis led to permanent discontinuation of KEYTRUDA in 1.3% (36) and withholding in 0.9% (26) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Pneumonitis resolved in 59% of the 94 patients.

Pneumonitis occurred in 8% (31/389) of adult patients with cHL receiving KEYTRUDA as a single agent, including Grades 3-4 in 2.3% of patients. Patients received high-dose corticosteroids for a median duration of 10 days (range: 2 days to 53 months). Pneumonitis rates were similar in patients with and without prior thoracic radiation. Pneumonitis led to discontinuation of KEYTRUDA in 5.4% (21) of patients. Of the patients who developed pneumonitis, 42% interrupted KEYTRUDA, 68% discontinued KEYTRUDA, and 77% had resolution.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis, which may present with diarrhea. Cytomegalovirus infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. Immune-mediated colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (1.1%), and Grade 2 (0.4%) reactions. Systemic corticosteroids were required in 69% (33/48); additional immunosuppressant therapy was required in 4.2% of patients. Colitis led to permanent discontinuation of KEYTRUDA in 0.5% (15) and withholding in 0.5% (13) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Colitis resolved in 85% of the 48 patients.

Hepatotoxicity and Immune-Mediated Hepatitis

KEYTRUDA can cause immune-mediated hepatitis. Immune-mediated hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.4%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 68% (13/19) of patients; additional immunosuppressant therapy was required in 11% of patients. Hepatitis led to permanent discontinuation of KEYTRUDA in 0.2% (6) and withholding in 0.3% (9) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Hepatitis resolved in 79% of the 19 patients.

KEYTRUDA with Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider monitoring more frequently as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased alanine aminotransferase (20%) and increased aspartate aminotransferase (13%) were seen at a higher frequency compared to KEYTRUDA alone. Fifty-nine percent of the patients with increased ALT received systemic corticosteroids. In patients with ALT 3 times upper limit of normal (ULN) (Grades 2-4, n=116), ALT resolved to Grades 0-1 in 94%. Among the 92 patients who were rechallenged with either KEYTRUDA (n=3) or axitinib (n=34) administered as a single agent or with both (n=55), recurrence of ALT 3 times ULN was observed in 1 patient receiving KEYTRUDA, 16 patients receiving axitinib, and 24 patients receiving both. All patients with a recurrence of ALT 3 ULN subsequently recovered from the event.

Immune-Mediated Endocrinopathies

Adrenal Insufficiency

KEYTRUDA can cause primary or secondary adrenal insufficiency. For Grade 2 or higher, initiate symptomatic treatment, including hormone replacement as clinically indicated. Withhold KEYTRUDA depending on severity. Adrenal insufficiency occurred in 0.8% (22/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.3%) reactions. Systemic corticosteroids were required in 77% (17/22) of patients; of these, the majority remained on systemic corticosteroids. Adrenal insufficiency led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.3% (8) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Hypophysitis

KEYTRUDA can cause immune-mediated hypophysitis. Hypophysitis can present with acute symptoms associated with mass effect such as headache, photophobia, or visual field defects. Hypophysitis can cause hypopituitarism. Initiate hormone replacement as indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Hypophysitis occurred in 0.6% (17/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.2%) reactions. Systemic corticosteroids were required in 94% (16/17) of patients; of these, the majority remained on systemic corticosteroids. Hypophysitis led to permanent discontinuation of KEYTRUDA in 0.1% (4) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Thyroid Disorders

KEYTRUDA can cause immune-mediated thyroid disorders. Thyroiditis can present with or without endocrinopathy. Hypothyroidism can follow hyperthyroidism. Initiate hormone replacement for hypothyroidism or institute medical management of hyperthyroidism as clinically indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Thyroiditis occurred in 0.6% (16/2799) of patients receiving KEYTRUDA, including Grade 2 (0.3%). None discontinued, but KEYTRUDA was withheld in <0.1% (1) of patients.

Hyperthyroidism occurred in 3.4% (96/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (0.8%). It led to permanent discontinuation of KEYTRUDA in <0.1% (2) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. Hypothyroidism occurred in 8% (237/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (6.2%). It led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.5% (14) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. The majority of patients with hypothyroidism required long-term thyroid hormone replacement. The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC, occurring in 16% of patients receiving KEYTRUDA as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. The incidence of new or worsening hypothyroidism was higher in 389 adult patients with cHL (17%) receiving KEYTRUDA as a single agent, including Grade 1 (6.2%) and Grade 2 (10.8%) hypothyroidism.

Type 1 Diabetes Mellitus (DM), Which Can Present With Diabetic Ketoacidosis

Monitor patients for hyperglycemia or other signs and symptoms of diabetes. Initiate treatment with insulin as clinically indicated. Withhold KEYTRUDA depending on severity. Type 1 DM occurred in 0.2% (6/2799) of patients receiving KEYTRUDA. It led to permanent discontinuation in <0.1% (1) and withholding of KEYTRUDA in <0.1% (1) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Immune-Mediated Nephritis With Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Immune-mediated nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.1%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 89% (8/9) of patients. Nephritis led to permanent discontinuation of KEYTRUDA in 0.1% (3) and withholding in 0.1% (3) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Nephritis resolved in 56% of the 9 patients.

Immune-Mediated Dermatologic Adverse Reactions

KEYTRUDA can cause immune-mediated rash or dermatitis. Exfoliative dermatitis, including Stevens-Johnson syndrome, drug rash with eosinophilia and systemic symptoms, and toxic epidermal necrolysis, has occurred with antiPD-1/PD-L1 treatments. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate nonexfoliative rashes. Withhold or permanently discontinue KEYTRUDA depending on severity. Immune-mediated dermatologic adverse reactions occurred in 1.4% (38/2799) of patients receiving KEYTRUDA, including Grade 3 (1%) and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 40% (15/38) of patients. These reactions led to permanent discontinuation in 0.1% (2) and withholding of KEYTRUDA in 0.6% (16) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 6% had recurrence. The reactions resolved in 79% of the 38 patients.

Other Immune-Mediated Adverse Reactions

The following clinically significant immune-mediated adverse reactions occurred at an incidence of <1% (unless otherwise noted) in patients who received KEYTRUDA or were reported with the use of other antiPD-1/PD-L1 treatments. Severe or fatal cases have been reported for some of these adverse reactions. Cardiac/Vascular: Myocarditis, pericarditis, vasculitis; Nervous System: Meningitis, encephalitis, myelitis and demyelination, myasthenic syndrome/myasthenia gravis (including exacerbation), Guillain-Barr syndrome, nerve paresis, autoimmune neuropathy; Ocular: Uveitis, iritis and other ocular inflammatory toxicities can occur. Some cases can be associated with retinal detachment. Various grades of visual impairment, including blindness, can occur. If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada-like syndrome, as this may require treatment with systemic steroids to reduce the risk of permanent vision loss; Gastrointestinal: Pancreatitis, to include increases in serum amylase and lipase levels, gastritis, duodenitis; Musculoskeletal and Connective Tissue: Myositis/polymyositis, rhabdomyolysis (and associated sequelae, including renal failure), arthritis (1.5%), polymyalgia rheumatica; Endocrine: Hypoparathyroidism; Hematologic/Immune: Hemolytic anemia, aplastic anemia, hemophagocytic lymphohistiocytosis, systemic inflammatory response syndrome, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), sarcoidosis, immune thrombocytopenic purpura, solid organ transplant rejection.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% of 2799 patients receiving KEYTRUDA. Monitor for signs and symptoms of infusion-related reactions. Interrupt or slow the rate of infusion for Grade 1 or Grade 2 reactions. For Grade 3 or Grade 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

See the rest here:
Merck and Eisai Receive Positive EU CHMP Opinions for KEYTRUDA (pembrolizumab) Plus LENVIMA (lenvatinib) in Two Different Types of Cancer - Business...

To Read More: Merck and Eisai Receive Positive EU CHMP Opinions for KEYTRUDA (pembrolizumab) Plus LENVIMA (lenvatinib) in Two Different Types of Cancer – Business…
categoriaCardiac Stem Cells commentoComments Off on Merck and Eisai Receive Positive EU CHMP Opinions for KEYTRUDA (pembrolizumab) Plus LENVIMA (lenvatinib) in Two Different Types of Cancer – Business… | dataOctober 16th, 2021
Read All

Therapy and Prevention Strategies for Myocardial Infarction | IJN – Dove Medical Press

By daniellenierenberg

Introduction

The growing burden of ischemic heart disease (IHD) is a major public health issue. The most harmful type of IHD is acute myocardial infarction (MI), which leads to loss of tissue and impaired cardiac performance, accounting for two in five deaths in China.1 Timely revascularization after MI, including percutaneous coronary intervention, thrombolytic treatment and bypass surgery, is key to improving cardiac function and preventing post-infarction pathophysiological remodeling.2 However, these effective but invasive approaches cannot be used in all patients owing to their applicability, which is limited based on specific clinical characteristics, and the possibility of severe complications such as bleeding and reperfusion injury.2,3 Attempts to limit infarct size and improve prognosis using pharmacotherapy (including antiplatelet and antiarrhythmic drugs and angiotensin-converting enzyme inhibitors) without reperfusion has been proven generally inefficient, due to non-targeted drug distribution and side effects, and short half-life of some drugs.1,3,4 Consequently, many patients in which this approach is used still progress to cardiac hypertrophy and heart failure.1 Growth and rupture of atherosclerotic plaques and the ensuing thrombosis are the major causes of acute MI.4 Currently available interventions for atherosclerosis (AS) including statins can reduce acute MI, but the effects vary between individuals, and leave significant residual risks.58 Some chemotherapies, such as docetaxel9 and methotrexate,10,11 also seem to have beneficial effects in AS; however, systemic administration of these drugs is limited because of their adverse effects.12 The demand for safer and more efficient therapies and prevention strategies for MI is therefore increasing.

Several optimized strategies have so far been explored, one of which is the application of nanoparticles (NPs). These nanoscale particles have been widely used in the treatment of tumors and neural diseases.13,14 NPs enable delivery of therapeutic compounds to target sites with high spatial and temporal resolution, enhancement of tissue engineering processes and regulation of the behaviour of transplants such as stem cells. The application of NPs improves the therapeutic effects and minimizes the adverse effects of traditional or novel therapies, increasing the likelihood that they can be successfully translated to clinical settings.1518 However, research on NPs in this field is still in its infancy.5,1921 This review summarizes the latest NP-based strategies for managing acute MI, mostly published within the past 7 years, with a particular focus on effects and mechanisms rather than particle types, which have been extensively covered in other reviews (Figure 1). In addition, we offer an initial viewpoint on the value of function-based systems over those based on materials, and discuss future prospects in this field.

Figure 1 Overview of nanoparticle-based strategies for the treatment and prevention of myocardial infarction. Nanoparticles are capable of delivering therapeutic agents and nucleic acids in a stable and targeted manner, improving the properties of tissue engineering scaffolds, labeling transplanted cells and regulating cell behaviors, thus promoting the cardioprotective effects of traditional or novel therapies.

A multitude of NP types are currently under investigation, including lipid-based NPs, polymeric NPs, micelles, inorganic NPs, and exosomes. Virus can also be considered as NPs; however they will not be discussed in this review.22 NPs made from different materials show similar in vivo metabolic kinetic characteristics and protective effects on infarcted heart.19,20 Function-based NP types, oriented towards a specific purpose, may be preferable compared with traditional types, on account of their practicality in basic research and clinical translation. In this review, we discuss NPs used in the treatment and prevention of MI that fall into the following four categories: 1) circulation-stable nanocarriers (polymeric, lipid or inorganic particles); 2) targeted delivery vectors (magnetic or particles modified to improve target specificity); 3) enhancers of tissue engineering; and 4) regulators of cell behavior (Figure 1). We propose that the choice of each NP for any given application should be primarily based on the roles or mechanisms they perform.

Many NPs, whether composed of either naturally occurring or synthetic materials, act as nanocarriers to improve the circulating stability of therapeutic agents.15,16 Polymeric NPs comprise one of the most widely employed types, with excellent biocompatibility, tunable mechanical properties, and the ability be easily modified with therapeutic agents using a broad range of chemical techniques.23,24 The most commonly used polymer for these NPs is polylactide-co-glycolide (PLGA), which has Food and Drug Administration approval.25,26 Recently, there has been a therapeutic emphasis on polydopamine (PDA), from which several related nanomaterials have been created, including PDA NPs and PDA NP-knotted hydrogels.27,28 NPs made from polylactic acid (PLA),29,30 poly--caprolactone (PCL),31 polyoxalates,32 polyacrylonitrile,33 chitosan29,34 and hollow mesoporous organosilica35 have also been constructed and administered in vitro in cells and in vivo in animal models.

Lipid NPs or liposomes are also considered promising candidates for the delivery of therapeutic agents, due to their morphology, which is similar to that of cellular membranes and ability to carry both lipophilic and hydrophilic drugs. These non-toxic, non-immunogenic and biodegradable amphipathic nanocarriers can be designed to reduce capture by reticuloendothelial cells, increase circulation time, and achieve satisfactory targeting.36,37 Solid lipid NPs (SLNs) combine the advantages of polymeric NPs, fat emulsions, and liposomes, remaining in a solid state at room temperature. Active key components of SLNs are mainly physiological lipids, dispersed in aqueous solution containing a stabilizer (surfactant).38 Micelles are made by colloidal aggregation in a solution through self-assembly of amphiphilic polymers, or a simple lipidic layer of transfer vehicles;39 these have been used in cellular and molecular imaging40 and treatment41 for a long time.

Inorganic NPs used in basic IHD research are classified as metal, metal compounds, carbon,42 or silicon NPs;43 these are relatively inert, stable, and biocompatible. Gold (Au),44 silver (Ag)45 and copper (Cu)46 are commonly used materials in their production. These NPs can be delivered orally,47 or injected intravenously48 or intraperitoneally.56 However, they are more widely used to construct electrically conductive myocardial scaffolds in tissue engineering.49,50 Myocardial patches and scaffolds are promising therapeutic approaches to repairing heart tissue after IHD; incorporating conductive NPs can further improve functionality, introducing beneficial physical properties and electroconductivity. Some organic particles, such as liposomes anchored with poly(N-isopropylacrylamide)-based copolymer groups, are also suitable for the production of effective nanogels or patches for this purpose.37

Several metal compounds have been used for treatment of IHD.5154 The application of magnetic particles made from iron oxide has been of particular interest in recent research. These NPs are more prone to manipulation with an external magnetic field, and thus serve as powerful tools for targeted delivery of therapeutics. In addition, modification with targeted peptides or antibodies is another approach to the construction of targeted delivery systems.

Another strategy to protect cardiac performance after MI is the transplantation of cells; however, the beneficial effects of this are currently limited.58 Many NPs can improve the behavior of cells; in this context, they may stimulate cardioprotective potential. In particular, exosomes a major subgroup of extracellular vesicles (EVs) with a diameter of 30150nm, which are secreted via exocytosis55 represent novel, heterogeneous, biological NPs with an endogenous origin. They are able to carry a variety of proteins, lipids, nucleic acids, and other bioactive substances.5557 Mechanistic studies have confirmed that exosomes offer a cell-free strategy to rescue ischemic cardiomyocytes (CMs).59,60

The physical properties of NPs, including size, shape, and surface charge, impact on how biological processes behave, and consequently, responses in the body.61 The recommended definition of NPs in pharmaceutical technology and biomedicine includes a limitation that more than 50% of particles should be in a size distribution range of 10100 nm.39 However, this is not strictly distinguished in studies, so for the purposes of this review, we have relaxed this definition. Small NPs have a faster uptake and processing speed and longer blood circulation half-lives than larger ones; a decreased surface area results in increased reactivity to the microenvironment and greater speed of release of the compounds they carry.6163 However, an exception to this principle is that, among particles of less than 50 nm diameter, larger NPs have longer circulatory half-lives.64,65 NPs can be spherical, discoidal, tubular or dendritic.61,63 The impact of NP shape on uptake and clearance has also been revealed;66,67 for instance, spheres endocytose more easily,20 while micelles and filomicelles target aortic macrophages, B cells, and natural killer (NK) cells in the immune system more effectively than polymersomes.68 In terms of charge, cationic NPs are more likely to interact with cells than negatively charged or neutral particles because the mammalian cell membrane is negatively charged.62 As a result, positively charged particles are reported to be more likely to destabilize blood cell membranes and cause cell lysis.61 Additionally, the rate of drug release is largely determined by the diameter of the pore. Motivated by the idea, Palma-Chavez et al developed a multistage delivery system by encapsulating PLGA NPs in micron-sized PLGA outer shells.69

Some types of NPs, such as micelles, possess coreshell morphological structures: a core composed of hydrophobic block segments is surrounded by hydrophilic polymer blocks in a shell that stabilizes the entire micelle. The core provides enough space to accommodate compounds, while the shell protects drug molecules from hydrolysis and enzymatic degradation.36 Surface chemical composition largely governs the chemical interactions between NPs and molecules in the body. Appropriate surface coatings can create a defensive layer, protect encapsulated cargo, and affect biological behaviors. Coating with inert polymers like polyethylene glycol (PEG) is the most commonly used method, which hinders interactions with proteins, alters the composition of the protein corona, attenuate NP recognition by opsonins which tag particles for phagocytosis, and extend the half-life of particles.36,70 Additionally, PEG coating helps the therapeutic agents reach ischemic sites, because PEGylated macromolecules tend to diffuse in the interstitial space of the heart.71 Functionalization of gangliosides can further attenuate the immunogenicity of PEGylated liposomes without damaging therapeutic efficacy.72 Removal of detachable PEG conjugates in the microenvironment of the target sites improves capture by cells. Wang and colleagues synthesized PDA-coated tanshinone IIA NPs by spontaneous hydrophobic self-assembly.73 Polyethyleneimine (PEI) is capable of condensing nucleic acid and overcoming hamper of cell membrane. Therefore, modification with PEI is mainly used for the transport of DNA and RNA.74 Of note, despite their inertness, novel NPs composed of metals can also be modified with compounds such as PEG, thiols, and disulfides.48,75 Hydrogels mixed with peptide-coated Au NPs attain greater viscosity than hydrogels mixed with Au NPs.24

Targeted delivery is a primary goal in the development of nanocarriers. Passive targeting is based on enhanced permeability in ischemic heart tissue, which does not meet the needs of clinical application.76 This fact has prompted work on targeting agent modification and magnetic guidance. Conjugation with specific monoclonal antibodies is a feasible method for delivering drug payloads targeted to ischemic lesions. Copper sulfide (CuS) NPs coupled to antibodies targeting transient receptor potential vanilloid subfamily 1 (TRPV1), permit specific binding to vascular smooth muscle cells (SMCs), and can also act as a switch for photothermal activation of TRPV1 signaling.52 In another study conducted by Liu and colleagues, two types of antibodies, binding CD63 (expressed on the surface of exosomes) or myosin light chain (MLC, expressed on injured CMs) are utilized to allow NPs to capture exosomes and accumulate in ischemic heart tissue. These NPs have a unique structure comprising an ferroferric oxide core and PEG-decorated silica shell, which simultaneously enables magnetic manipulation and molecule conjugation via hydrazone bonds.21 Targeted peptides such as atrial natriuretic peptide (ANP),43 S2P peptide (plague-targeting peptide),77 and stearyl mannose (type 2 macrophage-targeting ligand)16 allow NPs to precisely target atherosclerotic tissue and ischemic heart lesions. Modification with EMMPRIN-binding peptide (AP9) has been shown to enable more rapid uptake of micelles by H9C2 myoblasts and primary CMs and to deliver drug payloads targeted to lesions in vivo.78,79 Another strategy for targeted nanocarriers is to produce cell mimetic carriers. Using the inflammatory response as a marker after MI,76 Boada and colleagues synthesized biomimetic NPs (leukosomes) by integrating membrane proteins purified from activated J774 macrophages into the phospholipid bilayer of NPs. Local chronic inflammatory lesions demonstrated overexpression of adhesion molecules, which bound leukosomes efficiently.80

The biocompatibility of NPs is difficult to predict because any interaction with molecules or cells can cause toxic effects. Generally, NPs remain in blood, but can also extravasate from vasculature with enhanced permeability, or accumulate in the mononuclear phagocyte system.81 Important causes of NP-associated toxicity include: oxidative stress injury and cell apoptosis secondary to the production of free radicals, lack of anti-oxidants, phagocytic cell responses, and the composition of some types of particles.61 Hepatotoxicity, nephrotoxicity and any other potential off-target organ damage caused by accumulation of particles, especially those with poor degradability and slow clearance, are also essential to explore in toxicity tests.82 Additionally, the evaluation of evoked immune responses according to the expression of inflammatory factors and stimulation of leukocytes in cell lines and animal models is also important.83

A few studies have reported NP-associated acute and chronic hazards in pharmacological applications, although some of these observations may be contentious. Specifically, aggregation of non-functionalized carbon nanotubes (CNTs) has been observed owing to inherent hydrophobicity of these particles.61 Aside from inflammation and T lymphocyte apoptosis, multi-walled CNTs can rupture cell membranes, resulting in macrophage cytotoxic effects.84,85 Silica NPs induce vascular endothelial dysfunction and promoted the release of proinflammatory and procoagulant factors, mediated by miR-451a negative regulation of the interleukin 6 receptor/signal transducer and activator of transcription/transcription factor (IL6R/STAT/TF) signaling pathway.8688 Metal NPs, such as Au and Ag, can also penetrate the cell membrane, increase oxidative stress and decrease cell viability.89,90 Consequently, exposure to Au may cause nephrotoxicity91 and reversible cardiac hypertrophy.92 El-Hussainy and colleagues observed myocardial dysfunction in rats given alumina NPs.93,94 Nemmar and colleagues investigated the toxicity of ultrasmall superparamagnetic iron oxide nanoparticles (SPIONs) administered intravenously, which resulted in cardiac oxidative stress and DNA damage as well as thrombosis.95 Cell-derived exosomes and a majority of natural polymers are considered relatively safe;83 however, Babiker and colleagues demonstrated that dendritic polyamidoamine NPs compromise recovery from ischemia/reperfusion (I/R) injury in isolated rat hearts.96 The effects of degradation byproducts are also of concern.83 An advantage of the nanoscale size of NPs is that their injection is unlikely to block the microvascular system; however, it remains controversial whether NPs give rise to arrhythmias.97 These factors highlight that examining the biocompatibility of NPs both in vitro and in vivo is a vital component of preclinical or clinical research.

