Page 20«..10..19202122..3040..»

Regenerative Medicine Market Projected to Hit at a Strong CAGR Between Forecast Period 2017-2025 – Redhill Local Councillors

By daniellenierenberg

Regenerative Medicine Market: Snapshot

Regenerative medicine is a part of translational research in the fields of molecular biology and tissue engineering. This type of medicine involves replacing and regenerating human cells, organs, and tissues with the help of specific processes. Doing this may involve a partial or complete reengineering of human cells so that they start to function normally.

To know Untapped Opportunities in the MarketCLICK HERE NOW

Regenerative medicine also involves the attempts to grow tissues and organs in a laboratory environment, wherein they can be put in a body that cannot heal a particular part. Such implants are mainly preferred to be derived from the patients own tissues and cells, particularly stem cells. Looking at the promising nature of stem cells to heal and regenerative various parts of the body, this field is certainly expected to see a bright future. Doing this can help avoid opting for organ donation, thus saving costs. Some healthcare centers might showcase a shortage of organ donations, and this is where tissues regenerated using patients own cells are highly helpful.

There are several source materials from which regeneration can be facilitated. Extracellular matrix materials are commonly used source substances all over the globe. They are mainly used for reconstructive surgery, chronic wound healing, and orthopedic surgeries. In recent times, these materials have also been used in heart surgeries, specifically aimed at repairing damaged portions.

Cells derived from the umbilical cord also have the potential to be used as source material for bringing about regeneration in a patient. A vast research has also been conducted in this context. Treatment of diabetes, organ failure, and other chronic diseases is highly possible by using cord blood cells. Apart from these cells, Whartons jelly and cord lining have also been shortlisted as possible sources for mesenchymal stem cells. Extensive research has conducted to study how these cells can be used to treat lung diseases, lung injury, leukemia, liver diseases, diabetes, and immunity-based disorders, among others.

Global Regenerative Medicine Market: Overview

The global market for regenerative medicine market is expected to grow at a significant pace throughout the forecast period. The rising preference of patients for personalized medicines and the advancements in technology are estimated to accelerate the growth of the global regenerative medicine market in the next few years. As a result, this market is likely to witness a healthy growth and attract a large number of players in the next few years. The development of novel regenerative medicine is estimated to benefit the key players and supplement the markets growth in the near future.

Get Discount on Latest Report @CLICK HERE NOW

Global Regenerative Medicine Market: Key Trends

The rising prevalence of chronic diseases and the rising focus on cell therapy products are the key factors that are estimated to fuel the growth of the global regenerative medicine market in the next few years. In addition, the increasing funding by government bodies and development of new and innovative products are anticipated to supplement the growth of the overall market in the next few years.

On the flip side, the ethical challenges in the stem cell research are likely to restrict the growth of the global regenerative medicine market throughout the forecast period. In addition, the stringent regulatory rules and regulations are predicted to impact the approvals of new products, thus hampering the growth of the overall market in the near future.

Global Regenerative Medicine Market: Market Potential

The growing demand for organ transplantation across the globe is anticipated to boost the demand for regenerative medicines in the next few years. In addition, the rapid growth in the geriatric population and the significant rise in the global healthcare expenditure is predicted to encourage the growth of the market. The presence of a strong pipeline is likely to contribute towards the markets growth in the near future.

Global Regenerative Medicine Market: Regional Outlook

In the past few years, North America led the global regenerative medicine market and is likely to remain in the topmost position throughout the forecast period. This region is expected to account for a massive share of the global market, owing to the rising prevalence of cancer, cardiac diseases, and autoimmunity. In addition, the rising demand for regenerative medicines from the U.S. and the rising government funding are some of the other key aspects that are likely to fuel the growth of the North America market in the near future.

Furthermore, Asia Pacific is expected to register a substantial growth rate in the next few years. The high growth of this region can be attributed to the availability of funding for research and the development of research centers. In addition, the increasing contribution from India, China, and Japan is likely to supplement the growth of the market in the near future.

Request TOC of the Reportfor more Industry Insights @CLICK HERE NOW

Global Regenerative Medicine Market: Competitive Analysis

The global market for regenerative medicines is extremely fragmented and competitive in nature, thanks to the presence of a large number of players operating in it. In order to gain a competitive edge in the global market, the key players in the market are focusing on technological developments and research and development activities. In addition, the rising number of mergers and acquisitions and collaborations is likely to benefit the prominent players in the market and encourage the overall growth in the next few years.

Some of the key players operating in the regenerative medicine market across the globe are Vericel Corporation, Japan Tissue Engineering Co., Ltd., Stryker Corporation, Acelity L.P. Inc. (KCI Licensing), Organogenesis Inc., Medtronic PLC, Cook Biotech Incorporated, Osiris Therapeutics, Inc., Integra Lifesciences Corporation, and Nuvasive, Inc. A large number of players are anticipated to enter the global market throughout the forecast period.

About TMR Research:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Read the original here:
Regenerative Medicine Market Projected to Hit at a Strong CAGR Between Forecast Period 2017-2025 - Redhill Local Councillors

To Read More: Regenerative Medicine Market Projected to Hit at a Strong CAGR Between Forecast Period 2017-2025 – Redhill Local Councillors
categoriaCardiac Stem Cells commentoComments Off on Regenerative Medicine Market Projected to Hit at a Strong CAGR Between Forecast Period 2017-2025 – Redhill Local Councillors | dataFebruary 14th, 2020
Read All

Merck’s KEYTRUDA (pembrolizumab) in Combination with Chemotherapy Met Primary Endpoint of Progression-Free Survival (PFS) as First-Line Treatment for…

By daniellenierenberg

KENILWORTH, N.J.--(BUSINESS WIRE)--Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced that the pivotal Phase 3 KEYNOTE-355 trial investigating KEYTRUDA, Mercks anti-PD-1 therapy, in combination with chemotherapy met one of its dual primary endpoints of progression-free survival (PFS) in patients with metastatic triple-negative breast cancer (mTNBC) whose tumors expressed PD-L1 (Combined Positive Score [CPS] 10). Based on an interim analysis conducted by an independent Data Monitoring Committee (DMC), first-line treatment with KEYTRUDA in combination with chemotherapy (nab-paclitaxel, paclitaxel or gemcitabine/carboplatin) demonstrated a statistically significant and clinically meaningful improvement in PFS compared to chemotherapy alone in these patients. Based on the recommendation of the DMC, the trial will continue without changes to evaluate the other dual primary endpoint of overall survival (OS). The safety profile of KEYTRUDA in this trial was consistent with that observed in previously reported studies; no new safety signals were identified.

Triple-negative breast cancer is an aggressive malignancy. It is very encouraging that KEYTRUDA in combination with chemotherapy has now demonstrated positive results as both a first-line treatment in the metastatic setting with this trial, and as neoadjuvant therapy in the KEYNOTE-522 trial, said Dr. Roger M. Perlmutter, president, Merck Research Laboratories. We look forward to sharing these findings with the medical community at an upcoming congress and discussing them with the FDA and other regulatory authorities.

The KEYTRUDA breast cancer clinical development program encompasses several internal and external collaborative studies. In addition to KEYNOTE-355, in TNBC these include the ongoing registration-enabling studies KEYNOTE-242 and KEYNOTE-522.

About KEYNOTE-355

KEYNOTE-355 is a randomized, two-part, Phase 3 trial (ClinicalTrials.gov, NCT02819518) evaluating KEYTRUDA in combination with one of three different chemotherapies (investigators choice of either nab-paclitaxel, paclitaxel or gemcitabine/carboplatin) compared with placebo plus one of the three chemotherapy regimens for the treatment of locally recurrent inoperable or mTNBC that has not been previously treated with chemotherapy in the metastatic setting. Part 1 of the study was open-label and evaluated the safety and tolerability of KEYTRUDA in combination with either nab-paclitaxel, paclitaxel or gemcitabine/carboplatin in 30 patients. Part 2 of KEYNOTE-355 was double-blinded, with dual primary endpoints of OS and PFS in all participants and in participants whose tumors expressed PD-L1 (CPS 1 and CPS 10). The secondary endpoints include objective response rate (ORR), duration of response (DOR), disease control rate (DCR) and safety.

Part 2 of KEYNOTE-355 enrolled 847 patients who were randomized to receive KEYTRUDA (200 mg intravenously [IV] on day 1 of each 21-day cycle) plus nab-paclitaxel (100 mg/m2 IV on days 1, 8 and 15 of each 28-day cycle), paclitaxel (90 mg/m2 IV on days 1, 8 and 15 of each 28-day cycle) or gemcitabine/carboplatin (1,000 mg/m2 [gemcitabine] and Area Under the Curve [AUC] 2 [carboplatin] on days 1 and 8 of each 21-day cycle); or placebo (normal saline on day 1 of each 21-day cycle) plus nab-paclitaxel (100 mg/m2 IV on days 1, 8 and 15 of each 28-day cycle), paclitaxel (90 mg/m2 IV on days 1, 8 and 15 of each 28-day cycle) or gemcitabine/carboplatin (1,000 mg/m2 [gemcitabine] and AUC 2 [carboplatin] on days 1 and 8 of each 21-day cycle).

About Triple-Negative Breast Cancer (TNBC)

TNBC is an aggressive type of breast cancer that characteristically has a high recurrence rate within the first five years after diagnosis. While some breast cancers may test positive for estrogen receptor, progesterone receptor or human epidermal growth factor receptor 2 (HER2), TNBC tests negative for all three. As a result, TNBC does not respond to therapies targeting these markers, making it more difficult to treat. Approximately 15-20% of patients with breast cancer are diagnosed with TNBC.

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,000 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Small Cell Lung Cancer

KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) 10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High (MSI-H) Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Selected Important Safety Information for KEYTRUDA

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.

Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)

Immune-Mediated Hepatitis

KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.

Hepatotoxicity in Combination With Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.

Immune-Mediated Endocrinopathies

KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (<0.1%). Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.

Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

Immune-Mediated Nephritis and Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.

Immune-Mediated Skin Reactions

Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.

Other Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.

The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barr syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.

Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptorblocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.

In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).

In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (20%) with KEYTRUDA was diarrhea (28%).

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (20%) was fatigue (25%).

In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (20%) were fatigue (33%), constipation (20%), and rash (20%).

In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those 1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).

In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. Serious adverse reactions occurred in 42% of patients; those 2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).

In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those 2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).

In KEYNOTE-057, KEYTRUDA was discontinued due to adverse reactions in 11% of 148 patients with high-risk NMIBC. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.4%). Serious adverse reactions occurred in 28% of patients; those 2% were pneumonia (3%), cardiac ischemia (2%), colitis (2%), pulmonary embolism (2%), sepsis (2%), and urinary tract infection (2%). The most common adverse reactions (20%) were fatigue (29%), diarrhea (24%), and rash (24%).

Adverse reactions occurring in patients with gastric cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

Adverse reactions occurring in patients with esophageal cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).

Read this article:
Merck's KEYTRUDA (pembrolizumab) in Combination with Chemotherapy Met Primary Endpoint of Progression-Free Survival (PFS) as First-Line Treatment for...

To Read More: Merck’s KEYTRUDA (pembrolizumab) in Combination with Chemotherapy Met Primary Endpoint of Progression-Free Survival (PFS) as First-Line Treatment for…
categoriaCardiac Stem Cells commentoComments Off on Merck’s KEYTRUDA (pembrolizumab) in Combination with Chemotherapy Met Primary Endpoint of Progression-Free Survival (PFS) as First-Line Treatment for… | dataFebruary 14th, 2020
Read All

Cardiac Rhythm Management Market to Witness Rapid Increase in Consumption During 2015 2021 – Lake Shore Gazette

By daniellenierenberg

Cardiac rhythm management refers to a process of monitoring functioning of the heart through devices. Cardiac rhythm management devices are used to provide therapeutic solutions to patients suffering from cardiac disorders such as cardiac arrhythmias, heart failure, and cardiac arrests. Cardiac disorders lead to irregular heartbeat. Technological advancements and rise in the number of deaths due to increasing incidences of heart diseases and increasing aging population are some of the major factors driving the cardiac rhythm management market. Heart disease is one of the primary causes of death in the U. S. Excess of alcohol consumption; smoking, high cholesterol levels, and obesity are some of the major causes of heart diseases. Cardiac rhythm management is conducted through two major devices: implantable cardiac rhythm devices and pacemakers. Implantable cardiac rhythm devices treat patients with an improper heartbeat. Based on the device, the cardiac rhythm management market can be segmented into defibrillators, pacemakers, cardiac resynchronization therapy devices, implantable defibrillators, and external defibrillators. Pacemakers are used to treat patients with a slow heartbeat. Based on the end user, the cardiac rhythm management market can be segmented into hospitals, home/ambulatory, and others.

North America has the largest market for cardiac rhythm management due to improved healthcare infrastructure, government initiatives, rise in incidences of cardiac disorders, growing number of deaths due to cardiovascular diseases,and increasing healthcare expenditure in the region. The North America market for cardiac rhythm management is followed by Europe. Asia is expected to witness high growth rate in the cardiac rhythm management market in the next few years due to increasing incidences of cardiovascular diseases, growing disposable income, rise in awareness regarding heart disorders and relevant treatments, and improving healthcare infrastructure in the region.

For detailed insights on enhancing your product footprint, request for a Sample here @ https://www.persistencemarketresearch.com/samples/3868

Increasing the prevalence of cardiovascular diseases, technological advancements, rise in life expectancy, increasing awareness regarding cardiac disorders, and government initiatives are some of the major factors that are expected to drive the market for cardiac rhythm management. In addition, factors such as a rise in disposable income, increasing aging population, and high cost associated with heart disease treatment are expected to drive the market for cardiac rhythm management. However, economic downturn, reimbursement issues, the importance of biologics and stem cells, and inappropriate use of the devices are some of the factors restraining the growth of the global cardiac rhythm management market.

Growing population and economies in the developing countries such as India and China are expected to drive the growth of the cardiac rhythm management market in Asia. In addition,factors such as innovations along with technological advancements such as miniaturization, introduction of MRI pacemakers, biocompatible materials and durable batteries, and continuous rise in aging population and increasing cardiovascular diseases such as arrhythmias, stroke, and high blood pressure are expected to create new opportunities for the global cardiac rhythm management market. An increasing number of mergers and acquisitions, rise in the number of collaborations and partnerships, and new product launches are some of the latest trends in the global cardiac rhythm management market.

To receive extensive list of important regions, ask for TOC here @ https://www.persistencemarketresearch.com/toc/3868

Some of the major companies operating in the global cardiac rhythm management market are Medtronic, Abbott Laboratories, Boston Scientific, St. Jude Medical, Altera, and Sorin. Other companies with significant presence in the global cardiac rhythm management market include

See the original post here:
Cardiac Rhythm Management Market to Witness Rapid Increase in Consumption During 2015 2021 - Lake Shore Gazette

To Read More: Cardiac Rhythm Management Market to Witness Rapid Increase in Consumption During 2015 2021 – Lake Shore Gazette
categoriaCardiac Stem Cells commentoComments Off on Cardiac Rhythm Management Market to Witness Rapid Increase in Consumption During 2015 2021 – Lake Shore Gazette | dataFebruary 13th, 2020
Read All

Hemostemix Announces the Appointment of Dr. Ronnie Hershman to the Board of Directors and Provides a Corporate Update – Yahoo Finance

By daniellenierenberg

CALGARY, Alberta, Feb. 10, 2020 (GLOBE NEWSWIRE) -- Hemostemix Inc. (Hemostemix or the Company) (TSXV: HEM; OTC: HMTXF) is pleased to announce the appointment of Dr. Ronnie Hershman, M.D., F.C.C.S., to its Board of Directors. Dr. Hershman is a successful, practicing cardiologist with over three decades of experience. Dr. Hershman graduated Magna Cum Laude from the Sophie Davis Center for Biomedical Research in 1980 and received his medical degree from Mount Sinai Medical Center in 1982. He then continued his medical and cardiovascular training at Mt. Sinai Medical Center.

Dr. Hershman has been an Invasive Cardiologist since 1987 and was involved in many clinical trials for emerging catheter technologies. He was a pioneer in performing laser-assisted coronary angioplasty, starting in private practice on Long Island in 1989. Presently the Medical Director of NYU Langone Long Island Cardiac Care he built and manages a large medical practice, employing cutting-edge technology and continues his practice for patients with cardiovascular and peripheral vascular diseases, employing a non-invasive therapy for patients with intractable Angina and Congestive Heart Failure.

Dr. Hershman has also been an entrepreneur and investor for more than two decades. He has been involved in life science investing and consulting for several years and previously or currently serves on the boards of medical biotechnology companies Solubest, Ltd., TheraVitae Inc., Nasus Pharma, SanoNash and Optivasive. He also serves as an advisor to a latestage, life science venture capital company that has funded 24 companies to-date. Dr. Hershman is now an investor in OurCrowd, Ltd., a leading crowd funding company and is the Co-Founder and CEO of HealthEffect, LLC and CLiHealth, LLC, SoLoyal and Nasus Pharma along with SanoNash.

Dr. Hershman continues to evaluate new medical technologies in the USA and Israel. His main interests lie in bringing improved medical technologies from the bench to the clinic, quickly and globally. He is actively seeking to commercialize technologies that improve lives and cure illnesses in the most effective and cost efficient manner.

