Page 4«..3456..1020..»

StemoniX’s microBrain to be Featured in Podium Presentation at SLAS 2020 International Conference & Exhibition – Crow River Media

By daniellenierenberg

MAPLE GROVE, Minn., Jan. 27, 2020 /PRNewswire/ --StemoniX, a biotech company revolutionizing how new medicines are discovered, announced today that its Director of Applications, Oivin Guichert, Ph.D., will deliver a podium presentation highlighting the company's microBrain technology at the SLAS (Society for Laboratory Automation and Screening) 2020 International Conference & Exhibition at the San Diego Convention Center, Jan. 27-29, 2020. The presentation will be featured as part of the Assay Development and Screening Session during the annual meeting.

During the podium presentation, entitled "New innovation to solve unmet needs: Implementing human induced pluripotent stem cell-derived neural spheroids as a robust screening platform for phenotypic-based central nervous system drug discovery," Dr. Guichert will detail how performing a high-throughput functional screening assay on StemoniX's human induced pluripotent stem cell (iPSC)-derived 3D neural spheroid platform demonstrated the ability to identify a wide range of hits spanning multiple target areas. He will highlight how this model could provide relevant human platforms for disease-specific drug discovery to help overcome traditional hurdles of CNS-targeted drug discovery and development efforts.

Ping Yeh, co-founder and CEO of StemoniX, said: "The SLAS 2020 International Conference & Exhibitionis an ideal event to showcase the value potential of our microOrgan platform and AnalytiX data management and analytical software. As presented by Dr. Guichert and in the six posters, microBrain, microHeart, microPancreas and AnalytiX offer the potential to reshape how drugs are discovered and developed by providing the opportunity to go from model to molecule to validated drug in a fraction of the time and cost required with traditional methods. This includes the near-term potential to identify and advance novel therapeutic targets for Rett syndrome by leveraging our groundbreaking in vitro microBrain model in partnership with AI drug discovery pioneer, Atomwise."

Podium Presentation Details

Title:

New innovation to solve unmet needs: Implementing human induced pluripotent stem cell-derived neural spheroids as a robust screening platform for phenotypic-based central nervous system drug discovery

Session:

Assay Development and Screening

Event

SLAS 2020 International Conference & Exhibition

Date:

Tuesday, January 28, 2020

Time:

4:00 4:30 p.m. PST

Location:

San Diego Convention Center

Room/Location:

6C

Poster Presentations:

About StemoniXStemoniX is accelerating the discovery of new medicines to treat challenging diseases via the world's first ready-to-use assay plates containing living human microOrgans, including electrophysiologically active neural (microBrain) and cardiac (microHeart) cells. Predictive, accurate, and consistent, StemoniX's products combined with its proprietary data management and analytical tools (AnalytiX) are revolutionizing traditional drug discovery and development by radically improving the speed, accuracy and costs required to identify new drugs and conduct initial human cell toxicity and efficacy testing. Through its Discovery as a Service offering, the company partners with organizations to screen compounds as well as to create customized microOrgan models and assays tailored to specific discovery and toxicity needs. Visit http://www.stemonix.com to learn how StemoniX is helping global institutions humanize drug discovery and development to bring the most promising medicines to patients.

Tiberend Strategic Advisors, Inc.

Investor Contact:Maureen McEnroe, CFA+1.212.375.2664mmcenroe@tiberend.com

Media Contact:Ingrid Mezo+1.646.604.5150imezo@tiberend.com

Go here to see the original:
StemoniX's microBrain to be Featured in Podium Presentation at SLAS 2020 International Conference & Exhibition - Crow River Media

To Read More: StemoniX’s microBrain to be Featured in Podium Presentation at SLAS 2020 International Conference & Exhibition – Crow River Media
categoriaCardiac Stem Cells commentoComments Off on StemoniX’s microBrain to be Featured in Podium Presentation at SLAS 2020 International Conference & Exhibition – Crow River Media | dataJanuary 27th, 2020
Read All

Contrasting National Research (NASDAQ:NRC) and US Stem Cell (NASDAQ:USRM) – Slater Sentinel

By daniellenierenberg

US Stem Cell (OTCMKTS:USRM) and National Research (NASDAQ:NRC) are both small-cap medical companies, but which is the better stock? We will compare the two businesses based on the strength of their dividends, analyst recommendations, valuation, earnings, risk, institutional ownership and profitability.

Earnings and Valuation

This table compares US Stem Cell and National Researchs revenue, earnings per share and valuation.

Insider and Institutional Ownership

39.7% of National Research shares are owned by institutional investors. 16.7% of US Stem Cell shares are owned by company insiders. Comparatively, 4.5% of National Research shares are owned by company insiders. Strong institutional ownership is an indication that hedge funds, large money managers and endowments believe a company is poised for long-term growth.

Risk and Volatility

US Stem Cell has a beta of 4.87, suggesting that its share price is 387% more volatile than the S&P 500. Comparatively, National Research has a beta of 0.78, suggesting that its share price is 22% less volatile than the S&P 500.

Analyst Recommendations

This is a breakdown of recent ratings and recommmendations for US Stem Cell and National Research, as reported by MarketBeat.com.

Profitability

This table compares US Stem Cell and National Researchs net margins, return on equity and return on assets.

Summary

National Research beats US Stem Cell on 7 of the 9 factors compared between the two stocks.

US Stem Cell Company Profile

U.S. Stem Cell, Inc., a biotechnology company, focuses on the discovery, development, and commercialization of autologous cellular therapies for the treatment of chronic and acute heart damage, and vascular and autoimmune diseases in the United States and internationally. Its lead product candidates include MyoCell, a clinical therapy designed to populate regions of scar tissue within a patient's heart with autologous muscle cells or cells from a patient's body for enhancing cardiac function in chronic heart failure patients; and AdipoCell, a patient-derived cell therapy for the treatment of acute myocardial infarction, chronic heart ischemia, and lower limb ischemia. The company's product development pipeline includes MyoCell SDF-1, an autologous muscle-derived cellular therapy for improving cardiac function in chronic heart failure patients. It is also developing MyoCath, a deflecting tip needle injection catheter that is used to inject cells into cardiac tissue in therapeutic procedures to treat chronic heart ischemia and congestive heart failure. In addition, the company provides physician and patient based regenerative medicine/cell therapy training, cell collection, and cell storage services; and cell collection and treatment kits for humans and animals, as well operates a cell therapy clinic. The company was formerly known as Bioheart, Inc. and changed its name to U.S. Stem Cell, Inc. in October 2015. U.S. Stem Cell, Inc. was founded in 1999 and is headquartered in Sunrise, Florida.

National Research Company Profile

National Research Corporation (NRC) is a provider of analytics and insights that facilitate revenue growth, patient, employee and customer retention and patient engagement for healthcare providers, payers and other healthcare organizations. The Companys portfolio of subscription-based solutions provides information and analysis to healthcare organizations and payers across a range of mission-critical, constituent-related elements, including patient experience and satisfaction, community population health risks, workforce engagement, community perceptions, and physician engagement. The Companys clients range from acute care hospitals and post-acute providers, such as home health, long term care and hospice, to numerous payer organizations. The Company derives its revenue from its annually renewable services, which include performance measurement and improvement services, healthcare analytics and governance education services.

Receive News & Ratings for US Stem Cell Daily - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings for US Stem Cell and related companies with MarketBeat.com's FREE daily email newsletter.

More:
Contrasting National Research (NASDAQ:NRC) and US Stem Cell (NASDAQ:USRM) - Slater Sentinel

To Read More: Contrasting National Research (NASDAQ:NRC) and US Stem Cell (NASDAQ:USRM) – Slater Sentinel
categoriaCardiac Stem Cells commentoComments Off on Contrasting National Research (NASDAQ:NRC) and US Stem Cell (NASDAQ:USRM) – Slater Sentinel | dataJanuary 25th, 2020
Read All

If you want to ban fetal tissue research, sign a pledge to refuse its benefits – USA TODAY

By daniellenierenberg

Irving Weissman and Joseph McCune, Opinion contributors Published 7:00 a.m. ET Jan. 24, 2020

Severe Trump administration restrictions mean millions of Americans of all political and religious stripes won't benefit from fetal tissue research.

Last summer the Trump administration curtailed federal funding of medical research using human fetal tissue; the new rulestook effect Oct. 1. More recently, the administration addedrestrictions that are even more severe.

Immediately, important work at two NIH-supported labs in Montana and California that are fighting the AIDS epidemic stopped because they were testing new medications against HIV using mice with human immune systems derived from human fetal tissue. In the near term, all National Institutes of Health (NIH) funding of research using fetal tissuewill likely cease.

More than 30years ago, we invented SCID-hu mice for biomedical research on diseases affecting humans, by implanting human fetal blood-forming and immune system tissuesinto mice whose immune systems had been silenced. The implanted immune tissues came from an aborted fetus, and allowed our otherwise immune-deficient mice to exist and be vulnerable to viruses that infect humans.

Tissues from living infants would not have worked;they are too far along in development and nearly impossible to obtain. This mouse model (and later versions of it) became the only living system, outside of a human, in which advanced therapies for diseases like AIDS and other viral infections could be evaluated before they were given to people.

Our work with human fetal tissue proceeded with the highest level of caution and vigilance. We received advice from bioethicists, clergyand government officials, which led to the establishment of strict guidelines that are still used today. No woman was asked or paid to terminate a pregnancy, the termination process was unaltered, and the women were asked for donation of the organs only after they had decided to terminate the pregnancy. Thus, obtaining the fetal tissue for medical research had no impact on ending pregnancies.

Since then, mice with transplanted human fetal tissues have been successfully used by scientists to identify blood stem cells and to devise treatments now availableor in clinical trialsfor cancer, various viral infections, Alzheimers disease, spinal cord injuries, and other diseases of the nervous system. Such diseases kill or cripple many Americans including pregnant women, fetusesand newborn infants. Many of them have only a short window of opportunity wherein a new therapy can treat them, and a delay can be fatal.

National Institutes of Health in Bethesda, Maryland, on Oct. 21, 2013.(Photo: *, Kyodo)

The Trump administration's new rules are tantamount to a funding ban. In academic labs, the experiments are done by students and fellows in training, and the new rules block any NIH-funded students or fellows from working with human fetal tissue. Those who imposed the banmust bear responsibility for the consequences: People will suffer and die for lack of adequate treatments.

Americans pay the price:Trump administration's 'scientific oppression' threatens US safety and innovation

At a December 2018 meeting at NIH,after hearing scientific evidence about alternative research methods such as the use of adult cells, experts concluded that the use of fetal tissue is uniquely valuable. Nonetheless, the administration severely restricted the use of fetal tissue, thereby denying millions of Americans the fruits of such research Americans of all political stripes, since deadly viruses and cancers do not care who you vote for.

These restrictions subvert the NIH mission, which is to advance medicine and protect the nations health. To the extent that it was motivated by the religious beliefs of those in charge, it bluntly transgresses the American principle of separation of church and state. As a result, both believers and non-believers will die.

Of course, all who take the Hippocratic Oathto "do no harm,"which includes all medical doctors, will always offer and deliver all types of therapies that are available.

Restricting science: Trump EPA's cynical 'transparency' ploy would set back pollution science and public health

However, we believe that thoseresponsible forthis de facto ban, and perhapsthose who agree with them, should personally accept its consequences. We challenge them tobe true to their beliefs. They should pledge to never accept any cancer therapy, any AIDS medication, any cardiac drug, any lung disease treatment, any Alzheimers therapy, or any other medical advance that was developed using fetal tissue including our mice. Its a long list, one that you can learn about from us here. Should this apply to you, be faithful and be bold: Take the pledge.