NP toxicity depends on many parameters, including material composition, coating, size, shape, surface charges and concentration.39 For instance, larger particles seem to be more favorable from a toxicology standpoint.83 However, single-walled CNTs are considered more harmful than multi-walled CNTs, due to their smaller size resulting in less aggregation and increased uptake by macrophages.61 Cationic AuNPs are more toxic compared with anionic AuNPs, which appear to be nontoxic.98 Generally speaking, NP-associated toxicity can be lowered by functionalization with nontoxic surface molecules, stabilization and localization in the region of interest by using scaffolds.24,99 The toxicity of CNTs mediated by oxidative stress and inflammation was reduced using these strategies in several studies.24,100 Local application and targeted delivery also enabled dose reduction and concurrently decreased the incidence of adverse effects. Administration of therapeutic agents directly into the infarcted or peri-infarcted myocardium is a conventional approach with a low risk of inducing embolization.

NP is a suitable method for the administration of therapeutic agents in terms of the minimization of side effects, enhanced stability of cargo, and possibility of controlled delivery and release.76 Detailed information on the experimental design and results of the latest studies on the use of NPs as therapeutic vectors are provided in Table 1. Recently, several drugs approved for clinical use as immunosuppressants have been suggested as potentially effective cardioprotective agents. For example, NPs containing cyclosporine A inhibited apoptosis and inflammation in ischemic myocardium by improving mitochondrial function.25,101 Commercial methotrexate also showed minor cardioprotective effects; additionally, when loaded into lipid core NPs, adenosine bioavailability and echocardiographic and morphometric results were all improved a rats model of MI.102 Margulis and colleagues developed a method to fabricate NPs via a supercritical fluids setup, which loaded and transferred celecoxib, a lipophilic nonsteroidal anti-inflammatory drug, into the NPs. These celecoxib-containing NPs alleviated ejection function damage and ventricular dilation by inducing significant levels of neovascularization.103 Furthermore, a series of investigations indicated that drugs used for hypoglycemia (eg pioglitazone, exenatide and liraglutide)104106 and lipid lowering (statins)107 attenuate the progression of post-MI heart failure, and are therefore also potential therapeutic cargoes for NPs in the treatment of MI.

NP systems also offer an alternative method for delivering plant-derived therapeutic agents, most of which belong to traditional Chinese medicine. Its of vital importance because of the criticization on adverse reactions caused by direct injection of such complexes. Cheng and colleagues designed a dual-shell polymeric NP as a multistage, continuous, targeted vehicle of resveratrol, a reactive oxygen species (ROS) scavenger. Due to the severe oxide stress in areas of infarction, the proposed antioxidant-delivery NPs represent a new method to effectively treat MI. These NPs are modified with two peptides, targeting ischemic myocardium and mitochondria, respectively; cardioprotective effects have been confirmed in both hypoxia/reoxygenated (H/R) H9C2 cells and I/R rats.108 In addition, Dong and colleagues also demonstrated that puerarin-SLNs produced smaller areas of infarction in a MI rat model, evaluated by 2,3,5-triphenyltetrazolium chloride (TTC) staining. These particles were modified with cyclic arginyl-glycyl-aspartic acid peptide, a specific targeting moiety to v3 integrin receptors, which are highly expressed on endothelial cells (ECs) during angiogenesis.109 In a recent study, quercetin was loaded into mesoporous silica NPs, which enhanced the inhibition of cell apoptosis and oxidative stress, improving ventricular remodeling and promoting the recovery of cardiac function by activating the janus kinase 2 (JAK2)/STAT3 pathway.110 Similarly, curcuminpolymer NPs, administered by gavage, improved serum inflammatory cytokine levels compared with direct administration of curcumin.111

Translation of novel bioactive agents into clinical practice has been limited, owing to lack of sufficient bioavailability and systemic toxicity.76 Encapsulating small molecules such as 3i-1000 (an inhibitor of the GATA4NKX2-5 interaction),43 TAK-242 (inhibitor of toll-like receptor 4, TLR4)112 and C143 (inhibitor of ERK1/2)113 in NPs promotes myocardial repair after MI without the risk of uncontrolled and off-target adverse effects. Administration of vascular endothelial growth factor (VEGF) causes elevated vascular permeability and tissue edema. The cardioprotective effects of VEGF-loaded polymeric NPs injected either intravenously114 or intramyocardially115 eliminated vascular leakage due to promotion of lymphangiogenesis. Further studies have confirmed these results and add to the evidence that combined delivery of VEGF with other growth factors is recommended, since VEGF primarily drives the formation of new capillaries.116 Furthermore, in line with previous research, similar therapeutic effects have been demonstrated in studies using polymeric NPs loaded with stromal cell derived factor 1 (SDF-1) and insulin-like growth factor 1 (IGF-1).117,118

We also notice that some novel payloads in NPs-based therapy for MI have been studied. For example, deoxyribozyme-AuNP can silence tumor necrosis factor- (TNF-).119 A target that is implicated in irreversible heart damage after MI; its effects are mediated by free radical production, downregulation of contractile proteins, and initiation of pro-inflammatory cytokine cascades. Mesoporous iron oxide NPs containing the hydrogen sulfide donor compound diallyl trisulfide act as a platform for the controlled and sustained release of this therapeutic gas molecule. The application of these NPs at appropriate concentrations, resulted in the preservation of cardiac systolic performance without any observable detrimental effects on homeostasis in vivo.15

With increasing insight into the molecular mechanisms of MI, a particular emphasis on gene therapy has emerged. Gene expression can be modulated by DNA fragments, messenger RNA (mRNA), microRNA (miRNA) and small interfering RNA (siRNA), which thus represent new approaches for treating ischemia. Currently available nucleic acid delivery systems are mainly divided into viral and non-viral systems. However, virus-based approaches are limited by their potential for uncontrollable mutagenesis.36 From a clinical point of view, NP represents a suitable choice as novel non-viral nucleic acid vector, which could feasibly transfect in a stable, targeted, and sustained manner (as shown in Table 2).

Table 2 NPs-Based Nucleic Acid Delivery Systems for Treatment for MI Reported in the Last 7 Years

As a common gene vehicle, plasmids face the risk of being destroyed by DNase and immunoreactivity in the serum, and transduction in non-target organs.120 A recent study by Kim and colleagues aligns with current research trends focused on virus-free therapies, in which carboxymethylcellulose NPs were designed to transfer 5-azacytidine to halt proliferation, and deliver plasmid DNA containing GATA4, myocyte enhancer factor 2C (MEF2C), and TBX5 to induce reprogramming and cardiogenesis of mature normal human dermal fibroblasts.121 In a methodological study, lipidoid NPs were used to successfully deliver pseudouridine-modified mRNA, encoding enhanced green fluorescent protein.122

MiRNAs act as essential regulators of cellular processes through post-transcriptional suppression; increasing evidence reveals miRNAs play critical roles in cardiovascular diseases. An miRNA-transferring platform with self-accelerating nucleic acid release, containing a heparin core and an ethanolamine-modified poly(glycidyl methacrylate) shell, has been constructed and used as an efficient vector of miR-499, which inhibits cardiomyocyte apoptosis.123 Intravenous administration of anionic hyaluronan-sulfate NPs (mean diameter 130 nm) enable the stable delivery of miR-21 mimics, thus modulating the expression of TNF, transforming growth factor (TGF), and suppressor of cytokine signaling 1 (SOCS1). Consequently, these NPs switch the phenotype of macrophages from pro-inflammatory to reparative, promote neovascularization and reduced collagen deposition.124 Interestingly, silencing miR-21 using antagomiR-21a-5p in a nanoparticle formulation has also been shown to reduce expression of pro-inflammatory cytokines in vitro, and attenuate inflammation and fibrosis in mice with autoimmune myocarditis.125 A number of other potentially therapeutic miRNAs have also been successfully transferred to CMs in recent works, including miR-146a, miR-146b-5p, miR-181b, miR-199-3p, miR-214-3p, miR-194-5p and miR-122-5p.126128 Evaluation of angiogenesis, cardiac function, and scar size in these studies indicated that injectable miRNANPs can deliver miRNA to restore injured myocardium efficiently and safely. Yang and colleagues developed an in vivo miRNA delivery system incorporating a shear-thinning hydrogel and NPs characterized by surface presence of miRNA and cell-penetrating peptide (CPP).126 Additionally, angiotensin II type 1 receptor-targeting peptide-modified NPs serve as targeted carriers for anti-miR-1 antisense oligonucleotide, significantly reducing apoptosis and infarct size.129

SiRNAs inhibit gene expression by mediating mRNA cleavage in a sequence-specific manner, highlighting NP-based RNA interference as another viable approach to modulate cellular phenotype and attenuate cardiac failure. Dosta and colleagues demonstrated that poly(-amino ester) particles modified by adding lysine-/histidine-oligopeptides could represent a system for the transfer of siRNA.130 Studies have now revealed that chemokine CC motif ligand 2 (CCL2) and its cognate receptor CC chemokine receptor 2 (CCR2) promoted excessive Ly6Chigh inflammatory monocyte infiltration in infarcted area and aggravate myocardial injury.131 Photoluminescent mesoporous silicon nanoparticles (MSNPs) carrying siCCR2 have been reported to improve the effectiveness of transplanted mesenchymal stem cells (MSCs) in reducing myocardial remodeling after acute MI.131 Targeted transportation and enhanced uptake with minimum leakage improved the efficiency of delivery via NPs, significantly outperforming the control group. Taken together, these studies demonstrate that NPs act as promising drug delivery systems in the treatment of MI.

Myocardial patches and scaffolds, consisting of either bioactive hydrogels or nanofibers, are minimally invasive, relatively localized, and targeted approaches to repair the heart after IHD. Those biomaterials must have an anisotropic structure, mechanical elasticity, electrical conductivity, and the ability to promote ischemic heart repair.132 A variety of NPs have been applied in this field, among which inorganic NPs have been the focus of most research efforts.42 These investigations of inorganic NPs can be divided into four categories based on their effects and the mechanisms involved, which are described in this section.

NPs enhance physical properties and electroconductivity, which is essential for the biomaterials to properly accommodate cardiac cells and subsequently resulted in cell retention, cell-cell coupling and robust synchronized beating behavior. CNTs are able to increase the required physical properties of scaffolds, such as maximum load, elastic modulus, and toughness.133,134 Gelatin methacrylate (GelMA) also has decreased impedance, hydrogel swelling ratio, and pore diameter, as well as increased Youngs modulus when combined with gold nanorods (AuNRs).135 Given this insight, highly electroconductive NPs have been increasingly investigated.34,99 Specifically, Ahadian and colleagues revealed that a higher integrated CNT concentration in gels resulted in greater conductivity.136 Zhou and colleagues verified the therapeutic effects of patches incorporating single-walled CNT for myocardial ischemia, which halted progressive cardiac dysfunction and regenerated the infarcted myocardium.137 Spherical AuNPs have also been shown to increase the conductivity of chitosan hydrogels in a concentration-dependent manner.138 Interestingly, silicon NPs mimic the effects of AuNRs without affecting conductivity or stiffness, as reported by Navaei and colleagues.139

Several studies demonstrate the effects of CNT on CM functions. When CMs are cultured on multi-walled CNT substrates or treated with CNT-integrated patches, these cells show spontaneous electrical activity.34,99,140 Brisa and colleagues functionalized reverse thermal gels with AuNPs, investigating the phenotype of CMs in vitro; the growth of cells with a CM phenotype was observed, along with gap junction formation.141 CMs exposed to AuNR-containing GelMa show higher affinity, leading to packed and uniform tissue structure.135 These conductive scaffolds also facilitate the robustness and synchrony of spontaneous beating in CMs without damaging their viability and metabolic activity.

Combined incorporation of inorganic NPs and cells represents a feasible strategy to promote therapeutic effects. Despite some reports on the cytotoxicity of Au,89,90 no significant loss of viability, metabolism, migration, or proliferation of MSCs in scaffolds containing AuNP is reported. A CNT-embedded, electrospun chitosan/polyvinyl alcohol mesh is reported to promote the differentiation of MSCs to CMs.142 In another approach, Baei and colleagues added AuNPs to chitosan thermosensitive hydrogels seeded with MSCs.138 There was a significant increase in expression of early and mature cardiac markers, indicating enhanced cardiomyogenic differentiation of MSCs compared to the matrix alone, while no difference in growth was observed. Gao et al created a fibrin scaffold, in which cells and AuNPs were suspended simultaneously; these bioactive patches were shown to promote left ventricular function and decrease infarct size and apoptosis in the periscar boarder zone myocardium in swine models of acute MI.97 These studies of AuNP-containing scaffolds demonstrated reduced infarct and fibrotic size, as well as facilitated angiogenesis and cardiac function, which can be attributed at least in part to the enhanced expression of connexin 43 and atrial natriuretic peptide, and activation of the integrin-linked kinase(ILK)/serine-threonine kinase (p-AKT)/GATA4 pathway.49,143,144 Scaffolds containing Ag NPs evoke M2 polarization of macrophages in vitro;145 which may also play a role in cardioprotective action because M2 macrophages are capable of promoting cardiac recovery via the secretion of anti-inflammatory cytokines, collagen deposition, and neovascularization.146

Similarly, CNT also act synergically with poly(N-isopropylacrylamide) scaffolds containing adipose-derived stem cells;147 significant improvement of cardiac function and increased implantation and proliferation of stem cells has been observed with these scaffolds, compared with scaffolds without CNT.147 Selenium NPs148 and titania NPs53 have been shown to improve the mechanical and conductive properties of chitosan patches, promoting their ability to support proliferation and the synchronous activity of cells growing on these patches.

Mounting evidence demonstrates the unique benefits of using cardiac scaffolds with magnetic NPs such as SPIONs; these benefits include, but are not limited to, significant improvements in cell proliferation149 and assembly of electrochemical junctions.150 Given that magnetic manipulation enhances the therapeutic efficacy of iron oxide NPs in cardiac scaffolds, Chouhan and colleagues designed a magnetic actuator device by incorporating magnetic iron oxide NPs (MIONs) in silk nanofibers; this resulted in more controlled drug release properties, as well as the promotion of proliferation and maturation in CMs.151 Magnetic NPs can be used to label induced pluripotent stem cell (iPSC)-derived CMs via conjugation with antibodies against signal-regulatory protein . Zwi-Dantsis and colleagues reported the construction of tailored cardiac tissue microstructures, achieved by orienting MION-labelled cells along the applied field to impart different shapes without any mechanical support.152 However, the interactions between and effects of NPs and cells in scaffolds, and the cardioprotective efficacy of patches in which NP-labelled cells are suspended, require further elucidation.

Polymeric nanomaterials have also been investigated in the context of cardiac bioengineering materials; for instance, water-swollen polymer NPs have been used to prepare nanogels. With a 3D structure containing cross-linked biopolymer networks, nanogels can encapsulate, protect, and deliver various agents.83,153 PDA-coated tanshinone IIA NPs suspended in a ROS-sensitive, injectable hydrogel via PDA-thiol bonds significantly improved cardiac performance, accompanied by inhibition of the expression of inflammation factors in rat model.73 After implanting cryogel patches consisting of GelMa and linked conductive polypyrrole NPs154 or scaffolds of electrospun GelMA/polycaprolactone with GelMA-polypyrrole NPs,155 left ventricular (LV) ejection fraction (EF) has been shown to increase, with a concurrent decrease in infarct size, in MI animal models.

Progenitor or stem cell-based therapy in the form of injections and engineered cardiac patches, discussed in the previous section, has been recognized as a promising strategy to improve the cardiac niche and ameliorate adverse remodeling processes and fibrosis after acute MI.56,156,157 However, poor survival and low engraftment rates for transplanted cells are still major challenges in this field.157 Among possible optimization strategies, combining NPs with stem cell therapy is of great interest (Table 3).

Table 3 Studies Combining NPs and Cell Therapy Reported in the Last 7 Years

Accumulating evidence has shown two main mechanisms for NP-loaded cell therapy in the context of MI treatment. Firstly, various NP types could efficiently improve survival and cell proliferation, modulating differentiation of implanted cells in the ischemic microenvironment.62,158 Specifically, electrically driven nanomanipulators could guide cardiomyogenic differentiation of MSCs: in a previous study, electroactuated gold NPs were administrated with pulsed electric field stimulation, and tube-like morphological alterations were observed, along with upregulation of cardiac specific markers.143 Adipose-derived stem cells that load PLGA-simvastatin NPs promoted differentiation of these cells into SMCs and ECs, and had cardioprotective effects in a mouse model of MI induced by left anterior descending ligation.17 Secondly, engraftment rate is another important factor affecting treatment efficacy in this context.159 Zhang and colleagues designed silica-coated, MION-labelled endothelial progenitor cells; intravenous administration of these cells in a rat model of MI significantly improved cardiac performance, as indicated by echocardiogram, morphological, and histological evidence, and neovascularization. This indicates magnetic guidance may potentially address the problem of low levels of stem cell retention, which has typically been observed.51 In particular, NPs can link the therapeutic cells to injured CMs, thereby promoting cell anchorage and engraftment. To this end, Cheng and colleagues established a magnetic, bifunctional cell connector by conjugating NPs with two antibodies: one against cell determinant (CD)45, which is expressed on bone marrow-derived stem cells, and one against MLC. The magnetic core of this NP also enabled physical enrichment in ischemic heart tissue using external magnets.160 More than one mechanism may be involved in a study. Chen and colleagues fabricated a sustained release carrier of insulin-like growth factor (IGF), a pro-survival agent, via in situ growth of Fe3O4 NPs on MSNPs. In this study, the NPs promoted both the survival and retention of MSCs, and intramyocardial injection of the NP-labeled MSCs was able to ameliorate functional and histological damage without any obvious toxicity in vivo.161 However, SPION labeling does not seem to improve therapeutic efficiency, as demonstrated by Wang and colleagues in a study using hypoxia-preconditioned SPION-labeled adipose-derived stem cells (ASCs).162

Primary criticisms of cell-based therapies include their potential immunogenicity, arrhythmogenicity and tumorigenicity. It is widely accepted that the beneficial effects of cell-based therapy are mainly attributable to paracrine effects rather than directly replenishing lost CMs;56 researchers are therefore investigating of cell-free approaches. Exosomes have attractive properties including stable transport, homing to target tissues or cells, and penetration of biological barriers, as well as being more biocompatible with lower immunogenicity than cell-based approaches. Interestingly, post-MI circulating exosomes serve as important cardioprotective messengers.163,164 Manipulating their biodistribution has proven to be a viable strategy to reduce infarct size, promoting angiogenesis and ejection functions.21 However, from a therapeutic standpoint, the lack of control over endogenous exosome production and cargo encapsulation limits the use of this naturally-present mechanism for therapeutic enhancement. The low purity and weak targeting of natural exosomes are two further obstacles to overcome before clinical application. Strategies to address these include finding robust sources; optimized isolation methods for higher yields, efficiency and purity; and improving therapeutic payloads. These have been systematically summarized in other reviews.165167

AS is considered a low-grade, chronic inflammatory disease, characterized by accumulation and deposition of cholesterol in arteries, as well as remodeling of the extracellular matrix in the intima and inner media.12,168 Inflammation of ECs, proliferation of SMCs, and recruitment of monocytes and macrophages play a critical role in the development of AS. NPs allow for the packaging of large amounts of therapeutic compounds in a compact nanostructure, specifically targeting pathological mechanisms and attenuating atherogenesis. Optimization of the loaded drug and NP target together lead to enhanced efficacy while minimizing side effects.169 In this section, we summarize recent breakthroughs in the order of pathological progression, as shown in Table 4.

Primary prevention refers to control of the risk factors of AS, one of which is hypertension.170 PLA NPs have been shown to improve the efficacy of aliskiren, the first oral direct renin inhibitor and the first in a new class of antihypertensive agents.29 Encapsulation in nanocarriers also renders the application of anandamide viable, which was once limited; recent research revealed that this new therapy could lower blood pressure and LV mass index in rats.171 Similar results were observed in a study in which angiotensinogen was silenced using small hairpin RNA.172 NPs may also help to make more anti-hypertensive drugs available, reduce side effects such as asthma, and lessen the effective dosage by providing sustained drug release over time. The link between AS and diabetes mellitus, which describes a group of metabolic disorders, has also been investigated in numerous studies.173 Possible mechanisms include oxidative stress, altered protein kinase signaling, and epigenetic modifications. Cetin and colleagues successfully constructed NP-based drug delivery systems for the administration of metformin, an oral antihyperglycemic agent with low oral bioavailability and short biological half-life.174 NPs are also promising tools for improving the oral bioavailability of insulin, which is of great interest because oral insulin will significantly increase patients compliance.175,176

The inflammatory hypothesis of AS is now widely established, making selective targeting and accumulation of NPs in inflammatory lesions attractive therapeutic strategies. Targeting macrophages in apoE-/- mice has been shown to result in decreased phagocytosis and suppression of inflammatory genes in lesional macrophages, thus lessening burden of atherosclerotic plaques.177 Tom and colleagues used NPs consisting of high-density lipoprotein (HDL), a known atheroprotective bionanomaterial, as carriers for TNF receptor-associated factor in mice, and observed reductions in both leukocyte recruitment and macrophage activation.178 Both single-walled CNT and HDL-NPs have a favorable safety profile. In a pathological context, activated endothelial tissue expresses more adhesion molecules, such as selectins, than usual. These molecules are thus potential targets for cardiovascular nanomedicine. Glycoprotein Ib (GPIb)179 and biotinylated Sialyl Lewis A (sLeA)69 specifically bind to selectins, leading to the accumulation of conjugated NPs in injured vessels; an in vitro study demonstrated that GPIb-conjugated NPs could bind to target surfaces, where they were taken up by activated ECs under shear stress conditions. In another study, Sager and colleagues simultaneously inhibited five adhesion molecules associated with leukocyte recruitment in post-MI apoE-/- mice. Inflammation in plaque and ischemic heart, rendering acute coronary events and post-MI complications less likely to occur.180 However, targeting inflammatory process may have heterogeneous effects in humans because the targeting moieties and target receptors may be overexpressed in several different pathologic conditions in addition to AS. Oxidation is another factor involved in the development of AS. Upregulation of endothelial nitric oxide synthase (eNOS) leads to vascular construction and other AS-promoting effects. Pechanova and colleagues observed that the application of PLA NPs resulted in larger decreases in NOS than direct administration.29

Aside from these processes, avoiding plaque rupture and thrombosis could be another therapeutic aim. Nakashiro and colleagues showed that delivering pioglitazone via NPs inhibited plaque rupture in apoE-/- mice.181 The integrin 3 is upregulated in angiogenic vasculature, which is ubiquitous in plaque ruptures, which may lead to MI.182 3 integrin-targeted NPs provide a site-specific drug delivery platform that has been shown to successfully stabilize plaques in rabbits.182 Ji and colleagues used NPs composed of albumin with an average diameter of 225.6 nm to deliver a plasmid containing the tissue-type plasminogen activator gene (t-PA); this system plays a role in preventing thrombosis in addition to attenuating intimal thickness and proliferation of vascular SMCs.183 NPs consisting of engineered amphipathic cationic peptide and serine/threonine protein kinase JNK2 siRNA also reduces thrombotic risk, plaque necrotic area, and vascular barrier disorder in mice given the equivalent of a 14-week western diet.184

Innovation and development of therapies based on NPs in recent years has led to significant advances towards complete repair of the injured myocardium following acute MI. Nevertheless, developing clinically relevant solutions remains difficult for several reasons. Firstly, as shown in tables, there is little consistency among studies regarding the characteristics of NPs, their payloads, and their methods of administration, as well as methods used for evaluating cardiac repair. It can be difficult to control characteristics such as the size of the synthesized particles in a narrow range, even within single studies. Such significant heterogeneity can lead to differences in observed results in repeated experiments, or under different conditions. Secondly, although many studies have focused on the health effects of unintentional exposure to NPs by inhalation or ingestion,185,186 most of the studies on medical applications of NPs have not reported on toxicity of NP systems until recently.73 Remarkably, there has not been a consensus on NP-associated adverse effects in existing reports, making assessments of biocompatibility a priority for NP characterization.