Stem Cell therapies are the future in so many chronic illnesses and Hemostemix is an exciting company with a lot of promise in providing solutions and therapeutic options for many patients with critical Cardiovascular illnesses and ischemia, commented Dr. Hershman. As an investor and Board Member, I hope to assist in advancing these therapies further and create optimal value for patients and shareholders, alike, he said.

Dr. Hershman is replacing Mr. Yari Nieken and Mr. Bryson Goodwin who both resigned from their positions with the Company effective February 10, 2020. Ms. Natasha Sever has also resigned from the position of CFO. The Company will look for suitable replacements for both CEO and CFO positions and Mr. Smeenk will act as the interim CEO until a replacement is hired. The Company thanks Bryson, Yari and Natasha for their service and wishes them well in their future endeavors.

It is a great pleasure to welcome Dr. Hershman to the Board of Directors, said David Wood, Chairman, as he compliments us with his broad medical experience, biotechnology and business investment acumen and counsel.

I am honored and delighted to welcome Dr. Hershman to the Board of Directors and I very much look forward to his counsel, said Thomas Smeenk, President.

The Company also announces that on January 9, 2020, J.M. Wood Investment Inc. (JMWI) sent the Company a Notice of Default and Demand for the immediate repayment of the Companys previously announced convertible debenture and demand loan. Based on the repayment conditions of the debts, the Company took the position the January 9th notice was premature. On January 24th, JMWI made an application to the Court of Queens Bench of Alberta for the issuance of an order appointing a receiver. The Company responded with a 347 page affidavit including appendices, sworn on January 30th by David Wood, Chairman. The application was heard on January 31st by Madame Justice Horner, who granted a consent order to adjourn the JMWI receivership application to February 20, 2020 to enable the Company to close its financing; granted an order appointing Grant Thornton as inspector; granted an order that the costs of the application of January 31st would only be payable by the Company if the application proceeds on February 20th. On February 6, 2020 cross examinations on the Affidavits of David Wood and JMWI were heard.

Story continues

Also, on February 3, 2020 the Company received an action from Aspire Health Science, LLC filed with the Ninth Judicial Circuit Court for Orange County, State of Florida, in connection with the Amended and Restated License Agreement rescinded by Hemostemix on December 5, 2019 due to Aspires failure to meet the Condition Precedent of paying US$1,000,000 within 30 business days of September 30, 2019. The Company believes the action is frivolous, without merit, and it intends to vigorously defend its position.

The Company intends to effect repayment of the secured debts and it will provide a further update to the market at that time. Although the Company is optimistic that it will be successful in raising sufficient funds to meet its obligations, there can be no assurance that the financing will close as anticipated or within the time frames required.

ABOUT HEMOSTEMIX INC.

Hemostemix is a publicly traded autologous stem cell therapy company, founded in 2003. A winner of the World Economic Forum Technology Pioneer Award, the Company developed and is commercializing its lead product ACP-01 for the treatment of CLI, PAD, Angina, Ischemic Cardiomyopathy, Dilated Cardiomyopathy and other heart conditions. ACP-01 has been used to treat over 300 patients, including no-option end-stage heart disease patients, and it has been the subject of four open label phase II clinical studies which proved its safety and efficacy.

On October 21, 2019, the Company announced the results from its presentation from its Phase II CLI trial abstract presentation entitled Autologous Stem Cell Treatment for CLI Patients with No Revascularization Options: An Update of the Hemostemix ACP-01 Trial With 4.5 Year Followup which noted healing of ulcers and resolution of ischemic rest pain occurred in 83% of patients, with outcomes maintained for up to 4.5 years. The Companys clinical trial for CLI is ongoing at 20 clinical sites in North America and 56 of 95 subjects have been enrolled to-date.

The Company owns 91 patents across five patent families titled: Regulating Stem Cells, In Vitro Techniques for use with Stem Cells, Production from Blood of Cells of Neural Lineage, and Automated Cell Therapy. For more information, please visit http://www.hemostemix.com.

Contact:

Thomas Smeenk, President & CEO Suite 1150, 707 7th Avenue S.W.Calgary, Alberta T2P 3H6Tel: 905-580-4170

Neither the TSX Venture Exchange nor its Regulation Service Provider (as that term is defined under the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

Forward-Looking Statements

This release may contain forward-looking statements. Forward-looking statements are statements that are not historical facts and are generally, but not always, identified by the words expects, plans, anticipates, believes, intends, estimates, projects, potential, and similar expressions, or that events or conditions will, would, may, could, or should occur. Although Hemostemix believes the expectations expressed in such forward-looking statements are based on reasonable assumptions, such statements are not guarantees of future performance and actual results may differ materially from those in forward-looking statements. Forward-looking statements are based on the beliefs, estimates, and opinions of Hemostemix management on the date such statements were made. By their nature forward-looking statements are subject to known and unknown risks, uncertainties, and other factors which may cause actual results, events or developments to be materially different from any future results, events or developments expressed or implied by such forward-looking statements. Such factors include, but are not limited to, the Companys ability to fund operations and access the capital required to continue operations and repay its secured debts, the Companys stage of development, the ability to complete its current CLI clinical trial, complete a futility analysis and the results of such, future clinical trials and results, long-term capital requirements and future developments in the Companys markets and the markets in which it expects to compete, risks associated with its strategic alliances and the impact of entering new markets on the Companys operations. Each factor should be considered carefully and readers are cautioned not to place undue reliance on such forward-looking statements. Hemostemix expressly disclaims any intention or obligation to update or revise any forward-looking statements whether as a result of new information, future events, or otherwise. Additional information identifying risks and uncertainties are contained in the Companys filing with the Canadian securities regulators, which filings are available at http://www.sedar.com.

Link:
Hemostemix Announces the Appointment of Dr. Ronnie Hershman to the Board of Directors and Provides a Corporate Update - Yahoo Finance

To Read More: Hemostemix Announces the Appointment of Dr. Ronnie Hershman to the Board of Directors and Provides a Corporate Update – Yahoo Finance
categoriaCardiac Stem Cells commentoComments Off on Hemostemix Announces the Appointment of Dr. Ronnie Hershman to the Board of Directors and Provides a Corporate Update – Yahoo Finance | dataFebruary 11th, 2020
Read All

Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market 2020: Industry Analysis By Emerging Trends, Key Companies, Regional Outlook and…

By daniellenierenberg

Autologous stem cell and non-stem cell based therapies is a significant therapeutic intervention that makes use of an individuals cells which are then cultured and reintroduced into the donor patients body. In the context of China-US trade war and global economic volatility and uncertainty, it will have a big influence on this market. Autologous Stem Cell and Non-Stem Cell Based Therapies Report by Material, Application, and Geography Global Forecast to 2023 is a professional and comprehensive research report on the worlds major regional market conditions, focusing on the main regions (North America, Europe and Asia-Pacific) and the main countries (United States, Germany, United Kingdom, Japan, South Korea and China).

In this report, the global Autologous Stem Cell and Non-Stem Cell Based Therapies market is valued at USD XX million in 2019 and is projected to reach USD XX million by the end of 2023, growing at a CAGR of XX% during the period 2019 to 2023.

The report firstly introduced the Autologous Stem Cell and Non-Stem Cell Based Therapies basics: definitions, classifications, applications and market overview; product specifications; manufacturing processes; cost structures, raw materials and so on. Then it analyzed the worlds main region market conditions, including the product price, profit, capacity, production, supply, demand and market growth rate and forecast etc. In the end, the report introduced new project SWOT analysis, investment feasibility analysis, and investment return analysis.

The major players profiled in this report include:U.S. STEM CELL, INC.Brainstorm Cell TherapeuticsCytoriDendreon CorporationFibrocellLion BiotechnologiesCaladrius BiosciencesOpexa TherapeuticsOrgenesisRegenexxGenzymeAntriaRegeneusMesoblastPluristem Therapeutics IncTigenixMed cell EuropeHolostemMiltenyi Biotec

The end users/applications and product categories analysis:On the basis of product, this report displays the sales volume, revenue (Million USD), product price, market share and growth rate of each type, primarily split into-Embryonic Stem CellResident Cardiac Stem CellsAdult Bone MarrowDerived Stem CellsUmbilical Cord Blood Stem Cells

On the basis on the end users/applications, this report focuses on the status and outlook for major applications/end users, sales volume, market share and growth rate of Autologous Stem Cell and Non-Stem Cell Based Therapies for each application, including-Neurodegenerative DisordersAutoimmune DiseasesCancer and TumorsCardiovascular Diseases

Table of Contents

Part I Autologous Stem Cell and Non-Stem Cell Based Therapies Industry Overview?Chapter One Autologous Stem Cell and Non-Stem Cell Based Therapies Industry Overview1.1 Autologous Stem Cell and Non-Stem Cell Based Therapies Definition1.2 Autologous Stem Cell and Non-Stem Cell Based Therapies Classification Analysis1.2.1 Autologous Stem Cell and Non-Stem Cell Based Therapies Main Classification Analysis1.2.2 Autologous Stem Cell and Non-Stem Cell Based Therapies Main Classification Share Analysis1.3 Autologous Stem Cell and Non-Stem Cell Based Therapies Application Analysis1.3.1 Autologous Stem Cell and Non-Stem Cell Based Therapies Main Application Analysis1.3.2 Autologous Stem Cell and Non-Stem Cell Based Therapies Main Application Share Analysis1.4 Autologous Stem Cell and Non-Stem Cell Based Therapies Industry Chain Structure Analysis1.5 Autologous Stem Cell and Non-Stem Cell Based Therapies Industry Development Overview1.5.1 Autologous Stem Cell and Non-Stem Cell Based Therapies Product History Development Overview1.5.1 Autologous Stem Cell and Non-Stem Cell Based Therapies Product Market Development Overview1.6 Autologous Stem Cell and Non-Stem Cell Based Therapies Global Market Comparison Analysis1.6.1 Autologous Stem Cell and Non-Stem Cell Based Therapies Global Import Market Analysis1.6.2 Autologous Stem Cell and Non-Stem Cell Based Therapies Global Export Market Analysis1.6.3 Autologous Stem Cell and Non-Stem Cell Based Therapies Global Main Region Market Analysis1.6.4 Autologous Stem Cell and Non-Stem Cell Based Therapies Global Market Comparison Analysis1.6.5 Autologous Stem Cell and Non-Stem Cell Based Therapies Global Market Development Trend Analysis

Chapter Two Autologous Stem Cell and Non-Stem Cell Based Therapies Up and Down Stream Industry Analysis2.1 Upstream Raw Materials Analysis2.1.1 Proportion of Manufacturing Cost2.1.2 Manufacturing Cost Structure of Autologous Stem Cell and Non-Stem Cell Based Therapies Analysis2.2 Down Stream Market Analysis2.2.1 Down Stream Market Analysis2.2.2 Down Stream Demand Analysis2.2.3 Down Stream Market Trend Analysis

Part II Asia Autologous Stem Cell and Non-Stem Cell Based Therapies Industry (The Report Company Including the Below Listed But Not All)

Chapter Three Asia Autologous Stem Cell and Non-Stem Cell Based Therapies Market Analysis3.1 Asia Autologous Stem Cell and Non-Stem Cell Based Therapies Product Development History3.2 Asia Autologous Stem Cell and Non-Stem Cell Based Therapies Competitive Landscape Analysis3.3 Asia Autologous Stem Cell and Non-Stem Cell Based Therapies Market Development Trend

Chapter Four 2014-2019 Asia Autologous Stem Cell and Non-Stem Cell Based Therapies Productions Supply Sales Demand Market Status and Forecast4.1 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Production Overview4.2 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Production Market Share Analysis4.3 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Demand Overview4.4 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Supply Demand and Shortage4.5 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Import Export Consumption4.6 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Cost Price Production Value Gross Margin

Chapter Five Asia Autologous Stem Cell and Non-Stem Cell Based Therapies Key Manufacturers Analysis5.1 Company A5.1.1 Company Profile5.1.2 Product Picture and Specification5.1.3 Product Application Analysis5.1.4 Capacity Production Price Cost Production Value5.1.5 Contact Information5.2 Company B5.2.1 Company Profile5.2.2 Product Picture and Specification5.2.3 Product Application Analysis5.2.4 Capacity Production Price Cost Production Value5.2.5 Contact Information5.3 Company C5.3.1 Company Profile5.3.2 Product Picture and Specification5.3.3 Product Application Analysis5.3.4 Capacity Production Price Cost Production Value5.3.5 Contact Information5.4 Company D5.4.1 Company Profile5.4.2 Product Picture and Specification5.4.3 Product Application Analysis5.4.4 Capacity Production Price Cost Production Value5.4.5 Contact InformationChapter Six Asia Autologous Stem Cell and Non-Stem Cell Based Therapies Industry Development Trend6.1 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Production Overview6.2 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Production Market Share Analysis6.3 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Demand Overview6.4 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Supply Demand and Shortage6.5 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Import Export Consumption6.6 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Cost Price Production Value Gross Margin

Part III North American Autologous Stem Cell and Non-Stem Cell Based Therapies Industry (The Report Company Including the Below Listed But Not All)

Chapter Seven North American Autologous Stem Cell and Non-Stem Cell Based Therapies Market Analysis7.1 North American Autologous Stem Cell and Non-Stem Cell Based Therapies Product Development History7.2 North American Autologous Stem Cell and Non-Stem Cell Based Therapies Competitive Landscape Analysis7.3 North American Autologous Stem Cell and Non-Stem Cell Based Therapies Market Development Trend

Chapter Eight 2014-2019 North American Autologous Stem Cell and Non-Stem Cell Based Therapies Productions Supply Sales Demand Market Status and Forecast8.1 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Production Overview8.2 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Production Market Share Analysis8.3 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Demand Overview8.4 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Supply Demand and Shortage8.5 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Import Export Consumption8.6 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Cost Price Production Value Gross Margin

Chapter Nine North American Autologous Stem Cell and Non-Stem Cell Based Therapies Key Manufacturers Analysis9.1 Company A9.1.1 Company Profile9.1.2 Product Picture and Specification9.1.3 Product Application Analysis9.1.4 Capacity Production Price Cost Production Value9.1.5 Contact Information9.2 Company B9.2.1 Company Profile9.2.2 Product Picture and Specification9.2.3 Product Application Analysis9.2.4 Capacity Production Price Cost Production Value9.2.5 Contact InformationChapter Ten North American Autologous Stem Cell and Non-Stem Cell Based Therapies Industry Development Trend10.1 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Production Overview10.2 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Production Market Share Analysis10.3 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Demand Overview10.4 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Supply Demand and Shortage10.5 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Import Export Consumption10.6 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Cost Price Production Value Gross Margin

Part IV Europe Autologous Stem Cell and Non-Stem Cell Based Therapies Industry Analysis (The Report Company Including the Below Listed But Not All)

Chapter Eleven Europe Autologous Stem Cell and Non-Stem Cell Based Therapies Market Analysis11.1 Europe Autologous Stem Cell and Non-Stem Cell Based Therapies Product Development History11.2 Europe Autologous Stem Cell and Non-Stem Cell Based Therapies Competitive Landscape Analysis11.3 Europe Autologous Stem Cell and Non-Stem Cell Based Therapies Market Development Trend

Chapter Twelve 2014-2019 Europe Autologous Stem Cell and Non-Stem Cell Based Therapies Productions Supply Sales Demand Market Status and Forecast12.1 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Production Overview12.2 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Production Market Share Analysis12.3 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Demand Overview12.4 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Supply Demand and Shortage12.5 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Import Export Consumption12.6 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Cost Price Production Value Gross Margin

Chapter Thirteen Europe Autologous Stem Cell and Non-Stem Cell Based Therapies Key Manufacturers Analysis13.1 Company A13.1.1 Company Profile13.1.2 Product Picture and Specification13.1.3 Product Application Analysis13.1.4 Capacity Production Price Cost Production Value13.1.5 Contact Information13.2 Company B13.2.1 Company Profile13.2.2 Product Picture and Specification13.2.3 Product Application Analysis13.2.4 Capacity Production Price Cost Production Value13.2.5 Contact InformationChapter Fourteen Europe Autologous Stem Cell and Non-Stem Cell Based Therapies Industry Development Trend14.1 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Production Overview14.2 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Production Market Share Analysis14.3 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Demand Overview14.4 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Supply Demand and Shortage14.5 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Import Export Consumption14.6 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Cost Price Production Value Gross Margin

Part V Autologous Stem Cell and Non-Stem Cell Based Therapies Marketing Channels and Investment Feasibility

Chapter Fifteen Autologous Stem Cell and Non-Stem Cell Based Therapies Marketing Channels Development Proposals Analysis15.1 Autologous Stem Cell and Non-Stem Cell Based Therapies Marketing Channels Status15.2 Autologous Stem Cell and Non-Stem Cell Based Therapies Marketing Channels Characteristic15.3 Autologous Stem Cell and Non-Stem Cell Based Therapies Marketing Channels Development Trend15.2 New Firms Enter Market Strategy15.3 New Project Investment Proposals

Chapter Sixteen Development Environmental Analysis16.1 China Macroeconomic Environment Analysis16.2 European Economic Environmental Analysis16.3 United States Economic Environmental Analysis16.4 Japan Economic Environmental Analysis16.5 Global Economic Environmental Analysis

Chapter Seventeen Autologous Stem Cell and Non-Stem Cell Based Therapies New Project Investment Feasibility Analysis17.1 Autologous Stem Cell and Non-Stem Cell Based Therapies Market Analysis17.2 Autologous Stem Cell and Non-Stem Cell Based Therapies Project SWOT Analysis17.3 Autologous Stem Cell and Non-Stem Cell Based Therapies New Project Investment Feasibility Analysis

Part VI Global Autologous Stem Cell and Non-Stem Cell Based Therapies Industry Conclusions

Chapter Eighteen 2014-2019 Global Autologous Stem Cell and Non-Stem Cell Based Therapies Productions Supply Sales Demand Market Status and Forecast18.1 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Production Overview18.2 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Production Market Share Analysis18.3 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Demand Overview18.4 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Supply Demand and Shortage18.5 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Import Export Consumption18.6 2014-2019 Autologous Stem Cell and Non-Stem Cell Based Therapies Cost Price Production Value Gross Margin

Chapter Nineteen Global Autologous Stem Cell and Non-Stem Cell Based Therapies Industry Development Trend19.1 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Production Overview19.2 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Production Market Share Analysis19.3 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Demand Overview19.4 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Supply Demand and Shortage19.5 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Import Export Consumption19.6 2019-2023 Autologous Stem Cell and Non-Stem Cell Based Therapies Cost Price Production Value Gross Margin

Chapter Twenty Global Autologous Stem Cell and Non-Stem Cell Based Therapies Industry Research Conclusions

Orbis Research (orbisresearch.com) is a single point aid for all your market research requirements. We have vast database of reports from the leading publishers and authors across the globe. We specialize in delivering customized reports as per the requirements of our clients. We have complete information about our publishers and hence are sure about the accuracy of the industries and verticals of their specialization. This helps our clients to map their needs and we produce the perfect required market research study for our clients.