Irving Weissman is a Professor of Pathology and Developmental Biology and the Director of the Stanford Institute of Stem Cell Biology and Regenerative Medicine and Ludwig Center for Cancer Stem Cell at Stanford University School of Medicine. Joseph McCune is Professor Emeritus of Medicine from the Division of Experimental Medicine at the University of California, San Francisco. The views expressed here are solely their own.

Autoplay

Show Thumbnails

Show Captions

Read or Share this story: https://www.usatoday.com/story/opinion/2020/01/24/trump-fetal-tissue-research-ban-hurts-all-americans-column/4553379002/

Go here to read the rest:
If you want to ban fetal tissue research, sign a pledge to refuse its benefits - USA TODAY

To Read More: If you want to ban fetal tissue research, sign a pledge to refuse its benefits – USA TODAY
categoriaCardiac Stem Cells commentoComments Off on If you want to ban fetal tissue research, sign a pledge to refuse its benefits – USA TODAY | dataJanuary 25th, 2020
Read All

El Paso scientists team up for heart research project at the International Space Station – KVIA El Paso

By daniellenierenberg

EL PASO, Texas -- Biomedical research scientists from Texas Tech University Health Sciences Center El Paso and The University of Texas at El Paso are partnering up to send "artificial mini-hearts" to the International Space Station to better understand how microgravity affects the function of the human heart.

The three-year project, funded by the National Science Foundation (NSF) and the space station's U.S. National Laboratory, brings together TTUHSC El Paso faculty scientist Munmun Chattopadhyay, Ph.D., and UTEP biomedical engineer Binata Joddar, Ph.D. The researchers will collaborate in their Earth-bound labs to create tiny (less than 1 millimeter thick) heart-tissue structures, known as cardiac organoids, using human stem cells and 3D bioprinting technology.

By exposing the organoids to the near-weightless environment of the orbiting space station, the researchers hope to gain a better understanding of a health condition known as cardiac atrophy, which is a reduction and weakening of heart tissue. Cardiac atrophy often affects astronauts who spend long periods of time in microgravity. A weakened heart muscle has difficulty pumping blood to the body, and can lead to problems such as fainting, irregular heartbeat, heart valve problems and even heart failure. Cardiac atrophy is also associated with chronic disease.

The first year of the project, which began in September, will focus on research design. During this phase, Dr. Joddar will use 3D printing to fabricate the cardiac organoids by coupling cardiac cells in physiological ratios to mimic heart tissue. The second year will be centered on preparing the organoid payload for a rocket launch and mission in space. The third and final year of the research will involve analyzing data from the experiment after the organoids are returned to Earth.

The project will also provide an educational opportunity for the El Paso community, with a workshop for K-12 students to learn about tissue engineering projects on the space station. It will also include a seminar for medical students, interns and residents about the benefits and challenges of transitioning research from Earth-based laboratories into space.

Read the original here:
El Paso scientists team up for heart research project at the International Space Station - KVIA El Paso

To Read More: El Paso scientists team up for heart research project at the International Space Station – KVIA El Paso
categoriaCardiac Stem Cells commentoComments Off on El Paso scientists team up for heart research project at the International Space Station – KVIA El Paso | dataJanuary 25th, 2020
Read All

Soaring Demand for Clean-label Food Products to Trigger the Growth of the Stem Cell Therapy Market 2017 2025 – Fusion Science Academy

By daniellenierenberg

In 2019, the Stem Cell Therapy market is spectated to surpass ~US$ xx Mn/Bn with a CAGR of xx% over the forecast period. The Stem Cell Therapy market clicked a value of ~US$ xx Mn/Bn in 2018. Region is expected to account for a significant market share, where the Stem Cell Therapy market size is projected to inflate with a CAGR of xx% during the forecast period.

In the Stem Cell Therapy market research study, 2018 is considered as the base year, and 2019-2019 is considered as the forecast period to predict the market size. Important regions emphasized in the report include region 1 (country 1, country2), region 2 (country 1, country2), and region 3 (country 1, country2).

Request Sample Report @ https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1787&source=atm

Global Stem Cell Therapy market report on the basis of market players

The report examines each Stem Cell Therapy market player according to its market share, production footprint, and growth rate. SWOT analysis of the players (strengths, weaknesses, opportunities and threats) has been covered in this report. Further, the Stem Cell Therapy market study depicts the recent launches, agreements, R&D projects, and business strategies of the market players including

Key Trends

The key factors influencing the growth of the global stem cell therapy market are increasing funds in the development of new stem lines, the advent of advanced genomic procedures used in stem cell analysis, and greater emphasis on human embryonic stem cells. As the traditional organ transplantations are associated with limitations such as infection, rejection, and immunosuppression along with high reliance on organ donors, the demand for stem cell therapy is likely to soar. The growing deployment of stem cells in the treatment of wounds and damaged skin, scarring, and grafts is another prominent catalyst of the market.

On the contrary, inadequate infrastructural facilities coupled with ethical issues related to embryonic stem cells might impede the growth of the market. However, the ongoing research for the manipulation of stem cells from cord blood cells, bone marrow, and skin for the treatment of ailments including cardiovascular and diabetes will open up new doors for the advancement of the market.

Global Stem Cell Therapy Market: Market Potential

A number of new studies, research projects, and development of novel therapies have come forth in the global market for stem cell therapy. Several of these treatments are in the pipeline, while many others have received approvals by regulatory bodies.

In March 2017, Belgian biotech company TiGenix announced that its cardiac stem cell therapy, AlloCSC-01 has successfully reached its phase I/II with positive results. Subsequently, it has been approved by the U.S. FDA. If this therapy is well- received by the market, nearly 1.9 million AMI patients could be treated through this stem cell therapy.

Another significant development is the granting of a patent to Israel-based Kadimastem Ltd. for its novel stem-cell based technology to be used in the treatment of multiple sclerosis (MS) and other similar conditions of the nervous system. The companys technology used for producing supporting cells in the central nervous system, taken from human stem cells such as myelin-producing cells is also covered in the patent.

Global Stem Cell Therapy Market: Regional Outlook

The global market for stem cell therapy can be segmented into Asia Pacific, North America, Latin America, Europe, and the Middle East and Africa. North America emerged as the leading regional market, triggered by the rising incidence of chronic health conditions and government support. Europe also displays significant growth potential, as the benefits of this therapy are increasingly acknowledged.

Asia Pacific is slated for maximum growth, thanks to the massive patient pool, bulk of investments in stem cell therapy projects, and the increasing recognition of growth opportunities in countries such as China, Japan, and India by the leading market players.

Global Stem Cell Therapy Market: Competitive Analysis

Several firms are adopting strategies such as mergers and acquisitions, collaborations, and partnerships, apart from product development with a view to attain a strong foothold in the global market for stem cell therapy.

Some of the major companies operating in the global market for stem cell therapy are RTI Surgical, Inc., MEDIPOST Co., Ltd., Osiris Therapeutics, Inc., NuVasive, Inc., Pharmicell Co., Ltd., Anterogen Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Holostem Terapie Avanzate S.r.l.

Report available at a discounted price exclusively!!! Offer ends today!!!

Request For Discount On This Report @ https://www.tmrresearch.com/sample/sample?flag=D&rep_id=1787&source=atm

The Stem Cell Therapy market report answers the following queries:

The Stem Cell Therapy market report provides the below-mentioned information:

Customize This Report @ https://www.tmrresearch.com/sample/sample?flag=CR&rep_id=1787&source=atm

Research Methodology of Stem Cell Therapy Market Report

The global Stem Cell Therapy market study covers the estimation size of the market both in terms of value (Mn/Bn USD) and volume (x units). Both top-down and bottom-up approaches have been used to calculate and authenticate the market size of the Stem Cell Therapy market, and predict the scenario of various sub-markets in the overall market. Primary and secondary research has been thoroughly performed to analyze the prominent players and their market share in the Stem Cell Therapy market. Further, all the numbers, segmentation, and shares have been gathered using authentic primary and secondary sources.

Here is the original post:
Soaring Demand for Clean-label Food Products to Trigger the Growth of the Stem Cell Therapy Market 2017 2025 - Fusion Science Academy

To Read More: Soaring Demand for Clean-label Food Products to Trigger the Growth of the Stem Cell Therapy Market 2017 2025 – Fusion Science Academy
categoriaCardiac Stem Cells commentoComments Off on Soaring Demand for Clean-label Food Products to Trigger the Growth of the Stem Cell Therapy Market 2017 2025 – Fusion Science Academy | dataJanuary 24th, 2020
Read All

Polyaspartic Coatings Market Insights on Revenue Analysis and Competitive Intelligence Study By 2026 : Key Players are Covestro AG; The…

By daniellenierenberg

Global Mafura Butter Market Report Market Size, Share, Price, Trends and Forecast is a professional and in-depth study on the current state of the global Mafura Butter industry.

The report also covers segment data, including: type segment, industry segment, channel segment etc. cover different segment market size, both volume and value. The compilation also covers information about clients from different industries, which is very important for the manufacturers.

There are 4 key segments covered in this Mafura Butter market report: competitor segment, product type segment, end use/application segment, and geography segment.

Request Sample Report @ https://www.marketresearchreports.biz/sample/sample/6309?source=atm

Quantifiable data:-

Geographically, this report studies the top producers and consumers, focuses on product capacity, production, value, consumption, market share and growth opportunity in these key regions, covering North America, Europe, China, Japan, Southeast Asia, India Companies

The information for each competitor includes:

* Company Profile

* Main Business Information

* SWOT Analysis

* Sales, Revenue, Price, and Gross Margin

* Market Share

Send Enquiry On This Report @ https://www.marketresearchreports.biz/sample/enquiry/264?source=atm

key players and product offerings

MRR.BIZ has been compiled in-depth market research data in the report after exhaustive primary and secondary research. Our team of able, experienced in-house analysts has collated the information through personal interviews and study of industry databases, journals, and reputable paid sources.

The report provides the following information:

Tailwinds and headwinds molding the markets trajectory Market segments based on products, technology, and applications Prospects of each segment Overall current and possible future size of the market

The main aim of the report is to:

MRR.BIZ is a leading provider of strategic market research. Our vast repository consists research reports, data books, company profiles, and regional market data sheets. We regularly update the data and analysis of a wide-ranging products and services around the world. As readers, you will have access to the latest information on almost 300 industries and their sub-segments. Both large Fortune 500 companies and SMEs have found those useful. This is because we customize our offerings keeping in mind the specific requirements of our clients.

Important key questions answered in Mafura Butter market report:

What will the market growth rate, overview, and analysis by type of global Mafura Butter in 2029?

What are the key factors affecting market dynamics? What are the drivers, challenges, and business risks in Mafura Butter market?

What is dynamics, this overview includes analysis of scope and price analysis of top manufacturers profiles?

What are the opportunities, risks, and the driving forces behind of Mafura Butter market? What are the major upstream raw materials sourcing and downstream buyers?

What is the business overview by type, applications, gross margin, and market shares?

What are the opportunities and threats faced by manufacturers in the global Mafura Butter market?

Check Discount On This Report @ https://www.marketresearchreports.biz/sample/checkdiscount/6309?source=atm

Excerpt from:
Polyaspartic Coatings Market Insights on Revenue Analysis and Competitive Intelligence Study By 2026 : Key Players are Covestro AG; The...