NPs have emerged as a powerful tool for controlling cell signaling pathways in regenerative strategies using novel therapeutics and drugs that are unsuitable for direct administration. One advantage of the application of NP systems is the ability to release the drug payload or regulate gene expression in a stable and controlled manner. Therefore, many otherwise serious side effects, such as sudden arrhythmic deaths resulting from persistent and uncontrolled expression of miRNA by viral vectors, may be completely avoided.187 More research is required to develop stable and efficient methods of NP production, improve encapsulation efficiency of drugs, and achieve satisfactory targeting. In particular, a greater focus on investigating NP-based switches, including optical, electrical and magnetic methods, has enabled the regulation of cell signaling, exemplified by the development of a CuS NP-based photothermal switch.52 Optimizing tissue engineering scaffolds containing conductive NPs is a promising strategy for the protection of the myocardium after ischemia by mimicking the myocardial extracellular matrix. Improvements in understanding of cardiac repair mechanisms, and how these biomaterials may interfere with them, is therefore urgently needed. Furthermore, heart repair is complex and involves many processes, including apoptosis, angiogenesis, inflammatory infiltration, and fibrosis. Therefore, novel treatments should be designed using NP-based integrative strategies based on these multiple different mechanisms. However, its important to highlight that synergistic effects of different drug payloads, NPs, and NPcell combined strategies should be addressed, as not all may be compatible with one another. Future research should focus on these aspects to translate NP-based therapeutic strategies for MI into practical and effective clinical use.

The authors report no conflicts of interest in this work.

1. Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet. 2017;389(10065):197210. doi:10.1016/s0140-6736(16)30677-8

2. Marn-Juez R, El-Sammak H, Helker CSM, et al. Coronary revascularization during heart regeneration is regulated by epicardial and endocardial cues and forms a scaffold for cardiomyocyte repopulation. Dev Cell. 2019;51(4):503515.e4. doi:10.1016/j.devcel.2019.10.019

3. Rentrop KP, Feit F. Reperfusion therapy for acute myocardial infarction: concepts and controversies from inception to acceptance. Am Heart J. 2015;170(5):971980. doi:10.1016/j.ahj.2015.08.005

4. Arbab-Zadeh A, Nakano M, Virmani R, Fuster V. Acute coronary events. Circulation. 2012;125(9):11471156. doi:10.1161/circulationaha.111.047431

5. Ou LC, Zhong S, Ou JS, Tian JW. Application of targeted therapy strategies with nanomedicine delivery for atherosclerosis. Acta Pharmacol Sin. 2021;42(1):1017. doi:10.1038/s41401-020-0436-0

6. Gorabi AM, Kiaie N, Reiner , Carbone F, Montecucco F, Sahebkar A. The therapeutic potential of nanoparticles to reduce inflammation in atherosclerosis. Biomolecules. 2019;9(9):2545. doi:10.3390/biom9090416

7. Young DR, Hivert MF, Alhassan S, et al. Sedentary behavior and cardiovascular morbidity and mortality: a science advisory from the American Heart Association. Circulation. 2016;134(13):e26279. doi:10.1161/cir.0000000000000440

8. Ekroos K, Jnis M, Tarasov K, Hurme R, Laaksonen R. Lipidomics: a tool for studies of atherosclerosis. Curr Atheroscler Rep. 2010;12(4):273281. doi:10.1007/s11883-010-0110-y

9. Meneghini BC, Tavares ER, Guido MC, et al. Lipid core nanoparticles as vehicle for docetaxel reduces atherosclerotic lesion, inflammation, cell death and proliferation in an atherosclerosis rabbit model. Vascul Pharmacol. 2019;115:4654. doi:10.1016/j.vph.2019.02.003

10. Bulgarelli A, Martins Dias AA, Caramelli B, Maranho RC. Treatment with methotrexate inhibits atherogenesis in cholesterol-fed rabbits. J Cardiovasc Pharmacol. 2012;59(4):308314. doi:10.1097/FJC.0b013e318241c385

11. Cervadoro A, Palomba R, Vergaro G, et al. Targeting inflammation with nanosized drug delivery platforms in cardiovascular diseases: immune cell modulation in atherosclerosis. Front Bioengineering Biotechnol. 2018;6:177. doi:10.3389/fbioe.2018.00177

12. Zhang J, Zu Y, Dhanasekara CS, et al. Detection and treatment of atherosclerosis using nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(1). doi:10.1002/wnan.1412

13. Schmid P, Adams S, Rugo HS, et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N Engl J Med. 2018;379(22):21082121. doi:10.1056/NEJMoa1809615

14. Bahadur S, Sachan N, Harwansh RK, Deshmukh R. Nanoparticlized system: promising approach for the management of alzheimers disease through intranasal delivery. Curr Pharm Des. 2020;26(12):13311344. doi:10.2174/1381612826666200311131658

15. Wang W, Liu H, Lu Y, et al. Controlled-releasing hydrogen sulfide donor based on dual-modal iron oxide nanoparticles protects myocardial tissue from ischemia-reperfusion injury. Int J Nanomedicine. 2019;14:875888. doi:10.2147/ijn.S186225

16. Banik B, Surnar B, Askins BW, Banerjee M, Dhar S. Dual-targeted synthetic nanoparticles for cardiovascular diseases. ACS Appl Mater Interfaces. 2020;12(6):68526862. doi:10.1021/acsami.9b19036

17. Yokoyama R, Ii M, Masuda M, et al. Cardiac regeneration by statin-polymer nanoparticle-loaded adipose-derived stem cell therapy in myocardial infarction. Stem Cells Transl Med. 2019;8(10):10551067. doi:10.1002/sctm.18-0244

18. Wang J, Xiang B, Deng J, et al. Externally applied static magnetic field enhances cardiac retention and functional benefit of magnetically iron-labeled adipose-derived stem cells in infarcted hearts. Stem Cells Transl Med. 2016;5(10):13801393. doi:10.5966/sctm.2015-0220

19. Gadde S, Rayner KJ. Nanomedicine Meets microRNA: current Advances in RNA-Based Nanotherapies for Atherosclerosis. ACS Nano. 2016;36(9):e739. doi:10.1161/atvbaha.116.307481

20. Sun Y, Lu Y, Yin L, Liu Z. The roles of nanoparticles in stem cell-based therapy for cardiovascular disease. Int J Nanomedicine. 2020;8:947. doi:10.3389/fbioe.2020.00947

21. Liu S, Chen X, Bao L, et al. Treatment of infarcted heart tissue via the capture and local delivery of circulating exosomes through antibody-conjugated magnetic nanoparticles. Nat Biomed Eng. 2020;4(11):10631075. doi:10.1038/s41551-020-00637-1

22. Pitek AS, Wang Y, Gulati S, et al. Elongated plant virus-based nanoparticles for enhanced delivery of thrombolytic therapies. Mol Pharm. 2017;14(11):38153823. doi:10.1021/acs.molpharmaceut.7b00559

23. Won YW, McGinn AN, Lee M, Bull DA, Kim SW. Targeted gene delivery to ischemic myocardium by homing peptide-guided polymeric carrier. Article. Mol Pharm. 2013;10(1):378385. doi:10.1021/mp300500y

24. Sink E, Narayan SP, Abdel-Hafiz M, Mestroni L, Pea B. Nanomaterials for cardiac tissue engineering. Molecules. 2020;25(21). doi:10.3390/molecules25215189

25. Zhang CX, Cheng Y, Liu DZ, et al. Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats. J Nanobiotechnology. 2019;17(1):18. doi:10.1186/s12951-019-0451-9

26. Oduk Y, Zhu W, Kannappan R, et al. VEGF nanoparticles repair the heart after myocardial infarction. Am J Physiol Heart Circ Physiol. 2018;314(2):H278h284. doi:10.1152/ajpheart.00471.2017

27. Caldas M, Santos AC, Veiga F, Rebelo R, Reis RL, Correlo VM. Melanin nanoparticles as a promising tool for biomedical applications - a review. Acta biomaterialia. 2020;105:2643. doi:10.1016/j.actbio.2020.01.044

28. Wang X, Wang C, Wang X, Wang Y, Zhang Q, Cheng Y. A polydopamine nanoparticle-knotted poly(ethylene glycol) hydrogel for on-demand drug delivery and chemo-photothermal therapy. Chem Mater. 2017;29(3):13701376. doi:10.1021/acs.chemmater.6b05192

29. Pechanova O, Barta A, Koneracka M, et al. Protective effects of nanoparticle-loaded aliskiren on cardiovascular system in spontaneously hypertensive rats. Molecules. 2019;24(15):2710. doi:10.3390/molecules24152710

30. Mao S, Wang L, Chen P, Lan Y, Guo R, Zhang M. Nanoparticle-mediated delivery of Tanshinone IIA reduces adverse cardiac remodeling following myocardial infarctions in a mice model: role of NF-B pathway. Artif Cells, Nanomed Biotechnol. 2018;46(sup3):S707s716. doi:10.1080/21691401.2018.1508028

31. Guex AG, Kocher FM, Fortunato G, et al. Fine-tuning of substrate architecture and surface chemistry promotes muscle tissue development. Acta biomaterialia. 2012;8(4):14811489. doi:10.1016/j.actbio.2011.12.033

32. Bae S, Park M, Kang C, et al. Hydrogen peroxide-responsive nanoparticle reduces myocardial ischemia/reperfusion injury. J Am Heart Assoc. 2016;5(11). doi:10.1161/jaha.116.003697

33. Wu S, Duan B, Qin X, Butcher JT. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering. Acta biomaterialia. 2017;51:89100. doi:10.1016/j.actbio.2017.01.051

34. Pok S, Vitale F, Eichmann SL, Benavides OM, Pasquali M, Jacot JG. Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart. ACS Nano. 2014;8(10):98229832. doi:10.1021/nn503693h

35. Zhu K, Wu M, Lai H, et al. Nanoparticle-enhanced generation of gene-transfected mesenchymal stem cells for in vivo cardiac repair. Biomaterials. 2016;74:188199. doi:10.1016/j.biomaterials.2015.10.010

36. Singh B, Garg T, Goyal AK, Rath G. Recent advancements in the cardiovascular drug carriers. Artif Cells, Nanomed Biotechnol. 2016;44(1):216225. doi:10.3109/21691401.2014.937868

37. Jung H, Jang MK, Nah JW, Kim YB. Synthesis and Characterization of Thermosensitive Nanoparticles Based on PNIPAAm Core and Chitosan Shell Structure. Article. Macromol Res. 2009;17(4):265270. doi:10.1007/bf03218690

38. Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK. Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opin Ther Pat. 2020;30(3):179194. doi:10.1080/13543776.2020.1720649

39. Piperigkou Z, Karamanou K, Engin AB, et al. Emerging aspects of nanotoxicology in health and disease: from agriculture and food sector to cancer therapeutics. Food Chem Toxicol. 2016;91:4257. doi:10.1016/j.fct.2016.03.003

40. Chen W, Jarzyna PA, van Tilborg GA, et al. RGD peptide functionalized and reconstituted high-density lipoprotein nanoparticles as a versatile and multimodal tumor targeting molecular imaging probe. FASEB j. 2010;24(6):16891699. doi:10.1096/fj.09-139865

41. Nguyen J, Sievers R, Motion JP, Kivime S, Fang Q, Lee RJ. Delivery of lipid micelles into infarcted myocardium using a lipid-linked matrix metalloproteinase targeting peptide. Mol Pharm. 2015;12(4):11501157. doi:10.1021/mp500653y

42. Ashtari K, Nazari H, Ko H, et al. Electrically conductive nanomaterials for cardiac tissue engineering. Adv Drug Deliv Rev. 2019;144:162179. doi:10.1016/j.addr.2019.06.001

43. Kinnunen SM, Tlli M, Vlimki MJ, et al. Cardiac Actions of a Small Molecule Inhibitor Targeting GATA4-NKX2-5 Interaction. Sci Rep. 2018;8(1):4611. doi:10.1038/s41598-018-22830-8

44. Dong Y, Hong M, Dai R, Wu H, Zhu P. Engineered bioactive nanoparticles incorporated biofunctionalized ECM/silk proteins based cardiac patches combined with MSCs for the repair of myocardial infarction: in vitro and in vivo evaluations. Sci Total Environ. 2020;707:135976. doi:10.1016/j.scitotenv.2019.135976

45. Ramirez-Lee MA, Aguirre-Bauelos P, Martinez-Cuevas PP, et al. Evaluation of cardiovascular responses to silver nanoparticles (AgNPs) in spontaneously hypertensive rats. Nanomedicine. 2018;14(2):385395. doi:10.1016/j.nano.2017.11.013

46. Sharma AK, Kumar A, Sahu M, Sharma G, Datusalia AK, Rajput SK. Exercise preconditioning and low dose copper nanoparticles exhibits cardioprotection through targeting GSK-3 phosphorylation in ischemia/reperfusion induced myocardial infarction. Microvasc Res. 2018;120:5966. doi:10.1016/j.mvr.2018.06.003

47. Zhang T, Dang M, Zhang W, Lin X. Gold nanoparticles synthesized from Euphorbia fischeriana root by green route method alleviates the isoprenaline hydrochloride induced myocardial infarction in rats. J Photochem Photobiol B. 2020;202:111705. doi:10.1016/j.jphotobiol.2019.111705

48. Tian A, Yang C, Zhu B, et al. Polyethylene-glycol-coated gold nanoparticles improve cardiac function after myocardial infarction in mice. Can J Physiol Pharmacol. 2018;96(12):13181327. doi:10.1139/cjpp-2018-0227

49. Hosoyama K, Ahumada M, Variola F, et al. Nanoengineered Electroconductive Collagen-Based Cardiac Patch for Infarcted Myocardium Repair. ACS Appl Mater Interfaces. 2018;10(51):4466844677. doi:10.1021/acsami.8b18844

50. You JO, Rafat M, Ye GJ, Auguste DT. Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression. Nano Lett. 2011;11(9):36433648. doi:10.1021/nl201514a

51. Zhang BF, Jiang H, Chen J, Hu Q, Yang S, Liu XP. Silica-coated magnetic nanoparticles labeled endothelial progenitor cells alleviate ischemic myocardial injury and improve long-term cardiac function with magnetic field guidance in rats with myocardial infarction. J Cell Physiol. 2019;234(10):1854418559. doi:10.1002/jcp.28492

52. Gao W, Sun Y, Cai M, et al. Copper sulfide nanoparticles as a photothermal switch for TRPV1 signaling to attenuate atherosclerosis. Nat Commun. 2018;9(1):231. doi:10.1038/s41467-017-02657-z

53. Liu N, Chen J, Zhuang J, Zhu P. Fabrication of engineered nanoparticles on biological macromolecular (PEGylated chitosan) composite for bio-active hydrogel system in cardiac repair applications. Int J Biol Macromol. 2018;117:553558. doi:10.1016/j.ijbiomac.2018.04.196

54. Zheng Y, Zhang H, Hu Y, Bai L, Xue J. MnO nanoparticles with potential application in magnetic resonance imaging and drug delivery for myocardial infarction. Int J Nanomedicine. 2018;13:61776188. doi:10.2147/ijn.s176404

55. Xiong YY, Gong ZT, Tang RJ, Yang YJ. The pivotal roles of exosomes derived from endogenous immune cells and exogenous stem cells in myocardial repair after acute myocardial infarction. Theranostics. 2021;11(3):10461058. doi:10.7150/thno.53326

56. Huang P, Wang L, Li Q, et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc Res. 2020;116(2):353367. doi:10.1093/cvr/cvz139

57. Zhang LL, Xiong YY, Yang YJ. The vital roles of mesenchymal stem cells and the derived extracellular vesicles in promoting angiogenesis after acute myocardial infarction. Stem Cells Dev. 2021;30(11):561577. doi:10.1089/scd.2021.0006

Read the original here:
Therapy and Prevention Strategies for Myocardial Infarction | IJN - Dove Medical Press

To Read More: Therapy and Prevention Strategies for Myocardial Infarction | IJN – Dove Medical Press
categoriaCardiac Stem Cells commentoComments Off on Therapy and Prevention Strategies for Myocardial Infarction | IJN – Dove Medical Press | dataOctober 5th, 2021
Read All

Mantarray: Scalable Human-relevant 3D Engineered Cardiac and Skeletal Muscle Tissues for Therapeutics Discovery Upcoming Webinar Hosted by Xtalks -…

By daniellenierenberg

Learn how these advanced 3D tissue models generated on the Mantarray platform can improve the physiological relevance of preclinical cardiac and skeletal muscle models, accelerating the discovery of new medicines.

TORONTO (PRWEB) October 05, 2021

3D cellular models and organs-on-chips are poised to add tremendous value by providing human data earlier in the drug discovery pipeline. There is intense interest in adopting these 3D models in preclinical and translational research, but their complex implementation has remained a roadblock for many labs.

In this webinar, Curi Bio will present its Mantarray platform, which represents an easy-to-use, flexible, and scalable system for generating 3D EMTs at high-throughput with the ability to measure contractility in parallel. The platform features a novel method of casting 3D tissues that can be easily performed by nearly any cell biology researcher and can be readily adapted to a variety of cell lines and extracellular matrices. In addition, Mantarrays novel magnetic sensing modality permits contractility measurement of 24 tissues in parallel and in real time, while the cloud data analysis portal takes the guesswork out of analyzing and comparing results across experiments.

Register for this webinar to hear an overview of the technology, along with application examples across various use cases, including:

Learn how these advanced 3D tissue models generated on the Mantarray platform can improve the physiological relevance of preclinical cardiac and skeletal muscle models, accelerating the discovery of new medicines.

Join Dr. Nicholas Geisse, Chief Science Officer at Curi Bio, for the live webinar on Friday, October 22, 2021 at 1pm EDT.

For more information, or to register for this event, visit Mantarray: Scalable Human-Relevant 3D-Engineered Cardiac and Skeletal Muscle Tissues for Safety and Efficacy Studies.

ABOUT XTALKS

Xtalks, powered by Honeycomb Worldwide Inc., is a leading provider of educational webinars to the global life science, food and medical device community. Every year, thousands of industry practitioners (from life science, food and medical device companies, private & academic research institutions, healthcare centers, etc.) turn to Xtalks for access to quality content. Xtalks helps Life Science professionals stay current with industry developments, trends and regulations. Xtalks webinars also provide perspectives on key issues from top industry thought leaders and service providers.

To learn more about Xtalks visit http://xtalks.comFor information about hosting a webinar visit http://xtalks.com/why-host-a-webinar/

Share article on social media or email:

Read the original here:
Mantarray: Scalable Human-relevant 3D Engineered Cardiac and Skeletal Muscle Tissues for Therapeutics Discovery Upcoming Webinar Hosted by Xtalks -...

To Read More: Mantarray: Scalable Human-relevant 3D Engineered Cardiac and Skeletal Muscle Tissues for Therapeutics Discovery Upcoming Webinar Hosted by Xtalks -…
categoriaCardiac Stem Cells commentoComments Off on Mantarray: Scalable Human-relevant 3D Engineered Cardiac and Skeletal Muscle Tissues for Therapeutics Discovery Upcoming Webinar Hosted by Xtalks -… | dataOctober 5th, 2021
Read All

Five Heart Stories For International Heart Day – Cosmos

By daniellenierenberg

Today is International Heart Day, and Cosmos is looking back on the stories that make our hearts flutter.

Scientists have taken another step in the quest to create a Google map of the human body by putting together a detailed cellular and molecular map of the healthy heart.

An international team analysed almost half a million individual cells and cell nuclei from six different regions of the heart, obtained from 14 organ donors whose hearts were healthy but unsuitable for transplantation.

The result is theHeart Cell Atlas, which, shows the huge diversity of cells and reveals heart muscle cell types, cardiac protective immune cells and an intricate network of blood vessels. It also predicts how the cells communicate to keep the heart working.

Sometimes, the heart just stops for no perceivable reason. Sudden cardiac arrest (SCA) is a prevalent hidden killer, even for younger people: 40% of those who die from SCA are under 50 years old.

SCA is not as rare as we would like it to be, says cardiologist Elizabeth Paratz, whos undertaking her PhD at the Baker Heart and Diabetes Institute, Melbourne. In the last year in Victoria, 750 young people under 50 have suffered an SCA. This is almost exactly five times the road toll over the same time in this age group, yet we hear a lot more publicity about road fatalities in young people.

Paratz is researching the prevalence and causes of SCA, as well as looking at ways to diagnose it better. There are multiple causes of SCA, and theyre hard to pinpoint in young people.

The controversial use of stem cells to help patients recover from a heart attack may work, but not because it grows new heart muscle.

Research in mice has found that injecting stem cells into the heart triggers an immune response that makes the scar stronger and the heart beat more forcefully.