Hector CostelloSenior Manager Client Engagements4144N Central Expressway,Suite 600, Dallas,Texas 75204, U.S.A.Phone No.: +1 (972)-362-8199; +91 895 659 5155

Read the rest here:
Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market 2020: Industry Analysis By Emerging Trends, Key Companies, Regional Outlook and...

To Read More: Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market 2020: Industry Analysis By Emerging Trends, Key Companies, Regional Outlook and…
categoriaCardiac Stem Cells commentoComments Off on Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market 2020: Industry Analysis By Emerging Trends, Key Companies, Regional Outlook and… | dataFebruary 11th, 2020
Read All

Seattle Genetics and Astellas Announce Updated Results from Phase 1b/2 Trial of PADCEV (enfortumab vedotin-ejfv) in Combination with Immune Therapy…

By daniellenierenberg

BOTHELL, Wash. and TOKYO, Feb. 10, 2020 /PRNewswire/ --Seattle Genetics, Inc.(Nasdaq: SGEN) and Astellas Pharma Inc.(TSE: 4503, President and CEO: Kenji Yasukawa, Ph.D., "Astellas") today announced updated results from the phase 1b/2 clinical trial EV-103 in previously untreated patients with locally advanced or metastatic urothelial cancer who were ineligible for treatment with cisplatin-based chemotherapy. Forty-five patients were treated with the combination of PADCEV (enfortumab vedotin-ejfv) and pembrolizumab and were evaluated for safety and efficacy. After a median follow-up of 11.5 months, the study results continue to meet outcome measures for safety and demonstrate encouraging clinical activity for this platinum-free combination in a first-line setting. Updated results will be presented during an oral session on Friday, February 14 at the 2020 Genitourinary Cancers Symposium in San Francisco (Abstract #441). Initial results from the study were presented at the European Society of Medical Oncology Congress in September 2019.

PADCEV is a first-in-class antibody-drug conjugate (ADC) that is directed against Nectin-4, a protein located on the surface of cells and highly expressed in bladder cancer.1,2

"Cisplatin-basedchemotherapy is the standard treatment for first-line advanced urothelial cancer; however, it isn't an option for many patients,"said Jonathan E. Rosenberg, M.D., Medical Oncologist and Chief, Genitourinary Medical Oncology Service at Memorial Sloan Kettering Cancer Center in New York."I'm encouraged by these interim results, including a median progression-free survival of a year for patients who received the platinum-free combination of PADCEV and pembrolizumab in the first-line setting."

In the study, 58 percent (26/45) of patients had a treatment-related adverse event greater than or equal to Grade 3: increase in lipase (18 percent; 8/45), rash (13 percent; 6/45), hyperglycemia (13 percent; 6/45) and peripheral neuropathy (4 percent; 2/45); these rates were similar to those observed with PADCEV monotherapy.3Eighteen percent (8/45) of patients had treatment-related immune-mediated adverse events of clinical interest greater than or equal to Grade 3 that required the use of systemic steroids (arthralgia, dermatitis bullous, pneumonitis, lipase increased, rash erythematous, rash maculo-papular, tubulointerstitial nephritis, myasthenia gravis). None of the adverse events of clinical interest were Grade 5 events. Six patients (13 percent) discontinued treatment due to treatment-related adverse events, most commonly peripheral sensory neuropathy. As previously reported, there was one death deemed to be treatment-related by the investigator attributed to multiple organ dysfunction syndrome.

The data demonstrated the combination of PADCEV plus pembrolizumab shrank tumors in the majority of patients, resulting in a confirmed objective response rate (ORR) of 73.3 percent (33/45; 95% Confidence Interval (CI): 58.1, 85.4) after a median follow-up of 11.5 months (range,0.7 to 19.2). Responses included 15.6 percent (7/45) of patients who had a complete response (CR)and 57.8 percent (26/45) of patients who had a partial response. Median duration of response has not yet been reached (range 1.2 to 12.9+ months). Eighteen (55%) of 33 responses were ongoing at the time of analysis, with 83.9% of responses lasting at least 6 months and 53.7% of responses lasting at least 12 months (Kaplan-Meier estimate).The median progression-free survival was 12.3 months (95% CI: 7.98, -) and the 12-month overall survival (OS) rate was 81.6 percent (95% CI: 62 to 91.8 percent); median OS has not been reached.

"These updated data are encouraging and provide support for the recently initiated phase 3 trial EV-302 that includes an arm evaluating PADCEV in this platinum-free combination in the first-line setting," said Roger Dansey, M.D., Chief Medical Officer at Seattle Genetics.

"These additional results support continued evaluation of PADCEV in combination with other agents and at earlier stages of treatment for patients withurothelial cancer," said Andrew Krivoshik, M.D., Ph.D., Senior Vice President and Oncology Therapeutic Area Head at Astellas.

About the EV-103 TrialEV-103 is an ongoing, multi-cohort, open-label, multicenter phase 1b/2 trial of PADCEV alone or in combination, evaluating safety, tolerability and efficacy in muscle invasive, locally advanced and first- and second-line metastatic urothelial cancer.

The dose-escalation cohort and expansion cohort A include locally advanced or metastatic urothelial cancer patients who are ineligible for cisplatin-based chemotherapy. Patients were dosed in a 21-day cycle, receiving an intravenous (IV) infusion of enfortumab vedotin on Days 1 and 8 and pembrolizumab on Day 1. At the time of this initial analysis, 45 patients (5 from the dose-escalation cohort and 40 from the dose-expansion cohort A) with locally advanced and/or metastatic urothelial cancer had been treated with enfortumab vedotin (1.25 mg/kg) plus pembrolizumab in the first-line setting.

The primary outcome measure of the cohorts included in this analysis is safety. Key secondary objectives related to efficacy include objective response rate (ORR), disease control rate (DCR), duration of response (DoR), progression free survival (PFS) and overall survival (OS). DoR,PFS and OS are not yet mature.

Additional cohorts in the EV-103 study will evaluate enfortumab vedotin:

More information about PADCEV clinical trials can be found at clinicaltrials.gov.

About Bladder and Urothelial CancerIt is estimated that approximately 81,000 people in the U.S. will be diagnosed with bladder cancer in 2020.5 Urothelial cancer accounts for 90 percent of all bladder cancers and can also be found in the renal pelvis, ureter and urethra.6 Globally, approximately 549,000 people were diagnosed with bladder cancer in 2018, and there were approximately 200,000 deaths worldwide.7

The recommended first-line treatment for patients with advanced urothelial cancer is a cisplatin-based chemotherapy. For patients who are ineligible for cisplatin, such as people with kidney impairment, a carboplatin-based regimen is recommended. However, fewer than half of patients respond to carboplatin-based regimens and outcomes are typically poorer compared to cisplatin-based regimens.8

About PADCEV PADCEV (enfortumabvedotin-ejfv) was approved by the U.S. Food and Drug Administration (FDA) in December 2019 and is indicated for the treatment of adult patients with locally advanced or metastatic urothelial cancer who have previously received a programmed death receptor-1 (PD-1) or programmed death-ligand 1 (PD-L1) inhibitor and a platinum-containing chemotherapy before (neoadjuvant) or after (adjuvant) surgery or in a locally advanced or metastatic setting. PADCEV was approved under the FDA's Accelerated Approval Program based on tumor response rate. Continued approval may be contingent upon verification and description of clinical benefit in confirmatory trials.9

PADCEV is a first-in-class antibody-drug conjugate (ADC) that is directed against Nectin-4, a protein located on the surface of cells and highly expressed in bladder cancer.2,9Nonclinical data suggest the anticancer activity of PADCEV is due to its binding to Nectin-4 expressing cells followed by the internalization and release of the anti-tumor agent monomethyl auristatin E (MMAE) into the cell, which result in the cell not reproducing (cell cycle arrest) and in programmed cell death (apoptosis).9PADCEV is co-developed by Astellas and Seattle Genetics.

Important Safety Information

Warnings and Precautions

Adverse ReactionsSerious adverse reactions occurred in 46% of patients treated with PADCEV. The most common serious adverse reactions (3%) were urinary tract infection (6%), cellulitis (5%), febrile neutropenia (4%), diarrhea (4%), sepsis (3%), acute kidney injury (3%), dyspnea (3%), and rash (3%). Fatal adverse reactions occurred in 3.2% of patients, including acute respiratory failure, aspiration pneumonia, cardiac disorder, and sepsis (each 0.8%).

Adverse reactions leading to discontinuation occurred in 16% of patients; the most common adverse reaction leading to discontinuation was peripheral neuropathy (6%). Adverse reactions leading to dose interruption occurred in 64% of patients; the most common adverse reactions leading to dose interruption were peripheral neuropathy (18%), rash (9%) and fatigue (6%). Adverse reactions leading to dose reduction occurred in 34% of patients; the most common adverse reactions leading to dose reduction were peripheral neuropathy (12%), rash (6%) and fatigue (4%).

The most common adverse reactions (20%) were fatigue (56%), peripheral neuropathy (56%), decreased appetite (52%), rash (52%), alopecia (50%), nausea (45%), dysgeusia (42%), diarrhea (42%), dry eye (40%), pruritus (26%) and dry skin (26%). The most common Grade 3 adverse reactions (5%) were rash (13%), diarrhea (6%) and fatigue (6%).

Lab AbnormalitiesIn one clinical trial, Grade 3-4 laboratory abnormalities reported in 5% were: lymphocytes decreased, hemoglobin decreased, phosphate decreased, lipase increased, sodium decreased, glucose increased, urate increased, neutrophils decreased.

Drug Interactions

Specific Populations

For more information, please see the full Prescribing Information for PADCEV here.

About Seattle GeneticsSeattle Genetics, Inc. is a global biotechnology company that discovers, develops and commercializes transformative medicines targeting cancer to make a meaningful difference in people's lives. The company is headquartered in Bothell, Washington, and has offices in California, Switzerland and the European Union. For more information on our robust pipeline, visit https://www.seattlegenetics.comand follow @SeattleGenetics on Twitter.

About AstellasAstellas Pharma Inc., based in Tokyo, Japan, is a company dedicated to improving the health of people around the world through the provision of innovative and reliable pharmaceutical products. For more information, please visit our website at https://www.astellas.com/en.

About the Astellas and Seattle Genetics CollaborationSeattle Genetics and Astellas are co-developing enfortumab vedotin-ejfv under a collaboration that was entered into in 2007 and expanded in 2009. Under the collaboration, the companies are sharing costs and profits on a 50:50 basis worldwide.

Seattle Genetics Forward-Looking StatementsCertain statements made in this press release are forward looking, such as those, among others, relating to the EV-103 and EV-302 clinical trials; clinical development plans relating to enfortumab vedotin; the therapeutic potential of enfortumab vedotin; and its possible safety, efficacy, and therapeutic uses, including in the first-line setting. Actual results or developments may differ materially from those projected or implied in these forward-looking statements. Factors that may cause such a difference include the possibility that ongoing and subsequent clinical trials of enfortumab vedotin may fail to establish sufficient efficacy; that adverse events or safety signals may occur and that adverse regulatory actions or other setbacks could occur as enfortumab vedotin advances in clinical trials even after promising results in earlier clinical trials. More information about the risks and uncertainties faced by Seattle Genetics is contained under the caption "Risk Factors" included in the company's Annual Report on Form 10-K for the year ended December 31, 2019 filed with the Securities and Exchange Commission. Seattle Genetics disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as required by law.

Astellas Cautionary NotesIn this press release, statements made with respect to current plans, estimates, strategies and beliefs and other statements that are not historical facts are forward-looking statements about the future performance of Astellas. These statements are based on management's current assumptions and beliefs in light of the information currently available to it and involve known and unknown risks and uncertainties. A number of factors could cause actual results to differ materially from those discussed in the forward-looking statements. Such factors include, but are not limited to: (i) changes in general economic conditions and in laws and regulations, relating to pharmaceutical markets, (ii) currency exchange rate fluctuations, (iii) delays in new product launches, (iv) the inability of Astellas to market existing and new products effectively, (v) the inability of Astellas to continue to effectively research and develop products accepted by customers in highly competitive markets, and (vi) infringements of Astellas' intellectual property rights by third parties.

Information about pharmaceutical products (including products currently in development), which is included in this press release is not intended to constitute an advertisement or medical advice.

1 PADCEV [package insert]. Northbrook, IL: Astellas, Inc.2 Challita-Eid P, Satpayev D, Yang P, et al. Enfortumab Vedotin Antibody-Drug Conjugate Targeting Nectin-4 Is a Highly Potent Therapeutic Agent in Multiple Preclinical Cancer Models. Cancer Res 2016;76(10):3003-13.3 Rosenberg JE, O'Donnell PH, Balar AV, et al. Pivotal Trial of Enfortumab Vedotin in Urothelial Carcinoma After Platinum and Anti-Programmed Death 1/Programmed Death Ligand 1 Therapy. J Clin Oncol 2019;37(29):2592-600.4 ClinicalTrials.gov. A Study of Enfortumab Vedotin Alone or With Other Therapies for Treatment of Urothelial Cancer (EV-103). https://clinicaltrials.gov/ct2/show/NCT03288545.5 American Cancer Society. Cancer Facts & Figures 2020. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.pdf. Accessed 01-23-2020.6National Cancer Institute. Surveillance, Epidemiology, and End Results Program. Cancer stat facts: bladder cancer. https://seer.cancer.gov/statfacts/html/urinb.html. Accessed 05-01-2019.7International Agency for Research on Cancer. Cancer Tomorrow: Bladder. http://gco.iarc.fr/tomorrow. 8 National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Bladder Cancer. Version 4; July 10, 2019. https://www.nccn.org/professionals/physician_gls/pdf/bladder.pdf.9 PADCEV [package insert]. Northbrook, IL: Astellas, Inc.

SOURCE Astellas

http://www.seattlegenetics.com

Read this article:
Seattle Genetics and Astellas Announce Updated Results from Phase 1b/2 Trial of PADCEV (enfortumab vedotin-ejfv) in Combination with Immune Therapy...

To Read More: Seattle Genetics and Astellas Announce Updated Results from Phase 1b/2 Trial of PADCEV (enfortumab vedotin-ejfv) in Combination with Immune Therapy…
categoriaCardiac Stem Cells commentoComments Off on Seattle Genetics and Astellas Announce Updated Results from Phase 1b/2 Trial of PADCEV (enfortumab vedotin-ejfv) in Combination with Immune Therapy… | dataFebruary 11th, 2020
Read All

Regenerative Medicine Market Analysis Trends, Growth Opportunities, Size, Type, Dynamic Demand and Drives with Forecast to 2025 – Jewish Life News

By daniellenierenberg

Regenerative Medicine Market: Snapshot

Regenerative medicine is a part of translational research in the fields of molecular biology and tissue engineering. This type of medicine involves replacing and regenerating human cells, organs, and tissues with the help of specific processes. Doing this may involve a partial or complete reengineering of human cells so that they start to function normally.

To know Untapped Opportunities in the MarketCLICK HERE NOW

Regenerative medicine also involves the attempts to grow tissues and organs in a laboratory environment, wherein they can be put in a body that cannot heal a particular part. Such implants are mainly preferred to be derived from the patients own tissues and cells, particularly stem cells. Looking at the promising nature of stem cells to heal and regenerative various parts of the body, this field is certainly expected to see a bright future. Doing this can help avoid opting for organ donation, thus saving costs. Some healthcare centers might showcase a shortage of organ donations, and this is where tissues regenerated using patients own cells are highly helpful.