To Read More: Polyaspartic Coatings Market Insights on Revenue Analysis and Competitive Intelligence Study By 2026 : Key Players are Covestro AG; The…
categoriaCardiac Stem Cells commentoComments Off on Polyaspartic Coatings Market Insights on Revenue Analysis and Competitive Intelligence Study By 2026 : Key Players are Covestro AG; The… | dataJanuary 24th, 2020
Read All

Fabric Refresher Market 2020 Demand Analysis, Production, Revenue and Industry Share of Manufacturer – Fusion Science Academy

By daniellenierenberg

TheFabric Refresher Markethas grown exponentially in the last few years and this trend is projected to continue following the same trend until 2026. Based on the industrial chain, Fabric Refresher Market report mainly elaborates the definition, types, applications and major players of Fabric Refresher market in details. Deep analysis about market status (2014-2020), enterprise competition pattern, advantages and disadvantages of enterprise products, industry development trends (2020-2026), regional industrial layout characteristics and macroeconomic policies, industrial policy has also be included.

Access Sample Copy of this Reporthttps://www.orianresearch.com/request-sample/735942

From raw materials to downstream buyers of this industry will be analyzed scientifically, the feature of product circulation and sales channel will be presented as well. In a word, this report will help you to establish a panorama of industrial development and characteristics of the Fabric Refresher market.

Geographically,the global Fabric Refresher market is segmented into North America, Asia Pacific, Europe, Middle East & Africa and South America. This report forecasts revenue growth at a global, regional & country level, and provides an analysis of the market trends in each of the sub-segments from 2020 to 2026.

The information for each competitor includes:* Company Profile* Main Business Information* SWOT Analysis* Sales, Revenue, Price and Gross Margin* Market Share

Global Fabric Refresher Industry 2020 Market Research Report is spread across 114pages and provides exclusive vital statistics, data, information, trends and competitive landscape details in this niche sector.

The report also includesa discussion of the key vendors operating in this market. Some of the leading players in the global Fabric Refresher market are:

Whirlpool, P&G (Febreze), Astonish, Kao, Duskin, SC Johnson (Deb Group), PDQ Manufacturing, Hunan Taitang Nano Science & Technology,

Order a Copy of Global Fabric Refresher Market Report 2020 @https://www.orianresearch.com/checkout/735942

Segment by Type:

CanBottle

Segment by Application

HomeBusiness OfficesRestaurants

This report focuses on Fabric Refresher volume and value at global level, regional level and company level. From a global perspective, this report represents overall Fabric Refresher market size by analyzing historical data and future prospect. Regionally, this report focuses on several key regions: North America, Europe, China and Japan. At company level, this report focuses on the production capacity, ex-factory price, revenue and market share for each manufacturer covered in this report.

The report is useful in providing answers to several critical questions that are important for the industry stakeholders such as manufacturers and partners, end users, etc., besides allowing them in strategizing investments and capitalizing on market opportunities.

Key Target Audience are: Manufacturers of Fabric Refresher Raw material suppliers Market research and consulting firms Government bodies such as regulating authorities and policy makers Organizations, forums and alliances related to Fabric Refresher

Major Points from Table of Contents1 Report Overview1.1 Study Scope1.2 Key Market Segments1.3 Players Covered1.4 Market Analysis by Type1.4.1 Global Fabric Refresher Market Size Growth Rate by Type (2014-2026)1.5 Market by Application1.5.1 Global Fabric Refresher Market Share by Application (2014-2026)1.5.2 Large Enterprises1.5.3 SMEs1.6 Study Objectives1.7 Years Considered

2 Global Growth Trends2.1 Fabric Refresher Market Size2.2 Fabric Refresher Growth Trends by Regions2.2.1 Fabric Refresher Market Size by Regions (2014-2026)2.2.2 Fabric Refresher Market Share by Regions (2014-2020)2.3 Industry Trends2.3.1 Market Top Trends2.3.2 Market Drivers2.3.3 Market Opportunities

3 Market Share by Key Players3.1 Fabric Refresher Market Size by Manufacturers3.1.1 Global Fabric Refresher Revenue by Manufacturers (2014-2020)3.1.2 Global Fabric Refresher Revenue Market Share by Manufacturers (2014-2020)3.1.3 Global Fabric Refresher Market Concentration Ratio (CR5 and HHI)3.2 Fabric Refresher Key Players Head office and Area Served3.3 Key Players Fabric Refresher Product/Solution/Service3.4 Date of Enter into Fabric Refresher Market3.5 Mergers & Acquisitions, Expansion Plans

4 Breakdown Data by Type and Application4.1 Global Fabric Refresher Market Size by Type (2014-2020)4.2 Global Fabric Refresher Market Size by Application (2014-2020)

5 United States5.1 United States Fabric Refresher Market Size (2014-2020)5.2 Fabric Refresher Key Players in United States5.3 United States Fabric Refresher Market Size by Type5.4 United States Fabric Refresher Market Size by Application

6 Europe6.1 Europe Fabric Refresher Market Size (2014-2020)6.2 Fabric Refresher Key Players in Europe6.3 Europe Fabric Refresher Market Size by Type6.4 Europe Fabric Refresher Market Size by Application

7 China7.1 China Fabric Refresher Market Size (2014-2020)7.2 Fabric Refresher Key Players in China7.3 China Fabric Refresher Market Size by Type7.4 China Fabric Refresher Market Size by Application

8 Japan

8.1 Japan Fabric Refresher Market Size (2014-2020)8.2 Fabric Refresher Key Players in Japan8.3 Japan Fabric Refresher Market Size by Type8.4 Japan Fabric Refresher Market Size by Application

9 Southeast Asia9.1 Southeast Asia Fabric Refresher Market Size (2014-2020)9.2 Fabric Refresher Key Players in Southeast Asia9.3 Southeast Asia Fabric Refresher Market Size by Type9.4 Southeast Asia Fabric Refresher Market Size by Application

Continued

The projections featured in the report have been derived using proven research methodologies and assumptions. By doing so, the research report serves as a repository of analysis and information for every facet of the market, including but not limited to: regional markets, product, and application.

About Us

Orian Researchis one of the most comprehensive collections of market intelligence reports on the World Wide Web. Our reports repository boasts of over 500000+ industry and country research reports from over 100 top publishers. We continuously update our repository so as to provide our clients easy access to the worlds most complete and current database of expert insights on global industries, companies, and products. We also specialize in custom research in situations where our syndicate research offerings do not meet the specific requirements of our esteemed clients.

Read this article:
Fabric Refresher Market 2020 Demand Analysis, Production, Revenue and Industry Share of Manufacturer - Fusion Science Academy

To Read More: Fabric Refresher Market 2020 Demand Analysis, Production, Revenue and Industry Share of Manufacturer – Fusion Science Academy
categoriaCardiac Stem Cells commentoComments Off on Fabric Refresher Market 2020 Demand Analysis, Production, Revenue and Industry Share of Manufacturer – Fusion Science Academy | dataJanuary 24th, 2020
Read All

El Paso scientists team up for project that will be sent to the International Space Station – KVIA El Paso

By daniellenierenberg

EL PASO, Texas -- Biomedical research scientists from Texas Tech University Health Sciences Center El Paso and The University of Texas at El Paso are partnering up to send "artificial mini-hearts" to the International Space Station to better understand how microgravity affects the function of the human heart.

The three-year project, funded by the National Science Foundation (NSF) and the space station's U.S. National Laboratory, brings together TTUHSC El Paso faculty scientist Munmun Chattopadhyay, Ph.D., and UTEP biomedical engineer Binata Joddar, Ph.D. The researchers will collaborate in their Earth-bound labs to create tiny (less than 1 millimeter thick) heart-tissue structures, known as cardiac organoids, using human stem cells and 3D bioprinting technology.

By exposing the organoids to the near-weightless environment of the orbiting space station, the researchers hope to gain a better understanding of a health condition known as cardiac atrophy, which is a reduction and weakening of heart tissue. Cardiac atrophy often affects astronauts who spend long periods of time in microgravity. A weakened heart muscle has difficulty pumping blood to the body, and can lead to problems such as fainting, irregular heartbeat, heart valve problems and even heart failure. Cardiac atrophy is also associated with chronic disease.

The first year of the project, which began in September, will focus on research design. During this phase, Dr. Joddar will use 3D printing to fabricate the cardiac organoids by coupling cardiac cells in physiological ratios to mimic heart tissue. The second year will be centered on preparing the organoid payload for a rocket launch and mission in space. The third and final year of the research will involve analyzing data from the experiment after the organoids are returned to Earth.

The project will also provide an educational opportunity for the El Paso community, with a workshop for K-12 students to learn about tissue engineering projects on the space station. It will also include a seminar for medical students, interns and residents about the benefits and challenges of transitioning research from Earth-based laboratories into space.

More here:
El Paso scientists team up for project that will be sent to the International Space Station - KVIA El Paso

To Read More: El Paso scientists team up for project that will be sent to the International Space Station – KVIA El Paso
categoriaCardiac Stem Cells commentoComments Off on El Paso scientists team up for project that will be sent to the International Space Station – KVIA El Paso | dataJanuary 23rd, 2020
Read All

Ncardia and BlueRock Therapeutics Announce Collaboration Agreement and Licensing of Process Development Technologies for the Manufacture of…

By daniellenierenberg

Ncardia and BlueRock Therapeutics today announced an agreement covering process development technologies for the manufacture of induced pluripotent stem cell (iPSC)-derived cardiomyocytes. Under the terms of the agreement, Bluerock gains access to Ncardias large-scale production processes and intellectual property for the production of iPSC-derived cardiomyocytes for therapeutic use.

This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20200121005200/en/

"BlueRock is a leader in the field of cell therapy and our collaboration is a perfect match of mission and capabilities. This relationship allows us to utilize our experience in iPSC process development to help advance potential cell therapies for cardiac diseases," said Stefan Braam, CEO of Ncardia.

"There are hundreds of millions of people worldwide that suffer from degenerative cardiovascular disease where the root cause is the loss of healthy heart muscle cells, and where medical treatment options are limited. BlueRocks authentic cellular therapy is a novel approach that has the potential to transform the lives of patients, but will require the manufacture of our cell therapies at unprecedented scale. The Ncardia team has developed key technologies related to this scale-up challenge, and we are pleased to work with them as we advance BlueRocks novel CELL+GENE platform towards the clinic and those patients in need," said Emile Nuwaysir, President and CEO, BlueRock Therapeutics.

About BlueRock Therapeutics

BlueRock Therapeutics, a wholly owned and independently operated subsidiary of Bayer AG, is a leading engineered cell therapy company with a mission to develop regenerative medicines for intractable diseases. BlueRock Therapeutics CELL+GENE platform harnesses the power of cells for new medicines across neurology, cardiology and immunology indications. BlueRock Therapeutics cell differentiation technology recapitulates the cells developmental biology to produce authentic cell therapies, which are further engineered for additional function. Utilizing these cell therapies to replace damaged or degenerated tissue brings the potential to restore or regenerate lost function. BlueRocks culture is defined by scientific innovation, highest ethical standards and an urgency to bring transformative treatments to all who would benefit. For more information, visit http://www.bluerocktx.com.

About Ncardia

Ncardia believes that stem cell technology can deliver better therapies to patients faster. We bring cell manufacturing and process development expertise to cell therapy by designing and delivering human induced pluripotent stem cell (iPSC) solutions to specification. Our offerings extend from concept development to pre-clinical studies, including custom manufacturing of a range of cell types, as well as discovery services such as disease modelling, screening, and safety assays. For more information, visit http://www.ncardia.com.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200121005200/en/

Contacts

BlueRock:media@bluerocktx.com

Ncardia:Steven Dublinmedia@ncardia.com

See the original post:
Ncardia and BlueRock Therapeutics Announce Collaboration Agreement and Licensing of Process Development Technologies for the Manufacture of...