Thestudy, published in the journalNature, suggests the current practice of injecting stem cells into a patients blood may not be optimal: direct injection into the heart could be more effective.

In a preclinical trial on a beating human heart, researchers have found that a drug candidate developed from the venom of the worlds deadliest spider, the funnel web, may hold promise for heart attack treatment and transplants.

The researchers, led by Meredith Redd of the University of Queensland (UQ), and Sarah Scheuer of Victor Chang Cardiac Research Institute, tested a protein called Hi1a, found in the Fraser Island (Kgari) funnel web venom, on a beating heart that had been exposed to heart attack stresses.

After a heart attack, blood flow to the heart is reduced, resulting in a lack of oxygen to heart muscle, says Nathan Palpant of UQ, corresponding author of the paper.

The lack of oxygen causes the cell environment to become acidic, which combine to send a message for heart cells to die.

The Hi1a protein from spider venom blocks acid-sensing ion channels in the heart, so the death message is blocked, cell death is reduced, and we see improved heart cell survival.

The Chinese Finger Trap a tubular braided novelty beloved by kids and pranksters around the world provided the inspiration for a nifty bit of biotech that looks set to save sick kids a whole lot of heartache. Literally.

Pedro del Nido from Boston Childrens Hospital in the US heads a team that has designed a proof-of-concept device that promises to dramatically cut down on surgery for children with certain types of heart defects.

At present, kids with defective mitral and tricuspid heart valves must undergo surgery in which a corrective implant is installed. The problem, however, is that children grow: the heart increases in size, and requires at least one, and often several, further surgical interventions so that a correspondingly larger implant can be installed.

Needless to say, these repeated bouts of open-heart surgery are extremely traumatic and disruptive.

Now, however, Nido and Karp may have come up with an elegant and clever solution: an implant that grows with the organ.

Link:
Five Heart Stories For International Heart Day - Cosmos

To Read More: Five Heart Stories For International Heart Day – Cosmos
categoriaCardiac Stem Cells commentoComments Off on Five Heart Stories For International Heart Day – Cosmos | dataOctober 5th, 2021
Read All

Stem cells may be the key to saving white rhinos from extinction – Sciworthy

By daniellenierenberg

It is too late for conservation efforts to save the northern white rhinoceros, but with recent scientific advancements there may still be hope to bring back this beloved species. In a recently published paper, scientist Marisa Korody and her colleagues at San Diego Zoo Global (USA) and at the Department of Molecular Medicine at Scripps Research (USA) describe their exciting progress on using stem cells to revive the northern white rhino.

The northern white rhino is functionally extinct, meaning there are not enough of these rhinos left to save the species. In fact there are only two northern white rhinos left: a mother and a daughter. But for decades, scientists have preserved cell samples from 15 northern white rhinos containing enough genetic material to potentially bring this species back from the brink. These preserved samples hold fibroblast cells the type of skin cells that secrete collagen from white rhinos. With these scientists newly developed methods, fibroblast cells can be converted into something much more valuable: induced pluripotent stem cells. These stem cells can differentiate into any cell type in the body including heart cells, muscle cells, and reproductive cells.

In theory, by converting fibroblast cells into reproductive cells, scientists could create genetically unique rhino embryos. Alongside other assisted reproduction technologies, scientists could implant a new embryo into a closely-related southern white rhino, where the baby northern white rhino could develop as an otherwise normal pregnancy. By completing this process multiple times, scientists may be able to establish a stable population of northern white rhinos.

In 2011, this research team generated induced pluripotent stem cells from the samples of another endangered species, but unfortunately since this process was found to harm the recipient genomes, this method was largely unsuccessful. Despite this setback, in 2015 the authors met with colleagues worldwide to consider ways to save the northern white rhino, and they concluded that methods involving induced pluripotent stem cells may still be the most promising solution. Over the following years, the scientists worked to improve their methods, and these improvements are documented in their recent paper. These experiments represent the first step in a long-term plan to bring the northern white rhino back through assisted reproduction techniques.

Right from the start, the scientists faced a whole host of challenges. Through trial and error they modified the growth medium for the cells, optimizing it for rhinoceros cells. With their improved growth medium, scientists successfully generated induced pluripotent stem cell lines from 11 rhinoceros individuals. This has never been done before and represents a huge stride forward in the path to recovering this species.

Before trying to make their first rhino, the scientists needed to stress these induced pluripotent stem cells and sequence their genomes to determine if the cell quality is good enough to potentially produce new, viable rhinos. They maintained colonies of these cells in long-term cultures and exposed these colonies to different conditions to give insight into how resilient these cells could be. These tests demonstrated that long-term culture did not affect the potential for these cells to differentiate into cardiac lineage cells, confirming that these cells are stable long-term. The researchers also confirmed that these pluripotent cells could potentially produce gametes, the egg and sperm cells that are used for sexual reproduction. These advancements indicate that with these newly developed protocols, induced pluripotent stem cells are a promising tool that could someday help recover the northern white rhino.

Although this study includes some exciting results, there is still much work to do. For example, scientists must now sequence the genomes of the northern and southern white rhino so other researchers can analyze the stem cells ability to stay the same over time. Despite the work that still needs to be done, these promising advancements could someday help the northern white rhino population recover. This method may also work for saving other endangered or extinct species, as long as the genetic material needed is available. Long-term, these scientists plan to continue a series of experiments that could ultimately bring this beloved rhino, and potentially other endangered species, back from the brink of extinction.

Read more from the original source:
Stem cells may be the key to saving white rhinos from extinction - Sciworthy

To Read More: Stem cells may be the key to saving white rhinos from extinction – Sciworthy
categoriaCardiac Stem Cells commentoComments Off on Stem cells may be the key to saving white rhinos from extinction – Sciworthy | dataOctober 5th, 2021
Read All

Lack of awareness about blood stem cell donation is one of the leading causes for low number of donors in In.. – ETHealthworld.com

By daniellenierenberg

Shahid Akhter, editor, ETHealthworld spoke to Dr. Dinesh Bhurani, Director, Department of Hemato-Oncology & Bone Marrow Transplant, Rajiv Gandhi Cancer Institute and Research Centre, to know about the progress of NPRD and the challenges associated with blood stem cell transplants.

How do you think the National Policy for Rare Diseases will impact the treatment of patients suffering from rare blood disorders? Will it help reduce the lag that we often see in policy and practice when it comes to healthcare systems?National Policy on Rare Diseases is a step-in right direction and must be welcomed by the Indian medical fraternity. It not only recognizes rare diseases for the first time in India but also has brought forward the possibility of affordable treatment for life-threatening rare diseases which were not previously covered under the national health program. The policy advocates access for treatment through center of excellences, crowd funding and financial assistance.

The NPRD in a bid to enable patients suffering from rare blood disorders has laid emphasis on the option of one-time curative treatment through hematopoietic stem cell transplant for diseases such as Severe Combined Immunodeficiency (SCID), Chronic Granulomatous disease, Wiskott Aldrich Syndrome, Osteopetrosis, and Fanconi Anaemia. By committing to provide a Rs. 20 lakhs cover for the one-time treatment cost of diseases falling under Group 1 through the umbrella scheme of Rashtriya Arogya Nidhi, the NPRD has attempted to provide coverage to almost 40 per cent of the population who are eligible under the Pradhan Mantri Jan Arogya Yojana. The NPRD as a policy that advocates affordable and accessible healthcare and has the potential to lead to the creation of a conducive healthcare ecosystem whereby multisectoral partnerships can collaboratively work towards reduction in the lag between policy and practice often seen otherwise, thereby leading people to live healthier and fuller lives.

Another reason for low number of donors in India is the misconception that stem cell donation comes with a cost to donor. This idea is completely misplaced and untrue as the cost of procedure starting from sample collection, donation and travel is free of cost, and covered under the cost of treatment of a patient for whom the donation is needed. Added to this is the fact that the number of organizations working in the country in the space of blood stem cell transplant is limited at best, thus awareness generation as compared to other health issues is nominal. However, the situation is gradually evolving and ICMR in its 2021 guidelines has gone on to recognize seven registries across the country as active stakeholders in this ecosystem. This recognition by ICMR will hopefully lead to greater awareness generation.

For blood stem cell transplant knowledge is key in establishing patient donor linkage, and by storing the requisite information with them, these registries do just that. Technology is a tool that has been successfully leveraged by stakeholders in the ecosystem to establish linkages. The Hap- E Search is one such tool that has been used by hospitals in the country to find donor matches for their patients. This software is perhaps one of the most enabling tools available to us in the ecosystem, as it helps find HLA matches not just in the country but across the world. This software is now being used by many government hospitals like AIIMS, Delhi and PGIMER Chandigarh. Once the matching donor is found via the HAP-E Search, the donor is encouraged to make the donation, provided counselling and support to donate blood stem cells, and post donation the stem cells are transported to the patients location.

The NPRD proposed crowdfunding and PPP models to ensure more patients availing treatment for rare diseases. How beneficial do you think such partnerships can be to enable blood stem cell transplant ecosystem?Treatment for rare diseases has been found to be expensive across the world. It is thus that despite stem cell transplants being a proven effective solution in the case of some blood disorders, affordability continues to be a challenge for patients and their families. With treatment costs ranging anywhere between Rs. 15-45 lakh, it remains out of reach for most patients in the country. Also, blood disorders, classified as rare, have limited infrastructure in health systems, networks, and subsidies for patients to access treatments are few. In such a scenario, crowdfunding is definitely a feasible option for patients that would ensure that they do not have to forego treatment due to a paucity of resources.

As per the NPRD, the money raised through crowdfunding would directly get credited to the treatment centre thus ensuring that there is adequate linkage. Further, the public private partnership model suggested by the government has enabled it to avail the support of non- governmental and not-for- profit agencies present in the country. This is truly commendable as not only will this ensure more patient donor linkage in the blood stem transplant ecosystem but will also lead to greater awareness generation and registrations of donors as well. One significant organization that has already partnered with the government in this arena is the DKMS BMST Foundation India. With over 50,000 blood stem cell donors registered with them, this organization has been steadily working towards enabling the ecosystem. In the case of rare diseases, it is imperative that stakeholders do not work in isolation and the government working alongside the private can lead to greater hope for many patients with greater amenities and facilities for treatment being made accessible to them.

Read more from the original source:
Lack of awareness about blood stem cell donation is one of the leading causes for low number of donors in In.. - ETHealthworld.com

To Read More: Lack of awareness about blood stem cell donation is one of the leading causes for low number of donors in In.. – ETHealthworld.com
categoriaCardiac Stem Cells commentoComments Off on Lack of awareness about blood stem cell donation is one of the leading causes for low number of donors in In.. – ETHealthworld.com | dataOctober 5th, 2021
Read All

Pharmaxis Cleared To Progress To Phase 2 Bone Marrow Cancer Trial – WAGM

By daniellenierenberg

SYDNEY, Oct. 5, 2021 /PRNewswire/ -- Clinical stage drug development company Pharmaxis Ltd (ASX: PXS) today announced further positive results of data analysis from a phase 1c clinical trial (MF-101) studying its drug PXS-5505 in patients with the bone marrow cancer myelofibrosis for 28 days at three dosage levels.

Assessment with Pharmaxis' proprietary assays of the highest dose has shown inhibition of the target enzymes, LOX and LOXL2, at greater than 90% over a 24-hour period at day 7 and day 28. The trial safety committee has reviewed the results and having identified no safety signals, has cleared the study to progress to the phase 2 dose expansion phase where 24 patients will be treated at the highest dose twice a day for 6 months.

Pharmaxis CEO Gary Phillips said, "We are very pleased to have completed the dose escalation phase of this study with such clear and positive findings.We will now immediately progress to the phase 2 dose expansion study where we aim to show PXS-5505 is safe to be taken longer term with the disease modifying effects that we have seen in the pre-clinical models. The trial infrastructure and funding is in place and we are on track to complete the study by the end of 2022."

Independent, peer-reviewed research has demonstrated the upregulation of several lysyl oxidase family members in myelofibrosis.The level of inhibition of LOX achieved in the current study at all three doses significantly exceeds levels that caused disease modifying effects with PXS-5505 in pre-clinical models of myelofibrosis with improvements in blood cell count, diminished spleen size and reduced bone marrow fibrosis. LOXL2 was inhibited to a similar degree and based on pre-clinical work such high inhibition is likely replicated for other LOX family members (LOXL1, 3 and 4).[1] Study data can be viewed in the full announcement.

Commenting on the results of the trial, Dr Gabriela Hobbs, Assistant Professor, Medicine, Harvard Medical School & Clinical Director, Leukaemia, Massachusetts General Hospital said, "Despite improvements in the treatment of myelofibrosis, the only curative therapy remains an allogeneic stem cell transplantation, a therapy that many patients are not eligible for due to its morbidity and mortality. None of the drugs approved to date consistently or meaningfully alter the fibrosis that defines this disease. PXS-5505 has a novel mechanism of action by fully inhibiting all LOX enzymes. An attractive aspect of this drug is that so far in healthy controls and in this phase 1c study in myelofibrosis patients, the drug appears to be very well tolerated. This is meaningful as approved drugs and those that are undergoing study, are associated with abnormal low blood cell counts. Preliminary data thus far, demonstrate that PXS-5505 leads to a dramatic, >90% inhibition of LOX and LOXL2 at one week and 28 days. This confirms what's been shown in healthy controls as well as mouse models, that this drug can inhibit the LOX enzymes in patients. Inhibiting these enzymes is a novel approach to the treatment of myelofibrosis by preventing the deposition of fibrosis and ultimately reversing the fibrosis that characterizes this disease."

The phase 1c/2a trial MF-101 cleared by the FDA under the Investigational New Drug (IND) scheme aims to demonstrate that PXS-5505, the lead asset in Pharmaxis' drug discovery pipeline, is safe and effective as a monotherapy in myelofibrosis patients who are intolerant, unresponsive or ineligible for treatment with approved JAK inhibitor drugs. Trial sites will now open to recruit myelofibrosis patients into the 6-month phase 2 study in Australia, South Korea, Taiwan and the USA.

An effective pan-LOX inhibitor for myelofibrosis would open a market that is conservatively estimated at US$1 billion per annum.

While Pharmaxis' primary focus is the development of PXS-5505 for myelofibrosis, the drug also has potential in several other cancers including liver and pancreatic cancer where it aims to breakdown the fibrotic tissue in the tumour and enhance the effect of chemotherapy treatment.

Trial Design

Name of trial

PXS5505-MF-101: A phase 1/2a study to evaluate safety, pharmacokinetic and pharmacodynamic dose escalation and expansion study of PXS-5505 in patients with primary, post-polycythaemia vera or post-essential thrombocythemia myelofibrosis

Trial number

NCT04676529

Primary endpoint

To determine the safety of PXS-5505 in patients with myelofibrosis

Secondary endpoints

Blinding status

Open label

Placebo controlled

No

Trial design

Randomised, multicentre, 4 week duration phase 1 (dose escalation) followed by 6 month phase 2 (dose expansion)

Treatment route

Oral

Treatment frequency

Twice daily

Dose level

Dose escalation: three escalating doses

Dose expansion: one dose

Number of subjects

Dose escalation: minimum of three patients to maximum of 18 patients

Dose expansion: 24 patients

Subject selection criteria

Patients with primary or secondary myelofibrosis who are intolerant, unresponsive or ineligible for treatment with approved JAK inhibitor drugs

Trial locations

Dose escalation: Australia (2 sites) and South Korea (4 sites)

Dose expansion: Australia, Korea, Taiwan, USA

Commercial partners involved

No commercial partner

Reference: (1) doi.org/10.1002/ajh.23409

AUTHORISED FOR RELEASE TO ASX BY:

Pharmaxis Ltd Disclosure Committee. Contact: David McGarvey, Chief Financial Officer and Company Secretary: T +61 2 9454 7203, E david.mcgarvey@pharmaxis.com.au

Join the Pharmaxis mailing listhere

Follow us on LinkedInand Twitter

About Pharmaxis

Pharmaxis Ltd is an Australian clinical stage drug development company developing drugs for inflammatory and fibrotic diseases, with a focus on myelofibrosis. The company has a highly productive drug discovery engine built on its expertise in the chemistry of amine oxidase inhibitors, with drug candidates in clinical trials. Pharmaxis has also developed two respiratory products which are approved and supplied in global markets, generating ongoing revenue.

Pharmaxis is developing its drug PXS-5505 for the bone marrow cancer myelofibrosis which causes a build up of scar tissue that leads to loss of production of red and white blood cells and platelets. The US Food and Drug Administration has granted Orphan Drug Designation to PXS-5055 for the treatment of myelofibrosis and permission under an Investigational Drug Application (IND) to progress a phase 1c/2 clinical trial that began recruitment in Q1 2021. PXS5505 is also being investigated as a potential treatment for other cancers such as liver and pancreatic cancer.

Other drug candidates being developed from Pharmaxis' amine oxidase chemistry platform are targeting fibrotic diseases such as kidney fibrosis, NASH, pulmonary fibrosis and cardiac fibrosis; fibrotic scarring from burns and other trauma; and inflammatory diseases such as Duchenne Muscular Dystrophy.

Pharmaxis has developed two products from its proprietary spray drying technology that are manufactured and exported from its Sydney facility; Bronchitol for cystic fibrosis, which is approved and marketed in the United States, Europe, Russia and Australia; and Aridol for the assessment of asthma, which is approved and marketed in the United States, Europe, Australia and Asia.

Pharmaxis is listed on the Australian Securities Exchange (PXS). Its head office, manufacturing and research facilities are in Sydney, Australia. http://www.pharmaxis.com.au

About PXS-5505

PXS-5505 is an orally taken drug that inhibits the lysyl oxidase family of enzymes, two members LOX and LOXL2 are strongly upregulated in human myelofibrosis. In pre-clinical models of myelofibrosis PXS-5505 reversed the bone marrow fibrosis that drives morbidity and mortality in myelofibrosis and reduced many of the abnormalities associated with this disease. It has already received IND approval and Orphan Drug Designation from the FDA.

Myelofibrosis is a disorder in which normal bone marrow tissue is gradually replaced with a fibrous scar-like material. Over time, this leads to progressive bone marrow failure. Under normal conditions, the bone marrow provides a fine network of fibres on which the stem cells can divide and grow. Specialised cells in the bone marrow known as fibroblasts make these fibres.

In myelofibrosis, chemicals released by high numbers of platelets and abnormal megakaryocytes (platelet forming cells) over-stimulate the fibroblasts. This results in the overgrowth of thick coarse fibres in the bone marrow, which gradually replace normal bone marrow tissue. Over time this destroys the normal bone marrow environment, preventing the production of adequate numbers of red cells, white cells and platelets. This results in anaemia, low platelet counts and the production of blood cells in areas outside the bone marrow for example in the spleen and liver, which become enlarged as a result.

Myelofibrosis can occur at any age but is usually diagnosed later in life, between the ages of 60 and 70 years. The cause of myelofibrosis remains largely unknown. It can be classified as either JAK2 mutation positive (having the JAK2 mutation) or negative (not having the JAK2 mutation).

Source: Australian Leukemia Foundation: https://www.leukaemia.org.au/disease-information/myeloproliferative-disorders/types-of-mpn/primary-myelofibrosis/

Forward-looking statements

Forwardlooking statements in this media release include statements regarding our expectations, beliefs, hopes, goals, intentions, initiatives or strategies, including statements regarding the potential of products and drug candidates. All forward-looking statements included in this media release are based upon information available to us as of the date hereof. Actual results, performance or achievements could be significantly different from those expressed in, or implied by, these forward-looking statements. These forward-looking statements are not guarantees or predictions of future results, levels of performance, and involve known and unknown risks, uncertainties and other factors, many of which are beyond our control, and which may cause actual results to differ materially from those expressed in the statements contained in this document. For example, despite our efforts there is no certainty that we will be successful in developing or partnering any of the products in our pipeline on commercially acceptable terms, in a timely fashion or at all. Except as required by law we undertake no obligation to update these forward-looking statements as a result of new information, future events or otherwise.

CONTACT:

Media: Felicity Moffatt: T +61 418 677 701, E felicity.moffatt@pharmaxis.com.au

Investor relations:Rudi Michelson (Monsoon Communications) T +61 411 402 737, E rudim@monsoon.com.au

View original content:

SOURCE Pharmaxis Limited

Follow this link:
Pharmaxis Cleared To Progress To Phase 2 Bone Marrow Cancer Trial - WAGM

To Read More: Pharmaxis Cleared To Progress To Phase 2 Bone Marrow Cancer Trial – WAGM
categoriaCardiac Stem Cells commentoComments Off on Pharmaxis Cleared To Progress To Phase 2 Bone Marrow Cancer Trial – WAGM | dataOctober 5th, 2021
Read All

Exosome therapeutic Market Report- Trends Key Programs Analysis and Competitive Landscape and Forecast 2028 Amite Tangy Digest – Amite Tangy Digest

By daniellenierenberg

DBMR has added another report named Exosome therapeutic Market with information Tables for recorded and figure years addressed with Chats and Graphs spread through Pages with straightforward definite examination. The a-list report concentrates on broad assessment of the market development expectations and limitations. The systems range from new item dispatches, extensions, arrangements, joint endeavors, organizations, to acquisitions. This report includes profound information and data on what the markets definition, characterizations, applications, and commitment and furthermore clarifies the drivers and restrictions of the market which is gotten from SWOT investigation. Worldwide market examination report serves a great deal for the business and presents with answer for the hardest business questions. While making Exosome therapeutic Market report, examination and investigation has been completed with one stage or the mix of a few stages relying on the business and customer necessities.

Market definition canvassed in the predominant Exosome therapeutic Market advertising report investigates the market drivers that show factors causing ascend in the market development and market limitations which demonstrate the components causing fall in the market development. It helps clients or other market members to know about the issues they might confront while working in this market throughout a more extended timeframe. This statistical surveying report additionally concentrates on utilization of market, central participants included, deals, value, income and portion of the overall industry with volume and an incentive for every area. The greatness and straightforwardness proceeded in Exosome therapeutic Market business research report makes acquire the trust and dependence of part organizations and clients.