There are several source materials from which regeneration can be facilitated. Extracellular matrix materials are commonly used source substances all over the globe. They are mainly used for reconstructive surgery, chronic wound healing, and orthopedic surgeries. In recent times, these materials have also been used in heart surgeries, specifically aimed at repairing damaged portions.

Cells derived from the umbilical cord also have the potential to be used as source material for bringing about regeneration in a patient. A vast research has also been conducted in this context. Treatment of diabetes, organ failure, and other chronic diseases is highly possible by using cord blood cells. Apart from these cells, Whartons jelly and cord lining have also been shortlisted as possible sources for mesenchymal stem cells. Extensive research has conducted to study how these cells can be used to treat lung diseases, lung injury, leukemia, liver diseases, diabetes, and immunity-based disorders, among others.

Global Regenerative Medicine Market: Overview

The global market for regenerative medicine market is expected to grow at a significant pace throughout the forecast period. The rising preference of patients for personalized medicines and the advancements in technology are estimated to accelerate the growth of the global regenerative medicine market in the next few years. As a result, this market is likely to witness a healthy growth and attract a large number of players in the next few years. The development of novel regenerative medicine is estimated to benefit the key players and supplement the markets growth in the near future.

Get Discount on Latest Report @CLICK HERE NOW

Global Regenerative Medicine Market: Key Trends

The rising prevalence of chronic diseases and the rising focus on cell therapy products are the key factors that are estimated to fuel the growth of the global regenerative medicine market in the next few years. In addition, the increasing funding by government bodies and development of new and innovative products are anticipated to supplement the growth of the overall market in the next few years.

On the flip side, the ethical challenges in the stem cell research are likely to restrict the growth of the global regenerative medicine market throughout the forecast period. In addition, the stringent regulatory rules and regulations are predicted to impact the approvals of new products, thus hampering the growth of the overall market in the near future.

Global Regenerative Medicine Market: Market Potential

The growing demand for organ transplantation across the globe is anticipated to boost the demand for regenerative medicines in the next few years. In addition, the rapid growth in the geriatric population and the significant rise in the global healthcare expenditure is predicted to encourage the growth of the market. The presence of a strong pipeline is likely to contribute towards the markets growth in the near future.

Global Regenerative Medicine Market: Regional Outlook

In the past few years, North America led the global regenerative medicine market and is likely to remain in the topmost position throughout the forecast period. This region is expected to account for a massive share of the global market, owing to the rising prevalence of cancer, cardiac diseases, and autoimmunity. In addition, the rising demand for regenerative medicines from the U.S. and the rising government funding are some of the other key aspects that are likely to fuel the growth of the North America market in the near future.

Furthermore, Asia Pacific is expected to register a substantial growth rate in the next few years. The high growth of this region can be attributed to the availability of funding for research and the development of research centers. In addition, the increasing contribution from India, China, and Japan is likely to supplement the growth of the market in the near future.

Request TOC of the Reportfor more Industry Insights @CLICK HERE NOW

Global Regenerative Medicine Market: Competitive Analysis

The global market for regenerative medicines is extremely fragmented and competitive in nature, thanks to the presence of a large number of players operating in it. In order to gain a competitive edge in the global market, the key players in the market are focusing on technological developments and research and development activities. In addition, the rising number of mergers and acquisitions and collaborations is likely to benefit the prominent players in the market and encourage the overall growth in the next few years.

Some of the key players operating in the regenerative medicine market across the globe are Vericel Corporation, Japan Tissue Engineering Co., Ltd., Stryker Corporation, Acelity L.P. Inc. (KCI Licensing), Organogenesis Inc., Medtronic PLC, Cook Biotech Incorporated, Osiris Therapeutics, Inc., Integra Lifesciences Corporation, and Nuvasive, Inc. A large number of players are anticipated to enter the global market throughout the forecast period.

About TMR Research:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Continued here:
Regenerative Medicine Market Analysis Trends, Growth Opportunities, Size, Type, Dynamic Demand and Drives with Forecast to 2025 - Jewish Life News

To Read More: Regenerative Medicine Market Analysis Trends, Growth Opportunities, Size, Type, Dynamic Demand and Drives with Forecast to 2025 – Jewish Life News
categoriaCardiac Stem Cells commentoComments Off on Regenerative Medicine Market Analysis Trends, Growth Opportunities, Size, Type, Dynamic Demand and Drives with Forecast to 2025 – Jewish Life News | dataFebruary 11th, 2020
Read All

First dual stem cell therapy jointly developed by City University of Hong Kong brings new hope for cardiac repair – QS WOW News

By daniellenierenberg

A research team featuring an expert from City University of Hong Kong (CityU) has developed a novel dual approach for the first time for concurrently rejuvenating both the cardiac muscle and vasculature of the heart by utilising two types of stem cells. The results give hope for a new treatment for repairing myocardial infarction (MI) heart.

Dr Ban Ki-won, Assistant Professor of the Department of Biomedical Sciences and his research team, including researchers from Konkuk University, The Catholic University of Korea, Pohang University of Science and Technology and T&R Biofab in South Korea, have conducted the first study of two distinct stem cell effects for cardiac repair. The two major types of stem cells employed are human bone marrow derived mesenchymal stem cells (hMSCs) and cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs). The research findings have been published in Nature Communications in a paper titled Dual stem cell therapy synergistically improves cardiac function and vascular regeneration following myocardial infarction.

Both cardiac muscles and vasculatures are severely damaged following MI, and so the therapeutic strategies should focus on comprehensive repair of both at the same time. But the current strategies only focus on either one, Dr Ban said.

Dr Ban said that, with limited therapeutic options for severe MI and advanced heart failure, a heart transplant was the last resort. However, such an operation is very risky, costly and subject to limited supply of suitable donors. Therefore, stem cell-based therapy has emerged as a promising therapeutic option.

In the study, the hiPSC-CMs were injected directly into the border zone of the rats heart, while the hMSCs-loaded patch was implanted on top of the infarct area, like a bandage. The results showed that this dual approach led to a significant improvement of cardiac function and an enhancement of vessel formation on a MI heart.

We believe this novel dual approach can potentially provide translational and clinical benefit to the field of cardiac regeneration. Based on the same principle, the protocol may also be utilised for repairing other organs including the brain, liver and pancreas in which multiple types of stem cells co-exist, Dr Ban added.

The research team is working on follow-up studies in larger animal models such as pigs. The patent application for this research result has been submitted.

Excerpt from:
First dual stem cell therapy jointly developed by City University of Hong Kong brings new hope for cardiac repair - QS WOW News

To Read More: First dual stem cell therapy jointly developed by City University of Hong Kong brings new hope for cardiac repair – QS WOW News
categoriaCardiac Stem Cells commentoComments Off on First dual stem cell therapy jointly developed by City University of Hong Kong brings new hope for cardiac repair – QS WOW News | dataFebruary 10th, 2020
Read All

Hemostemix Announces the Appointment of Dr. Ronnie Hershman to the Board of Directors and Provides a Corporate Update – BioSpace

By daniellenierenberg

CALGARY, Alberta, Feb. 10, 2020 (GLOBE NEWSWIRE) --Hemostemix. (Hemostemix or the Company) (TSXV: HEM; OTC: HMTXF) is pleased to announce the appointment of Dr. Ronnie Hershman, M.D., F.C.C.S., to its Board of Directors. Dr. Hershman is a successful, practicing cardiologist with over three decades of experience. Dr. Hershman graduated Magna Cum Laude from the Sophie Davis Center for Biomedical Research in 1980 and received his medical degree from Mount Sinai Medical Center in 1982. He then continued his medical and cardiovascular training at Mt. Sinai Medical Center.

Dr. Hershman has been an Invasive Cardiologist since 1987 and was involved in many clinical trials for emerging catheter technologies. He was a pioneer in performing laser-assisted coronary angioplasty, starting in private practice on Long Island in 1989. Presently the Medical Director of NYU Langone Long Island Cardiac Care he built and manages a large medical practice, employing cutting-edge technology and continues his practice for patients with cardiovascular and peripheral vascular diseases, employing a non-invasive therapy for patients with intractable Angina and Congestive Heart Failure.

Dr. Hershman has also been an entrepreneur and investor for more than two decades. He has been involved in life science investing and consulting for several years and previously or currently serves on the boards of medical biotechnology companies Solubest, Ltd., TheraVitae Inc., Nasus Pharma, SanoNash and Optivasive. He also serves as an advisor to a latestage, life science venture capital company that has funded 24 companies to-date. Dr. Hershman is now an investor in OurCrowd, Ltd., a leading crowd funding company and is the Co-Founder and CEO of HealthEffect, LLC and CLiHealth, LLC, SoLoyal and Nasus Pharma along with SanoNash.

Dr. Hershman continues to evaluate new medical technologies in the USA and Israel. His main interests lie in bringing improved medical technologies from the bench to the clinic, quickly and globally. He is actively seeking to commercialize technologies that improve lives and cure illnesses in the most effective and cost efficient manner.

Stem Cell therapies are the future in so many chronic illnesses and Hemostemix is an exciting company with a lot of promise in providing solutions and therapeutic options for many patients with critical Cardiovascular illnesses and ischemia, commented Dr. Hershman. As an investor and Board Member, I hope to assist in advancing these therapies further and create optimal value for patients and shareholders, alike, he said.

Dr. Hershman is replacing Mr. Yari Nieken and Mr. Bryson Goodwin who both resigned from their positions with the Company effective February 10, 2020. Ms. Natasha Sever has also resigned from the position of CFO. The Company will look for suitable replacements for both CEO and CFO positions and Mr. Smeenk will act as the interim CEO until a replacement is hired. The Company thanks Bryson, Yari and Natasha for their service and wishes them well in their future endeavors.

It is a great pleasure to welcome Dr. Hershman to the Board of Directors, said David Wood, Chairman, as he compliments us with his broad medical experience, biotechnology and business investment acumen and counsel.

I am honored and delighted to welcome Dr. Hershman to the Board of Directors and I very much look forward to his counsel, said Thomas Smeenk, President.

The Company also announces that on January 9, 2020, J.M. Wood Investment Inc. (JMWI) sent the Company a Notice of Default and Demand for the immediate repayment of the Companys previously announced convertible debenture and demand loan. Based on the repayment conditions of the debts, the Company took the position the January 9th notice was premature. On January 24th, JMWI made an application to the Court of Queens Bench of Alberta for the issuance of an order appointing a receiver. The Company responded with a 347 page affidavit including appendices, sworn on January 30th by David Wood, Chairman. The application was heard on January 31st by Madame Justice Horner, who granted a consent order to adjourn the JMWI receivership application to February 20, 2020 to enable the Company to close its financing; granted an order appointing Grant Thornton as inspector; granted an order that the costs of the application of January 31st would only be payable by the Company if the application proceeds on February 20th. On February 6, 2020 cross examinations on the Affidavits of David Wood and JMWI were heard.

Also, on February 3, 2020 the Company received an action from Aspire Health Science, LLC filed with the Ninth Judicial Circuit Court for Orange County, State of Florida, in connection with the Amended and Restated License Agreement rescinded by Hemostemix on December 5, 2019 due to Aspires failure to meet the Condition Precedent of paying US$1,000,000 within 30 business days of September 30, 2019. The Company believes the action is frivolous, without merit, and it intends to vigorously defend its position.

The Company intends to effect repayment of the secured debts and it will provide a further update to the market at that time. Although the Company is optimistic that it will be successful in raising sufficient funds to meet its obligations, there can be no assurance that the financing will close as anticipated or within the time frames required.

ABOUT HEMOSTEMIX INC.

Hemostemix is a publicly traded autologous stem cell therapy company, founded in 2003. A winner of the World Economic Forum Technology Pioneer Award, the Company developed and is commercializing its lead product ACP-01 for the treatment of CLI, PAD, Angina, Ischemic Cardiomyopathy, Dilated Cardiomyopathy and other heart conditions. ACP-01 has been used to treat over 300 patients, including no-option end-stage heart disease patients, and it has been the subject of four open label phase II clinical studies which proved its safety and efficacy.

On October 21, 2019, the Company announced the results from its presentation from its Phase II CLI trial abstract presentation entitled Autologous Stem Cell Treatment for CLI Patients with No Revascularization Options: An Update of the Hemostemix ACP-01 Trial With 4.5 Year Followup which noted healing of ulcers and resolution of ischemic rest pain occurred in 83% of patients, with outcomes maintained for up to 4.5 years. The Companys clinical trial for CLI is ongoing at 20 clinical sites in North America and 56 of 95 subjects have been enrolled to-date.

The Company owns 91 patents across five patent families titled: Regulating Stem Cells, In Vitro Techniques for use with Stem Cells, Production from Blood of Cells of Neural Lineage, and Automated Cell Therapy. For more information, please visit http://www.hemostemix.com.

Contact:

Thomas Smeenk, President & CEOSuite 1150, 707 7th Avenue S.W.Calgary, Alberta T2P 3H6Tel: 905-580-4170

Neither the TSX Venture Exchange nor its Regulation Service Provider (as that term is defined under the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

Forward-Looking Statements

This release may contain forward-looking statements. Forward-looking statements are statements that are not historical facts and are generally, but not always, identified by the words expects, plans, anticipates, believes, intends, estimates, projects, potential, and similar expressions, or that events or conditions will, would, may, could, or should occur. Although Hemostemix believes the expectations expressed in such forward-looking statements are based on reasonable assumptions, such statements are not guarantees of future performance and actual results may differ materially from those in forward-looking statements. Forward-looking statements are based on the beliefs, estimates, and opinions of Hemostemix management on the date such statements were made. By their nature forward-looking statements are subject to known and unknown risks, uncertainties, and other factors which may cause actual results, events or developments to be materially different from any future results, events or developments expressed or implied by such forward-looking statements. Such factors include, but are not limited to, the Companys ability to fund operations and access the capital required to continue operations and repay its secured debts, the Companys stage of development, the ability to complete its current CLI clinical trial, complete a futility analysis and the results of such, future clinical trials and results, long-term capital requirements and future developments in the Companys markets and the markets in which it expects to compete, risks associated with its strategic alliances and the impact of entering new markets on the Companys operations. Each factor should be considered carefully and readers are cautioned not to place undue reliance on such forward-looking statements. Hemostemix expressly disclaims any intention or obligation to update or revise any forward-looking statements whether as a result of new information, future events, or otherwise. Additional information identifying risks and uncertainties are contained in the Companys filing with the Canadian securities regulators, which filings are available at http://www.sedar.com.

View post:
Hemostemix Announces the Appointment of Dr. Ronnie Hershman to the Board of Directors and Provides a Corporate Update - BioSpace

To Read More: Hemostemix Announces the Appointment of Dr. Ronnie Hershman to the Board of Directors and Provides a Corporate Update – BioSpace
categoriaCardiac Stem Cells commentoComments Off on Hemostemix Announces the Appointment of Dr. Ronnie Hershman to the Board of Directors and Provides a Corporate Update – BioSpace | dataFebruary 10th, 2020
Read All

Autologous Stem Cell and Non-Stem Cell Based Therapies Market 2020-2025 Business Analysis || Leading Players Fibrocell, Genesis Biopharma, Georgia…

By daniellenierenberg

The Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market is expected to reach USD113.04 billion by 2025, from USD 87.59 billion in 2017 growing at a CAGR of 3.7% during the forecast period of 2018 to 2025. The upcoming market report contains data for historic years 2015 & 2016, the base year of calculation is 2017 and the forecast period is 2018 to 2025.

Get Exclusive FREE Sample Copy of This Report Herehttps://www.databridgemarketresearch.com/request-a-sample?dbmr=global-autologous-stem-cell-and-non-stem-cell-based-therapies-market

Some of the major players operating in the global autologous stem cell and non-stem cell based therapies market are Antria (Cro), Bioheart, Brainstorm Cell Therapeutics, Cytori, Dendreon Corporation, Fibrocell, Genesis Biopharma, Georgia Health Sciences University, Neostem, Opexa Therapeutics, Orgenesis, Regenexx, Regeneus, Tengion, Tigenix, Virxsys and many more.

Autologous Stem Cell and Non-Stem Cell Based Therapies market analysis document contains basic, secondary and advanced information related to the global status, recent trends, market size, sales volume, market share, growth, future trends analysis, segment and forecasts from 2020 2025. Market research data included in this report lend a hand to businesses for planning of strategies related to investment, revenue generation, production, product launches, costing, inventory, purchasing and marketing. Furthermore, Autologous Stem Cell and Non-Stem Cell Based Therapies report presents the data and information for actionable, most recent, and real-time market insights which makes it easier to even reach to the critical business decisions.

To Get This Report at an Attractive Cost, Click Herehttps://www.databridgemarketresearch.com/inquire-before-buying?dbmr=global-autologous-stem-cell-and-non-stem-cell-based-therapies-market&raksh

Market Definition:Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market

In autologous stem-cell transplantation persons own undifferentiated cells or stem cells are collected and transplanted back to the person after intensive therapy. These therapies are performed by means of hematopoietic stem cells, in some of the cases cardiac cells are used to fix the damages caused due to heart attacks.

The autologous stem cell and non-stem cell based therapies are used in the treatment of various diseases such as neurodegenerative diseases, cardiovascular diseases, cancer and autoimmune diseases, infectious disease. According to World Health Organization (WHO), cardiovascular disease (CVD) causes more than half of all deaths across the European Region. The disease leads to death or frequently it is caused by AIDS, tuberculosis and malaria combined in Europe.