To Read More: Ncardia and BlueRock Therapeutics Announce Collaboration Agreement and Licensing of Process Development Technologies for the Manufacture of…
categoriaCardiac Stem Cells commentoComments Off on Ncardia and BlueRock Therapeutics Announce Collaboration Agreement and Licensing of Process Development Technologies for the Manufacture of… | dataJanuary 22nd, 2020
Read All

The Living Robots Made With Frog Cells Could Boost Our Health – Dual Dove

By daniellenierenberg

Theres a team of scientists who basically discovered live robots. You read that right. They found a new purpose for living cells, which they took from frog embryos, and they constructed new life forms. These life forms were named Xenobots, and they can move in small places and carry stuff, too. They also want to try to see if they are useful in medicine.

Apparently, they can heal themselves after theyre cut, which gives them a longer life span. They are not a species of animals, and they are not robots in a real way. As Joshua Bongard states, Its a new class of artifact: a living, programmable organism. He is a computer scientist at the University of Vermont.

A supercomputer developed these live robots at UVM. The idea behind this creation is not a new one. But it is the first time they actually improved it from scratch. The team was led by doctoral student Sam Kriegman, who used an evolutionary algorithm to develop thousands of designs for these new life forms.

They gave the program the basic rules about biophysics about the frog skin and the cardiac cells. They tested about a hundred algorithms to find the best design. Then, the team worked with microsurgeons to transfer the silicon designs into life. They took the stem cells from Xenopus lavevis, an African frog. Then the embryos were assembled in body forms, so the cells began to work.

Almost everything we see today is made out of steel, silicon, or plastic. While its true that the material is durable, it also creates human health problems. Bongard stated that the living tissues degrade quickly. Also, these living robots made with frog cells could help us live a healthier life. More research will be conducted.

Tanya is an expert in reddit and health subjects. She finds good stories where no one ever thinks to look.

Original post:
The Living Robots Made With Frog Cells Could Boost Our Health - Dual Dove

To Read More: The Living Robots Made With Frog Cells Could Boost Our Health – Dual Dove
categoriaCardiac Stem Cells commentoComments Off on The Living Robots Made With Frog Cells Could Boost Our Health – Dual Dove | dataJanuary 22nd, 2020
Read All

National Research (NASDAQ:NRC) versus US Stem Cell (NASDAQ:USRM) Head-To-Head Review – Riverton Roll

By daniellenierenberg

US Stem Cell (OTCMKTS:USRM) and National Research (NASDAQ:NRC) are both small-cap medical companies, but which is the superior investment? We will compare the two companies based on the strength of their earnings, risk, valuation, dividends, profitability, analyst recommendations and institutional ownership.

Institutional & Insider Ownership

39.7% of National Research shares are owned by institutional investors. 16.7% of US Stem Cell shares are owned by insiders. Comparatively, 4.5% of National Research shares are owned by insiders. Strong institutional ownership is an indication that hedge funds, endowments and large money managers believe a stock will outperform the market over the long term.

Analyst Recommendations

This is a breakdown of current ratings and price targets for US Stem Cell and National Research, as provided by MarketBeat.com.

Volatility & Risk

US Stem Cell has a beta of 4.87, meaning that its stock price is 387% more volatile than the S&P 500. Comparatively, National Research has a beta of 0.78, meaning that its stock price is 22% less volatile than the S&P 500.

Valuation and Earnings

This table compares US Stem Cell and National Researchs gross revenue, earnings per share (EPS) and valuation.

National Research has higher revenue and earnings than US Stem Cell.

Profitability

This table compares US Stem Cell and National Researchs net margins, return on equity and return on assets.

Summary

National Research beats US Stem Cell on 7 of the 9 factors compared between the two stocks.

US Stem Cell Company Profile

U.S. Stem Cell, Inc., a biotechnology company, focuses on the discovery, development, and commercialization of autologous cellular therapies for the treatment of chronic and acute heart damage, and vascular and autoimmune diseases in the United States and internationally. Its lead product candidates include MyoCell, a clinical therapy designed to populate regions of scar tissue within a patient's heart with autologous muscle cells or cells from a patient's body for enhancing cardiac function in chronic heart failure patients; and AdipoCell, a patient-derived cell therapy for the treatment of acute myocardial infarction, chronic heart ischemia, and lower limb ischemia. The company's product development pipeline includes MyoCell SDF-1, an autologous muscle-derived cellular therapy for improving cardiac function in chronic heart failure patients. It is also developing MyoCath, a deflecting tip needle injection catheter that is used to inject cells into cardiac tissue in therapeutic procedures to treat chronic heart ischemia and congestive heart failure. In addition, the company provides physician and patient based regenerative medicine/cell therapy training, cell collection, and cell storage services; and cell collection and treatment kits for humans and animals, as well operates a cell therapy clinic. The company was formerly known as Bioheart, Inc. and changed its name to U.S. Stem Cell, Inc. in October 2015. U.S. Stem Cell, Inc. was founded in 1999 and is headquartered in Sunrise, Florida.

National Research Company Profile

National Research Corporation (NRC) is a provider of analytics and insights that facilitate revenue growth, patient, employee and customer retention and patient engagement for healthcare providers, payers and other healthcare organizations. The Companys portfolio of subscription-based solutions provides information and analysis to healthcare organizations and payers across a range of mission-critical, constituent-related elements, including patient experience and satisfaction, community population health risks, workforce engagement, community perceptions, and physician engagement. The Companys clients range from acute care hospitals and post-acute providers, such as home health, long term care and hospice, to numerous payer organizations. The Company derives its revenue from its annually renewable services, which include performance measurement and improvement services, healthcare analytics and governance education services.

Receive News & Ratings for US Stem Cell Daily - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings for US Stem Cell and related companies with MarketBeat.com's FREE daily email newsletter.

Read more:
National Research (NASDAQ:NRC) versus US Stem Cell (NASDAQ:USRM) Head-To-Head Review - Riverton Roll

To Read More: National Research (NASDAQ:NRC) versus US Stem Cell (NASDAQ:USRM) Head-To-Head Review – Riverton Roll
categoriaCardiac Stem Cells commentoComments Off on National Research (NASDAQ:NRC) versus US Stem Cell (NASDAQ:USRM) Head-To-Head Review – Riverton Roll | dataJanuary 22nd, 2020
Read All

Cell Separation Technology Market to Receive Overwhelming Hike in Revenues by 2027 Dagoretti News – Dagoretti News

By daniellenierenberg

Transparency Market Research (TMR)has published a new report on the globalcell separation technology marketfor the forecast period of 20192027. According to the report, the global cell separation technology market was valued at ~US$ 5 Bnin 2018, and is projected to expand at a double-digit CAGR during the forecast period.

Overview

Cell separation, also known as cell sorting or cell isolation, is the process of removing cells from biological samples such as tissue or whole blood. Cell separation is a powerful technology that assists biological research. Rising incidences of chronic illnesses across the globe are likely to boost the development of regenerative medicines or tissue engineering, which further boosts the adoption of cell separation technologies by researchers.

Expansion of the global cell separation technology market is attributed to an increase in technological advancements and surge in investments in research & development, such asstem cellresearch and cancer research. The rising geriatric population is another factor boosting the need for cell separation technologies Moreover, the geriatric population, globally, is more prone to long-term neurological and other chronic illnesses, which, in turn, is driving research to develop treatment for chronic illnesses. Furthermore, increase in the awareness about innovative technologies, such as microfluidics, fluorescent-activated cells sorting, and magnetic activated cells sorting is expected to propel the global cell separation technology market.

Planning To Lay Down Future Strategy? Request Brochure Of Cell Separation Technology Market

https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=1925

North America dominated the global cell separation technology market in 2018, and the trend is anticipated to continue during the forecast period. This is attributed to technological advancements in offering cell separation solutions, presence of key players, and increased initiatives by governments for advancing the cell separation process. However, insufficient funding for the development of cell separation technologies is likely to hamper the global cell separation technology market during the forecast period. Asia Pacific is expected to be a highly lucrative market for cell separation technology during the forecast period, owing to improving healthcare infrastructure along with rising investments in research & development in the region.

Rising Incidences of Chronic Diseases, Worldwide, Boosting the Demand for Cell Therapy

Incidences of chronic diseases such as diabetes, obesity, arthritis, cardiac diseases, and cancer are increasing due to sedentary lifestyles, aging population, and increased alcohol consumption and cigarette smoking. According to the World Health Organization (WHO), by 2020, the mortality rate from chronic diseases is expected to reach73%, and in developing counties,70%deaths are estimated to be caused by chronic diseases. Southeast Asia, Eastern Mediterranean, and Africa are expected to be greatly affected by chronic diseases. Thus, the increasing burden of chronic diseases around the world is fuelling the demand for cellular therapies to treat chronic diseases. This, in turn, is driving focus and investments on research to develop effective treatments. Thus, increase in cellular research activities is boosting the global cell separation technology market.

To Obtain All-Inclusive Information On Forecast Analysis Of Cell Separation Technology Market , Request A Discount

https://www.transparencymarketresearch.com/sample/sample.php?flag=D&rep_id=1925

Increase in Geriatric Population Boosting the Demand for Surgeries

The geriatric population is likely to suffer from chronic diseases such as cancer and neurological disorders more than the younger population. Moreover, the geriatric population is increasing at a rapid pace as compared to that of the younger population. Increase in the geriatric population aged above 65 years is projected to drive the incidences of Alzheimers, dementia, cancer, and immune diseases, which, in turn, is anticipated to boost the need for corrective treatment of these disorders. This is estimated to further drive the demand for clinical trials and research that require cell separation products. These factors are likely to boost the global cell separation technology market.

According to the United Nations, the geriatric population aged above 60 is expected to double by 2050 and triple by 2100, an increase from962 millionin 2017 to2.1 billionin 2050 and3.1 billionby 2100.

Productive Partnerships in Microfluidics Likely to Boost the Cell Separation Technology Market

Technological advancements are prompting companies to innovate in microfluidics cell separation technology. Strategic partnerships and collaborations is an ongoing trend, which is boosting the innovation and development of microfluidics-based products. Governments and stakeholders look upon the potential in single cell separation technology and its analysis, which drives them to invest in the development ofmicrofluidics. Companies are striving to build a platform by utilizing their expertise and experience to further offer enhanced solutions to end users.

Stem Cell Research to Account for a Prominent Share

Stem cell is a prominent cell therapy utilized in the development of regenerative medicine, which is employed in the replacement of tissues or organs, rather than treating them. Thus, stem cell accounted for a prominent share of the global market. The geriatric population is likely to increase at a rapid pace as compared to the adult population, by 2030, which is likely to attract the use of stem cell therapy for treatment. Stem cells require considerably higher number of clinical trials, which is likely to drive the demand for cell separation technology, globally. Rising stem cell research is likely to attract government and private funding, which, in turn, is estimated to offer significant opportunity for stem cell therapies.

Biotechnology & Pharmaceuticals Companies to Dominate the Market

The number of biotechnology companies operating across the globe is rising, especially in developing countries. Pharmaceutical companies are likely to use cells separation techniques to develop drugs and continue contributing through innovation. Growing research in stem cell has prompted companies to own large separate units to boost the same. Thus, advancements in developing drugs and treatments, such as CAR-T through cell separation technologies, are likely to drive the segment.