Global Exosome Therapeutic Market By Type (Natural Exosomes, Hybrid Exosomes), Source (Dendritic Cells, Mesenchymal Stem Cells, Blood, Milk, Body Fluids, Saliva, Urine Others), Therapy (Immunotherapy, Gene Therapy, Chemotherapy), Transporting Capacity (Bio Macromolecules, Small Molecules), Application (Oncology, Neurology, Metabolic Disorders, Cardiac Disorders, Blood Disorders, Inflammatory Disorders, Gynecology Disorders, Organ Transplantation, Others), Route of administration (Oral, Parenteral), End User (Hospitals, Diagnostic Centers, Research & Academic Institutes), Geography (North America, Europe, Asia-Pacific and Latin America)

Market Analysis and Insights:Global Exosome Therapeutic Market

Exosome therapeutic market is expected to gain market growth in the forecast period of 2019 to 2026. Data Bridge Market Research analyses that the market is growing with a CAGR of 21.9% in the forecast period of 2019 to 2026 and expected to reach USD 31,691.52 million by 2026 from USD 6,500.00 million in 2018. Increasing prevalence of lyme disease, chronic inflammation, autoimmune disease and other chronic degenerative diseases are the factors for the market growth.

Get Sample Report + All Related Graphs & Charts (with COVID 19 Analysis) @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-exosome-therapeutic-market&pm

Exosomes are used to transfer RNA, DNA, and proteins to other cells in the body by making alteration in the function of the target cells. Increasing research activities in exosome therapeutic is augmenting the market growth as demand for exosome therapeutic has increased among healthcare professionals.

Increased number of exosome therapeutics as compared to the past few years will accelerate the market growth. Companies are receiving funding for exosome therapeutic research and clinical trials. For instance, In September 2018, EXOCOBIO has raised USD 27 million in its series B funding. The company has raised USD 46 million as series a funding in April 2017. The series B funding will help the company to set up GMP-compliant exosome industrial facilities to enhance production of exosomes to commercialize in cosmetics and pharmaceutical industry.

Increasing demand for anti-aging therapies will also drive the market. Unmet medical needs such as very few therapeutic are approved by the regulatory authority for the treatment in comparison to the demand in global exosome therapeutics market will hamper the market growth market. Availability of various exosome isolation and purification techniques is further creates new opportunities for exosome therapeutics as they will help company in isolation and purification of exosomes from dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, and urine and from others sources. Such policies support exosome therapeutic market growth in the forecast period to 2019-2026.

This exosome therapeutic market report provides details of market share, new developments, and product pipeline analysis, impact of domestic and localised market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, product approvals, strategic decisions, product launches, geographic expansions, and technological innovations in the market. To understand the analysis and the market scenario contact us for anAnalyst Brief, our team will help you create a revenue impact solution to achieve your desired goal.

Grab Your Report at an Impressive 30% Discount! Please click Here @https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-exosome-therapeutic-market&pm

Competitive Landscape and Exosome Therapeutic Market Share Analysis

Global exosome therapeutic market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, company strengths and weaknesses, product launch, product trials pipelines, concept cars, product approvals, patents, product width and breadth, application dominance, technology lifeline curve. The above data points provided are only related to the companys focus related to global exosome therapeutic market.

The major players covered in the report are evox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United Therapeutics Corporation, Codiak BioSciences, Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH, ReNeuron Group plc, Capricor Therapeutics, Avalon Globocare Corp., CREATIVE MEDICAL TECHNOLOGY HOLDINGS INC., Stem Cells Group among other players domestic and global. Exosome therapeutic market share data is available for Global, North America, Europe, Asia-Pacific, and Latin America separately. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.

Many joint ventures and developments are also initiated by the companies worldwide which are also accelerating the global exosome therapeutic market.

For instance,

Partnership, joint ventures and other strategies enhances the company market share with increased coverage and presence. It also provides the benefit for organisation to improve their offering for exosome therapeutics through expanded model range.

Global Exosome Therapeutic Market Scope and Market Size

Global exosome therapeutic market is segmented of the basis of type, source, therapy, transporting capacity, application, route of administration and end user. The growth among segments helps you analyse niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.

Based on type, the market is segmented into natural exosomes and hybrid exosomes. Natural exosomes are dominating in the market because natural exosomes are used in various biological and pathological processes as well as natural exosomes has many advantages such as good biocompatibility and reduced clearance rate compare than hybrid exosomes.

Exosome is an extracellular vesicle which is released from cells, particularly from stem cells. Exosome functions as vehicle for particular proteins and genetic information and other cells. Exosome plays a vital role in the rejuvenation and communication of all the cells in our body while not themselves being cells at all. Research has projected that communication between cells is significant in maintenance of healthy cellular terrain. Chronic disease, age, genetic disorders and environmental factors can affect stem cells communication with other cells and can lead to distribution in the healing process. The growth of the global exosome therapeutic market reflects global and country-wide increase in prevalence of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases, along with increasing demand for anti-aging therapies. Additionally major factors expected to contribute in growth of the global exosome therapeutic market in future are emerging therapeutic value of exosome, availability of various exosome isolation and purification techniques, technological advancements in exosome and rising healthcare infrastructure.

Rising demand of exosome therapeutic across the globe as exosome therapeutic is expected to be one of the most prominent therapies for autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases treatment, according to clinical researches exosomes help to processes regulation within the body during treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases. This factor has increased the research activities in exosome therapeutic development around the world for exosome therapeutic. Hence, this factor is leading the clinician and researches to shift towards exosome therapeutic. In the current scenario the exosome therapeutic are highly used in treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases and as anti-aging therapy as it Exosomes has proliferation of fibroblast cells which is significant in maintenance of skin elasticity and strength.

For More Insights Get FREE Detailed TOC @https://www.databridgemarketresearch.com/toc/?dbmr=global-exosome-therapeutic-market&pm

Exosome therapeutic Market Country Level Analysis

The global exosome therapeutic market is analysed and market size information is provided by country by type, source, therapy, transporting capacity, application, route of administration and end user as referenced above.

The countries covered in the exosome therapeutic market report are U.S. and Mexico in North America, Turkey in Europe, South Korea, Australia, Hong Kong in the Asia-Pacific, Argentina, Colombia, Peru, Chile, Ecuador, Venezuela, Panama, Dominican Republic, El Salvador, Paraguay, Costa Rica, Puerto Rico, Nicaragua, Uruguay as part of Latin America.

Country Level Analysis, By Type

North America dominates the exosome therapeutic market as the U.S. is leader in exosome therapeutic manufacturing as well as research activities required for exosome therapeutics. At present time Stem Cells Group holding shares around 60.00%. In addition global exosomes therapeutics manufacturers like EXOCOBIO, evox THERAPEUTICS and others are intensifying their efforts in China. The Europe region is expected to grow with the highest growth rate in the forecast period of 2019 to 2026 because of increasing research activities in exosome therapeutic by population.

The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as new sales, replacement sales, country demographics, regulatory acts and import-export tariffs are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of sales channels are considered while providing forecast analysis of the country data.

Huge Investment by Automakers for Exosome Therapeutics and New Technology Penetration

Global exosome therapeutic market also provides you with detailed market analysis for every country growth in pharma industry with exosome therapeutic sales, impact of technological development in exosome therapeutic and changes in regulatory scenarios with their support for the exosome therapeutic market. The data is available for historic period 2010 to 2017.

About Data Bridge Market Research:

An absolute way to forecast what future holds is to comprehend the trend today!Data Bridge set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.

Contact:

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Email @ Corporatesales@databridgemarketresearch.com

See the original post here:
Exosome therapeutic Market Report- Trends Key Programs Analysis and Competitive Landscape and Forecast 2028 Amite Tangy Digest - Amite Tangy Digest

To Read More: Exosome therapeutic Market Report- Trends Key Programs Analysis and Competitive Landscape and Forecast 2028 Amite Tangy Digest – Amite Tangy Digest
categoriaCardiac Stem Cells commentoComments Off on Exosome therapeutic Market Report- Trends Key Programs Analysis and Competitive Landscape and Forecast 2028 Amite Tangy Digest – Amite Tangy Digest | dataOctober 5th, 2021
Read All

Distinguished physician-scientist takes the helm of first Frost Institute – University of Miami

By daniellenierenberg

Trained as a chemist, biophysicist, internist, and cardiologist, Mark Yeager is eager to propel the Frost Institute for Chemistry and Molecular Science into a leading research center.

Even in his youth Mark Yeager could picture the door to his future. Scuffed, chipped, and almost black from layers of varnish, the old, wooden door had a frosted window with five words stenciled in glossy black: Laboratory of Dr. Mark Yeager.

Yet Yeager, the inaugural executive director of the University of Miamis Frost Institute for Chemistry and Molecular Science (FICMS), is quite happy that his new lab in the 94,000-square-foot building slated to open late next year wont even have a door. The $60 million facilitys open floor plan was designed to encourage the free flow of people and ideasand help transform the University into one of the worlds premier research centers for improving the health of humans and that of our planet.

That is the vision, but its not a fantastical vision, said Yeager, a distinguished biophysicist and cardiologist whose top priority is attracting a diverse and elite group of scientists as the institutes first faculty. It is achievable, and it will happen because the University has not wavered in its commitment to elevate STEM (science, technology, engineering, and mathematics) to advance scientific discovery. Theres something going on here thats organic and alive and excitingand Im thrilled to be part of it.

Yeager, whose own groundbreaking research focuses on the molecular causes of heart disease and viral infections, trained as a chemist at Carnegie-Mellon University, as a physician and biophysicist at Yale University and as an internist and cardiologist at Stanford University. He spent two decades at Scripps Research in California, where he established his first independent laboratory, served as the director of research in cardiology, and helped launch the Skaggs Clinical Scholars Program in Translational Research. He has also served as a consultant and scientific and clinical advisor to several biotech companies.

Now he is transitioning to the University from the University of Virginia School of Medicine (UVA), where he chaired the Department of Molecular Biophysics and Biochemistry for nearly a dozen years and helped establish the Sheridan G. Snyder Translational Research Building. At UVA, he also established one of the nations five regional centers for cryo-electron microscopy (cryoEM)the technique he advanced for flash-freezing, imaging, and studying proteins and other macromolecules in their near-natural state.

It is exciting to see the progress being made on the evolution of our Frost Institutes, starting with Data Science and Computing and now the emergence of Chemistry and Molecular Science. We are fortunate to have Mark overseeing our Frost Institute for Chemistry and Molecular Science and working across the entire institutionhis interdisciplinary knowledge and perspective on chemistry are essential for our success, said Jeffrey Duerk, executive vice president for academic affairs and provost. Mark brings a wealth of knowledge and experience to the University of Miami and we are looking forward to his impactful leadership continuing as we move forward.

Yeager said he knew he was making the right career move on his first visit to the University last November. Although the COVID-19 pandemic had curtailed in-person learning and suspended new construction, he heard the unmistakable sound of heavy equipment as he walked past the royal palms and fountain at the end of Memorial Drive, where the five-story FICMS now stands.

I could see an excavation area and heard a cacophony of construction noise where I had a hunch the institute should be, he recalled. That told me that the University was all in. They had made this commitment to fortify STEM and to do transformational science and nothing was going to stop them. In spite of the pandemic, it was all systems go.

The Universitys longtime benefactors, Phillip and Patricia Frost, enabled that commitment in 2017, when they announced their landmark $100 million gift to establish the Frost Institutes for Science and Engineering, now a key initiative of the Roadmap to Our New Centurythe strategic plan guiding the University toward its centennial mark. The umbrella organization for a group of multidisciplinary research centers patterned after the National Institutes of Health and its network of affiliated institutes, the Frost Institutes were envisioned to translate interdisciplinary research into solutions for real-world problems.

Though Yeager officially started his new role on June 1, he has been heavily involved in planning the FICMS' interior for months. He recently placed a $20 million order to equip the facility with five different electron microscopy instruments that chemists, molecular scientists, and engineers will use to explore the molecular structure of exquisitely beam-sensitive soft materials like proteins, hard materials such as metal alloys, as well as nanomaterials comprised of soft and hard components. Along with the buildings state-of-the-art technology and the Universitys research infrastructure, hes confident its location in the heart of the Coral Gables campus will help him recruit a diverse and elite group of scientists who are exploring challenging avenues of impactful researchsomething he has been driven to do almost his entire life.

An occasional songwriter, guitar player, and jogger who in his younger days ran 18 marathons, Yeager was always fascinated by scientific discoveries that illuminated unknown and unseen worlds. A child of the Sputnik era who began entering science fairs in junior high, he began forging his own career as a physician-scientist while in high school in Colorado Springs, Colorado, where his father, an agricultural economist, settled his family after a number of job-related moves.

Inspired by an experiment in Scientific American magazine, he convinced physicians in the therapeutic radiology department at Penrose Hospital to irradiate his fruit flies so he could compare the effects of administering different doses of radiation on their eye pigments. Delivered in Styrofoam cups, his experiments on what is now called dose fractionationand used to reduce tissue damage during cancer treatmentswon him first place in the U.S. Department of Agricultures 1967 International Science Fair and a research stint in an insect toxicology lab in Berkeley, California.

The following summer, when Yeager returned to Penrose Hospital to work as an orderly, he realized that he loved patient care as much as laboratory research and began plotting how he could pursue both careers.

I just got incredible satisfaction from helping patients get out of bed and into a wheelchair, transfer to a gurney, learn to use crutches, recalled Yeager, who joins the University as one of its 100 Talents for 100 Years, a Roadmap initiative to add 100 new endowed chairs to the faculty by the Universitys 2025 centennial. But I also loved chemistry. I loved physics. I loved too many things.

After earning his undergraduate degree in chemistry from Carnegie-Mellon, he was accepted to the Medical Scientist Training Program at Yale University, where, along with his medical degree, he earned his masters degree and doctorate in molecular biophysics and biochemistry. There, he encountered the first of many trailblazing scientists, including two future Nobel laureates, who would influence his lifes work. His Ph.D. advisor, Lubert Stryer, was particularly influential. Stryer authored a premier textbook of biochemistry, pioneered fluorescence-based techniques to explore the motions of biological macromolecules, and made fundamental discoveries on the molecular basis of vision. Yeagers graduate work on rhodopsin, a photoreceptor membrane protein, triggered his fascination with elucidating the molecular bases for such diseases as sudden cardiac death, heart attacks, HIV-1, and other viral infections.

Yeager completed his medical residency and specialized fellowship training in cardiovascular medicine at Stanford University Medical Center, where he managed the pre- and post-operative care of heart transplant patients and wrote 13 chapters in the book Handbook of Difficult Diagnoses.

He also continued exploring cellular biology in the laboratory of Nigel Unwin, who had collaborated with future Nobel laureate Richard Henderson to pioneer the use of cryoEM to determine the molecular structure of membrane proteinsand inspired Yeagers groundbreaking research on gap junction channels. The electrical conduits that connect every cell in the body to its neighbor, gap junction channels play a critical role in maintaining the normal heartbeat.

That research, which Yeager continued at Scripps and at UVA, explained how gap junction channels behave in their normal state, and during an injured state, such as a heart attack. His quest to answer another question particularly relevant todayhow viruses enter host cells, replicate, and assemble infectious particlesis exemplified by his breakthrough research on the assembly, structure, and maturation of HIV-1, the virus that causes AIDS.

Today, those insights, which Yeager humbly calls a few bricks in the edifice of science, hold important clues for developing new, more effective therapies to prevent HIV-1 infection, repair injured tissue, and treat cancer and cardiovascular diseasethe kind of impactful research that the FICMS was designed to advance with collaborative partners across the University, and beyond.

As a pioneer in the field of cryo-transmission electron microscopy, a forefront technology in materials and biological research, Marks expertise and knowledge will position the University as aleader in these cutting-edge fields, said Leonidas Bachas, dean of the College of Arts and Sciences who served as the initial interim director of the FICMS. We look forward to having him lead the Frost Institute for Chemistry and Molecular Science as we continue to advance the sciences, innovate, and expand research collaborations with our faculty and industry partners.

See the rest here:
Distinguished physician-scientist takes the helm of first Frost Institute - University of Miami

To Read More: Distinguished physician-scientist takes the helm of first Frost Institute – University of Miami
categoriaCardiac Stem Cells commentoComments Off on Distinguished physician-scientist takes the helm of first Frost Institute – University of Miami | dataOctober 5th, 2021
Read All

Operational Highlights and Financial Results for the Year Ended June 30, 2021 – GlobeNewswire

By daniellenierenberg

NEW YORK, Aug. 30, 2021 (GLOBE NEWSWIRE) -- Mesoblast Limited (Nasdaq:MESO; ASX:MSB), global leader in allogeneic cellular medicines for inflammatory diseases, today reported operational highlights and financial results for the fourth quarter and full-year ended June 30, 2021 (FY2021).

During this calendar year we made significant progress in both regulatory and clinical outcomes for our lead product candidate, remestemcel-L, after experiencing a disappointing set-back last year said Silviu Itescu, Chief Executive of Mesoblast. We are pleased with recent recommendations by FDAs CBER to meet with the review team and address remaining CMC items for remestemcel-L in the treatment of steroid-refractory acute graft versus host disease in children. Additionally, our most recent meeting with the FDA has provided clarity on the pathway towards an emergency use authorization for remestemcel-L in the treatment of COVID ARDS.

Operational Highlights

Remestemcel-L Outcome of recent meeting with FDA on regulatory pathway for emergency use authorization in the treatment of COVID-19 ARDS:

Remestemcel-L in the treatment of steroid-refractory acute graft versus host disease (SR-aGVHD) in children:

Rexlemestrocel-L in the treatment of chronic heart failure and chronic low back pain:

Manufacturing

Financial Highlights

DETAILED CLINICAL ACTIVITIES FOR THE FISCAL YEAR FY2021

Remestemcel-L

Acute Respiratory Distress Syndrome due to COVID-19

Mesoblast recently presented results from the randomized controlled trial of remestemcel-L in 222 ventilator-dependent COVID-19 patients with moderate/severe acute respiratory distress syndrome (ARDS) at the biennial Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases conference hosted by the University of Vermont, Burlington, VT, and at the International Society for Cell & Gene Therapy (ISCT) Scientific Signatures Series event on Cell and Gene-Based Therapies in Lung Diseases and Critical Illnesses.

The presented data included improved respiratory function in patients treated with remestemcel-L, as well as 90-day survival outcomes showing remestemcel-L significantly reduced mortality by 48% at 90 days compared to controls in a pre-specified exploratory analysis of 123 treated patients under 65 years old. The trial had been halted after the third interim analysis since the 30-day primary endpoint would not be attained.

Key presentation findings were:

Mesoblast plans to move forward with an additional Phase 3 trial in COVID-19 ARDS with the next step being to agree with the FDA the final protocol and potency assay.

Inflammatory Bowel Disease Crohns Disease and Ulcerative Colitis

A randomized, controlled study of remestemcel-L delivered by an endoscope directly to areas of inflammation and tissue injury in up to 48 patients with medically refractory Crohns disease and ulcerative colitis commenced at Cleveland Clinic in October 2020. The investigator-initiated study is the first in humans using local cell delivery in the gut and will enable Mesoblast to compare clinical outcomes using this delivery method with results from an ongoing randomized, placebo-controlled trial in patients with biologic-refractory Crohns disease where remestemcel-L was administered intravenously.

Rexlemestrocel-L

Chronic Heart Failure

The results from the landmark DREAM-HF randomized controlled trial in 537 treated patients with chronic heart failure with reduced left ventricular ejection fraction (HFrEF) who received rexlemestrocel-L (REVASCOR) or control sham, demonstrated that a single dose of rexlemestrocel-L resulted in substantial and durable reductions in heart attacks, strokes, and cardiac deaths. The trials primary endpoint of reduction in volume overload related hospitalizations was not achieved. The results of this trial identify New York Heart Association (NYHA) class II HFrEF patients as the optimal target population for greatest rexlemestrocel-L treatment effect, and therefore a focus for developing rexlemestrocel-L in the largest market in heart failure.

The incidence of heart attacks and strokes were reduced by 60% over a median follow-up period of 30 months following a single dose of rexlemestrocel-L in the entire population of 537 treated patients. The incidence of death from cardiovascular causes was reduced by 60% in the 206 patients with NYHA class II disease, a significant reduction which was evident in both ischemic and non-ischemic subgroups as well as diabetic and nondiabetic patients.

The results also show that the NYHA class II patients in the control group, following an initial period of approximately 20 months of disease stability, progressed to cardiac death rates in-line with NYHA class III patients. NYHA class II patients treated with a single dose of rexlemestrocel-L did not show such cardiac death progression.

The combination of the three pre-specified outcomes of cardiac death, heart attack or stroke into a single composite outcome - called the three-point major adverse cardiovascular events (MACE) is a well-established endpoint used by the FDA to determine cardiovascular risk. Rexlemestrocel-L reduced this three-point MACE by 30% compared to controls across the entire population of 537 treated patients. In the NYHA class II subgroup of 206 patients, rexlemestrocel-L reduced the three-point MACE by 55% compared to controls.

Mesoblast expects feedback from the FDA in the next quarter on the potential pathway to US regulatory approval for rexlemestrocel-L in patients with chronic heart failure.

Chronic Low Back Pain due to Degenerative Disc Disease

The results from the randomized controlled trial of its allogeneic mesenchymal precursor cell (MPC) therapy rexlemestrocel-L in 404 enrolled patients with chronic low back pain (CLBP) due to degenerative disc disease (DDD) refractory to conventional treatments indicate that a single injection of rexlemestrocel-L+hyaluronic acid (HA) carrier may provide a safe, durable, and effective opioid-sparing therapy for patients with chronic inflammatory back pain due to degenerative disc disease, and that greatest benefits are seen when administered earlier in the disease process before irreversible fibrosis of the intervertebral disc has occurred. The trial's composite outcomes of pain reduction together with functional responses to treatment were not met by either MPC group.

The rexlemestrocel-L+HA treatment group achieved substantial and durable reductions in CLBP compared to control through 24 months across the entire evaluable study population (n=391) compared with saline controls. Greatest pain reduction was observed in the pre-specified population with CLBP of shorter duration than the study median of 68 months (n=194) and subjects using opioids at baseline (n=168) with the rexlemestrocel-L+HA group having substantially greater reduction at all time points (1, 3, 6, 12, 18 and 24 months) compared with saline controls. There was no appreciable difference in the safety of MPC groups compared to saline control over the 24-month period of follow-up in the entire study population. In subjects using opioids at baseline, the MPC+HA demonstrated a reduction in the average opioid dose over 24 months, while saline control subjects had essentially no change.

There is a significant need for a safe, efficacious, and durable opioid-sparing treatment in patients with chronic low back pain due to severely inflamed degenerative disc disease. Mesoblast has filed a request and expects to receive feedback from the FDA on the pathway to US regulatory approval in patients with chronic low back pain due to degenerative disc disease.