With the prevalence of cancer and diabetes in all age groups globally the need of steam cell based therapies is increasing, according to article published by the US National Library of Medicine National Institutes of Health, it was reported that around 382 million people had diabetes in 2013 and the number is growing at alarming rate which has increased the need to improve treatment and therapies regarding the diseases.

Market Segmentation:Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market

Major Autologous Stem Cell and Non-Stem Cell Based Therapies Market Drivers and Restraints:

Competitive Analysis:Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market

The global autologous stem cell and non-stem cell based therapies market is highly fragmented and the major players have used various strategies such as new product launches, expansions, agreements, joint ventures, partnerships, acquisitions, and others to increase their footprints in this market. The report includes market shares of autologous stem cell and non-stem cell based therapies market for global, Europe, North America, Asia Pacific and South America.

Read Complete Details with TOC Herehttps://www.databridgemarketresearch.com/toc?dbmr=global-autologous-stem-cell-and-non-stem-cell-based-therapies-market&raksh

About Data Bridge Market Research:

Data Bridge Market Researchis a versatile market research and consulting firm with over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Our coverage of industries include Medical Devices, Pharmaceuticals, Biotechnology, Semiconductors, Machinery, Information and Communication Technology, Automobiles and Automotive, Chemical and Material, Packaging, Food and Beverages, Cosmetics, Specialty Chemicals, Fast Moving Consumer Goods, Robotics, among many others.

Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude.We are content with our glorious 99.9 % client satisfying rate.

Contact Us

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475Mail:[emailprotected]

Tags: 2020 Autologous Stem Cell and Non-Stem Cell Based Therapies Market AnalysisAutologous Stem Cell and Non-Stem Cell Based TherapiesAutologous Stem Cell and Non-Stem Cell Based Therapies MARKETAutologous Stem Cell and Non-Stem Cell Based Therapies Market Analysis in Developed CountriesAutologous Stem Cell and Non-Stem Cell Based Therapies Market by ApplicationAutologous Stem Cell and Non-Stem Cell Based Therapies Market by TypeAutologous Stem Cell and Non-Stem Cell Based Therapies Market DevelopmentAutologous Stem Cell and Non-Stem Cell Based Therapies Market Evolving Opportunities With Top Industry ExpertsAutologous Stem Cell and Non-Stem Cell Based Therapies MARKET FORECASTAutologous Stem Cell and Non-Stem Cell Based Therapies Market Forecast to 2025Autologous Stem Cell and Non-Stem Cell Based Therapies Market Future InnovationAutologous Stem Cell and Non-Stem Cell Based Therapies Market Future TrendsAutologous Stem Cell and Non-Stem Cell Based Therapies Market Google NewsAutologous Stem Cell and Non-Stem Cell Based Therapies Market Growing Demand and Growth OpportunityAutologous Stem Cell and Non-Stem Cell Based Therapies Market in AsiaAutologous Stem Cell and Non-Stem Cell Based Therapies Market in AustraliaAutologous Stem Cell and Non-Stem Cell Based Therapies Market in EuropeAutologous Stem Cell and Non-Stem Cell Based Therapies Market in FranceAutologous Stem Cell and Non-Stem Cell Based Therapies Market in GermanyAutologous Stem Cell and Non-Stem Cell Based Therapies Market in Key CountriesAutologous Stem Cell and Non-Stem Cell Based Therapies Market in United KingdomAutologous Stem Cell and Non-Stem Cell Based Therapies Market is BoomingAutologous Stem Cell and Non-Stem Cell Based Therapies Market is Emerging Industry in Developing CountriesAutologous Stem Cell and Non-Stem Cell Based Therapies Market Latest ReportAutologous Stem Cell and Non-Stem Cell Based Therapies Market Rising TrendsAutologous Stem Cell and Non-Stem Cell Based Therapies MARKET SIZEAutologous Stem Cell and Non-Stem Cell Based Therapies Market Size in United StatesAutologous Stem Cell and Non-Stem Cell Based Therapies Market SWOT AnalysisAutologous Stem Cell and Non-Stem Cell Based Therapies Market UpdatesGlobal Autologous Stem Cell and Non-Stem Cell Based Therapies MarketGoogle News

The rest is here:
Autologous Stem Cell and Non-Stem Cell Based Therapies Market 2020-2025 Business Analysis || Leading Players Fibrocell, Genesis Biopharma, Georgia...

To Read More: Autologous Stem Cell and Non-Stem Cell Based Therapies Market 2020-2025 Business Analysis || Leading Players Fibrocell, Genesis Biopharma, Georgia…
categoriaCardiac Stem Cells commentoComments Off on Autologous Stem Cell and Non-Stem Cell Based Therapies Market 2020-2025 Business Analysis || Leading Players Fibrocell, Genesis Biopharma, Georgia… | dataFebruary 10th, 2020
Read All

Reviewing National Research (NASDAQ:NRC) and US Stem Cell (NASDAQ:USRM) – Slater Sentinel

By daniellenierenberg

National Research (NASDAQ:NRC) and US Stem Cell (OTCMKTS:USRM) are both small-cap business services companies, but which is the better investment? We will compare the two businesses based on the strength of their earnings, dividends, valuation, profitability, institutional ownership, risk and analyst recommendations.

Analyst Recommendations

This is a breakdown of current ratings and target prices for National Research and US Stem Cell, as reported by MarketBeat.

Valuation & Earnings

This table compares National Research and US Stem Cells revenue, earnings per share (EPS) and valuation.

National Research has higher revenue and earnings than US Stem Cell.

Institutional & Insider Ownership

39.6% of National Research shares are owned by institutional investors. 4.5% of National Research shares are owned by company insiders. Comparatively, 16.7% of US Stem Cell shares are owned by company insiders. Strong institutional ownership is an indication that large money managers, hedge funds and endowments believe a company is poised for long-term growth.

Profitability

This table compares National Research and US Stem Cells net margins, return on equity and return on assets.

Risk & Volatility

National Research has a beta of 0.77, indicating that its stock price is 23% less volatile than the S&P 500. Comparatively, US Stem Cell has a beta of 5.08, indicating that its stock price is 408% more volatile than the S&P 500.

Summary

National Research beats US Stem Cell on 7 of the 9 factors compared between the two stocks.

National Research Company Profile

National Research Corporation (NRC) is a provider of analytics and insights that facilitate revenue growth, patient, employee and customer retention and patient engagement for healthcare providers, payers and other healthcare organizations. The Companys portfolio of subscription-based solutions provides information and analysis to healthcare organizations and payers across a range of mission-critical, constituent-related elements, including patient experience and satisfaction, community population health risks, workforce engagement, community perceptions, and physician engagement. The Companys clients range from acute care hospitals and post-acute providers, such as home health, long term care and hospice, to numerous payer organizations. The Company derives its revenue from its annually renewable services, which include performance measurement and improvement services, healthcare analytics and governance education services.

US Stem Cell Company Profile

U.S. Stem Cell, Inc., a biotechnology company, focuses on the discovery, development, and commercialization of autologous cellular therapies for the treatment of chronic and acute heart damage, and vascular and autoimmune diseases in the United States and internationally. Its lead product candidates include MyoCell, a clinical therapy designed to populate regions of scar tissue within a patient's heart with autologous muscle cells or cells from a patient's body for enhancing cardiac function in chronic heart failure patients; and AdipoCell, a patient-derived cell therapy for the treatment of acute myocardial infarction, chronic heart ischemia, and lower limb ischemia. The company's product development pipeline includes MyoCell SDF-1, an autologous muscle-derived cellular therapy for improving cardiac function in chronic heart failure patients. It is also developing MyoCath, a deflecting tip needle injection catheter that is used to inject cells into cardiac tissue in therapeutic procedures to treat chronic heart ischemia and congestive heart failure. In addition, the company provides physician and patient based regenerative medicine/cell therapy training, cell collection, and cell storage services; and cell collection and treatment kits for humans and animals, as well operates a cell therapy clinic. The company was formerly known as Bioheart, Inc. and changed its name to U.S. Stem Cell, Inc. in October 2015. U.S. Stem Cell, Inc. was founded in 1999 and is headquartered in Sunrise, Florida.

Receive News & Ratings for National Research Daily - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings for National Research and related companies with MarketBeat.com's FREE daily email newsletter.

Go here to read the rest:
Reviewing National Research (NASDAQ:NRC) and US Stem Cell (NASDAQ:USRM) - Slater Sentinel

To Read More: Reviewing National Research (NASDAQ:NRC) and US Stem Cell (NASDAQ:USRM) – Slater Sentinel
categoriaCardiac Stem Cells commentoComments Off on Reviewing National Research (NASDAQ:NRC) and US Stem Cell (NASDAQ:USRM) – Slater Sentinel | dataFebruary 9th, 2020
Read All

Reviewing US Stem Cell (OTCMKTS:USRM) & National Research (OTCMKTS:NRC) – Riverton Roll

By daniellenierenberg

National Research (NASDAQ:NRC) and US Stem Cell (OTCMKTS:USRM) are both small-cap business services companies, but which is the superior business? We will compare the two businesses based on the strength of their earnings, dividends, risk, institutional ownership, profitability, analyst recommendations and valuation.

Volatility & Risk

National Research has a beta of 0.77, indicating that its share price is 23% less volatile than the S&P 500. Comparatively, US Stem Cell has a beta of 5.08, indicating that its share price is 408% more volatile than the S&P 500.

Earnings and Valuation

This table compares National Research and US Stem Cells revenue, earnings per share and valuation.

National Research has higher revenue and earnings than US Stem Cell.

Analyst Ratings

This is a summary of recent recommendations and price targets for National Research and US Stem Cell, as reported by MarketBeat.com.

Insider and Institutional Ownership

39.6% of National Research shares are held by institutional investors. 4.5% of National Research shares are held by insiders. Comparatively, 16.7% of US Stem Cell shares are held by insiders. Strong institutional ownership is an indication that endowments, hedge funds and large money managers believe a stock is poised for long-term growth.

Profitability

This table compares National Research and US Stem Cells net margins, return on equity and return on assets.

Summary

National Research beats US Stem Cell on 7 of the 9 factors compared between the two stocks.

National Research Company Profile

National Research Corporation (NRC) is a provider of analytics and insights that facilitate revenue growth, patient, employee and customer retention and patient engagement for healthcare providers, payers and other healthcare organizations. The Companys portfolio of subscription-based solutions provides information and analysis to healthcare organizations and payers across a range of mission-critical, constituent-related elements, including patient experience and satisfaction, community population health risks, workforce engagement, community perceptions, and physician engagement. The Companys clients range from acute care hospitals and post-acute providers, such as home health, long term care and hospice, to numerous payer organizations. The Company derives its revenue from its annually renewable services, which include performance measurement and improvement services, healthcare analytics and governance education services.

US Stem Cell Company Profile

U.S. Stem Cell, Inc., a biotechnology company, focuses on the discovery, development, and commercialization of autologous cellular therapies for the treatment of chronic and acute heart damage, and vascular and autoimmune diseases in the United States and internationally. Its lead product candidates include MyoCell, a clinical therapy designed to populate regions of scar tissue within a patient's heart with autologous muscle cells or cells from a patient's body for enhancing cardiac function in chronic heart failure patients; and AdipoCell, a patient-derived cell therapy for the treatment of acute myocardial infarction, chronic heart ischemia, and lower limb ischemia. The company's product development pipeline includes MyoCell SDF-1, an autologous muscle-derived cellular therapy for improving cardiac function in chronic heart failure patients. It is also developing MyoCath, a deflecting tip needle injection catheter that is used to inject cells into cardiac tissue in therapeutic procedures to treat chronic heart ischemia and congestive heart failure. In addition, the company provides physician and patient based regenerative medicine/cell therapy training, cell collection, and cell storage services; and cell collection and treatment kits for humans and animals, as well operates a cell therapy clinic. The company was formerly known as Bioheart, Inc. and changed its name to U.S. Stem Cell, Inc. in October 2015. U.S. Stem Cell, Inc. was founded in 1999 and is headquartered in Sunrise, Florida.

Receive News & Ratings for National Research Daily - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings for National Research and related companies with MarketBeat.com's FREE daily email newsletter.

Follow this link:
Reviewing US Stem Cell (OTCMKTS:USRM) & National Research (OTCMKTS:NRC) - Riverton Roll

To Read More: Reviewing US Stem Cell (OTCMKTS:USRM) & National Research (OTCMKTS:NRC) – Riverton Roll
categoriaCardiac Stem Cells commentoComments Off on Reviewing US Stem Cell (OTCMKTS:USRM) & National Research (OTCMKTS:NRC) – Riverton Roll | dataFebruary 8th, 2020
Read All

AI is transforming healthcare as we know it: Arab Health 2020 – Euronews

By daniellenierenberg

The recent outbreak of the coronavirus has shown us that our global health system is only as strong as its weakest link.

The key to stemming the spread of such illnesses lies in bolstering connectivity and communication between health bodies and thats precisely the theme here at Arab Health 2020.

Artificial intelligence means medical bodies can link up their data and act quickly in a crisis.

"As emergency physicians and practitioners were often on the frontline. But Ill give you an example of how technology and AI may help outbreaks, not just Coronavirus, but for seasonal influenza," says Dr Jacques Kobersy, emergency medicine institute chair, Cleveland Hospital Abu Dhabi.

"When you have an organisation like WHO who are alerted to the fact that there is some new virus circulating, Artificial intelligence might give us the opportunity to flag that those unusual symptoms are occurring way before human clinicians and departments of health realize it. And help us get ahead of these sort of pandemics maybe a month or so ahead of time before they really fester."

55,000 attendees from 159 countries have touched down in Dubai to showcase and learn about the life-changing and groundbreaking technologies poised to transform healthcare as we know it.

Autonomous ambulances

Soon, AI could make autonomous ambulances that automatically arrive at a patients house as soon as somethings wrong.

"We call it a smart ambulance. The high-risk patient, they will start to wear wearable devices. Let's say something happened to that patient. These devices will start to send all the vital data to the system and the hospital. So the physician, he can monitor all the data and monitor the patient 24 hour," says Dr Rashid al Hashimi - youth council member, UAE ministry of health (mohap).

In the future, the ambulance will be auto-drive. So it will go directly to the patient. While they are moving all these signals will be green for them.

When the patient enters the ambulance, there will be some high-resolution cameras. They will detect the patient's face and will give all the data which is very important for the rescuers to help the patient.

While they are going to the hospital, there will be like a virtual doctor inside the ambulance.

AI implants

AI is already powering implants that can monitor patients vitals around the clock.

"We can put devices under the skin and telemonitor heart patients even at home. We have put this device on 30 patients," says Dr Noor al Muhairi, head of medical services, hospital dept (mohap).

"One of them was in London. And we saw that we have an abnormality in his heart. And we called them directly and told him, go to the nearest hospital and this saved him."

And unprecedented advancements in stem-cell research mean damaged heart cells can now be regrown.

"In treatment, we collaborated with Osaka University, where they have done a study on stem cells that have been generated to cardiac cells. You can bring stem cells to make the heart cells regenerate," says Dr Muhairi.

"So this is one of the latest technology in heart treatment and in collaboration with Japan, we are going to do a clinical study here in the Ministry of Health."

Analysing wounds

Meanwhile, image analysis of wounds using machine learning can now prevent amputations caused by diseases like diabetes.

"This machine is checking the healing process for the diabetic foot. It will give us the results within 30 seconds. We are just scanning for the wound.2

"There is information going back 15 years in this machine. So it will check with other types of wound and it will analyze for us exactly the problem. We can prevent amputations from the complication of diabetes," says Dr Halima el Shehhi, the emergency department unit manager at the ministry of health and prevention, UAE.

Whether it's artificial intelligence, new equipment, new abilities to analyze patients and treat them, things that we could only imagine a few years ago now have come to fruition.

Soon the days of treating illnesses after they occur will give way to an age of truly preventative healthcare.

Go here to see the original:
AI is transforming healthcare as we know it: Arab Health 2020 - Euronews

To Read More: AI is transforming healthcare as we know it: Arab Health 2020 – Euronews
categoriaCardiac Stem Cells commentoComments Off on AI is transforming healthcare as we know it: Arab Health 2020 – Euronews | dataFebruary 7th, 2020
Read All

Maybe Memorizing the Krebs Cycle Was Worthwhile After All – Medscape

By daniellenierenberg

Like most medical students, I struggled to memorize the Krebs cycle, the complex energy-producing process that takes place in the body's mitochondria. Rote learning of Sir Hans Krebs' eponymous cascade of reactions persists and has been cited as a waste of time in modern medical education. However, it looks like that specialized knowledge about mitochondrial structure and function may finally come in handy in the clinic.

Advances in genetics have contributed to improved diagnostic accuracy of a diverse spectrum of mitochondrial disorders. Respiratory chain, nuclear gene, and mitochondrial proteome mutations can lead to multisystem or organ-specific dysfunction.