As per research, 449 public biotech companies operate in the U.S., which is expected to boost the biotechnology & pharmaceutical companies segment. In developing countries such as China, China Food and Drug Administration(CFDA) reforms pave the way for innovation to further boost biotechnology & pharmaceutical companies in the country.

Global Cell Separation Technology Market: Prominent Regions

North America to Dominate Global Market, While Asia Pacific to Offer Significant Opportunity

In terms of region, the global cell separation technology market has been segmented into five major regions: North America, Europe, Asia Pacific, Latin America, and the Middle East & Africa. North America dominated the global market in 2018, followed by Europe. North America accounted for a major share of the global cell separation technology market in 2018, owing to the development of cell separation advanced technologies, well-defined regulatory framework, and initiatives by governments in the region to further encourage the research industry. The U.S. is a major investor in stem cell research, which accelerates the development of regenerative medicines for the treatment of various long-term illnesses.

The cell separation technology market in Asia Pacific is projected to expand at a high CAGR from 2019 to 2027. This can be attributed to an increase in healthcare expenditure and large patient population, especially in countries such as India and China. Rising medical tourism in the region and technological advancements are likely to drive the cell separation technology market in the region.

Launching Innovative Products, and Acquisitions & Collaborations by Key Players Driving Global Cell Separation Technology Market

The global cell separation technology market is highly competitive in terms of number of players. Key players operating in the global cell separation technology market include Akadeum Life Sciences, STEMCELL Technologies, Inc., BD, Bio-Rad Laboratories, Inc., Miltenyi Biotech, 10X Genomics, Thermo Fisher Scientific, Inc., Zeiss, GE Healthcare Life Sciences, PerkinElmer, Inc., and QIAGEN.

These players have adopted various strategies such as expanding their product portfolios by launching new cell separation kits and devices, and participation in acquisitions, establishing strong distribution networks. Companies are expanding their geographic presence in order sustain in the global cell separation technology market. For instance, in May 2019, Akadeum Life Sciences launched seven new microbubble-based products at a conference. In July 2017, BD received the U.S. FDAs clearance for its BD FACS Lyric flow cytometer system, which is used in the diagnosis of immunological disorders.

Visit link:
Cell Separation Technology Market to Receive Overwhelming Hike in Revenues by 2027 Dagoretti News - Dagoretti News

To Read More: Cell Separation Technology Market to Receive Overwhelming Hike in Revenues by 2027 Dagoretti News – Dagoretti News
categoriaCardiac Stem Cells commentoComments Off on Cell Separation Technology Market to Receive Overwhelming Hike in Revenues by 2027 Dagoretti News – Dagoretti News | dataJanuary 20th, 2020
Read All

Exosome Therapeutic Market 2020 Modest Situation among the Top Manufacturers, With Sales, Revenue and Market Share 2026 Dagoretti News – Dagoretti…

By daniellenierenberg

Global Exosome Therapeutic Marketreport identifies and analyses the emerging trends along with major drivers, challenges and opportunities in industry with analysis on Market trends, share, growth,demand, top vendors, Geographical Regions, types, applications. Exosome Therapeutic industry report gives a comprehensive account of the Global Exosome Therapeutic market. Details such as the size, key players, segmentation, SWOT analysis, most influential trends, and business environment of the market are mentioned in this report.

Exosome Therapeutic Marketis expected to gain market growth in the forecast period of 2019 to 2026. Data Bridge Market Research analyses that the market is growing with a CAGR of 21.9% in the forecast period of 2019 to 2026 and expected to reach USD 31,691.52 million by 2026 from USD 6,500.00 million in 2018. Increasing prevalence of lyme disease, chronic inflammation, autoimmune disease and other chronic degenerative diseases are the factors for the market growth.

Download Exclusive PDF Sample Report @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=glo

Synopsis of Global Exosome Therapeutic Market:-Exosomes is used to transfer RNA, DNA, and proteins to other cells in the body by making alteration in the function of the target cells. Increasing research activities in exosome therapeutic is augmenting the market growth as demand for exosome therapeutic has increased among healthcare professionals.

Increased number of exosome therapeutics as compared to the past few years will accelerate the market growth. Companies are receiving funding for exosome therapeutic research and clinical trials. For instance, In September 2018, EXOCOBIO has raised USD 27 million in its series B funding. The company has raised USD 46 million as series a funding in April 2017. The series B funding will help the company to set up GMP-compliant exosome industrial facilities to enhance production of exosomes to commercialize in cosmetics and pharmaceutical industry.

Some Of The Major Competitors Currently Working In Global Exosome Therapeutic Market Are:Bayer AG, Iso-Tex Diagnostics, Inc., Bracco Diagnostic Inc., Novalek Pharmaceuticals Pvt. Ltd., iMAX, Taejoon Pharm, Unijules Medicals Ltd, General Electric, Guerbet LLC, J.B.Chemicals & Pharmaceuticals Ltd among others players domestic and global. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.

For More Information or Query or Customization Before Buying, Visit @https://www.databridgemarketresearch.com/inquire-before-buying/?dbm

North America Dominates The Exosome Therapeutic Market as the U.S. Is leaderin exosome therapeutic manufacturing as well as research activities required for exosome therapeutics. At present time Stem Cells Group holding shares around 60.00%. In addition global exosomes therapeutics manufacturers like EXOCOBIO, evox THERAPEUTICS and others are intensifying their efforts in China. The Europe region is expected to grow with the highest growth rate in the forecast period of 2019 to 2026 because of increasing research activities in exosome therapeutic by population.

Huge Investment by Automakers for Exosome Therapeutics and New Technology Penetration

Global exosome therapeutic market also provides you with detailed market analysis for every country growth in pharma industry with exosome therapeutic sales, impact of technological development in exosome therapeutic and changes in regulatory scenarios with their support for the exosome therapeutic market. The data is available for historic period 2010 to 2017.

Browse in-depth TOC on Exosome Therapeutic Market

50 Tables

250 No of Figures

150 Pages

This Exosome Therapeutic Market report contains all aspects that are directly or indirectly related to the multiple areas of the global market. Our experts have carefully collated the global Exosome Therapeutic Market data and estimated the change in the forecast period. This information in the report helps customers make accurate decisions about market activity Exosome Therapeutic Market based on forecasting trends. This report also discusses current or future policy research or regulations that must be initiated by management and market strategies.

Buy This Report (Single User Access)@https://www.databridgemarketresearch.com/checkout/buy/singleuser/gl

Global Exosome Therapeutic Market Scope and Market Size

Global Exosome Therapeutic Market is segmented of the basis of type, source, therapy, transporting capacity, application, route of administration and end user. The growth among segments helps you analyse niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.

Based on type, the market is segmented into natural exosomes and hybrid exosomes. Natural exosomes are dominating in the market because natural exosomes are used in various biological and pathological processes as well as natural exosomes has many advantages such as good biocompatibility and reduced clearance rate compare than hybrid exosomes.

Based on therapy, the market is segmented into immunotherapy, gene therapy and chemotherapy. Chemotherapy is dominating in the market because chemotherapy is basically used in treatment of cancer which is major public health issues. The multidrug resistance (MDR) proteins and various tumors associated exosomes such as miRNA and IncRNA are include in in chemotherapy associated resistance.

Based on transporting capacity, the market is segmented into bio macromolecules and small molecules. Bio macromolecules are dominating in the market because bio macromolecules transmit particular biomolecular information and are basically investigated for their delicate properties such as biomarker source and delivery system

Based on application, the market is segmented into oncology, neurology, metabolic disorders, cardiac disorders, blood disorders, inflammatory disorders, gynecology disorders, organ transplantation and others. Oncology segment is dominating in the market due to rising incidence of various cancers such as lung cancer, breast cancer, leukemia, skin cancer, lymphoma. As per the National Cancer Institute, in 2018 around 1,735,350 new cases of cancer was diagnosed in the U.S. As per the American Cancer Society Inc in 2019 approximately 268,600 new cases of breast cancer diagnosed in the U.S.To be continued..Detailed Segmentation ofExosome Therapeutic Market

The Countries Covered In The Exosome Therapeutic Market Report Are U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific in the Asia-Pacific, South Africa, Rest of Middle East and Africa as a part of Middle East and Africa, Brazil and Rest of South America as part of South America.

Along with the elaborated information about the key contenders, the globalExosome Therapeutic Marketreport efficiently provides information by segmenting the market on the basis of the type services and products offerings, form of the product, applications of the final products, technology on which the product is based, and others. The report is also bifurcated the market on the basis of regions to analyze the growth pattern of the market in different geographical areas.

The Exosome Therapeutic Market report includes the leading advancements and technological up-gradation that engages the user to inhabit with fine business selections, define their future-based priority growth plans, and to implement the necessary actions. The global Exosome Therapeutic Market report also offers a detailed summary of key players and their manufacturing procedure with statistical data and profound analysis of the products, contribution, and revenue.

Global Exosome Therapeutic Market Report includes Detailed TOC points:

1 Introduction

2Market Segmentation

3 Market Overview

3.3 Opportunities

4 Executive Summaries

5 Premium Insights

6 Regulatory Procedure

7 Global Exosome Therapeutic Market, By Type

8 Global Exosome Therapeutic Market, by disease type

9 Global Exosome Therapeutic Market, By Deployment

10 Global Exosome Therapeutic Market, By End User

11 Global Exosome Therapeutic Market, By Distribution Channel

12 Global Exosome Therapeutic Market, By Geography

13 Global Exosome Therapeutic Market, Company Landscape

14 Company Profile

Continued!!!

About Data Bridge Market Research:

An absolute way to forecast what future holds is to comprehend the trend today!

Data Bridge set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.

Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude. We are content with our glorious 99.9 % client satisfying rate.

Contact Us:

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Email:[emailprotected]

See the rest here:
Exosome Therapeutic Market 2020 Modest Situation among the Top Manufacturers, With Sales, Revenue and Market Share 2026 Dagoretti News - Dagoretti...

To Read More: Exosome Therapeutic Market 2020 Modest Situation among the Top Manufacturers, With Sales, Revenue and Market Share 2026 Dagoretti News – Dagoretti…
categoriaCardiac Stem Cells commentoComments Off on Exosome Therapeutic Market 2020 Modest Situation among the Top Manufacturers, With Sales, Revenue and Market Share 2026 Dagoretti News – Dagoretti… | dataJanuary 20th, 2020
Read All

Validea’s Top Five Healthcare Stocks Based On Motley Fool – 1/19/2020 – Nasdaq

By daniellenierenberg

The following are the top rated Healthcare stocks according to Validea's Small-Cap Growth Investor model based on the published strategy of Motley Fool. This strategy looks for small cap growth stocks with solid fundamentals and strong price performance.

ZYNEX INC. (ZYXI) is a small-cap growth stock in the Medical Equipment & Supplies industry. The rating according to our strategy based on Motley Fool is 83% based on the firms underlying fundamentals and the stocks valuation. A score of 80% or above typically indicates that the strategy has some interest in the stock and a score above 90% typically indicates strong interest.

Company Description: Zynex, Inc. operates through the Electrotherapy and Pain Management Products segment. The Company conducts its business through its subsidiaries and the operating subsidiary is Zynex Medical, Inc. (ZMI). Its other subsidiaries include Zynex Monitoring Solutions, Inc. (ZMS) and Zynex Europe, ApS (ZEU). ZMI designs, manufactures and markets medical devices that treat chronic and acute pain, as well as activate and exercise muscles for rehabilitative purposes with electrical stimulation. ZMS is in the process of developing its blood volume monitoring product for non-invasive cardiac monitoring. ZEU intends to focus on sales and marketing its products within the international marketplace, upon receipt of necessary regulatory approvals. It markets and sells Zynex-manufactured products and distributes private labeled products. Its products include NexWave, NeuroMove, InWave, Electrodes and Batteries. ZMI devices are intended for pain management to reduce reliance on drugs and medications.