Intellectual Property

Mesoblast has an extensive patent portfolio with over 1,000 patents and patent applications across 77 patent families, and patent terms extending through 2041. These patents cover composition of matter, manufacturing, and therapeutic applications of mesenchymal lineage cells, and provide strong commercial protection for our products in all major markets, including the United States, Europe, Japan and China. During the fiscal year Mesoblast has significantly expanded its patent portfolio, focusing on areas of its strategic commercial interests.

Licensing agreements with JCR, Grnenthal, Tasly and Takeda highlight the strength of Mesoblast's extensive intellectual property portfolio covering mesenchymal lineage cells. Mesoblast will continue to use its patents to prosecute its commercial rights as they relate to its core strategic product portfolio. When consistent with the Companys strategic objectives, it may consider providing third parties with commercial access to its patent portfolio.

DETAILED FINANCIAL RESULTS

Financial Results for the Year Ended June 30, 2021 (FY2021)

In August we entered into a contractual amendment to extend the interest-only period of its current senior debt facility to at least January 2022 and as a result no loan repayments will be required prior to January 2022. Mesoblast is in active discussions to refinance the facility.

We expect to recognize the existing US$21.9 million of remestemcel-L pre-launch inventory on the balance sheet if we receive FDA approval.

As a result of the above and other remeasurements on revaluation of assets and liabilities, the loss after tax for FY2021 was US$98.8 million compared to US$77.9 million for FY2020. The net loss attributable to ordinary shareholders was 16.33 US cents per share for FY2021, compared with 14.74 US cents per share for FY2020.

Conference Call

There will be a webcast today, beginning at 7.00pm EDT (Monday, August 30, 2021); 9.00am AEST (Tuesday, August 31). It can be accessed via:https://webcast.boardroom.media/mesoblast-limited/20210826/NaN61036c41df5665001c97fc67

The archived webcast will be available on the Investor page of the Companys website: http://www.mesoblast.com

About Mesoblast

Mesoblast is a world leader in developing allogeneic (off-the-shelf) cellular medicines for the treatment of severe and life-threatening inflammatory conditions. The Company has leveraged its proprietary mesenchymal lineage cell therapy technology platform to establish a broad portfolio of late-stage product candidates which respond to severe inflammation by releasing anti-inflammatory factors that counter and modulate multiple effector arms of the immune system, resulting in significant reduction of the damaging inflammatory process.

Mesoblast has a strong and extensive global intellectual property portfolio with protection extending through to at least 2041 in all major markets. The Companys proprietary manufacturing processes yield industrial-scale, cryopreserved, off-the-shelf, cellular medicines. These cell therapies, with defined pharmaceutical release criteria, are planned to be readily available to patients worldwide.

Mesoblast has completed Phase 3 trials of rexlemestrocel-L for advanced chronic heart failure and chronic low back pain. Remestemcel-L is being developed for inflammatory diseases in children and adults including steroid refractory acute graft versus host disease and moderate to severe acute respiratory distress syndrome. Two products have been commercialized in Japan and Europe by Mesoblasts licensees, and the Company has established commercial partnerships in Europe and China for certain Phase 3 assets.

Mesoblast has locations in Australia, the United States and Singapore and is listed on the Australian Securities Exchange (MSB) and on the Nasdaq (MESO). For more information, please see http://www.mesoblast.com, LinkedIn: Mesoblast Limited and Twitter: @Mesoblast

References / Footnotes

Forward-Looking Statements

This announcement includes forward-looking statements that relate to future events or our future financial performance and involve known and unknown risks, uncertainties and other factors that may cause our actual results, levels of activity, performance or achievements to differ materially from any future results, levels of activity, performance or achievements expressed or implied by these forward-looking statements. We make such forward-looking statements pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995 and other federal securities laws. Forward-looking statements should not be read as a guarantee of future performance or results, and actual results may differ from the results anticipated in these forward-looking statements, and the differences may be material and adverse. Forward-looking statements include, but are not limited to, statements about the initiation, timing, progress and results of Mesoblasts preclinical and clinical studies, and Mesoblasts research and development programs; Mesoblasts ability to advance product candidates into, enroll and successfully complete, clinical studies, including multi-national clinical trials; Mesoblasts ability to advance its manufacturing capabilities; the timing or likelihood of regulatory filings and approvals, manufacturing activities and product marketing activities, if any; the commercialization of Mesoblasts product candidates, if approved; regulatory or public perceptions and market acceptance surrounding the use of stem-cell based therapies; the potential for Mesoblasts product candidates, if any are approved, to be withdrawn from the market due to patient adverse events or deaths; the potential benefits of strategic collaboration agreements and Mesoblasts ability to enter into and maintain established strategic collaborations; Mesoblasts ability to establish and maintain intellectual property on its product candidates and Mesoblasts ability to successfully defend these in cases of alleged infringement; the scope of protection Mesoblast is able to establish and maintain for intellectual property rights covering its product candidates and technology; estimates of Mesoblasts expenses, future revenues, capital requirements and its needs for additional financing; Mesoblasts financial performance; developments relating to Mesoblasts competitors and industry; and the pricing and reimbursement of Mesoblasts product candidates, if approved. You should read this press release together with our risk factors, in our most recently filed reports with the SEC or on our website. Uncertainties and risks that may cause Mesoblasts actual results, performance or achievements to be materially different from those which may be expressed or implied by such statements, and accordingly, you should not place undue reliance on these forward-looking statements. We do not undertake any obligations to publicly update or revise any forward-looking statements, whether as a result of new information, future developments or otherwise.

Release authorized by the Chief Executive.

For more information, please contact:

Read the rest here:
Operational Highlights and Financial Results for the Year Ended June 30, 2021 - GlobeNewswire

To Read More: Operational Highlights and Financial Results for the Year Ended June 30, 2021 – GlobeNewswire
categoriaCardiac Stem Cells commentoComments Off on Operational Highlights and Financial Results for the Year Ended June 30, 2021 – GlobeNewswire | dataSeptember 1st, 2021
Read All

The Covid booster shot is not for everyone. It’s only meant for severely immunocompromised people – ETHealthworld.com

By daniellenierenberg

The increasing prevalence of new coronavirus variants is raising questions about how well protected those who've already had their COVID-19 shots are against evolving forms of the SARS-CoV-2 virus. Here, microbiology and infectious disease specialist William Petri of the University of Virginia answers some common questions about COVID-19 booster shots.

1. What is a booster shot?Boosters are an extra dose of a vaccine given to maintain vaccine-induced protection against a disease. They are commonly used to bolster many vaccines because immunity can wear off over time. For example, the flu vaccine needs a booster every year, and the diphtheria and tetanus vaccine every 10 years.

Boosters are often identical to the original vaccine. In some cases, however, the booster shot has been modified to enhance protection against new viral variants. The seasonal flu vaccine, most notably, requires an annual booster because the flu virus changes so rapidly.

3. Why aren't booster shots recommended for everyone yet?While vaccine-induced immunity may not last forever, it is not clear when a booster will be needed.

Encouragingly, all of the currently authorized COVID-19 vaccines induce a robust immune memory against the coronavirus. The vaccine teaches your immune system's memory B cells to produce antibodies when you're exposed to the virus. Researchers have detected high levels of memory B cells in the lymph nodes of people who received the Pfizer vaccine for at least 12 weeks after they got the shot.

Studies also suggest that authorized COVID-19 vaccines are continuing to offer protection even against emerging strains of the coronavirus. Among one study's participants, the Johnson & Johnson vaccine had 73% and 82% efficacy 14 days and 28 days post shot, respectively, at warding off severe disease from the beta variant. Another study found the Pfizer vaccine to be 88% effective against the delta variant.

4. How will I know if I need a booster?You may need to wait for an outbreak in people who have been vaccinated. Researchers are still figuring out the best way to measure the strength of someone's vaccine-induced immunity. The COVID-19 vaccines have been so effective that there are not many failures to test.

The best candidate to measure are certain antibodies the vaccine induces the immune system to make. They recognize the spike protein that allows the coronavirus to enter and infect cells. Evidence supporting the importance of anti-spike antibodies includes a study showing that the somewhat more effective mRNA vaccines like Pfizer and Moderna generate higher antibody levels in the blood than the adenovirus vector vaccines like Johnson & Johnson and AstraZeneca. In a preliminary study that has not yet been peer-reviewed, anti-spike antibody levels were lower in people who caught COVID-19 after they were vaccinated with the Oxford-AstraZeneca vaccine.

Medical workers would love to be able to give patients a blood test that would tell them how well protected they are or aren't against COVID-19. That would be a clear indication as to whether a booster shot is needed.

But until researchers know for sure how to measure vaccine-induced immunity, the next indication that boosters may be needed are breakthrough infections in older adults who have already been vaccinated. People over the age of 80 make lower levels of antibodies after vaccination, so their immunity may wane sooner than that of the general population. The elderly would also most likely be the most susceptible to new viral variants that evade the protection current vaccines provide.

5. Who does the FDA and CDC recommend get a third shot?An extra shot may be necessary for certain immunocompromised people. In one study, 39 of 40 kidney transplant recipients and a third of dialysis patients failed to make antibodies after vaccination. Another study identified 20 patients with rheumatic or musculoskeletal diseases on medications that suppress the immune system who also did not have detectable antibodies. Both of these studies were done after patients received the full vaccine dose.

Currently, the CDC recommends that the following people consider getting a third dose:

Those who are immunocompromised may wonder if the vaccine they received is successfully generating immunity in their body. A preliminary study that has not yet been peer-reviewed did find that a test that specifically targets the anti-spike antibodies the vaccines trigger may be helpful in determining whether the vaccine worked. But for now, the FDA does not recommend antibody tests to assess immunity.

6. Does my third dose need to match my first two?Likely not. Recent research has shown that mRNA vaccines, like Pfizer and Moderna, can be mixed with adenovirus-based vaccines like AstraZeneca with comparable results.

Read more here:
The Covid booster shot is not for everyone. It's only meant for severely immunocompromised people - ETHealthworld.com

To Read More: The Covid booster shot is not for everyone. It’s only meant for severely immunocompromised people – ETHealthworld.com
categoriaCardiac Stem Cells commentoComments Off on The Covid booster shot is not for everyone. It’s only meant for severely immunocompromised people – ETHealthworld.com | dataAugust 19th, 2021
Read All

Global Induced Pluripotent Stem Cell ((iPSC) Market to Reach $2.3 Billion by 2026 – Yahoo Finance UK

By daniellenierenberg

Abstract: Global Induced Pluripotent Stem Cell ((iPSC) Market to Reach $2. 3 Billion by 2026 . Induced pluripotent stem cells (iPSCs) hold tremendous clinical potential to transform the entire therapeutic landscape by offering treatments for various medical conditions and disorders.

New York, Aug. 05, 2021 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Global Induced Pluripotent Stem Cell (iPSC) Industry" - https://www.reportlinker.com/p05798831/?utm_source=GNW These cells are derived from somatic cells like blood or skin cells that are genetically reprogrammed into embryonic stem cell-like state for developing an unlimited source of a diverse range of human cells for therapeutic applications. The global market is propelled by increasing demand for these cells, rising focus on researchers in the field, and their potential application in treatment of various diseases. The market growth is supplemented by rising prevalence of several chronic disorders such as diabetes, heart disease, stroke and cancer. Moreover, increasing awareness about stem cells and associated research, potential clinical applications and rising financial assistance by governments and private players are expected to contribute significantly to the market expansion. The iPSC technique is anticipated to find extensive adoption in the pharmaceutical industry for developing efficient cell sources like iPSC-derived functional cells to support drug screening and toxicity testing.

Amid the COVID-19 crisis, the global market for Induced Pluripotent Stem Cell ((iPSC) estimated at US$1.6 Billion in the year 2020, is projected to reach a revised size of US$2.3 Billion by 2026, growing at a CAGR of 6.6% over the analysis period. Vascular Cells, one of the segments analyzed in the report, is projected to record a 7.2% CAGR and reach US$835.8 Million by the end of the analysis period. After a thorough analysis of the business implications of the pandemic and its induced economic crisis, growth in the Cardiac Cells segment is readjusted to a revised 7.9% CAGR for the next 7-year period. The demand for iPSC-derived cardiac cells is attributed to diverse applications including cardiotoxicity testing, drug screening and drug validation along with metabolism studies and electrophysiology applications.

The U.S. Market is Estimated at $767.1 Million in 2021, While China is Forecast to Reach $82.4 Million by 2026

The Induced Pluripotent Stem Cell ((iPSC) market in the U.S. is estimated at US$767.1 Million in the year 2021. China, the world`s second largest economy, is forecast to reach a projected market size of US$82.4 Million by the year 2026 trailing a CAGR of 8.5% over the analysis period. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at 5.5 % and 6.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 6.5% CAGR. North America leads the global market, supported by continuing advances related to iPSC technology and access to functional cells used in pre-clinical drug screening. The market growth is supplemented by increasing insights into the iPSC platform along with high throughput analysis for drug toxicity. The iPSC market in Asia-Pacific is estimated to post a fast growth due to increasing R&D projects across countries like Australia, Japan and Singapore.

Neuronal Cells Segment to Reach $336.9 Million by 2026

In the global Neuronal Cells segment, USA, Canada, Japan, China and Europe will drive the 6.4% CAGR estimated for this segment. These regional markets accounting for a combined market size of US$202.9 Million in the year 2020 will reach a projected size of US$308 Million by the close of the analysis period. China will remain among the fastest growing in this cluster of regional markets. Led by countries such as Australia, India, and South Korea, the market in Asia-Pacific is forecast to reach US$19.8 Million by the year 2026. Select Competitors (Total 51 Featured)

Story continues

Axol Bioscience Ltd.

Cynata Therapeutics Limited

Evotec SE

Fate Therapeutics, Inc.

FUJIFILM Cellular Dynamics, Inc.

Ncardia

Pluricell Biotech

REPROCELL USA, Inc.

Sumitomo Dainippon Pharma Co., Ltd.

Takara Bio, Inc.

Thermo Fisher Scientific, Inc.

ViaCyte, Inc.

Read the full report: https://www.reportlinker.com/p05798831/?utm_source=GNW

I. METHODOLOGY

II. EXECUTIVE SUMMARY

1. MARKET OVERVIEW Influencer Market Insights Impact of Covid-19 and a Looming Global Recession Induced Pluripotent Stem Cells (iPSCs) Market Gains from Increasing Use in Research for COVID-19 Studies Employing iPSCs in COVID-19 Research Stem Cells, Application Areas, and the Different Types: A Prelude Applications of Stem Cells Types of Stem Cells Induced Pluripotent Stem Cell (iPSC): An Introduction Production of iPSCs First & Second Generation Mouse iPSCs Human iPSCs Key Properties of iPSCs Transcription Factors Involved in Generation of iPSCs Noteworthy Research & Application Areas for iPSCs Induced Pluripotent Stem Cell ((iPSC) Market: Growth Prospects and Outlook Drug Development Application to Witness Considerable Growth Technical Breakthroughs, Advances & Clinical Trials to Spur Growth of iPSC Market North America Dominates Global iPSC Market Competition Recent Market Activity Select Innovation/Advancement

2. FOCUS ON SELECT PLAYERS Axol Bioscience Ltd. (UK) Cynata Therapeutics Limited (Australia) Evotec SE (Germany) Fate Therapeutics, Inc. (USA) FUJIFILM Cellular Dynamics, Inc. (USA) Ncardia (Belgium) Pluricell Biotech (Brazil) REPROCELL USA, Inc. (USA) Sumitomo Dainippon Pharma Co., Ltd. (Japan) Takara Bio, Inc. (Japan) Thermo Fisher Scientific, Inc. (USA) ViaCyte, Inc. (USA)

3. MARKET TRENDS & DRIVERS Effective Research Programs Hold Key in Roll Out of Advanced iPSC Treatments Induced Pluripotent Stem Cells: A Giant Leap in the Therapeutic Applications Research Trends in Induced Pluripotent Stem Cell Space EXHIBIT 1: Worldwide Publication of hESC and hiPSC Research Papers for the Period 2008-2010, 2011-2013 and 2014-2016 EXHIBIT 2: Number of Original Research Papers on hESC and iPSC Published Worldwide (2014-2016) Concerns Related to Embryonic Stem Cells Shift the Focus onto iPSCs Regenerative Medicine: A Promising Application of iPSCs Induced Pluripotent: A Potential Competitor to hESCs? EXHIBIT 3: Global Regenerative Medicine Market Size in US$ Billion for 2019, 2021, 2023 and 2025 EXHIBIT 4: Global Stem Cell & Regenerative Medicine Market by Product (in %) for the Year 2019 EXHIBIT 5: Global Regenerative Medicines Market by Category: Breakdown (in %) for Biomaterials, Stem Cell Therapies and Tissue Engineering for 2019 Pluripotent Stem Cells Hold Significance for Cardiovascular Regenerative Medicine EXHIBIT 6: Leading Causes of Mortality Worldwide: Number of Deaths in Millions & % Share of Deaths by Cause for 2017 EXHIBIT 7: Leading Causes of Mortality for Low-Income and High -Income Countries Growing Importance of iPSCs in Personalized Drug Discovery Persistent Advancements in Genetics Space and Subsequent Growth in Precision Medicine Augur Well for iPSCs Market EXHIBIT 8: Global Precision Medicine Market (In US$ Billion) for the Years 2018, 2021 & 2024 Increasing Prevalence of Chronic Disorders Supports Growth of iPSCs Market EXHIBIT 9: Worldwide Cancer Incidence: Number of New Cancer Cases Diagnosed for 2012, 2018 & 2040 EXHIBIT 10: Number of New Cancer Cases Reported (in Thousands) by Cancer Type: 2018 EXHIBIT 11: Fatalities by Heart Conditions: Estimated Percentage Breakdown for Cardiovascular Disease, Ischemic Heart Disease, Stroke, and Others EXHIBIT 12: Rising Diabetes Prevalence Presents Opportunity for iPSCs Market: Number of Adults (20-79) with Diabetes (in Millions) by Region for 2017 and 2045 Aging Demographics Add to the Global Burden of Chronic Diseases, Presenting Opportunities for iPSCs Market EXHIBIT 13: Expanding Elderly Population Worldwide: Breakdown of Number of People Aged 65+ Years in Million by Geographic Region for the Years 2019 and 2030 Growth in Number of Genomics Projects Propels Market Growth EXHIBIT 14: Genomic Initiatives in Select Countries EXHIBIT 15: New Gene-Editing Tools Spur Interest and Investments in Genetics, Driving Lucrative Growth Opportunities for iPSCs: Total VC Funding (In US$ Million) in Genetics for the Years 2014, 2015, 2016, 2017 and 2018 Launch of Numerous iPSCs-Related Clinical Trials Set to Benefit Market Growth EXHIBIT 16: Number of Induced Pluripotent Stem Cells based Studies by Select Condition: As on Oct 31, 2020 iPSCs-based Clinical Trial for Heart Diseases Induced Pluripotent Stem Cells for Stroke Treatment ?Off-the-shelf? Stem Cell Treatment for Cancer Enters Clinical Trial iPSCs for Hematological Disorders Market Benefits from Growing Funding for iPSCs-Related R&D Initiatives EXHIBIT 17: Stem Cell Research Funding in the US (in US$ Million) for the Years 2016 through 2021 Human iPSC Banks: A Review of Emerging Opportunities and Drawbacks EXHIBIT 18: Human iPSC Banks Worldwide: An Overview EXHIBIT 19: Cell Sources and Reprogramming Methods Used by Select iPSC Banks Innovations, Research Studies & Advancements in iPSCs Key iPSC Research Breakthroughs for Regenerative Medicine Researchers Develop Novel Oncogene-Free and Virus-Free iPSC Production Method Scientists Study Concerns of Genetic Mutations in iPSCs iPSCs Hold Tremendous Potential in Transforming Research Efforts Researchers Highlight Potential Use of iPSCs for Developing Novel Cancer Vaccines Scientists Use Machine Learning to Improve Reliability of iPSC Self-Organization STEMCELL Technologies Unveils mTeSR? Plus Challenges and Risks Related to Pluripotent Stem Cells A Glance at Issues Related to Reprogramming of Adult Cells to iPSCs A Note on Legal, Social and Ethical Considerations with iPSCs

4. GLOBAL MARKET PERSPECTIVE Table 1: World Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 2: World 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets for Years 2020 & 2027

Table 3: World Current & Future Analysis for Vascular Cells by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 4: World 7-Year Perspective for Vascular Cells by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 5: World Current & Future Analysis for Cardiac Cells by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 6: World 7-Year Perspective for Cardiac Cells by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 7: World Current & Future Analysis for Neuronal Cells by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 8: World 7-Year Perspective for Neuronal Cells by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 9: World Current & Future Analysis for Liver Cells by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 10: World 7-Year Perspective for Liver Cells by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 11: World Current & Future Analysis for Immune Cells by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 12: World 7-Year Perspective for Immune Cells by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 13: World Current & Future Analysis for Other Cell Types by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 14: World 7-Year Perspective for Other Cell Types by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 15: World Current & Future Analysis for Cellular Reprogramming by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 16: World 7-Year Perspective for Cellular Reprogramming by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 17: World Current & Future Analysis for Cell Culture by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 18: World 7-Year Perspective for Cell Culture by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 19: World Current & Future Analysis for Cell Differentiation by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 20: World 7-Year Perspective for Cell Differentiation by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 21: World Current & Future Analysis for Cell Analysis by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 22: World 7-Year Perspective for Cell Analysis by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 23: World Current & Future Analysis for Cellular Engineering by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 24: World 7-Year Perspective for Cellular Engineering by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 25: World Current & Future Analysis for Other Research Methods by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 26: World 7-Year Perspective for Other Research Methods by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 27: World Current & Future Analysis for Drug Development & Toxicology Testing by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 28: World 7-Year Perspective for Drug Development & Toxicology Testing by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 29: World Current & Future Analysis for Academic Research by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 30: World 7-Year Perspective for Academic Research by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 31: World Current & Future Analysis for Regenerative Medicine by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 32: World 7-Year Perspective for Regenerative Medicine by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 33: World Current & Future Analysis for Other Applications by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 34: World 7-Year Perspective for Other Applications by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

III. MARKET ANALYSIS

UNITED STATES Table 35: USA Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 36: USA 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Percentage Breakdown of Value Sales for Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types for the Years 2020 & 2027