A new potential treatment for mitochondrial disorders, elamipretide, has received orphan drug designation from the US Food and Drug Administration (FDA) and is in clinical trials sponsored by Stealth Biotherapeutics. [Dr Wilner has consulted for Stealth Biotherapeutics.] Recently I had the opportunity to interview Hilary Vernon, MD, PhD, associate professor of genetic medicine at Johns Hopkins University, Baltimore, Maryland, and an expert on mitochondrial disorders. Dr Vernon discussed her research on elamipretide as a treatment for Barth syndrome, a rare form of mitochondrial disease.

I am the director of the Mitochondrial Medicine Center at Johns Hopkins Hospital. I work with individuals from infancy through adulthood who have mitochondrial conditions. I became interested in this particular area when I was early in my pediatrics/genetics residency at Johns Hopkins and saw the toll that mitochondrial disorders took on patients' lives and the limited effective therapies. At that point, I decided to focus on patient care and research in this area.

Mitochondrial disorders can be difficult to recognize because of their inherent multisystem nature and variable presentations (even between affected members of the same family). However, there are several considerations that should raise a clinician's suspicion for a mitochondrial condition. Ascertaining a family history of disease inheritance through the maternal line can raise the suspicion for a mitochondrial DNA disorder. Identification of a combination of medical issues in different organ systems that are seemingly unrelated in an individual (ie, optic atrophy and muscle weakness or diabetes and hearing loss) can also raise suspicion for a mitochondrial condition.

Due to the nature of mitochondria as the major energy producers of the cells, high-energy-requiring tissues such as the brain and the muscles are often affected. Perhaps the best known mitochondrial diseases to neurologists are MELAS (mitochondrial encephalopathy, lactic acidosis, and stroke) as well as MERFF (myoclonic epilepsy with ragged red fibers). There is a nice body of literature on the effects of arginine and citrulline in modifying stroke-like episodes in MELAS, and this is a therapy that is in current practice.

Mitochondria are complex organelles whose structure and function are encoded in hundreds of genes originating from both the nucleus of the cell and the mitochondria themselves. Mitochondria have many key roles in cellular function, including energy production through the respiratory chain, coordination of apoptosis, nitrogen metabolism, fatty acid oxidation, and much more.

Various cofactors and vitamins can be employed to improve mitochondrial function for different reasons. For example, if a specific enzyme is dysfunctional, supplying the cofactor for that enzyme may improve its function (ie, pyruvate dehydrogenase and thiamine). Antioxidants have also been considered to help reduce the oxidant load that could potentially cause ongoing damage to the mitochondrial membrane resulting from respiratory chain dysfunction (ie, coenzyme Q-10).

It is important to remember that the highest number of individual mitochondrial disorders result from mutations in genes located in the nuclear DNA. For example, the TAZ gene that is abnormal in Barth syndrome is a nuclear gene located on the X chromosome. These genes are amenable to the "regular" approaches to gene therapy.

Targeting mitochondrial DNA for gene therapy requires a different set of approaches because the gene delivery has to overcome the barrier of the mitochondrial membranes. However, research is ongoing to overcome these obstacles.

Barth syndrome is a very rare genetic X-linked disorder that usually only affects males. The genetic defect leads to an abnormal composition of cardiolipin on the inner mitochondrial membrane. Cardiolipin is an important phospholipid involved in many mitochondrial functions, including organization of inner mitochondrial membrane cristae, involvement in apoptosis, and organization of the respiratory chain (which is responsible for producing ATP via the process of oxidative phosphorylation), and many of these functions are abnormal in Barth syndrome. Individuals with Barth syndrome typically have early-onset cardiomyopathy, myopathy, intermittent neutropenia, fatigue, poor early growth, among other health concerns.

Early in my post-residency career, I followed several patients with Barth syndrome and was quickly welcomed into the Barth syndrome community by the families and the Barth Syndrome Foundation. From there, I founded the only interdisciplinary Barth syndrome clinic in the US and began to focus a significant amount of my clinical and laboratory research on this condition.

Most commonly, these individuals come to medical attention because of cardiomyopathy, but a minority of patients do come to attention due to repeated infections and neutropenia. Patients were identified for study participation through the Barth Syndrome Foundation or because they were already patients of my study team.

All participants were known to have Barth syndrome prior to study entry, and all had confirmatory genetic testing showing a pathogenic mutation in the TAZ gene.

By binding to cardiolipin in the inner mitochondrial membrane, elamipretide is believed to stabilize cristae architecture and electron transport chain structure during oxidative stress. I thought it would be great if this could help to stabilize the abnormal cardiolipin components on the inner mitochondrial membrane in Barth syndrome.

We observed improvements in several areas across the study population in the open-label extension part of the study. This includes a significant improvement in exercise performance (as measured by the 6-minute walk test, with an average improvement of 95.9 meters at 36 weeks) and a significant improvement in muscle strength. We also observed a potential improvement in cardiac stroke volume. Most of the adverse events were local injection-site reactions and were mild to moderate in nature.

The TAZPOWER trial has an ongoing open-label extension with the same endpoints as the placebo-controlled portion evaluated on an ongoing basis. In addition, in my laboratory, we are using induced pluripotent stem cells to learn more about how cardiolipin abnormalities affect different cell types in an effort to understand the tissue specificity of disease. This will help us to understand whether different aspects of Barth syndrome would necessitate individual management or clinical monitoring strategies.

Mitochondrial inner membrane dysfunction is increasingly recognized as a major aspect of the pathology of a wide range of mitochondrial conditions. Therefore, based on the role of stabilizing mitochondrial membrane components, elamipretide has a potential role in many disorders of the mitochondria.

Yes, this is what we would call "secondary mitochondrial dysfunction" (meant to differentiate from "primary mitochondrial disease," which is caused by defects in genes that encode for mitochondrial structure and function). Approaches intended to protect the mitochondria from further damage, such as antioxidants or strategies that can bypass the mitochondria for ATP production, could overlap as treatment for primary mitochondrial disease and secondary mitochondrial dysfunction.

This is something that is much discussed as a newer consideration for families who are affected by disorders of the mitochondrial DNA, but not something I have experience with firsthand.

Yes. The United Mitochondrial Disease Foundation and the Mitochondrial Medicine Society collaborated to develop the Mito Care Network, with 19 sites identified as Mitochondrial Medicine Centers across the US.

Andrew Wilner is an associate professor of neurology at the University of Tennessee Health Science Center in Memphis, a health journalist, and an avid SCUBA diver. His latest book is The Locum Life: A Physician's Guide to Locum Tenens.

Follow Dr Wilner on Twitter

Follow Medscape on Facebook, Twitter, Instagram, and YouTube

Read the original:
Maybe Memorizing the Krebs Cycle Was Worthwhile After All - Medscape

To Read More: Maybe Memorizing the Krebs Cycle Was Worthwhile After All – Medscape
categoriaCardiac Stem Cells commentoComments Off on Maybe Memorizing the Krebs Cycle Was Worthwhile After All – Medscape | dataFebruary 7th, 2020
Read All

Stem Cell Therapy Market Trends and Growth, Outlook, Research, Trends and Forecast to 2025 – Instant Tech News

By daniellenierenberg

Stem Cell Therapy Market: Snapshot

Of late, there has been an increasing awareness regarding the therapeutic potential of stem cells for management of diseases which is boosting the growth of the stem cell therapy market. The development of advanced genome based cell analysis techniques, identification of new stem cell lines, increasing investments in research and development as well as infrastructure development for the processing and banking of stem cell are encouraging the growth of the global stem cell therapy market.

To know Untapped Opportunities in the MarketCLICK HERE NOW

One of the key factors boosting the growth of this market is the limitations of traditional organ transplantation such as the risk of infection, rejection, and immunosuppression risk. Another drawback of conventional organ transplantation is that doctors have to depend on organ donors completely. All these issues can be eliminated, by the application of stem cell therapy. Another factor which is helping the growth in this market is the growing pipeline and development of drugs for emerging applications. Increased research studies aiming to widen the scope of stem cell will also fuel the growth of the market. Scientists are constantly engaged in trying to find out novel methods for creating human stem cells in response to the growing demand for stem cell production to be used for disease management.

It is estimated that the dermatology application will contribute significantly the growth of the global stem cell therapy market. This is because stem cell therapy can help decrease the after effects of general treatments for burns such as infections, scars, and adhesion. The increasing number of patients suffering from diabetes and growing cases of trauma surgery will fuel the adoption of stem cell therapy in the dermatology segment.

Global Stem Cell Therapy Market: Overview

Also called regenerative medicine, stem cell therapy encourages the reparative response of damaged, diseased, or dysfunctional tissue via the use of stem cells and their derivatives. Replacing the practice of organ transplantations, stem cell therapies have eliminated the dependence on availability of donors. Bone marrow transplant is perhaps the most commonly employed stem cell therapy.

Osteoarthritis, cerebral palsy, heart failure, multiple sclerosis and even hearing loss could be treated using stem cell therapies. Doctors have successfully performed stem cell transplants that significantly aid patients fight cancers such as leukemia and other blood-related diseases.

Get Discount on Latest Report @CLICK HERE NOW

Global Stem Cell Therapy Market: Key Trends

The key factors influencing the growth of the global stem cell therapy market are increasing funds in the development of new stem lines, the advent of advanced genomic procedures used in stem cell analysis, and greater emphasis on human embryonic stem cells. As the traditional organ transplantations are associated with limitations such as infection, rejection, and immunosuppression along with high reliance on organ donors, the demand for stem cell therapy is likely to soar. The growing deployment of stem cells in the treatment of wounds and damaged skin, scarring, and grafts is another prominent catalyst of the market.

On the contrary, inadequate infrastructural facilities coupled with ethical issues related to embryonic stem cells might impede the growth of the market. However, the ongoing research for the manipulation of stem cells from cord blood cells, bone marrow, and skin for the treatment of ailments including cardiovascular and diabetes will open up new doors for the advancement of the market.

Global Stem Cell Therapy Market: Market Potential

A number of new studies, research projects, and development of novel therapies have come forth in the global market for stem cell therapy. Several of these treatments are in the pipeline, while many others have received approvals by regulatory bodies.

In March 2017, Belgian biotech company TiGenix announced that its cardiac stem cell therapy, AlloCSC-01 has successfully reached its phase I/II with positive results. Subsequently, it has been approved by the U.S. FDA. If this therapy is well- received by the market, nearly 1.9 million AMI patients could be treated through this stem cell therapy.

Another significant development is the granting of a patent to Israel-based Kadimastem Ltd. for its novel stem-cell based technology to be used in the treatment of multiple sclerosis (MS) and other similar conditions of the nervous system. The companys technology used for producing supporting cells in the central nervous system, taken from human stem cells such as myelin-producing cells is also covered in the patent.

Global Stem Cell Therapy Market: Regional Outlook

The global market for stem cell therapy can be segmented into Asia Pacific, North America, Latin America, Europe, and the Middle East and Africa. North America emerged as the leading regional market, triggered by the rising incidence of chronic health conditions and government support. Europe also displays significant growth potential, as the benefits of this therapy are increasingly acknowledged.

Asia Pacific is slated for maximum growth, thanks to the massive patient pool, bulk of investments in stem cell therapy projects, and the increasing recognition of growth opportunities in countries such as China, Japan, and India by the leading market players.

Request TOC of the Reportfor more Industry Insights @CLICK HERE NOW

Global Stem Cell Therapy Market: Competitive Analysis

Several firms are adopting strategies such as mergers and acquisitions, collaborations, and partnerships, apart from product development with a view to attain a strong foothold in the global market for stem cell therapy.

Some of the major companies operating in the global market for stem cell therapy are RTI Surgical, Inc., MEDIPOST Co., Ltd., Osiris Therapeutics, Inc., NuVasive, Inc., Pharmicell Co., Ltd., Anterogen Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Holostem Terapie Avanzate S.r.l.

About TMR Research:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Read this article:
Stem Cell Therapy Market Trends and Growth, Outlook, Research, Trends and Forecast to 2025 - Instant Tech News

To Read More: Stem Cell Therapy Market Trends and Growth, Outlook, Research, Trends and Forecast to 2025 – Instant Tech News
categoriaCardiac Stem Cells commentoComments Off on Stem Cell Therapy Market Trends and Growth, Outlook, Research, Trends and Forecast to 2025 – Instant Tech News | dataFebruary 6th, 2020
Read All

Hyperbaric oxygen therapy can improve cardiac function in healthy, aging – The Jerusalem Post

By daniellenierenberg

Hyperbaric oxygen therapy (HBOT) can improve heart functionality in healthy aging humans, according to a study by the Sagol Center for Hyperbaric Medicine and Research at Shamir Medical Center in Beer Yaacov.In this study, director of the Sagol Center for Hyperbaric Medicine and Research at Shamir Medical Center Prof. Shai Efrati and Dr. Marina Leitman, head of the Echocardiography Unit and Noninvasive Cardiology Service at Shamir Medical Center, turned their attention to HBOTs impact on cardiac function.According to the center, the study of HBOT for cardiac function has been limited, mostly evaluating patients during and after short-term exposures. However, for the first time, the study was conducted in humans and it demonstrated that repetitive HBOT protocols have a sustained effect on heart function.Healthy patients receiving HBOT to improve cognitive function underwent a 60-session treatment course using the Sagol Centers regenerative HBOT protocols. Using a high-resolution echocardiography, 31 patients were evaluated before HBOT was administered and three weeks after treatment concluded to identify the sustained effect of the treatment.HBOT includes the inhalation of 100% oxygen at pressures exceeding one atmosphere absolute [ATA], which is the average atmospheric pressure exerted at sea level, in order to increase the amount of oxygen dissolved in the body tissues, Efrati told The Jerusalem Post.Efrati, who has been pioneering new approaches for the application of HBOT treatments that specifically focus on HBOTs ability to trigger regeneration in the body, said that in the past HBOT was used mostly to treat chronic non-healing wounds.In recent years, there is growing evidence on the regenerative effects of HBOT, he said. We have now realized that the combined action of both hyperoxia (an excess of oxygen in the body) and hyperbaric pressure, leads to significant improvement in tissue oxygenation while targeting both oxygen and pressure sensitive genes, resulting in improved mitochondrial metabolism with anti-apoptotic (anti-cell death) and anti-inflammatory effects.According to Efrati, the newly developed protocols used in this study, which includes the intermittent increasing and decreasing of oxygen concentration, induces what is known as the Hyperoxic Hypoxic Paradox.This, he said induces stem cells proliferation and mobilization, leading to the generation of new blood vessels (angiogenesis) and tissue regeneration.Efrati said that during the first studies they conducted at the Sagol Center, they evaluated the beneficial effects of HBOT in treating traumatic brain injury and stroke. However, in this study we evaluated for the first time the effect of these new regenerative HBOT protocols on the normal aging heart. For the first time in humans we have demonstrated that HBOT can improve cardiac function.Efrati said for the last 12 years his team has developed an ongoing research program that investigates the regenerative effects of HBOT on different issues and degrees of damage. At the beginning we were focused on non-healing peripheral wounds. Then, we turned our focus to certain types of brain injuries.However, once the researchers found that HBOT induced many of the essential elements crucial to repairing almost any mechanism, we initiated a complementary research program that targets other organs such as the heart and other elements related to expected age-related functional decline.Along with normal aging, there is typically a decrease in cardiac function particularly in the mitochondrial cells of the heart, Efrati said.The mitochondria are the powerhouse of the cell [and] this is where we create energy, he said. HBOTs ability to improve mitochondrial function may explain the beneficial effects that we saw in the cardiac function of this normal aging population.By exposing the mitochondria to the fluctuations in oxygen by the use of HBOT, the team observed an improvement in contractility function of the heart meaning, the heart muscle contracted more efficiency over the course of the 60-session protocol.Efrati said the effect was particularly evident in the left ventricle, which is the chamber responsible for pumping oxygenated blood to the rest of the body.This is only the beginning of our understanding of the impact of HBOT on cardiac function in a normally aging population, and a larger and more diverse cohort will be required to further evaluate our initial findings, he said.Asked whether this treatment could also be used on people who are predisposed to heart conditions, Efrati said the short answer is yes, but he stressed that more research is needed.As far as we know, we are the first to identify HBOTs ability to improve cardiac function, Efrati said. Our study was on a group of 31 asymptomatic normal aging heart patients.We believe it is important to expand the scope of this study to a larger group, with both symptomatic and asymptomatic patients to understand the possibilities for HBOT as a treatment for patients with heart-related diseases, he said.The Sagol Center has also been studying the impact of HBOT on a variety of cognitive conditions.We have also conducted studies which showed positive results for the treatment of post-concussion syndrome as a result of traumatic brain injury, post-stroke recovery, fibromyalgia, Efrati said, adding that today, medical professionals understand that fibromyalgia is linked to issues in the brain center responsible for pain interpretation.Not every patient will benefit from HBOT, which is why patient selection should be done very carefully based on the damage seen in brain imaging assessments, he said.For example, if someone has a stroke, some of the tissue at the core of the stroke will die we will not be able to recover this tissue, Efrati said. But, other tissue that is damaged but not fully dead... is where HBOT can help.This damaged tissue, known as the metabolic dysfunction tissue (penumbra), is where we can have an impact and help recover lost function, he said.On the time line as to when using HBOT protocols may be put into effect on healthy aging patients in Israel, Efrati said these studies are already ongoing.I cant speak too much about this, as we are in the process of developing the results of the first study for publication, he said. However, we believe HBOT can positively impact both cognitive and physical performance in aging adults based on what we have seen at this point.Efrati said they will continue pursuing this line of research as it has the ability to transform how we look at aging.A number of research collaborations are ongoing, including research on cognitive decline, fibromyalgia and PTSD, he said.In addition, we have an ongoing research program on athletic performance both in professional and amateur level athletes, which looks at how HBOT may further improve performance, he said. Finally, we are studying the impact of HBOT on healthy aging adults to understand how HBOT may improve our health and cognitive performance as we age.When you look at aging as a disease that can be measured, then it can be treated, and this is a serious area of investigation for us, Efrati said.The study, led by Dr. Marina Leitman, Dr. Shmuel Fuchs, Dr. Amir Hadanny, Dr. Zvi Vered and Efrati, was published in the International Journal of Cardiovascular Imaging.