The following table summarizes whether the stock meets each of this strategy's tests. Not all criteria in the below table receive equal weighting or are independent, but the table provides a brief overview of the strong and weak points of the security in the context of the strategy's criteria.

For a full detailed analysis using NASDAQ's Guru Analysis tool, click here

LEMAITRE VASCULAR INC (LMAT) is a small-cap growth stock in the Medical Equipment & Supplies industry. The rating according to our strategy based on Motley Fool is 80% based on the firms underlying fundamentals and the stocks valuation. A score of 80% or above typically indicates that the strategy has some interest in the stock and a score above 90% typically indicates strong interest.

Company Description: LeMaitre Vascular, Inc. is a provider of medical devices for the treatment of peripheral vascular disease. The Company develops, manufactures and markets medical devices and implants used primarily in the field of vascular surgery. It is engaged in the design, marketing, sales and technical support of medical devices and implants for the treatment of peripheral vascular disease industry segment. The Company's product lines include valvulotomes, balloon catheters, carotid shunts, biologic vascular patches, radiopaque marking tape, anastomotic clips, remote endarterectomy devices, laparoscopic cholecystectomy devices, prosthetic vascular grafts, biologic vascular grafts and powered phlebectomy devices. Its portfolio of peripheral vascular devices consists of brand name products that are used in arteries and veins outside of the heart, including the Expandable LeMaitre Valvulotome, the Pruitt F3 Carotid Shunt, VascuTape Radiopaque Tape and the XenoSure biologic patch.

The following table summarizes whether the stock meets each of this strategy's tests. Not all criteria in the below table receive equal weighting or are independent, but the table provides a brief overview of the strong and weak points of the security in the context of the strategy's criteria.

For a full detailed analysis using NASDAQ's Guru Analysis tool, click here

INMODE LTD (INMD) is a small-cap growth stock in the Medical Equipment & Supplies industry. The rating according to our strategy based on Motley Fool is 79% based on the firms underlying fundamentals and the stocks valuation. A score of 80% or above typically indicates that the strategy has some interest in the stock and a score above 90% typically indicates strong interest.

Company Description: Inmode Ltd is an Israel-based company. It designs, develops, manufactures and commercializes energy-based, minimally-invasive surgical aesthetic and medical treatment solutions. The Company's proprietary technologies are used by physicians to remodel subdermal adipose, or fatty, tissue in a variety of procedures including fat reduction with simultaneous skin tightening, face and body contouring and ablative skin rejuvenation treatments. Its products target a wide array of procedures including simultaneous fat killing and skin tightening, permanent hair reduction, skin appearance and texture, among others. The Company's products may be used on a variety of body parts, including the face, neck, abdomen, upper arms, thighs and intimate feminine regions. It owns six product platforms: BodyTite, Optimas, Votiva, Contoura, Triton and EmbraceRF. All are market and sell traditionally to plastic and facial surgeons, aesthetic surgeons and dermatologists, among others.

The following table summarizes whether the stock meets each of this strategy's tests. Not all criteria in the below table receive equal weighting or are independent, but the table provides a brief overview of the strong and weak points of the security in the context of the strategy's criteria.

For a full detailed analysis using NASDAQ's Guru Analysis tool, click here

BIOLIFE SOLUTIONS INC (BLFS) is a small-cap growth stock in the Medical Equipment & Supplies industry. The rating according to our strategy based on Motley Fool is 76% based on the firms underlying fundamentals and the stocks valuation. A score of 80% or above typically indicates that the strategy has some interest in the stock and a score above 90% typically indicates strong interest.

Company Description: BioLife Solutions, Inc. (BioLife) is engaged in the developing, manufacturing and marketing a portfolio of biopreservation tools and services for cells, tissues and organs, including clinical grade cell and tissue hypothermic storage and cryopreservation freeze media and a related cloud hosted biologistics cold chain management application for shippers. The Company's product offerings include hypothermic storage and cryopreservation freeze media products for cells, tissues, and organs; generic blood stem cell freezing and cell thawing media products; custom product formulation and custom packaging services; cold chain logistics services incorporating precision thermal packaging products and cloud-hosted Web applications, and contract aseptic manufacturing formulation, fill and finish services of liquid media products. Its products include HypoThermosol FRS, CryoStor, BloodStor, Cell Thawing Media, PrepaStor and biologistex cold-chain management service.

The following table summarizes whether the stock meets each of this strategy's tests. Not all criteria in the below table receive equal weighting or are independent, but the table provides a brief overview of the strong and weak points of the security in the context of the strategy's criteria.

For a full detailed analysis using NASDAQ's Guru Analysis tool, click here

MEDPACE HOLDINGS INC (MEDP) is a mid-cap growth stock in the Biotechnology & Drugs industry. The rating according to our strategy based on Motley Fool is 76% based on the firms underlying fundamentals and the stocks valuation. A score of 80% or above typically indicates that the strategy has some interest in the stock and a score above 90% typically indicates strong interest.

Company Description: Medpace Holdings, Inc. is a clinical contract research organization. The Company provides clinical research-based drug and medical device development services. The Company partners with pharmaceutical, biotechnology, and medical device companies in the development and execution of clinical trials. The Company's drug development services focus on full service Phase I-IV clinical development services and include development plan design, coordinated central laboratory, project management, regulatory affairs, clinical monitoring, data management and analysis, pharmacovigilance new drug application submissions, and post-marketing clinical support. The Company also provides bio-analytical laboratory services, clinical human pharmacology, imaging services, and electrocardiography reading support for clinical trials. The Company's operations are principally based in North America, Europe, and Asia.

The following table summarizes whether the stock meets each of this strategy's tests. Not all criteria in the below table receive equal weighting or are independent, but the table provides a brief overview of the strong and weak points of the security in the context of the strategy's criteria.

For a full detailed analysis using NASDAQ's Guru Analysis tool, click here

Since its inception, Validea's strategy based on Motley Fool has returned 639.27% vs. 234.94% for the S&P 500. For more details on this strategy, click here

About Motley Fool: Brothers David and Tom Gardner often wear funny hats in public appearances, but they're hardly fools -- at least not the kind whose advice you should readily dismiss. The Gardners are the founders of the popular Motley Fool web site, which offers frank and often irreverent commentary on investing, the stock market, and personal finance. The Gardners' "Fool" really is a multi-media endeavor, offering not only its web content but also several books written by the brothers, a weekly syndicated newspaper column, and subscription newsletter services.

About Validea: Validea is an investment research service that follows the published strategies of investment legends. Validea offers both stock analysis and model portfolios based on gurus who have outperformed the market over the long-term, including Warren Buffett, Benjamin Graham, Peter Lynch and Martin Zweig. For more information about Validea, click here

The views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.

Go here to see the original:
Validea's Top Five Healthcare Stocks Based On Motley Fool - 1/19/2020 - Nasdaq

To Read More: Validea’s Top Five Healthcare Stocks Based On Motley Fool – 1/19/2020 – Nasdaq
categoriaCardiac Stem Cells commentoComments Off on Validea’s Top Five Healthcare Stocks Based On Motley Fool – 1/19/2020 – Nasdaq | dataJanuary 20th, 2020
Read All

US Stem Cell (OTCMKTS:USRM) and National Research (OTCMKTS:NRC) Head to Head Review – Slater Sentinel

By daniellenierenberg

US Stem Cell (OTCMKTS:USRM) and National Research (NASDAQ:NRC) are both small-cap medical companies, but which is the better stock? We will compare the two businesses based on the strength of their earnings, dividends, analyst recommendations, valuation, profitability, risk and institutional ownership.

Insider and Institutional Ownership

39.7% of National Research shares are held by institutional investors. 16.7% of US Stem Cell shares are held by company insiders. Comparatively, 4.5% of National Research shares are held by company insiders. Strong institutional ownership is an indication that large money managers, hedge funds and endowments believe a company will outperform the market over the long term.

This table compares US Stem Cell and National Researchs net margins, return on equity and return on assets.

Valuation & Earnings

This table compares US Stem Cell and National Researchs top-line revenue, earnings per share (EPS) and valuation.

National Research has higher revenue and earnings than US Stem Cell.

Risk and Volatility

US Stem Cell has a beta of 4.87, suggesting that its share price is 387% more volatile than the S&P 500. Comparatively, National Research has a beta of 0.78, suggesting that its share price is 22% less volatile than the S&P 500.

Analyst Recommendations

This is a summary of recent ratings and recommmendations for US Stem Cell and National Research, as provided by MarketBeat.

Summary

National Research beats US Stem Cell on 7 of the 9 factors compared between the two stocks.

US Stem Cell Company Profile

U.S. Stem Cell, Inc., a biotechnology company, focuses on the discovery, development, and commercialization of autologous cellular therapies for the treatment of chronic and acute heart damage, and vascular and autoimmune diseases in the United States and internationally. Its lead product candidates include MyoCell, a clinical therapy designed to populate regions of scar tissue within a patient's heart with autologous muscle cells or cells from a patient's body for enhancing cardiac function in chronic heart failure patients; and AdipoCell, a patient-derived cell therapy for the treatment of acute myocardial infarction, chronic heart ischemia, and lower limb ischemia. The company's product development pipeline includes MyoCell SDF-1, an autologous muscle-derived cellular therapy for improving cardiac function in chronic heart failure patients. It is also developing MyoCath, a deflecting tip needle injection catheter that is used to inject cells into cardiac tissue in therapeutic procedures to treat chronic heart ischemia and congestive heart failure. In addition, the company provides physician and patient based regenerative medicine/cell therapy training, cell collection, and cell storage services; and cell collection and treatment kits for humans and animals, as well operates a cell therapy clinic. The company was formerly known as Bioheart, Inc. and changed its name to U.S. Stem Cell, Inc. in October 2015. U.S. Stem Cell, Inc. was founded in 1999 and is headquartered in Sunrise, Florida.

National Research Company Profile

National Research Corporation (NRC) is a provider of analytics and insights that facilitate revenue growth, patient, employee and customer retention and patient engagement for healthcare providers, payers and other healthcare organizations. The Companys portfolio of subscription-based solutions provides information and analysis to healthcare organizations and payers across a range of mission-critical, constituent-related elements, including patient experience and satisfaction, community population health risks, workforce engagement, community perceptions, and physician engagement. The Companys clients range from acute care hospitals and post-acute providers, such as home health, long term care and hospice, to numerous payer organizations. The Company derives its revenue from its annually renewable services, which include performance measurement and improvement services, healthcare analytics and governance education services.

Receive News & Ratings for US Stem Cell Daily - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings for US Stem Cell and related companies with MarketBeat.com's FREE daily email newsletter.

More here:
US Stem Cell (OTCMKTS:USRM) and National Research (OTCMKTS:NRC) Head to Head Review - Slater Sentinel

To Read More: US Stem Cell (OTCMKTS:USRM) and National Research (OTCMKTS:NRC) Head to Head Review – Slater Sentinel
categoriaCardiac Stem Cells commentoComments Off on US Stem Cell (OTCMKTS:USRM) and National Research (OTCMKTS:NRC) Head to Head Review – Slater Sentinel | dataJanuary 17th, 2020
Read All

Scientists Turn Frog Cells Into Tiny Living Robots That Can Swim Through Your Body! – Mashable India

By daniellenierenberg

Remember Black Mirrors Metalhead episode where a robot dog shoots the protagonist with trackers in the face? The thought of having unwanted foreign intruders attacking us from inside was absolutely nightmarish. We might have something similar now, as scientists strive to innovate to create new and novel micro-robots every day, but, with scientific and sane intentions.