Table 37: USA Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Research Method - Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 38: USA 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Research Method - Percentage Breakdown of Value Sales for Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods for the Years 2020 & 2027

Table 39: USA Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Application - Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 40: USA 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Application - Percentage Breakdown of Value Sales for Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications for the Years 2020 & 2027

CANADA Table 41: Canada Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 42: Canada 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Percentage Breakdown of Value Sales for Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types for the Years 2020 & 2027

Table 43: Canada Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Research Method - Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 44: Canada 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Research Method - Percentage Breakdown of Value Sales for Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods for the Years 2020 & 2027

Table 45: Canada Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Application - Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 46: Canada 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Application - Percentage Breakdown of Value Sales for Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications for the Years 2020 & 2027

JAPAN Table 47: Japan Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 48: Japan 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Percentage Breakdown of Value Sales for Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types for the Years 2020 & 2027

Table 49: Japan Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Research Method - Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 50: Japan 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Research Method - Percentage Breakdown of Value Sales for Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods for the Years 2020 & 2027

Table 51: Japan Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Application - Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 52: Japan 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Application - Percentage Breakdown of Value Sales for Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications for the Years 2020 & 2027

CHINA Table 53: China Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 54: China 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Percentage Breakdown of Value Sales for Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types for the Years 2020 & 2027

Table 55: China Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Research Method - Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 56: China 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Research Method - Percentage Breakdown of Value Sales for Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods for the Years 2020 & 2027

Table 57: China Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Application - Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 58: China 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Application - Percentage Breakdown of Value Sales for Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications for the Years 2020 & 2027

EUROPE Table 59: Europe Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Geographic Region - France, Germany, Italy, UK and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 60: Europe 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Geographic Region - Percentage Breakdown of Value Sales for France, Germany, Italy, UK and Rest of Europe Markets for Years 2020 & 2027

Table 61: Europe Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 62: Europe 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Percentage Breakdown of Value Sales for Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types for the Years 2020 & 2027

Table 63: Europe Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Research Method - Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 64: Europe 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Research Method - Percentage Breakdown of Value Sales for Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods for the Years 2020 & 2027

Table 65: Europe Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Application - Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 66: Europe 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Application - Percentage Breakdown of Value Sales for Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications for the Years 2020 & 2027

FRANCE Table 67: France Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 68: France 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Percentage Breakdown of Value Sales for Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types for the Years 2020 & 2027

Table 69: France Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Research Method - Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 70: France 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Research Method - Percentage Breakdown of Value Sales for Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods for the Years 2020 & 2027

Table 71: France Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Application - Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 72: France 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Application - Percentage Breakdown of Value Sales for Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications for the Years 2020 & 2027

GERMANY Table 73: Germany Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Continue reading here:
Global Induced Pluripotent Stem Cell ((iPSC) Market to Reach $2.3 Billion by 2026 - Yahoo Finance UK

To Read More: Global Induced Pluripotent Stem Cell ((iPSC) Market to Reach $2.3 Billion by 2026 – Yahoo Finance UK
categoriaCardiac Stem Cells commentoComments Off on Global Induced Pluripotent Stem Cell ((iPSC) Market to Reach $2.3 Billion by 2026 – Yahoo Finance UK | dataAugust 6th, 2021
Read All

Emerging Quadruplets, Novel Targets, and Immunotherapy Advances Personalized Medicine in Multiple Myeloma – OncLive

By daniellenierenberg

The future is quite bright for multiple myeloma. We are really homing in on the best regimen for frontline therapy in transplant-eligible and -ineligible [patient populations], Martin said. We are also closer with our recommendations to figuring out how to treat early-relapsed multiple myeloma. We have a variety of novel drugs that are approved for use to treat [patients with] late relapse. That [setting] has been our unmet medical need, [historically].

Martin, a clinical professor of medicine in the Adult Leukemia and Bone Marrow Transplantation Program; associate director of the Myeloma Program; and co-leader of the Cancer Immunology and Immunotherapy Program at the Helen Diller Family Comprehensive Cancer Center of the University of California, San Francisco; added that there are several very exciting therapies under investigation in clinical trials, including BiTEs. [These therapies] are showing unprecedented responses in very refractory patients, [including] the triple-class exposed patients, which is amazing.

He spoke with OncLive during an Institutional Perspectives in Cancer webinar on multiple myeloma. He chaired the virtual meeting which covered updates in frontline, early-, and late-relapsed multiple myeloma, immunotherapy in multiple myeloma, and frontline and relapsed/refractory amyloidosis.

Martin discussed the latest news in frontline, early relapsed, and heavily pretreated multiple myeloma, including the growing promise of quadruplets, emerging targets beyond BCMA, and the potential emergence of quadruplets, venetoclax (Venclexta), and antiviral therapy in amyloidosis.

Martin: For frontline therapy in multiple myeloma, we break [our algorithm] up [according to] patients who are fit and [unfit. Patients who are fit] can likely go to stem cell transplant. A quadruplet is going to be where we are headed, and it is going to be [a quadruplet using] the 3 different classes of drugs: a monoclonal antibody, an immunomodulatory drug [IMiD], and a proteasome inhibitor [PI], together with a steroid. [The combination of] those 4 classes of drugs [were evaluated] in the GRIFFIN [NCT02874742] and Cassiopeia trials [NCT02541383]. The GRIFFIN trial looked at daratumumab [Darzalex], lenalidomide [Revlimid], bortezomib [Velcade], and dexamethasone, whereas the Cassiopeia trial looked at daratumumab, thalidomide [Thalomid], and dexamethasone. Both [trials] showed spectacular early responses for induction therapy to [the respective] quadruplets.

Another study looked at daratumumab [plus] carfilzomib [Kyprolis], lenalidomide, and dexamethasone [KRd]. That trial too showed unprecedented early responses as frontline therapy. More studies are looking at other CD38[-directed monoclonal antibodies], like isatuximab-irfc [Sarclisa], together with lenalidomide, as well as KRd.

These quadruplets are showing fast and deep responses after 4 cycles [of treatment]. For patients who are transplant eligible, [treatment with a quadruplet] prepares them for transplant quite well. They can go into transplant with a nice, deep response and, hopefully, [derive] a deeper response after remission.

The question exists of whether the quadruplets and other therapies may take away the need for autologous stem cell transplant. Right now, transplant is still part of frontline therapy and is especially useful in patients who have high-risk disease.

In the transplant-ineligible population, the MAIA trial [NCT02252172] looked at daratumumab plus lenalidomide and dexamethasone vs lenalidomide and dexamethasone. The triplet has shown a median progression-free survival [PFS] approaching 60 months; that is just amazing for frontline therapy. We will see if quadruplets are needed in the transplant-ineligible setting.

We have several trials testing quadruplet therapy in the transplant-eligible population. Both daratumumab and isatuximab are being combined with IMiDs, PIs, and dexamethasone in a randomized fashion [vs triplet therapy]. We will see what the winner is. It will be interesting as we move forward, but right now, if we start that triplet therapy, we expect a PFS of 60 months, which is just amazing.

When we think about early relapse, what becomes important is what patients were on when they became relapsed or refractory. If they were on an IMiD, most of the time it was lenalidomide as maintenance therapy. We would then consider that patient lenalidomide refractory. In that scenario, we would use a CD38[-directed monoclonal antibody] plus pomalidomide [Pomalyst] and dexamethasone or a CD38[-directed monoclonal antibody] plus a PI and dexamethasone.

The data with daratumumab plus pomalidomide and dexamethasone, as well as isatuximab plus pomalidomide and dexamethasone, are quite good. Truthfully, my favorite [approach] is that if the patient is on an IMiD, I give an antibody together with a PI. The IKEMA [NCT03275285] and CANDOR [NCT03158688] studies have shown deep and durable responses with a CD38[-directed monoclonal antibody] plus carfilzomib and dexamethasone in the early-relapsed setting.

The CANDOR study showed a PFS of about 28 months. We still need longer follow-up from the IKEMA study to see what the PFS is going to be, but it is certainly going to be at least 28 months. Specifically, [in the IKEMA] study we showed that 30% of patients had achieved minimal residual disease [MRD] negativity with the triplet combination in the early-relapsed setting. Its unprecedented to see these deep responses with evidence of MRD negativity.

If patients have not received a CD38[-directed monoclonal antibody] as part of frontline therapy, that is what the first component should be to add for first relapse. The other regimens, which weve used before and are good, include pomalidomide, bortezomib, and dexamethasone, or pomalidomide, carfilzomib, and dexamethasone. There are multiple other choices, but those are my favorites.

In early-to-mid relapse, we usually use a ping-pong approach where we go back and forth between the categories of agents. Eventually, after 2 or 3 lines of therapy, patients have been exposed to what I call the big 5, which are lenalidomide, bortezomib, carfilzomib, pomalidomide, and a CD38-directed antibody. This is a setting which had been our unmet medical need.

We now have 3 agents that are FDA approved for that group of patients. We have selinexor [Xpovio] plus dexamethasone, which was approved based on the STORM trial [NCT02336815]. That doublet can be used in the [originally indicated] twice-weekly [dose], or given once weekly, which is much better tolerated. Often, we combine [selinexor] with another agent, such as bortezomib, carfilzomib, pomalidomide, or, even, daratumumab, so it is a kind of pick-your-partner [agent] in that regard. There are toxicities associated with selinexor, and we must follow patients closely. We cant just give them the therapy and see them in 4 weeks. We must follow their sodium closely because some patients need salt replacement, hydration, and anti-emetics.

The second [agent approved for triple-class refractory multiple myeloma] is belantamab mafodotin-blmf [Blenrep], which is an antibody-drug conjugate that targets BCMA. The poison is MMAF, which is associated with thrombocytopenia and ocular toxicity. We found that when belantamab mafodotin is used as a single agent without a steroid, the response rate was just over 30%. Patients who respond have durable responses upward of 10 or 12 months. We just have to watch patients for ocular toxicity because [belantamab mafodotin] can cause keratitis on the surface of the eye. Patients must see an ophthalmologist before each dose of belantamab mafodotin, which is dosed every 3 weeks. In my experience, [keratitis] usually occurs after the second or third dose. Most patients respond after the first or second dose, so we can see if the patient responds, and then continue or modify the regimen. We can lengthen the dose out to every 4 weeks or every 6 weeks or drop the dose from 2.5 mg/kg to 1.9 mg/kg.

Lastly, we have a new drug called melphalan flufenamide [melflufen; Pepaxto], which is a lipophilic, alkylator-based therapy. The lipophilic component gets the drug fast into cells, but it can be cleaved off the alkylator by aminopeptidases. In fact, normal cells dont have many aminopeptidases, so [melflufen] gets in and out of normal cells relatively quickly; however, the drug gets in myeloma cells, the lipophilic component is cleaved off, and the alkylator gets trapped inside the cell. [Melflufen] is [administered as] one flat dose of 40 mg every 4 weeks with weekly dexamethasone. It is tolerable; the big adverse effect [AE] is blood count suppression. Weve seen response rates in the 25% to 30% range.

The newest [therapy] on the block in what is available for patients who have had 4 prior lines of therapy is the CAR T-cell therapy ide-cel. It is BCMA directed, the original vector was known as bb2121. It is now FDA approved.

The rollout [of ide-cel] has been a little slow in terms of slot allocation, and it has been difficult for centers across the country to get patients on slots. We are hoping that the slot availability will increase over the next few months.

That said, for patients who are triple-class refractory and have had 4 prior lines of therapy, [ide-cel] is a perfect therapy. The CAR T cells have to be done at a licensed CAR T-cell center, of which there are only about 70 in the United States. That comes with some overhead because patients must move to the center and remain there for the first 30 days of therapy because of the significant toxicities associated with CAR T-cell therapy. [These AEs] are mostly cytokine release syndrome [CRS], which happens 80% to 90% of the time, and some neurotoxicity, which is reported in around 15% to 20% of patients. Patients must be followed closely and require initial hospitalization between 7 to 14 days. Then, patients must stay local [for follow-up].

There is a lot of overhead, but it is a one-and-done treatment. We collect their T cells, give them lymphodepletion, give them back the T cells, and patients are off therapy. The median PFS for ide-cel is about 12 months, so hopefully patients get 12 months of free time where they dont need therapy and have truly good quality of life, which is quite nice.

The nice thing about immunotherapy is that multiple targets are being investigated. BCMA was our first target, but we have others, such as GPRC5D and FcRH5. We have multiple different CAR T-cell therapies currently in research studies to try to build upon ide-cel.

We also have BiTEs, in which one arm binds to BCMA or whatever the target is on the myeloma cell, and the other arm looks for the immune cell in the local environment. Most of the other arms bind to CD3 on T cells to activate the T cells. [BiTEs] are a little bit different in terms of how they bind to the myeloma cell and how much they activate the T cell by binding to CD3.

That said, in the early research, most of these therapeutics as single agents have shown response rates on the order of 60% to 80%. Thats, again, unprecedented for single agents. These therapeutics are quite impressive in terms of response rates, but they are also associated with CRS and mild neurotoxicity. They require initial dosing in the hospital and patients are usually hospitalized for 7 to 10 days for step-up dosing. After that, [treatment] can be done in the outpatient setting with intermittent dosing. BiTEs vary from dosing weekly and then less frequently to every 3 weeks. Coming back to the center every 3 weeks is reasonable, even for patients who live outside the research center.

In San Francisco, we have patients coming in every 3 weeks to get their therapy and then they head back home, which is nice. However, it is ongoing therapy and patients must continue their therapy rather than receive a one-and-done treatment. This is because BiTEs are off-the-shelf products. There is not a collection and manufacturing step. These drugs are going to be given in the community eventually once they are approved. These drugs will be used in many more patients compared with CAR T-cell therapy just because of the logistics of CAR T-cell therapies, so BiTEs are exciting.

These advances [observed in multiple myeloma] have also spilled over to amyloidosis. We now have great frontline therapy for amyloidosis, as well as many irons in the fire [evaluating] ways we can treat relapsed amyloidosis. Weve had a troubled past [with] antiviral therapy in amyloidosis. However, there is renewed interest in this and, certainly, there are patients with amyloidosis who would benefit from antiviral therapy.

There is a lot of work going on in amyloidosis currently. The ANDROMEDA study [NCT03201965] has shown in randomized fashion that daratumumab plus bortezomib, cyclophosphamide, and dexamethasone [VCd] results in better organ response rates and PFS vs VCd alone, which had really been our standard therapy in amyloidosis. Going forward, patients with amyloidosis should receive this quadruplet as frontline therapy.

Patients with amyloidosis also have a high incidence of 11;14 translocations [t11;14]. Some case reports [have read out] of patients being treated with venetoclax. Ongoing research avenues are going to further investigate venetoclax with or without the combination of other drugs. Venetoclax will have a strong response rate in patients with amyloidosis and will be used for initial relapse. Eventually, [venetoclax] might be used in patients with t11;14, but those studies are being done. Approval for that is a long way down the road.

Also down the road for amyloidosis are BiTEs. BCMA is on the surface of plasma cells in amyloidosis, also, [as in multiple myeloma]. There is also a renewed interest in antiviral therapy in amyloidosis. The amyloid proteins deposit in the cell and cause significant organ toxicity, especially in the [heart] and kidneys. Antiviral therapy may enhance and quicken organ responses to improve survival for patients, including those with severe cardiac amyloidosis.

Original post:
Emerging Quadruplets, Novel Targets, and Immunotherapy Advances Personalized Medicine in Multiple Myeloma - OncLive

To Read More: Emerging Quadruplets, Novel Targets, and Immunotherapy Advances Personalized Medicine in Multiple Myeloma – OncLive
categoriaCardiac Stem Cells commentoComments Off on Emerging Quadruplets, Novel Targets, and Immunotherapy Advances Personalized Medicine in Multiple Myeloma – OncLive | dataJuly 22nd, 2021
Read All

cardiovascular disease | Symptoms, Causes, Treatment …

By daniellenierenberg

Cardiovascular disease, any of the diseases, whether congenital or acquired, of the heart and blood vessels. Among the most important are atherosclerosis, rheumatic heart disease, and vascular inflammation. Cardiovascular diseases are a major cause of health problems and death.

This micrograph shows a cross section of a coronary artery narrowed by an atherosclerotic plaque (purplish matter inside the artery). The extensive buildup of plaque impedes the flow of blood through the artery and to the heart's tissues.

Britannica Quiz

44 Questions from Britannicas Most Popular Health and Medicine Quizzes

How much do you know about human anatomy? How about medical conditions? The brain? Youll need to know a lot to answer 44 of the hardest questions from Britannicas most popular quizzes about health and medicine.

Life depends on the functioning of the heart; thus, the heart is involved in all death, but this does not account for its prominence in causing death. To some degree, as medical science advances, more people are saved from other illnesses only to die from one of the unsolved and uncontrolled disorders of the cardiovascular system. Some forms of cardiovascular diseases are becoming less frequent causes of death, and continued research and preventive measures may provide even greater benefits. However, changes in lifestyle and diet, including the adoption of more sedentary lifestyles and the consumption of fried foods and foods high in sugar, have resulted in increases in the incidence of otherwise preventable cardiovascular-related illness and death.

Heart disease as such was not recognized in non-technological cultures, but the beating heart and its relationship to death have always been appreciated. Sudden death, now usually attributed to heart disease, was recognized as early as the 5th century bce by the Greek physician Hippocrates and was noted to be more common in the obese. The role of disease in affecting the heart itself did not become apparent until the 17th century, when examination of the body after death became acceptable.

Gradually, the involvement of the heart valves, the blood vessels, and the heart muscle was observed and categorized in an orderly fashion. The circulation of the blood through the heart was described in 1628 by the British physician William Harvey. The recognition of the manifestations of heart failure came later, as did the ability to diagnose heart ailments by physical examination through the techniques of percussion (thumping), auscultation (listening) with the stethoscope, and other means. It was not until early in the 20th century that the determination of arterial blood pressure and the use of X-rays for diagnosis became widespread.

In 1912 James Bryan Herrick, a Chicago physician, first described what he called coronary thrombosis (he was describing symptoms actually caused by myocardial infarction). Angina pectoris had been recorded centuries earlier. Cardiovascular surgery in the modern sense began in the 1930s, and open-heart surgery began in the 1950s.

The exact incidence of heart disease in the world population is difficult to ascertain, because complete and adequate public health figures for either prevalence or related deaths are not available. Nonetheless, in the 21st century, in many parts of the world, cardiovascular disease was recognized as a leading cause of death. In the more technologically developed countries of the worldsuch as the United Kingdom and most continental European countriesarteriosclerotic heart disease (heart disease resulting from thickening and hardening of the artery walls) was one of the most common forms of cardiovascular disease. In the early 21st century in the United States, an estimated one-half of the adult population was affected by some form of cardiovascular disease; while heart disease and stroke accounted for a significant proportion of this disease burden, high blood pressure was the most common condition. In other areas of the world, such as the countries of Central Africa, other forms of heart disease, often nutritional in nature, were a common cause of death. In Asia and the islands of the Pacific, hypertensive cardiovascular disease, disease involving high blood pressure, constituted a major health hazard.

The hearts complicated evolution during embryological development presents the opportunity for many different types of congenital defects to occur. Congenital heart disease is one of the important types of diseases affecting the cardiovascular system, with an incidence of about 8 per 1,000 live births. In most patients the causes appear to fit in the middle of a continuum from primarily genetic to primarily environmental.

Of the few cases that have a genetic nature, the defect may be the result of a single mutant gene, while in other cases it may be associated with a chromosomal abnormality, the most common of which is Down syndrome, in which about 50 percent of afflicted children have a congenital cardiac abnormality. In the even smaller number of cases of an obvious environmental cause, a variety of specific factors are evident. The occurrence of rubella (German measles) in a woman during the first three months of pregnancy is caused by a virus and is associated in the child with patent ductus arteriosus (nonclosure of the opening between the aorta and the pulmonary artery). Other viruses may be responsible for specific heart lesions, and a number of drugs, including antiepileptic agents, are associated with an increased incidence of congenital heart disease.

In most cases, congenital heart disease is probably caused by a variety of factors, and any genetic factor is usually unmasked only if it occurs together with the appropriate environmental hazard. The risk of a sibling of a child with congenital heart disease being similarly affected is between 2 and 4 percent. The precise recurrence can vary for individual congenital cardiovascular lesions.

Prenatal diagnosis of congenital cardiovascular abnormalities is still at an early stage. The most promising technique is ultrasonography, used for many years to examine the fetus in utero. The increasing sophistication of equipment has made it possible to examine the heart and the great vessels from 16 to 18 weeks of gestation onward and to determine whether defects are present. Amniocentesis (removal and examination of a small quantity of fluid from around the developing fetus) provides a method by which the fetal chromosomes can be examined for chromosomal abnormalities associated with congenital heart disease. In many children and adults the presence of congenital heart disease is detected for the first time when a cardiac murmur is heard. A congenital cardiovascular lesion is rarely signaled by a disturbance of the heart rate or the heart rhythm.

Congenital cardiac disturbances are varied and may involve almost all components of the heart and great arteries. Some may cause death at the time of birth, others may not have an effect until early adulthood, and some may be associated with an essentially normal life span. Nonetheless, about 40 percent of all untreated infants born with congenital heart disease die before the end of their first year.

Congenital heart defects can be classified into cyanotic and noncyanotic varieties. In the cyanotic varieties, a shunt bypasses the lungs and delivers venous (deoxygenated) blood from the right side of the heart into the arterial circulation. The infants nail beds and lips have a blue colour due to the excess deoxygenated blood in the system. Some infants with severe noncyanotic varieties of congenital heart disease may fail to thrive and may have breathing difficulties.

Continued here:
cardiovascular disease | Symptoms, Causes, Treatment ...

To Read More: cardiovascular disease | Symptoms, Causes, Treatment …
categoriaCardiac Stem Cells commentoComments Off on cardiovascular disease | Symptoms, Causes, Treatment … | dataJuly 7th, 2021
Read All

FDA Approves Expanded Indication for Merck’s KEYTRUDA (pembrolizumab) in Locally Advanced Cutaneous Squamous Cell Carcinoma (cSCC) – Business Wire

By daniellenierenberg

KENILWORTH, N.J.--(BUSINESS WIRE)--Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced that the U.S. Food and Drug Administration (FDA) has approved an expanded label for KEYTRUDA, Mercks anti-PD-1 therapy, as monotherapy for the treatment of patients with locally advanced cutaneous squamous cell carcinoma (cSCC) that is not curable by surgery or radiation. This approval is based on data from the second interim analysis of the Phase 2 KEYNOTE-629 trial, in which KEYTRUDA demonstrated an objective response rate (ORR) of 50% (95% CI, 36-64) (n=54), including a complete response rate of 17% and a partial response rate of 33% in the cohort of patients with locally advanced disease. Among the 27 responding patients, 81% had a duration of response (DOR) of six months or longer, and 37% had a DOR of 12 months or longer. In June 2020, KEYTRUDA was granted its first indication in cSCC, as monotherapy for the treatment of patients with recurrent or metastatic disease that is not curable by surgery or radiation.