Follow this link:
Hyperbaric oxygen therapy can improve cardiac function in healthy, aging - The Jerusalem Post

To Read More: Hyperbaric oxygen therapy can improve cardiac function in healthy, aging – The Jerusalem Post
categoriaCardiac Stem Cells commentoComments Off on Hyperbaric oxygen therapy can improve cardiac function in healthy, aging – The Jerusalem Post | dataFebruary 4th, 2020
Read All

Striving for higher res imaging of cells, Harvard team debuts startup with backing from ARCH, Northpond – Endpoints News

By daniellenierenberg

When the tech VCs at Andreessen Horowitz entered biotech 4.5 years ago with the $200 million bio fund I, the idea was simple and hubristic: Were not going to do biotech, Vijay Pande said at the time, keeping a16zs longtime stance. Instead, the bio fund is really about funding software companies in the bio space.

In the near-half decade since, they havent softened their rhetoric. Pande and general partner Jorge Condes frequent blog posts often have the tone ofBurning Man technofuturists. Talking of a foundational shift in biology, bio-revolution, and the meaning of life, and dropping koans like what is medicine? has turned them into the well-financed New Age mystics of an AI-driven and bioengineered future.

Today, Andreessen Horowitz is launching bio fund III and putting $750 million behind it more than funds I and II combined. Theyve added new partners, as they did before fund I and II, picking up technologist and entrepreneur Julie Yoo and Vineeta Agarwala, a GV and Broad Institute alumn. Itll take much of the same tack as the earlier funds, investing early and occasionally up to Series B, and pouring funds not only into therapeutics, but also diagnostics, synthetic biology and startups bringing biological advances into other sectors, such as agriculture.

But Conde tells Endpoints News that the group has learned a thing or two since fund I. Pande had talked about extending Moores law to biology through digital therapeutics but they were wrong. It wasnt just about software and artificial intelligence. It was about the long list of ways how biology was done, how drugs were discovered and how the whole healthcare system functions. It was biotechs that worked both with machine learning and wet labs, and founders conversant in both.

Since then, theyve invested in companies like Insitro that integrate AI as a core but not sole part of a drug development chain and Asimov, which is trying to use AI and other tech systems to design a genome from scratch. They even invested in EQRx, Alexander Boriseys startup trying to use me-too drugs to change pricing.

In October, Conde, Pande and Yoo published their most soaring blog post yet: Biology is Eating the World: A Manifesto. They wrote: We are at the beginning of a new era, where biology has shifted from an empirical science to an engineering discipline.

Before the funds launch, though, Conde told Endpoints were at the end of the beginning for that era.

He talked about what theyve learned since bio I, where biology and biotech is headed and how well know when the convergence between engineering and biology hes been prophesizing has arrived.

You called this the end of the beginning for a new era. What does that mean?

Unlock this story instantly and join 71,300+ biopharma pros reading Endpoints daily and it's free.

SUBSCRIBE SIGN IN

Read more:
Striving for higher res imaging of cells, Harvard team debuts startup with backing from ARCH, Northpond - Endpoints News

To Read More: Striving for higher res imaging of cells, Harvard team debuts startup with backing from ARCH, Northpond – Endpoints News
categoriaCardiac Stem Cells commentoComments Off on Striving for higher res imaging of cells, Harvard team debuts startup with backing from ARCH, Northpond – Endpoints News | dataFebruary 4th, 2020
Read All

AskBio Announces First Patient Dosed in Phase 1 Trial Using AAV Gene Therapy for Congestive Heart Failure – BioSpace

By daniellenierenberg

RESEARCH TRIANGLE PARK, N.C. , Feb. 04, 2020 (GLOBE NEWSWIRE) -- Asklepios BioPharmaceutical (AskBio), a clinical-stage adeno-associated virus (AAV) gene therapy company, and its NanoCor Therapeutics subsidiary today announced that the first patient has been dosed in a Phase 1 clinical trial of NAN-101. NAN-101 is a gene therapy that aims to activate protein phosphatase inhibitor 1 (I-1c) to inhibit the activity of protein phosphatase 1 (PP1), a substance that plays an important role in the development of heart failure.

Congestive heart failure (CHF) is a condition in which the heart is unable to supply sufficient blood and oxygen to the body and can result from conditions that weaken the heart muscle, cause stiffening of the heart muscles, or increase oxygen demand by the body tissues beyond the hearts capability.

"Dosing the first patient using gene therapy to target I-1c to improve heart function is a tremendous milestone not only for the AskBio and NanoCor teams but, more importantly, for patients whose quality of life is negatively affected by CHF, said Jude Samulski, PhD, Chief Scientific Officer and co-founder of AskBio. We initially developed this gene therapy as treatment for late-stage Duchenne muscular dystrophy patients who typically die from cardiomyopathy. Following preclinical studies, we observed that heart function improved, which led us to investigate treatment for all types of heart failure.

Were excited to be involved in this novel approach for patients with Class III heart failure, said Timothy Henry, MD, FACC, MSCAI, Lindner Family Distinguished Chair in Clinical Research and Medical Director of The Carl and Edyth Lindner Center for Research at The Christ Hospital in Cincinnati, Ohio, and principal investigator for the study. These patients currently have no other options besides transplant and left ventricular assist devices (LVAD). Today, we started to explore the potential of gene therapy to change their outcomes.

Heart disease is the leading cause of death worldwide, with CHF affecting an estimated 1% of the Western world, including over six million Americans. There is no cure, and medications and surgical treatments only seek to relieve symptoms and slow further damage.

Research by many investigators around the world has been trying to understand what exactly goes wrong in the heart and weakens its pumping activity until it finally fails, said Evangelia (Litsa) Kranias, PhD, FAHA, Hanna Professor, Distinguished University Research Professor and Director of Cardiovascular Biology at the University of Cincinnati College of Medicine. The aim has been to identify potential therapeutic targets to restore function or prevent further deterioration of the failing heart. Along these lines, research on the role of I-1c started over two decades ago, and it moved from the lab bench to small and large animal models of heart failure. The therapeutic benefits at all levels were impressive. It is thrilling to see I-1c moving into clinical trials with the hope that it also improves heart function in patients with CHF.

About the NAN-101 Clinical Trial NAN-CS101 is a Phase 1 open-label, dose-escalation trial of NAN-101 in subjects with NYHA Class III heart failure. NAN-101 is administered directly to the heart via an intracoronary infusion by cardiac catheterization in a process similar to coronary angioplasty, commonly used to deliver treatments such as stem cells to patients with heart disease. The primary objective of the study is to assess the safety of NAN-101 for the treatment of NYHA Class III heart failure, as well as assess the impact of this treatment on patient health as measured by changes in exercise capacity, heart function and other factors including quality of life.

AskBio is actively enrolling patients with NYHA Class III heart failure to assess three doses of NAN-101. Please refer to clinicaltrials.gov for additional clinical trial information.

Would you like to receive our AskFirst patient engagement program newsletter? Sign up at https://www.askbio.com/patient-advocacy.

About The Christ Hospital Health Network The Christ Hospital Health Network is an acute care hospital located in Mt. Auburn with six ambulatory centers and dozens of offices conveniently located throughout the region. More than 1,200 talented physicians and 6,100 dedicated employees support the Network. Its mission is to improve the health of the community and to create patient value by providing exceptional outcomes, the finest experiences, all in an affordable way. The Network has been recognized by Forbes Magazine as the 24th best large employer in the nation in the magazines Americas 500 Best Large Employers listing and by National Consumer Research as the regions Most Preferred Hospital for more than 22 consecutive years. The Network is dedicated to transforming care by delivering integrated, personalized healthcare through its comprehensive, multi-specialty physician network. The Christ Hospital is among only eight percent of hospitals in the nation to be awarded Magnet recognition for nursing excellence and among the top five percent of hospitals in the country for patient satisfaction. For more than 125 years, The Christ Hospital has provided compassionate care to those it serves.

About AskBioFounded in 2001, Asklepios BioPharmaceutical, Inc. (AskBio) is a privately held, clinical-stage gene therapy company dedicated to improving the lives of children and adults with genetic disorders. AskBios gene therapy platform includes an industry-leading proprietary cell line manufacturing process called Pro10 and an extensive AAV capsid and promoter library. Based in Research Triangle Park, North Carolina, the company has generated hundreds of proprietary third-generation AAV capsids and promoters, several of which have entered clinical testing. An early innovator in the space, the company holds more than 500 patents in areas such as AAV production and chimeric and self-complementary capsids. AskBio maintains a portfolio of clinical programs across a range of neurodegenerative and neuromuscular indications with a current clinical pipeline that includes therapeutics for Pompe disease, limb-girdle muscular dystrophy type 2i/R9 and congestive heart failure, as well as out-licensed clinical indications for hemophilia (Chatham Therapeutics acquired by Takeda) and Duchenne muscular dystrophy (Bamboo Therapeutics acquired by Pfizer). For more information, visit https://www.askbio.com or follow us on LinkedIn.

Link:
AskBio Announces First Patient Dosed in Phase 1 Trial Using AAV Gene Therapy for Congestive Heart Failure - BioSpace

To Read More: AskBio Announces First Patient Dosed in Phase 1 Trial Using AAV Gene Therapy for Congestive Heart Failure – BioSpace
categoriaCardiac Stem Cells commentoComments Off on AskBio Announces First Patient Dosed in Phase 1 Trial Using AAV Gene Therapy for Congestive Heart Failure – BioSpace | dataFebruary 4th, 2020
Read All

Mobility Devices Market to Reach $14.86 Billion by 2026; Rising Incidence of Physical Disabilities Worldwide to Favor Growth of the Market: Fortune…

By daniellenierenberg

Pune, Feb. 03, 2020 (GLOBE NEWSWIRE) -- The global Mobility Devices Market size is projected to reach USD 14.86 billion by 2026, exhibiting a CAGR of 6.9% during the forecast period. Staggering rate of growth of geriatric population across the globe will be one of the crucial factors driving this market in the upcoming decade. Old age entails a plethora of disorders that generally restrict mobility in aged individuals and render them helpless. Given the rate at which the world population is ageing, the demand for devices aiding mobility is likely to spike. According the UNs Population Division, DESA, people at or above 60 years of age are currently numbered at 962 million. In the next three decades, the global geriatric population will reach 2.1 billion, predicts the DESA. Furthermore, old people are more susceptible to accidents associated deteriorating motor functions. For instance, the National Council of Aging estimates about 2.8 million aged Americans are rushed to hospital emergency rooms annually as a result of falling. Thus, a combination of aging and mishaps associated with the process will fuel the Mobility Devices Market trends during the forecast period.

For more information in the analysis of this report, visit: https://www.fortunebusinessinsights.com/industry-reports/mobility-devices-market-100520

Fortune Business Insights shares the above and other valuable market information in its recent report, titled Mobility Devices Market Size, Share & Industry Analysis, By Product (Wheelchairs, Mobility Scooters, Walking Aids, and Others); By End-user (Personal Users and Institutional Users); and Regional Forecast, 2019-2026, which states that the value of this market was at USD 8.75 billion in 2018. The report also provides:

Growing Aging Population and Rise in Mobility Impairment Disorders to Drive the Market

The older population around the globe is continuously growing at an unprecedented rate. Aging decreases the ability to move and reduces the ability to perform physical tasks to maintain independent functioning among the elderly population. The growing older population count is likely to increase the percentage usage of mobile devices during the forecast period. According to the World Health Organization (WHO), in 2017, the global population aged 60 years or over was around 962 million and is projected to reach about 2.1 billion by 2050. Rising prevalence of chronic conditions such as arthritis, cerebral palsy, and muscular dystrophy among every age group is expected to increase the demand for highly advanced mobility aid devices during the forecast period.

Request a Sample Copy of the Research Report: https://www.fortunebusinessinsights.com/enquiry/request-sample-pdf/mobility-devices-market-100520

North America to Lead the Pack; Europe to Follow Closely

Among regions, North America is set to dominate the Mobility Devices Market share owing to the rising prevalence mobility-related disorders in the region. Coupled with this is the increasing number of aged people in the region, which will propel the regional market.

Europe is anticipated to be the second most dominant region in this market on account of high proportion of aged people with mobility impairment. Asia-Pacific is touted to be the most promising region as geriatric population in the region is growing, while unmet needs of the people in Latin America, the Middle East, and Africa will create lucrative market opportunities.

Focus on Patient Safety and Comfort to Drive Innovation Among Players

Strengthening market position is expected to be the primary focus of key players in this market, says one of our lead analysts. One of the leading strategies adopted is increasing investment in innovation to come up with novel solutions, keeping patient comfort and safety in mind. Some players are also expanding their global presence through collaborations and acquisitions.

Industry Developments:

List of Top Players Profiled in the Mobility Devices Market Report:

Have Any Query? Ask Our Experts: https://www.fortunebusinessinsights.com/enquiry/speak-to-analyst/mobility-devices-market-100520

Detailed Table of Content:

TOC Continued.!

Request for Customization: https://www.fortunebusinessinsights.com/enquiry/customization/mobility-devices-market-100520

Have a Look at Related Reports:

Wheelchair Market Size, Share & Industry Analysis, By Type (Manual & Powered), By Application (Standard Wheelchair, Bariatric Wheelchair, Sports Wheelchair, and Others) End-user (Personal User and Institutional User) and Regional Forecast, 2019-2026

Blood Pressure Monitoring Market Size, Share and Industry Analysis By Product Type (Sphygmomanometers, Digital Blood Pressure Monitors, Ambulatory Blood Pressure Monitors), By End User (Hospitals, Ambulatory Surgery Centers & Clinics, Home Healthcare & Others), and Regional Forecast 2018-2025

Advanced Wound Care Market Size, Share and Industry Analysis, By Product (Advanced Wound Dressings, Wound Care Devices & Active Wound Care), By Indication (Diabetic Foot Ulcers, Pressure Ulcers, Surgical Wounds, Others), By End User, and Regional Forecast 2018-2025

Magnetic Resonance Imaging (MRI) Systems Market Size, Share and Industry Analysis By Strength (Less than 1.5 T, 1.5 T & More than 1.5 T), By Application (Musculoskeletal, Neurology, Cardiology, Body Imaging), By End User (Hospitals, Ambulatory Surgical Centers, Diagnostic Centers), and Regional Forecast 2018-2025

Molecular Diagnostics Market Size, Share and Industry Analysis By Product Type (Instruments Reagents & Consumables), By Application (Infectious Disease, Blood Screening, Histology & Oncology), By Technique (Hospitals Amplification, Hybridization & Sequencing Techniques), End User (Hospitals, Clinical & Pathology Labs), and Regional Forecast 2018-2025

Hemostatic Agents Market Size, Share and Global Trend By Product Type (Active Hemostats, Passive Hemostats, Combination Hemostats), Application (Trauma, Cardiovascular Surgery, General Surgery, Plastic Surgery, Orthopedic Surgery & Neurosurgery), End User (Hospitals, Ambulatory Surgical Centers, Tactical Combat Casualty Care Centers) and Geography Forecast till 2025

Digital Radiography Market Size, Share and Global Trend By Product Type (Computed Radiography, Direct Digital Radiography), Application (General, Radiography Dentistry, Oncology, Orthopedic) End User (Hospital, Clinics, Diagnostic Centers) and Geography Forecast till 2026

Medical Imaging Equipment Market Size, Share and Global Trend by Type (Magnetic Resonance Imaging Equipment, Computed Tomography Equipment, X-ray Equipment, Ultrasound Equipment Molecular Imaging Equipment), By Application (Cardiology, Neurology, Orthopedics, Gynecology, Oncology), By End User (Hospitals, Specialty Clinics, Diagnostic Imaging Centers, Others) and Geography Forecast till 2026

Cardiac Rhythm Management (CRM) Devices Market Size, Share and Global Trend Product By (Cardiac Pacemakers, Defibrillators, Cardiac Resynchronization Therapy Devices) By End User (Hospitals & Clinics, Ambulatory Surgery Centers), and Geography Forecast to 2026

Transrectal Ultrasound (TRUS) Market Size, Share and Industry Analysis By Product (Systems, Transducers), Type (Cart/Trolley Based, Portable), Application (Diagnostic, Image-guided Treatment), End User (Diagnostic Laboratories, Hospitals) and Regional Forecast, 2018 - 2025

Orthobiologics Market Size, Share and Industry Analysis by Product Type (Viscosupplements, Bone Growth Stimulators, Demineralized Bone Matrix, Synthetic Bone Substitutes, Stem Cells, Allografts), By Application (Spinal Fusion, Maxillofacial & Dental, Soft Tissue Repair, Reconstructive & Fracture Surgery), By End User (Hospitals, Ambulatory Surgical Centers, Speciality Clinics), and Regional Forecast 2019-2026

Dental Implants Market Size, Share and Industry Analysis By Material (Titanium Implants, Zirconium Implants), By Type (Endosteal Implants, Subperiosteal Implants, Transosteal Implants), By Design (Tapered Implants, Parallel Implants), By End-user (Hospitals, Dental Clinics, Academic & Research Institutes) and Regional Forecast, 2019 2026

Immunodiagnostics Market Size, Share and Industry Analysis By Product Instruments, Reagents & Consumables), By Application (Oncology & Endocrinology, Hepatitis & Retrovirus, Cardiac Markers, Infectious Diseases), By End user (Clinical Laboratories, Hospitals, Physicians Offices), By End-user(Hospitals, Dental Clinics, Academic & Research Institutes) and Regional Forecast, 2019 2026

About Us:

Fortune Business Insights offers expert corporate analysis and accurate data, helping organizations of all sizes make timely decisions. We tailor innovative solutions for our clients, assisting them to address challenges distinct to their businesses. Our goal is to empower our clients with holistic market intelligence, giving a granular overview of the market they are operating in.