Now, researchers at the University of Vermont and Tufts University have created living robots out of actual healthy frog cells that have the potential to navigate through one's bloodstream and scrape out plaque from arteries. These robots, called xenobots, are essentially a bioengineering product made by harvesting skin, pumping heart cells from frogs, and clumping them with stem cells from its embryo. Whats more? They are fully biodegradable and self-healing!

According to a press release, scientists first used a supercomputer to design the new life-form that can move in a direction. After having created a biological model of the supercomputers vision, they assembled the clusters with the beating cardiac cells on one end acting as a pump to propel the clump forward through the water.

Using this technique, the team created a number of the living robots and watched as they were able to successfully push other objects around. The researchers also experimented with creating a pouch inside the new life-forms, allowing them to carry a payload around. Despite of having a very low motility, these robots can perform task that other machines cant do, like searching out nasty compounds or radioactive contamination, gathering microplastic in the oceans and so on. And while they may not be as strong as metals, theyre regenerative.

The notion of having living organisms inside our body, that can possibly be programmed for malicious intent, is nerve-wracking. With xenobots, scientists wish to resolve this fear and work on tackling the unintended consequences. A paper detailing the research was published in the Proceedings of the National Academy of Sciences.

Cover Credit: Twitter

Read the original here:
Scientists Turn Frog Cells Into Tiny Living Robots That Can Swim Through Your Body! - Mashable India

To Read More: Scientists Turn Frog Cells Into Tiny Living Robots That Can Swim Through Your Body! – Mashable India
categoriaCardiac Stem Cells commentoComments Off on Scientists Turn Frog Cells Into Tiny Living Robots That Can Swim Through Your Body! – Mashable India | dataJanuary 17th, 2020
Read All

Team builds the 1st living robots – EarthSky

By daniellenierenberg

Scientists from the University of Vermont (UVM) and Tufts University in Massachusetts said on January 13, 2020, that theyve now assembled living cells into entirely new life-forms. They call them living robots, or xenobots for the frog species from whose cells the little robots sprang. The scientists describe them as tiny blobs, submillimeter in size (a millimeter is about 1/25th of an inch, so these little blobs are smaller than that). The blobs contain between 500 and 1,000 cells. They can heal themselves after being cut. The blobs have been able to scoot across a petri dish, self-organize, and even transport minute payloads. Maybe, eventually, theyll be able to carry a medicine to a specific place inside a human body, scrape plaque from arteries, search out radioactive contamination, or gather plastic pollution in Earths oceans.

And, yes, the scientists do acknowledge possible ethical issues. More about that below.

Joshua Bongard, a computer scientist and robotics expert at the University of Vermont who co-led the new research, said in a statement:

These are novel living machines. Theyre neither a traditional robot nor a known species of animal. Its a new class of artifact: a living, programmable organism

You look at the cells weve been building our xenobots with, and, genomically, theyre frogs. Its 100% frog DNA but these are not frogs. Then you ask, well, what else are these cells capable of building?

The results of the new research were published January 13 in the Proceedings of the National Academy of Sciences.

EarthSky 2020 lunar calendars are available! Only a few left. Order now!

A manufactured quadruped (4-footed) organism, 650-750 microns in diameter (a micron is a millionth of a meter). The scientists described this creature (if we can call it a creature) as a bit smaller than a pinhead. Image via Douglas Blackiston/ Tufts University/ University of Vermont.

In their published paper, these scientists wrote:

Most technologies are made from steel, concrete, chemicals, and plastics, which degrade over time and can produce harmful ecological and health side effects. It would thus be useful to build technologies using self-renewing and biocompatible materials, of which the ideal candidates are living systems themselves. Thus, we here present a method that designs completely biological machines from the ground up: computers automatically design new machines in simulation, and the best designs are then built by combining together different biological tissues. This suggests others may use this approach to design a variety of living machines to safely deliver drugs inside the human body, help with environmental remediation, or further broaden our understanding of the diverse forms and functions life may adopt.

The new creatures were designed on a supercomputer at UVM, and then assembled and tested by biologists at Tufts University. The scientists statement described their process this way:

With months of processing time on the Deep Green supercomputer cluster at UVMs Vermont Advanced Computing Core, the team including lead author and doctoral student Sam Kriegman of UVM [@Kriegmerica on Twitter] used an evolutionary algorithm to create thousands of candidate designs for the new life-forms. Attempting to achieve a task assigned by the scientists like locomotion in one direction the computer would, over and over, reassemble a few hundred simulated cells into myriad forms and body shapes. As the programs ran driven by basic rules about the biophysics of what single frog skin and cardiac cells can do the more successful simulated organisms were kept and refined, while failed designs were tossed out. After a hundred independent runs of the algorithm, the most promising designs were selected for testing.

Then the team at Tufts, led by Michael Levin and with key work by microsurgeon Douglas Blackiston transferred the in-silico designs into life. First they gathered stem cells, harvested from embryos of African frogs, the species Xenopus laevis [African clawed frogs; hence the name xenobots.]

These were separated into single cells and left to incubate. Then, using tiny forceps and an even tinier electrode, the cells were cut and joined under a microscope into a close approximation of the designs specified by the computer.

Assembled into body forms never seen in nature, the cells began to work together. The skin cells formed a more passive architecture, while the once-random contractions of heart muscle cells were put to work creating ordered forward motion as guided by the computers design, and aided by spontaneous self-organizing patterns allowing the robots to move on their own.

These reconfigurable organisms were shown to be able move in a coherent fashion and explore their watery environment for days or weeks, powered by embryonic energy stores. Turned over, however, they failed, like beetles flipped on their backs.

Later tests showed that groups of xenobots would move around in circles, pushing pellets into a central location spontaneously and collectively. Others were built with a hole through the center to reduce drag. In simulated versions of these, the scientists were able to repurpose this hole as a pouch to successfully carry an object.

Wow yes?

The scientists said they see this work as part of a bigger picture. And they acknowledged that some may fear the implications of rapid technological change and complex biological manipulations. Levin commented:

That fear is not unreasonable. When we start to mess around with complex systems that we dont understand, were going to get unintended consequences.

However, he said:

If humanity is going to survive into the future, we need to better understand how complex properties, somehow, emerge from simple rules.

He said much of science is focused on:

controlling the low-level rules. We also need to understand the high-level rules.

I think its an absolute necessity for society going forward to get a better handle on systems where the outcome is very complex. A first step towards doing that is to explore: how do living systems decide what an overall behavior should be and how do we manipulate the pieces to get the behaviors we want?

In other words, he said:

this study is a direct contribution to getting a handle on what people are afraid of, which is unintended consequences.

Bongard added:

Theres all of this innate creativity in life. We want to understand that more deeply and how we can direct and push it toward new forms.

On the left, the anatomical blueprint for a computer-designed organism, discovered on a UVM supercomputer. On the right, the living organism, built entirely from frog skin (green) and heart muscle (red) cells. The background displays traces carved by a swarm of these new-to-nature organisms as they move through a field of particulate matter. Image via Sam Kriegman/ UVM.

Bottom line: Scientists said in early January 2020 that theyve created the first living robots, or xenobots, assembled from the cells of frogs. Their creators promise advances from drug delivery to toxic waste clean-up.

Source: A scalable pipeline for designing reconfigurable organisms

Via UVM

Read more:
Team builds the 1st living robots - EarthSky

To Read More: Team builds the 1st living robots – EarthSky
categoriaCardiac Stem Cells commentoComments Off on Team builds the 1st living robots – EarthSky | dataJanuary 17th, 2020
Read All

Autologous Stem Cell Based Therapies Market Report Analysis, Share, Revenue, Growth Rate With Forecast Overview To 2024 – Fusion Science Academy

By daniellenierenberg

UpMarketResearch.com, has added the latest research on Dry Powder Inhaler Market, which offers a concise outline of the market valuation, industry size, SWOT analysis, revenue approximation, and the regional outlook of this business vertical. The report precisely features the key opportunities and challenges faced by contenders of this industry and presents the existing competitive setting and corporate strategies enforced by the Dry Powder Inhaler Market players.

As per the Dry Powder Inhaler Market report, this industry is predicted to grow substantial returns by the end of the forecast duration, recording a profitable yearly growth in the upcoming years. Shedding light on brief of this industry, the report offers considerable details concerning complete valuation of the market as well as detailed analysis of the Dry Powder Inhaler Market along with existing growth opportunities in the business vertical.

Request a sample Report of Dry Powder Inhaler Market at: https://www.upmarketresearch.com/home/requested_sample/81368

Concepts and ideas in the report:Analysis of the region- based segment in the Dry Powder Inhaler Market: As per the report, in terms of provincial scope, the Dry Powder Inhaler Market is divided into USA, Europe, Japan, China, India and South East Asia. It also includes particulars related to the products usage throughout the geographical landscape. Data related to the evaluations held by all the zones mentioned as well as the market share registered by each region is included in the report. Sum of all the product consumption growth rate across the applicable regions as well as consumption market share is described in the report. The report speaks about consumption rate of all regions, based on product types and applications.

Brief of the market segmentation: As per the product type, the Dry Powder Inhaler Market is categorized intoSingle Dose Dry Powder InhalerMulti Dose Dry Powder Inhaler

Furthermore, the market share of each product along with the project valuation is mentioned in the report. The report consists of facts related to every single products sale price, revenue, growth rate over the estimation time period.

The Dry Powder Inhaler Market, according to the application spectrum, is categorized intoAsthmaChronic Obstructive Pulmonary DiseasePulmonary Arterial HypertensionOthers

Data pertaining the market share of each product application as well as estimated revenue that each application registers for is slated in the report.

Propelling factors & challenges: The report provides data concerning the forces influencing the commercialization scale of the Dry Powder Inhaler Market and their effect on the revenue graph of this business vertical. Data pertaining to latest trends driving the Dry Powder Inhaler Market along with the challenges this industry is about to experience in the upcoming years is mentioned in the report.

Ask for Discount on Dry Powder Inhaler Market Report at: https://www.upmarketresearch.com/home/request_for_discount/81368

Implementing marketing tactics: Ideas about numerous marketing strategies implemented by the renowned shareholders with respect to product marketing is present in the report. Information related to the sales channels that companies select is also included in the report. Along with the dealers of these products, it also presents the summary of the top customers for the same.

Analysis of the major competitors in the market:An outline of the manufacturers active in the Dry Powder Inhaler Market, consisting ofAstrazeneca3MGlaxoSmithKlineNovartisCiplaTevaBoehringer IngelheimChiesi FarmaceuticiMannKindVecturaalong with the distribution limits and sales area is reported. Particulars of each competitor including company profile, overview, as well as their range of products is inculcated in the report. The report also gives importance to product sales, price models, gross margins, and revenue generations. The Dry Powder Inhaler Market report consists of details such as estimation of the geographical landscape, study related to the market concentration rate as well as concentration ratio over the estimated time period.