This approval is great news for these patients and further demonstrates Mercks commitment to the skin cancer community. KEYTRUDA has shown meaningful efficacy in patients with locally advanced or recurrent or metastatic cutaneous squamous cell carcinoma that cannot be cured by surgery or radiation, said Dr. Vicki Goodman, vice president, clinical research, Merck Research Laboratories. This expanded indication reinforces the role of KEYTRUDA in this cancer type, which is the second most common form of non-melanoma skin cancer.

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue and can affect more than one body system simultaneously. Immune-mediated adverse reactions can occur at any time during or after treatment with KEYTRUDA, including pneumonitis, colitis, hepatitis, endocrinopathies, nephritis, dermatologic reactions, solid organ transplant rejection, and complications of allogeneic hematopoietic stem cell transplantation. Important immune-mediated adverse reactions listed here may not include all possible severe and fatal immune-mediated adverse reactions. Early identification and management of immune-mediated adverse reactions are essential to ensure safe use of KEYTRUDA. Based on the severity of the adverse reaction, KEYTRUDA should be withheld or permanently discontinued and corticosteroids administered if appropriate. KEYTRUDA can also cause severe or life-threatening infusion-related reactions. Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. For more information, see Selected Important Safety Information below.

Data Supporting the Approval

The approval was based on data from KEYNOTE-629 (ClinicalTrials.gov, NCT03284424), a multicenter, multi-cohort, non-randomized, open-label trial that enrolled patients with recurrent or metastatic cSCC or locally advanced cSCC. The trial excluded patients with autoimmune disease or a medical condition that required immunosuppression.

Patients received KEYTRUDA 200 mg intravenously every three weeks until documented disease progression, unacceptable toxicity or a maximum of 24 months. Patients with initial radiographic disease progression could receive additional doses of KEYTRUDA during confirmation of progression unless disease progression was symptomatic, rapidly progressive, required urgent intervention, or occurred with a decline in performance status.

Assessment of tumor status was performed every six weeks during the first year and every nine weeks during the second year. The major efficacy outcome measures were ORR and DOR as assessed by blinded independent central review (BICR) according to RECIST v1.1, modified to follow a maximum of 10 target lesions and a maximum of five target lesions per organ.

Among the 54 patients with locally advanced cSCC treated, the study population characteristics were: median age of 76 years (range, 35 to 95), 80% age 65 or older; 72% male; 83% white, 13% race unknown; 41% Eastern Cooperative Oncology Group (ECOG) performance status (PS) of 0 and 59% ECOG PS of 1. Twenty-two percent received one or more prior lines of therapy; 63% received prior radiation therapy.

The ORR was 50% (95% CI, 36-64), including a complete response rate of 17% and a partial response rate of 33%, for patients treated with KEYTRUDA. After a median follow-up of 13.4 months, the median DOR had not yet been reached (range, 1.0+ to 17.2+ months). Among the 27 responding patients, 81% had a DOR of six months or longer, and 37% had a DOR of 12 months or longer.

Among the 159 patients with advanced cSCC (recurrent or metastatic or locally advanced disease) enrolled in KEYNOTE-629, the median duration of exposure to KEYTRUDA was 6.9 months (range, 1 day to 28.9 months). Adverse reactions occurring in patients with recurrent or metastatic cSCC or locally advanced cSCC were similar to those occurring in 2,799 patients with melanoma or non-small cell lung cancer treated with KEYTRUDA as a single agent. Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence included lymphopenia (10%) and decreased sodium (10%).

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-programmed death receptor-1 (PD-1) therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,500 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications in the U.S.

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic HNSCC with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult patients with relapsed or refractory classical Hodgkin lymphoma (cHL).

KEYTRUDA is indicated for the treatment of pediatric patients with refractory cHL, or cHL that has relapsed after 2 or more lines of therapy.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 (CPS 10), as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or mUC who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High or Mismatch Repair Deficient Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC).

Gastric Cancer

KEYTRUDA, in combination with trastuzumab, fluoropyrimidine- and platinum-containing chemotherapy, is indicated for the first-line treatment of patients with locally advanced unresectable or metastatic HER2-positive gastric or gastroesophageal junction (GEJ) adenocarcinoma. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or GEJ adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic esophageal or GEJ (tumors with epicenter 1 to 5 centimeters above the GEJ) carcinoma that is not amenable to surgical resection or definitive chemoradiation either:

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma.

Tumor Mutational Burden-High Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [10 mutations/megabase] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

Cutaneous Squamous Cell Carcinoma

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) or locally advanced cSCC that is not curable by surgery or radiation.

Triple-Negative Breast Cancer

KEYTRUDA, in combination with chemotherapy, is indicated for the treatment of patients with locally recurrent unresectable or metastatic triple-negative breast cancer (TNBC) whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Selected Important Safety Information for KEYTRUDA

Severe and Fatal Immune-Mediated Adverse Reactions

KEYTRUDA is a monoclonal antibody that belongs to a class of drugs that bind to either the programmed death receptor-1 (PD-1) or the programmed death ligand 1 (PD-L1), blocking the PD-1/PD-L1 pathway, thereby removing inhibition of the immune response, potentially breaking peripheral tolerance and inducing immune-mediated adverse reactions. Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue, can affect more than one body system simultaneously, and can occur at any time after starting treatment or after discontinuation of treatment. Important immune-mediated adverse reactions listed here may not include all possible severe and fatal immune-mediated adverse reactions.

Monitor patients closely for symptoms and signs that may be clinical manifestations of underlying immune-mediated adverse reactions. Early identification and management are essential to ensure safe use of antiPD-1/PD-L1 treatments. Evaluate liver enzymes, creatinine, and thyroid function at baseline and periodically during treatment. In cases of suspected immune-mediated adverse reactions, initiate appropriate workup to exclude alternative etiologies, including infection. Institute medical management promptly, including specialty consultation as appropriate.

Withhold or permanently discontinue KEYTRUDA depending on severity of the immune-mediated adverse reaction. In general, if KEYTRUDA requires interruption or discontinuation, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Consider administration of other systemic immunosuppressants in patients whose adverse reactions are not controlled with corticosteroid therapy.

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis. The incidence is higher in patients who have received prior thoracic radiation. Immune-mediated pneumonitis occurred in 3.4% (94/2799) of patients receiving KEYTRUDA, including fatal (0.1%), Grade 4 (0.3%), Grade 3 (0.9%), and Grade 2 (1.3%) reactions. Systemic corticosteroids were required in 67% (63/94) of patients. Pneumonitis led to permanent discontinuation of KEYTRUDA in 1.3% (36) and withholding in 0.9% (26) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Pneumonitis resolved in 59% of the 94 patients.

Pneumonitis occurred in 8% (31/389) of adult patients with cHL receiving KEYTRUDA as a single agent, including Grades 3-4 in 2.3% of patients. Patients received high-dose corticosteroids for a median duration of 10 days (range: 2 days to 53 months). Pneumonitis rates were similar in patients with and without prior thoracic radiation. Pneumonitis led to discontinuation of KEYTRUDA in 5.4% (21) of patients. Of the patients who developed pneumonitis, 42% interrupted KEYTRUDA, 68% discontinued KEYTRUDA, and 77% had resolution.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis, which may present with diarrhea. Cytomegalovirus infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. Immune-mediated colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (1.1%), and Grade 2 (0.4%) reactions. Systemic corticosteroids were required in 69% (33/48); additional immunosuppressant therapy was required in 4.2% of patients. Colitis led to permanent discontinuation of KEYTRUDA in 0.5% (15) and withholding in 0.5% (13) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Colitis resolved in 85% of the 48 patients.

Hepatotoxicity and Immune-Mediated Hepatitis

KEYTRUDA as a Single Agent

KEYTRUDA can cause immune-mediated hepatitis. Immune-mediated hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.4%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 68% (13/19) of patients; additional immunosuppressant therapy was required in 11% of patients. Hepatitis led to permanent discontinuation of KEYTRUDA in 0.2% (6) and withholding in 0.3% (9) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Hepatitis resolved in 79% of the 19 patients.

KEYTRUDA with Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider monitoring more frequently as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased alanine aminotransferase (ALT) (20%) and increased aspartate aminotransferase (AST) (13%) were seen, at a higher frequency compared to KEYTRUDA alone. Fifty-nine percent of the patients with increased ALT received systemic corticosteroids. In patients with ALT 3 times upper limit of normal (ULN) (Grades 2-4, n=116), ALT resolved to Grades 0-1 in 94%. Among the 92 patients who were rechallenged with either KEYTRUDA (n=3) or axitinib (n=34) administered as a single agent or with both (n=55), recurrence of ALT 3 times ULN was observed in 1 patient receiving KEYTRUDA, 16 patients receiving axitinib, and 24 patients receiving both. All patients with a recurrence of ALT 3 ULN subsequently recovered from the event.

Immune-Mediated Endocrinopathies

Adrenal Insufficiency

KEYTRUDA can cause primary or secondary adrenal insufficiency. For Grade 2 or higher, initiate symptomatic treatment, including hormone replacement as clinically indicated. Withhold KEYTRUDA depending on severity. Adrenal insufficiency occurred in 0.8% (22/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.3%) reactions. Systemic corticosteroids were required in 77% (17/22) of patients; of these, the majority remained on systemic corticosteroids. Adrenal insufficiency led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.3% (8) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Hypophysitis

KEYTRUDA can cause immune-mediated hypophysitis. Hypophysitis can present with acute symptoms associated with mass effect such as headache, photophobia, or visual field defects. Hypophysitis can cause hypopituitarism. Initiate hormone replacement as indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Hypophysitis occurred in 0.6% (17/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.2%) reactions. Systemic corticosteroids were required in 94% (16/17) of patients; of these, the majority remained on systemic corticosteroids. Hypophysitis led to permanent discontinuation of KEYTRUDA in 0.1% (4) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Thyroid Disorders

KEYTRUDA can cause immune-mediated thyroid disorders. Thyroiditis can present with or without endocrinopathy. Hypothyroidism can follow hyperthyroidism. Initiate hormone replacement for hypothyroidism or institute medical management of hyperthyroidism as clinically indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Thyroiditis occurred in 0.6% (16/2799) of patients receiving KEYTRUDA, including Grade 2 (0.3%). None discontinued, but KEYTRUDA was withheld in <0.1% (1) of patients.

Hyperthyroidism occurred in 3.4% (96/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (0.8%). It led to permanent discontinuation of KEYTRUDA in <0.1% (2) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. Hypothyroidism occurred in 8% (237/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (6.2%). It led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.5% (14) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. The majority of patients with hypothyroidism required long-term thyroid hormone replacement. The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC, occurring in 16% of patients receiving KEYTRUDA as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. The incidence of new or worsening hypothyroidism was higher in 389 adult patients with cHL (17%) receiving KEYTRUDA as a single agent, including Grade 1 (6.2%) and Grade 2 (10.8%) hypothyroidism.

Type 1 Diabetes Mellitus (DM), Which Can Present With Diabetic Ketoacidosis

Monitor patients for hyperglycemia or other signs and symptoms of diabetes. Initiate treatment with insulin as clinically indicated. Withhold KEYTRUDA depending on severity. Type 1 DM occurred in 0.2% (6/2799) of patients receiving KEYTRUDA. It led to permanent discontinuation in <0.1% (1) and withholding of KEYTRUDA in <0.1% (1) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Immune-Mediated Nephritis With Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Immune-mediated nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.1%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 89% (8/9) of patients. Nephritis led to permanent discontinuation of KEYTRUDA in 0.1% (3) and withholding in 0.1% (3) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Nephritis resolved in 56% of the 9 patients.

Immune-Mediated Dermatologic Adverse Reactions

KEYTRUDA can cause immune-mediated rash or dermatitis. Exfoliative dermatitis, including Stevens-Johnson syndrome, drug rash with eosinophilia and systemic symptoms, and toxic epidermal necrolysis, has occurred with antiPD-1/PD-L1 treatments. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate nonexfoliative rashes. Withhold or permanently discontinue KEYTRUDA depending on severity. Immune-mediated dermatologic adverse reactions occurred in 1.4% (38/2799) of patients receiving KEYTRUDA, including Grade 3 (1%) and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 40% (15/38) of patients. These reactions led to permanent discontinuation in 0.1% (2) and withholding of KEYTRUDA in 0.6% (16) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 6% had recurrence. The reactions resolved in 79% of the 38 patients.

Other Immune-Mediated Adverse Reactions

The following clinically significant immune-mediated adverse reactions occurred at an incidence of <1% (unless otherwise noted) in patients who received KEYTRUDA or were reported with the use of other antiPD-1/PD-L1 treatments. Severe or fatal cases have been reported for some of these adverse reactions. Cardiac/Vascular: Myocarditis, pericarditis, vasculitis; Nervous System: Meningitis, encephalitis, myelitis and demyelination, myasthenic syndrome/myasthenia gravis (including exacerbation), Guillain-Barr syndrome, nerve paresis, autoimmune neuropathy; Ocular: Uveitis, iritis and other ocular inflammatory toxicities can occur. Some cases can be associated with retinal detachment. Various grades of visual impairment, including blindness, can occur. If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada-like syndrome, as this may require treatment with systemic steroids to reduce the risk of permanent vision loss; Gastrointestinal: Pancreatitis, to include increases in serum amylase and lipase levels, gastritis, duodenitis; Musculoskeletal and Connective Tissue: Myositis/polymyositis rhabdomyolysis (and associated sequelae, including renal failure), arthritis (1.5%), polymyalgia rheumatica; Endocrine: Hypoparathyroidism; Hematologic/Immune: Hemolytic anemia, aplastic anemia, hemophagocytic lymphohistiocytosis, systemic inflammatory response syndrome, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), sarcoidosis, immune thrombocytopenic purpura, solid organ transplant rejection.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% of 2799 patients receiving KEYTRUDA. Monitor for signs and symptoms of infusion-related reactions. Interrupt or slow the rate of infusion for Grade 1 or Grade 2 reactions. For Grade 3 or Grade 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Fatal and other serious complications can occur in patients who receive allogeneic HSCT before or after antiPD-1/PD-L1 treatment. Transplant-related complications include hyperacute graft-versus-host disease (GVHD), acute and chronic GVHD, hepatic veno-occlusive disease after reduced intensity conditioning, and steroid-requiring febrile syndrome (without an identified infectious cause). These complications may occur despite intervening therapy between antiPD-1/PD-L1 treatment and allogeneic HSCT. Follow patients closely for evidence of these complications and intervene promptly. Consider the benefit vs risks of using antiPD-1/PD-L1 treatments prior to or after an allogeneic HSCT.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with an antiPD-1/PD-L1 treatment in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

Read the original here:
FDA Approves Expanded Indication for Merck's KEYTRUDA (pembrolizumab) in Locally Advanced Cutaneous Squamous Cell Carcinoma (cSCC) - Business Wire

To Read More: FDA Approves Expanded Indication for Merck’s KEYTRUDA (pembrolizumab) in Locally Advanced Cutaneous Squamous Cell Carcinoma (cSCC) – Business Wire
categoriaCardiac Stem Cells commentoComments Off on FDA Approves Expanded Indication for Merck’s KEYTRUDA (pembrolizumab) in Locally Advanced Cutaneous Squamous Cell Carcinoma (cSCC) – Business Wire | dataJuly 7th, 2021
Read All

2 Reasons to Buy Intellia — and 1 Big Reason Why I Won’t – The Motley Fool

By daniellenierenberg

Clinical trial data supporting the safety of the CRISPR-Cas9 genomic editing tool was presented on Monday by Intellia Therapeutics (NASDAQ:NTLA) for its lead product, NTLA-2001. The data was highly encouraging. However, despite NTLA-2001's positive early results as a potential treatment for the rare disease transthyretin (TTR) amyloidosis, there's still a long way to go before Intellia could bring it to market.

In transthyretin amyloidosis, cells in the liver produce misfolded TTR proteins, which accumulate throughout the body, causing debilitating complications that can involve the digestive system, nervous system, and heart. Once symptoms appear, they grow progressively worse, and the disease leads to death within a median of 4 to 17 years among patients with nervous system involvement, and 2 to 6 years among patients with cardiac involvement.

NTLA-2001 edits the genes in those liver cells, removing the segment that produces those lethal misfolded proteins.

Worldwide, an estimated 250,000-550,000 people suffer from some form of amyloidosis.

IMAGE SOURCE: GETTY IMAGES.

An interim readout from Intellia's ongoing phase 1 trial found that a single high-dose infusion of NTLA-2001 led to an 87% mean reduction in the amount of misfolded TTR in patients' bloodstreams, with a maximum reduction of 96% by day 28 in one patient. Encouragingly, no serious adverse events were observed in the six study participants. While this is a small pilot study, in previous studies of NTLA-2001 in mice, the maximum reductions in TTR persisted for 12 months after a single treatment.

All of this data provides an early indication that CRISPR gene therapies are safe and efficacious as treatments for at least some genetic diseases.

There are other treatments on the market for TTR amyloidosis, but one thing that would set CRISPR apart is the relative simplicity of administering it. And that factor could lead insurers to favor CRISPR treatments for certain rare and debilitating diseases such as TTR amyloidosis and hemophilia.

For example, Alnylam's (NASDAQ:ALNY) RNA-silencing therapy Onpattro requires an infusion every three weeks at a clinician's office. Ionis Pharmaceuticals' (NASDAQ:IONS) Tegsedi requires regular injections, though they can be self-administered. Both are priced in the neighborhood of $345,000 per year, and Onpattro comes with the additional costs associated with going to a medical office and having an infusion set up. Then there is Pfizer's (NYSE:PFE) once-daily oral medication Vyndamax, which costs $225,000 annually.

As a one-time infusion, gene therapy may become a compelling option for both patients and insurers, particularly given the high prices of currently available treatments. Though TTR amyloidosis treatments are a niche market, in 2020, Onpattro generated sales of $306 million, Tegsedi just under $70 million, and Vyndamax $429 million. Assuming that Intellia charges more for NTLA-2001 -- a one-time treatment with bluebird bio's (NASDAQ:BLUE) gene therapy for beta-thalassemia, Zynteglo, costs about $1.8 million -- TTR amyloidosis treatment could easily become a multibillion-dollar addressable market for the biotech.

Notably, CRISPR therapy for TTR amyloidosis may also put less stress on the healthcare system than the lentivirus and adenovirus gene therapies that are further along in clinical trials. Consider, for instance, Zynteglo, which requires a significant amount of effort and processing prior to treatment. First, physicians must extract stem cells from the patient, which must then be transported to and treated by bluebird bio. In the meantime, the patient undergoes "myeloablative conditioning" -- essentially knocking down the patient's bone marrow in preparation for a transplant of the edited stem cells, which will contain a repaired version of the gene that (when mutated) causes beta-thalassemia. This complicated process requires treatment at a qualified transplant center.

By comparison, for TTR amyloidosis, NTLA-2001 requires pre-medication with steroids and antihistamines. That's it. No prolonged patient preparation at the hospital. No bone marrow suppression. No shipping the patient's stem cells to a lab. The relative simplicity of administering CRISPR therapies is just one reason for the degree of excitement they are generating.

It may also give them a lower total cost of treatment than current gene therapies, which could make these therapies more palatable to insurers. If NTLA-2001 pans out, we may see a new biotech boom, with Intellia leading the charge.

Before investors get their hopes up too much, remember that these results were from a six-person, phase 1 trial, and that Intellia now holds a market cap of roughly $11 billion. In fact, its valuation rose by about $2.8 billion in a single trading session after the interim trial data was made public. That gain was more than the current $2.1 billion market cap of bluebird bio, which already has an approved gene therapy on the market as well as a CAR-T therapy, and has two more candidates in phase 3 trials.

For further context, bluebird bio announced phase 1 results for Zynteglo in December 2014. While Zynteglo was approved for use in the EU in late 2019, bluebird bio faced some backlash on pricing, and the company isn't selling it in Germany because the two sides could not agree on pricing.

Moreover, the NTLA-2001 study excluded patients who had previously received RNA-silencing therapy, and none of these patients had previously taken Vyndamax either. How previous treatments will affect the way patients respond to NTLA-2001 is not yet known. And with hundreds of millions of dollars in revenue annually on the line, it is doubtful that Alynam, Ionis, or Pfizer will surrender this market without a fight.

In sum, Intellia will still need to conduct several years of trials, leap many regulatory hurdles, and outmaneuver an array of rivals stand before it can declare the CRISPR-Cas9 platform a winner. Not only that, but -- recognizing that future studies won't be cheap -- Intellia has already proposed another public offering of $400 million worth of common stock this week, diluting its current shareholders.

So while long-term Intellia shareholders have reason to celebrate, let bluebird bio serve as a cautionary tale. That biotech was once flying high on positive trial data, hitting a market cap of around $15.5 billion in March 2018. Since then, its shares have nose-dived by more than 80%. This despite the fact that it now has two approved therapies and two more candidates in phase 3 trials.

As such, I would be concerned about investing new money in Intellia now. I suspect it will soon reach its peak for the foreseeable future. Biotech investing can be gut-wrenchingly fickle, and investors may want to consider taking a basket approach to high-risk clinical-stage biotechs, rather than investing too heavily in a single player.

This article represents the opinion of the writer, who may disagree with the official recommendation position of a Motley Fool premium advisory service. Were motley! Questioning an investing thesis -- even one of our own -- helps us all think critically about investing and make decisions that help us become smarter, happier, and richer.

Link:
2 Reasons to Buy Intellia -- and 1 Big Reason Why I Won't - The Motley Fool

To Read More: 2 Reasons to Buy Intellia — and 1 Big Reason Why I Won’t – The Motley Fool
categoriaCardiac Stem Cells commentoComments Off on 2 Reasons to Buy Intellia — and 1 Big Reason Why I Won’t – The Motley Fool | dataJuly 7th, 2021
Read All

Page 11234..1020..»