Our reports contain a unique mix of tangible insights and qualitative analysis to help companies achieve sustainable growth. Our team of experienced analysts and consultants use industry-leading research tools and techniques to compile comprehensive market studies, interspersed with relevant data.

At Fortune Business Insights we aim at highlighting the most lucrative growth opportunities for our clients. We, therefore, offer recommendations, making it easier for them to navigate through technological and market-related changes. Our consulting services are designed to help organizations identify hidden opportunities and understand prevailing competitive challenges.

Contact Us:Fortune Business Insights Pvt. Ltd. 308, Supreme Headquarters, Survey No. 36, Baner, Pune-Bangalore Highway, Pune - 411045, Maharashtra, India.Phone:US :+1 424 253 0390UK : +44 2071 939123APAC : +91 744 740 1245Email: sales@fortunebusinessinsights.comFortune Business InsightsLinkedIn | Twitter | Blogs

Press Release https://www.fortunebusinessinsights.com/press-release/mobility-devices-market-9550

Read the original post:
Mobility Devices Market to Reach $14.86 Billion by 2026; Rising Incidence of Physical Disabilities Worldwide to Favor Growth of the Market: Fortune...

To Read More: Mobility Devices Market to Reach $14.86 Billion by 2026; Rising Incidence of Physical Disabilities Worldwide to Favor Growth of the Market: Fortune…
categoriaCardiac Stem Cells commentoComments Off on Mobility Devices Market to Reach $14.86 Billion by 2026; Rising Incidence of Physical Disabilities Worldwide to Favor Growth of the Market: Fortune… | dataFebruary 3rd, 2020
Read All

UAB: 50 years of Improving Birmingham, Alabama and the World – Birmingham Times

By daniellenierenberg

UAB Magazine

Written by Charles Buchanan, Brett Bralley and Jay Taylor with editorial contributions from Matt Windsor and UAB Public Relations. Images from UAB Archives, Rachel Hendrix, Andrea Mabry, Sarah Parcak, Steve Wood and Getty Images. Web design by Tyler Bryant. Reprinted by permission of UAB Magazine.

UABs birth was like a ray of sunlight punching through the smog.

In 1969 the newly independent university, uniting a pioneering academic medical center and a growing extension center, brought the promise of a brighter future to a city eager for change.

Birmingham is better because of UAB. So are Alabama, America, and the world. In the following pages, discover some of the many ways that UAB has fulfilled its promiseby saving lives, solving problems, expanding knowledge, and opening doorsover 50 years.

1

Best of the best

UABs accolades shine a global spotlight on Birmingham and Alabama:

2

A way to retrain the brain

Most scientists once believed that neuroplasticitythe brains ability to grow or repair itselfended in childhood. But research by UAB neuroscientist Edward Taub, Ph.D., contributed to a shift in thinking, and in the 1990s he developed constraint-induced (CI) therapy for stroke patients with poorly functioning limbs. As the intensive training helps patients learn to accomplish tasks with their affected limbs, the brain adapts by strengthening communication with those parts of the body. And the results have been remarkable: Most patients see a clinically significant level of improvement in their ability to use their affected limbs, and brain scans have shown an increase in gray matter. Taub and UAB clinical psychologist Gitendra Uswatte, Ph.D., have used CI therapy to help thousands of stroke patientsand adapted it for patients impacted by cerebral palsy, traumatic brain injury, multiple sclerosis, and spinal cord injury. Today CI therapy is in use worldwide.

3

Discoveries on ice

UAB scientists conduct a lot of research in the fieldbut none may go as far afield as James McClintock, Ph.D.; Charles Amsler, Ph.D.; and Maggie Amsler. Their investigations take place at Palmer Station, Antarctica6,898 miles from their campus offices. For two decades, the biologists have led teams that dive into the frigid waters surrounding the icy continent to study the chemical ecology of the unique marine algae and invertebrates living there. What theyve discovered could aid the search for new drugs to help humans. The group also chronicles the dramatic impact of climate change, such as ocean acidification, on Antarctic marine life. You can see climate change happening there like no other place on earth, says McClintock.

4

A pinch of prevention

UAB endocrinologist Constance Pittman, M.D., turned her research passioniodines impact on thyroid functioninto a global mission. In the 1990s and 2000s, she teamed up with Kiwanis International and UNICEF to help eradicate iodine deficiency disorders (IDD), a prevalent cause of cognitive disabilities. Pittman traveled the world to convince companies to add iodine to table saltthe simplest solution for preventing IDD. And her work helped make a lasting impact.

5

Target: Diabetes

In 1973, UAB opened the nations first public diabetes hospitaland the first linked with an academic medical center. Today physicians on the front lines of the diabetes epidemic have an exciting new option to help their patients, thanks to breakthrough research from UABs Comprehensive Diabetes Center.

6

Sharing stories that matter

WBHM 90.3 FM radio went on the air in 1976 as the 200th National Public Radio (NPR)-affiliated station. A member-supported service of UAB, WBHM provides global news and award-winning local coverage to Birmingham and the surrounding region. The station also recently welcomed StoryCorps, an NPR-affiliated initiative, to collect stories from the Birmingham community that will be housed at the Library of Congress in Washington, D.C.

7

Book of Life

Its tough to find a physician anywhere in the world who hasnt learned a few things from Tinsley Harrison, M.D. The legendary School of Medicine cardiologist and dean created and edited Harrisons Principles of Internal Medicine, which has been reprinted 20 times, translated into 14 languages, and become arguably the most recognized book in all of medicine, according to the Journal of the American Medical Association.

8

Foresight

The School of Optometry has been a pioneer since it opened in 1969 as the nations first optometry school associated with an academic medical center. Three years later, it became the first optometry teaching program affiliated with a Veterans Administration (VA) hospital, establishing a national model. Today more than 2,500 optometry staff and students from various schools work in the VA system nationwide.

9

Helping our hometown

Living and working in the heart of the city, UAB students, faculty, and staff cant help but feel a connection to Birmingham. Here are just a few ways Blazers have volunteered to support their neighbors:

10

A whole new ball game

Gene Bartow Mens basketball coach1977-1996

UAB started a winning tradition in 1977 when it hired coach Gene Bartow away from powerhouse UCLA to start a mens basketball program. He created a legendary team able to topple top rivals and reach the NCAA Tournament in just its third seasonthe first of 15 NCAA Tournament and 12 National Invitational Tournament appearances on its record. As UABs first athletic director, Bartow also helped UAB compete in other arenas. Today student-athletes in 18 sports give Birmingham reasons to cheer. Take a spin through some of the Blazers most memorable moments:

11

New views of history

Its as if Indiana Jones and Google Earth had a love child. Thats how UAB anthropology faculty member and National Geographic fellow Sarah Parcak, Ph.D., described space archaeology to Stephen Colbert on The Late Show in 2016. She has pioneered the use of high-resolution satellite imagery to search for the buried remains of lost civilizations. And her discoveries have thrilled people worldwide, including Colbert. She was even mentioned in a Jeopardy! answer earlier this year.

12

Defense team

UAB immunologists have been among the first to shed light on the mechanisms powering our bodys defenses:

13

Game changers

Future football helmets may better protect athletes thanks to mechanical engineering professor Dean Sicking, Ph.D. (Before coming to UAB, he developed the lifesaving SAFER barriers used on NASCAR and IndyCar courses.) Analyzing data from thousands of helmet-to-helmet impacts in football, Sicking has developed designs for a new helmet that could address concussionsabsorbing as much energy of the impact as possible so that the athlete has less risk of brain injury.

14

The dividends of discovery

In 2018-2019, UAB received $602 million in research grants and awardsjust one year after surpassing the $500-million milestone for the first time. We are aiming high and exceeding our goals, and it is a testament to the UAB research communitys great ideas, hard work, and will to succeed, says Christopher Brown, Ph.D., vice president for research. A rise in research funding means more opportunities to explore the frontiers of knowledgebut it also enables UAB to attract top minds from around the country in health care, engineering, the sciences, and more, plus create new jobs that boost the local economy. Want to ensure that UAB continues its upward trajectory? Philanthropic support helps position the university to attain competitive research grants.

15

Giant leaps

Space is the place for UAB people and technology:

Researcher Larry DeLucas, O.D., Ph.D., became the first optometrist in orbit with a 1992 mission aboard the shuttle Columbia. There he conducted experiments to grow protein crystals, which give scientists a 3D view of protein structuresand a greater understanding of the roles they play in disease. DeLucas also served as chief scientist for the International Space Station in 1994-1995.

Astrophysicist Thomas Wdowiak, Ph.D., passed away in 2013, but his name lives onon Mars. The Red Planets Wdowiak Ridge honors the physics faculty members role in NASAs Mars Exploration Project. Wdowiak was in charge of operating the Mossbauer spectrometers onboard the Spirit and Opportunity rovers that helped uncover firm evidence that water once existed on Mars.

16

Focus on finances

Would you like to get better at saving, budgeting, or investing? Or do you dream of launching a business? The Regions Institute for Financial Education in the Collat School of Business has been helping people throughout the community develop practical, lifelong financial management skills since 2015. Some of its programs include a Money Math Camp for middle schoolers, a College Bridge Camp to prepare high schoolers for life after graduation, and for adults, a Do-It-Yourself Credit Repair Workshop.

17

Going green

Campus expansions have reshaped Birminghams Southside, and UAB works hard to be a good steward of that spaceand set a sustainable example. In 2008, UAB brought open green space into the heart of Birmingham by converting a city street into the Campus Green. Now UAB is aiming to reduce its greenhouse gas emissions by 20 percent and establish a clean energy standard of 20-percent renewable energy by 2025.

18

Ingenuity vs. Infection

Virus vanguards

Antiviral therapies are essential for treating everything from influenza to HIV. In 1977, UAB pediatrics experts Richard Whitley, M.D., and Charles Alford, M.D., helped spark the antiviral revolution by developing vidarabine, the first drug to treat encephalitis caused by the herpes simplex virus. In the 1990s, Whitley and his team transformed the herpes virus into a genetically engineered weapon against tumors.

Vaccines for everyone

The laboratory of Moon Nahm, M.D., is a national treasure, notes the National Institutes of Health. But its discoveries could help protect millions of children worldwide threatened by S. pneumoniae infections, the leading cause of pneumonia. (Nahms lab also is designated a World Health Organization Pneumococcal Reference Laboratory.) His mission is to make pneumonia vaccines more affordable for use in developing countries.

Global guardian

GeoSentinel is a worldwide network of clinics watching for potential pandemics in an increasingly interconnected world, ready to relay information quickly about new disease outbreaks and effective treatments. And it has Alabama roots. UAB travel medicine expert David Freedman, M.D., cofounded GeoSentinel, a collaboration between the International Society for Travel Medicine and the Centers for Disease Control and Prevention, in the 1990s. He also directed the network for 20 years.

19

Staying safe on the road

In 2002, UAB public health researchers unveiled the Digital Childa pioneering computer model evaluating the physical consequences of car crashes on young passengers at various stages of developmentto generate data that could lead to improved child safety devices. Shift gears to today, and researchers in UABs TRIP (Translational Research for Injury Prevention) Lab use virtual realitya first-of-its-kind SUV simulator built with Honda Manufacturing of Alabamato study distracted driving in an effort to save lives. The TRIP Lab also has a portable simulator for schools and community events to help educate students and others on the dangers of distracted driving.

20

A home for Birmingham history

Odessa WoolfolkEducator and civic leader

When Birmingham first dreamed of developing a civil rights museum and research center, UABs Odessa Woolfolk, then special assistant to the president and director of community relations, and Horace Huntley, Ph.D., a historian and first director of the African American studies program, helped lead efforts to turn that idea into a reality. The Birmingham Civil Rights Institute opened in 1992, with Woolfolk as president of its board of directors. Huntley also directed the institutes Oral History Project, which preserves the accounts of foot soldiers and other witnesses to the Birmingham campaign. Today the BCRI attracts visitors from around the world and is a key component of the Birmingham Civil Rights National Monument.

21

Invention in action

Faculty, staff, and students are designing the future for the rest of us. Preview some of their ingenious solutions:

Each year, biomedical engineering and business students develop technologies to help people overcome physical limitations. Examples include a joystick-controlled wheelchair for toddlerswhich won an international awardbuilt for the Bell Center for Early Intervention Programs, and a special scale to help wheelchair users monitor their weight, used by the Lakeshore Foundation. Another design, a mechanical umbrella to protect power wheelchair users from rainy weather, scored second place at the 2018 World Congress on Biomechanics.

Graphic design students in UABs Bloom Studio unleash their talents to support local nonprofits and underserved communities. You can spot their work on license plates and signs that promote and protect the Cahaba Riverpart of a collaboration with the Cahaba River Society.

Solution Studios pairs Honors College, engineering, and nursing students with UAB health professionals to tackle everyday problems affecting patient care. One team has designed a device prototype that could improve quality of life for patients wearing ostomy bags to expel waste. Another has focused on new, more comfortable methods of applying wires to the skin in settings such as intensive care units.

22

Spreading the word

Low literacy levels translate into increased high school dropout rates, a lower-performing workforce, and higher rates of social problems, say UAB School of Education experts. For years UABs Maryann Manning, Ed.D., led the charge to improve literacy across Alabama, launching programs such as a conference that attracted thousands of local schoolchildren to share their writing with authors and illustrators. Today the Maryann Manning Family Literacy Center continues her legacy, providing enrichment activities in reading, writing, math, arts, and science for children and helping teachers across Alabama learn innovative strategies to foster literacy skills in their classrooms.

23

The heart of innovation

John Kirklin, M.D.Surgery superstar

John Kirklin, M.D., helped put Birmingham on the medical map when he was recruited in 1966 to chair the Department of Surgery. He already was a superstar at the Mayo Clinic, where he had revolutionized cardiovascular surgery by improving the heart-lung machine and performing the first operations for a variety of congenital heart malformations. At UAB he continued to pursue new methods and techniques, such as the development of a computerized intensive care unit with continuous monitoring of vital functions, which became a model for ICUs worldwide.

When Kirklin passed away in 2004, colleagues estimated his medical innovations had saved millions of lives. And his legacy thrives in other ways: UAB is a world-class medical center in part because of Kirklins work behind the scenes, where he championed the combination of public and private investments to foster growth. His textbook, Cardiac Surgery, remains a must-read for anyone in the field. His name lives on in The Kirklin Clinic of UAB Hospital, which opened in 1992. And his son, cardiothoracic surgeon James Kirklin, M.D., directs UABs James and John Kirklin Institute for Research in Surgical Outcomes.

24

Birthplace of new businesses

UABs ideas and energy are an engine for entrepreneurship. The university was a founder of Birminghams Innovation Depot, where start-up companiessome born from UAB research breakthroughsfind the resources they need to grow. Today Innovation Depot is the Southeasts largest high-tech business incubator, home to more than 100 companies.

25

University of opportunity

In the fall of 2019, underrepresented students made up nearly 42 percent of UABs enrollment, and 20.5 percent of undergraduates were first-generation students. UAB has a long history of widening access to higher educationand potential careers in science and health careamong diverse students. Back in 1978, the Minority High School Research Apprentice Program began matching local students with faculty members for summer research experiences. Today, initiatives such as the Department of Surgerys Pre-College Internship for Students from Minority Backgrounds and the Neuroscience Roadmap Scholars program offer similar opportunities for students along their educational journeys.

26

Successful careers begin here

More than 135,000 alumni call UAB their alma mater. Today youll find them across the United States and around the world, working as leaders in health care, science, business, art, engineering, government, education, and other fields. Many stay connected with UAB through the National Alumni Society, which was established in 1979 and has 63 chapters in locations ranging from Washington, D.C., to Taiwan.

27

Read more from the original source:
UAB: 50 years of Improving Birmingham, Alabama and the World - Birmingham Times

To Read More: UAB: 50 years of Improving Birmingham, Alabama and the World – Birmingham Times
categoriaCardiac Stem Cells commentoComments Off on UAB: 50 years of Improving Birmingham, Alabama and the World – Birmingham Times | dataFebruary 3rd, 2020
Read All

Page 20«..10..19202122..3040..»