To Buy this report, Visit : https://www.upmarketresearch.com/buy/dry-powder-inhaler-market-2019

Some of the Major Highlights of TOC covers:Dry Powder Inhaler Regional Market Analysis Dry Powder Inhaler Production by Regions Global Dry Powder Inhaler Production by Regions Global Dry Powder Inhaler Revenue by Regions Dry Powder Inhaler Consumption by Regions

Dry Powder Inhaler Segment Market Analysis (by Type) Global Dry Powder Inhaler Production by Type Global Dry Powder Inhaler Revenue by Type Dry Powder Inhaler Price by Type

Dry Powder Inhaler Segment Market Analysis (by Application) Global Dry Powder Inhaler Consumption by Application Global Dry Powder Inhaler Consumption Market Share by Application (2014-2019)

Dry Powder Inhaler Major Manufacturers Analysis Dry Powder Inhaler Production Sites and Area Served Product Introduction, Application and Specification Dry Powder Inhaler Production, Revenue, Ex-factory Price and Gross Margin (2014-2019) Main Business and Markets Served

For More Information on this report, Request Inquiry At https://www.upmarketresearch.com/home/enquiry_before_buying/81368

About UpMarketResearch:Up Market Research (https://www.upmarketresearch.com) is a leading distributor of market research report with more than 800+ global clients. As a market research company, we take pride in equipping our clients with insights and data that holds the power to truly make a difference to their business. Our mission is singular and well-defined we want to help our clients envisage their business environment so that they are able to make informed, strategic and therefore successful decisions for themselves.

Contact Info UpMarketResearchName Alex MathewsEmail [emailprotected]Organization UpMarketResearchAddress 500 East E Street, Ontario, CA 91764, United States.

Original post:
Autologous Stem Cell Based Therapies Market Report Analysis, Share, Revenue, Growth Rate With Forecast Overview To 2024 - Fusion Science Academy

To Read More: Autologous Stem Cell Based Therapies Market Report Analysis, Share, Revenue, Growth Rate With Forecast Overview To 2024 – Fusion Science Academy
categoriaCardiac Stem Cells commentoComments Off on Autologous Stem Cell Based Therapies Market Report Analysis, Share, Revenue, Growth Rate With Forecast Overview To 2024 – Fusion Science Academy | dataJanuary 17th, 2020
Read All

– Team builds first living robots using frog cells – Design Products & Applications

By daniellenierenberg

14 January 2020

These millimetre-wide "xenobots" can move toward a target, perhaps pick up a payload (like a medicine that needs to be carried to a specific place inside a patient) and heal themselves after being cut.

"These are novel living machines," says Joshua Bongard, a computer scientist and robotics expert at the University of Vermont who co-led the new research. "They're neither a traditional robot nor a known species of animal. It's a new class of artefact: a living, programmable organism."

The new creatures were designed on a supercomputer at UVM and then assembled and tested by biologists at Tufts University. "We can imagine many useful applications of these living robots that other machines can't do," says co-leader Michael Levin who directs the Centre for Regenerative and Developmental Biology at Tufts, "like searching out nasty compounds or radioactive contamination, gathering microplastic in the oceans, traveling in arteries to scrape out plaque."

The results of the new research were published January 13 in the Proceedings of the National Academy of Sciences.

Bespoke living systems

People have been manipulating organisms for human benefit since at least the dawn of agriculture, genetic editing is becoming widespread, and a few artificial organisms have been manually assembled in the past few years copying the body forms of known animals.

But this research, for the first time ever, "designs completely biological machines from the ground up," the team writes in their new study.

With months of processing time on the Deep Green supercomputer cluster at UVM's Vermont Advanced Computing Core, the team including lead author and doctoral student Sam Kriegman used an evolutionary algorithm to create thousands of candidate designs for the new life-forms. Attempting to achieve a task assigned by the scientists like locomotion in one direction the computer would, over and over, reassemble a few hundred simulated cells into myriad forms and body shapes. As the programs ran driven by basic rules about the biophysics of what single frog skin and cardiac cells can do the more successful simulated organisms were kept and refined, while failed designs were tossed out. After a hundred independent runs of the algorithm, the most promising designs were selected for testing.

Then the team at Tufts, led by Levin and with key work by microsurgeon Douglas Blackiston, transferred the in-silico designs into life. First, they gathered stem cells, harvested from the embryos of African frogs, the species Xenopus laevis. (Hence the name "xenobots.") These were separated into single cells and left to incubate. Then, using tiny forceps and an even tinier electrode, the cells were cut and joined under a microscope into a close approximation of the designs specified by the computer.

Assembled into body forms never seen in nature, the cells began to work together. The skin cells formed a more passive architecture, while the once-random contractions of heart muscle cells were put to work creating ordered forward motion as guided by the computer's design and aided by spontaneous self-organising patterns allowing the robots to move on their own.

These reconfigurable organisms were shown to be able move in a coherent fashion and explore their watery environment for days or weeks, powered by embryonic energy stores. Turned over, however, they failed, like beetles flipped on their backs.

Later tests showed that groups of xenobots would move around in circles, pushing pellets into a central location spontaneously and collectively. Others were built with a hole through the centre to reduce drag. In simulated versions of these, the scientists were able to repurpose this hole as a pouch to successfully carry an object. "It's a step toward using computer-designed organisms for intelligent drug delivery," says Bongard, a professor in UVM's Department of Computer Science and Complex Systems Centre.

Living technologies

Many technologies are made of steel, concrete or plastic. That can make them strong or flexible. But they also can create ecological and human health problems, like the growing scourge of plastic pollution in the oceans and the toxicity of many synthetic materials and electronics. "The downside of living tissue is that it's weak and it degrades," says Bongard. "That's why we use steel. But organisms have 4.5 billion years of practice at regenerating themselves and going on for decades." And when they stop working death they usually fall apart harmlessly. "These xenobots are fully biodegradable," say Bongard, "when they're done with their job after seven days, they're just dead skin cells."

Your laptop is a powerful technology. But try cutting it in half. Doesn't work so well. In the new experiments, the scientists cut the xenobots and watched what happened. "We sliced the robot almost in half and it stitches itself back up and keeps going," says Bongard. "And this is something you can't do with typical machines."

Cracking the Code

Both Levin and Bongard say the potential of what they've been learning about how cells communicate and connect extends deep into both computational science and our understanding of life. "The big question in biology is to understand the algorithms that determine form and function," says Levin. "The genome encodes proteins, but transformative applications await our discovery of how that hardware enables cells to cooperate toward making functional anatomies under very different conditions."

To make an organism develop and function, there is a lot of information sharing and cooperation organic computation going on in and between cells all the time, not just within neurons. These emergent and geometric properties are shaped by bioelectric, biochemical, and biomechanical processes, "that run on DNA-specified hardware," Levin says, "and these processes are reconfigurable, enabling novel living forms."

The scientists see the work presented in their new PNAS study "A scalable pipeline for designing reconfigurable organisms," as one step in applying insights about this bioelectric code to both biology and computer science. "What actually determines the anatomy towards which cells cooperate?" Levin asks. "You look at the cells we've been building our xenobots with, and, genomically, they're frogs. It's 100% frog DNA but these are not frogs. Then you ask, well, what else are these cells capable of building?"

"As we've shown, these frog cells can be coaxed to make interesting living forms that are completely different from what their default anatomy would be," says Levin. He and the other scientists in the UVM and Tufts team with support from DARPA's Lifelong Learning Machines program and the National Science Foundation believe that building the xenobots is a small step toward cracking what he calls the "morphogenetic code," providing a deeper view of the overall way organisms are organised and how they compute and store information based on their histories and environment.

Many people worry about the implications of rapid technological change and complex biological manipulations. "That fear is not unreasonable," Levin says. "When we start to mess around with complex systems that we don't understand, we're going to get unintended consequences." A lot of complex systems, like an ant colony, begin with a simple unit an ant from which it would be impossible to predict the shape of their colony or how they can build bridges over water with their interlinked bodies.

"If humanity is going to survive into the future, we need to better understand how complex properties, somehow, emerge from simple rules," says Levin. Much of science is focused on "controlling the low-level rules. We also need to understand the high-level rules," he says. "If you wanted an anthill with two chimneys instead of one, how do you modify the ants? We'd have no idea."

"I think it's an absolute necessity for society going forward to get a better handle on systems where the outcome is very complex," Levin says. "A first step towards doing that is to explore: how do living systems decide what an overall behaviour should be and how do we manipulate the pieces to get the behaviours we want?"

In other words, "this study is a direct contribution to getting a handle on what people are afraid of, which is unintended consequences," Levin says whether in the rapid arrival of self-driving cars, changing gene drives to wipe out whole lineages of viruses, or the many other complex and autonomous systems that will increasingly shape the human experience.

"There's all of this innate creativity in life," says UVM's Josh Bongard. "We want to understand that more deeply and how we can direct and push it toward new forms."

Information courtesy of University of Vermont

Excerpt from:
- Team builds first living robots using frog cells - Design Products & Applications

To Read More: – Team builds first living robots using frog cells – Design Products & Applications
categoriaCardiac Stem Cells commentoComments Off on – Team builds first living robots using frog cells – Design Products & Applications | dataJanuary 17th, 2020
Read All

Scientists Develop Live Robots With Frog Cells That Might Redefine Healthcare – Gizbot

By daniellenierenberg

Plus, these new robots can heal themselves after being cut, giving them a longer life span. "They're neither a traditional robot nor a known species of animal. It's a new class of artifact: a living, programmable organism," notes Joshua Bongard, a computer scientist and robotics expert at the University of Vermont who co-led the new research.

The live robots were designed and developed on a supercomputer at UVM and then tested by biologists at Tufts University. The idea of manipulating living organisms and copying body forms for human benefit isn't something new. However, this is the first time scientists have developed biological machines from scratch.

The team led by lead author and doctoral student Sam Kriegman, used an evolutionary algorithm to develop thousands of candidate designs for the new life-forms on the Deep Green supercomputer and was published in PANS. The program was fed the basic rules about biophysics of what a single frog skin and cardiac cells were capable of.

Nearly a hundred independent algorithm runs were conducted to select the most promising designs. Next, the team at Tufts worked with microsurgeon to transfer the silicon designs into life. Stem cells from an African frog (Xenopus lavevis, giving the name Xenobots) were harvested in the embryos. Assembled into body forms, the cells began working together.

Many of our gadgets and other technologies are made of steel, plastic, silicon. While it makes it strong and flexible, it also creates an ecological imbalance and human health problems. Bongard notes that living tissues are weak and degrade quickly. "But organisms have 4.5 billion years of practice at regenerating themselves and going on for decades," he says.

Even when tissues die, they're harmless to the environment. What's more interesting is that the live robots were sliced into half and surprisingly, it stitched itself and kept going. "This is something you can't do with typical machines," Bongard says. This is organic computation, which the authors explain as the information is shared and cooperated between cells.

The reconfigured organisms were found moving coherently and could explore watery environments for days and weeks together. The immediate application the researchers are suggesting is healthcare, where the Xenobots can be sent to pick a payload like medicine and carry it to the specific place inside the patient.

What About Ill-Effects?

Of course, the concerns on rapid changes in technology and complex biological manipulations have been rising. "When we start to mess around with complex systems that we don't understand, we're going to get unintended consequences," the scientists agree. At the same time, researchers note that a better understanding of complex properties is essential for mankind to survive.

See original here:
Scientists Develop Live Robots With Frog Cells That Might Redefine Healthcare - Gizbot

To Read More: Scientists Develop Live Robots With Frog Cells That Might Redefine Healthcare – Gizbot
categoriaCardiac Stem Cells commentoComments Off on Scientists Develop Live Robots With Frog Cells That Might Redefine Healthcare – Gizbot | dataJanuary 17th, 2020
Read All

Page 4«..3456..1020..»