Page 11234..1020..»

Bone marrow mesenchymal stem cells: Aging and tissue …

By admin

JavaScript is disabled on your browser. Please enable JavaScript to use all the features on this page.Abstract

Bone has well documented natural healing capacity that normally is sufficient to repair fractures and other common injuries. However, the properties of bone change throughout life, and aging is accompanied by increased incidence of bone diseases and compromised fracture healing capacity, which necessitate effective therapies capable of enhancing bone regeneration. The therapeutic potential of adult mesenchymal stem cells (MSCs) for bone repair has been long proposed and examined. Actions of MSCs may include direct differentiation to become bone cells, attraction and recruitment of other cells, or creation of a regenerative environment via production of trophic growth factors. With systemic aging, MSCs also undergo functional decline, which has been well investigated in a number of recent studies. In this review, we first describe the changes in MSCs during aging and discuss how these alterations can affect bone regeneration. We next review current research findings on bone tissue engineering, which is considered a promising and viable therapeutic solution for structural and functional restoration of bone. In particular, the importance of MSCs and bioscaffolds is highlighted. Finally, potential approaches for the prevention of MSC aging and the rejuvenation of aged MSC are discussed.

MSC

Aging

Stem cell niche

Bone healing

Rejuvenation

Recommended articlesCiting articles (0)

2018 Published by Elsevier Ltd.

Read more from the original source:
Bone marrow mesenchymal stem cells: Aging and tissue ...

To Read More: Bone marrow mesenchymal stem cells: Aging and tissue …
categoriaBone Marrow Stem Cells commentoComments Off on Bone marrow mesenchymal stem cells: Aging and tissue … | dataMay 23rd, 2019
Read All

Preconditioning of bone marrow-derived mesenchymal stem …

By admin

JavaScript is disabled on your browser. Please enable JavaScript to use all the features on this page.Abstract

Oxidative stress on transplanted bone marrow-derived mesenchymal stem cells (BMSCs) during acute inflammation is a critical issue in cell therapies. N-acetyl-L cysteine (NAC) promotes the production of a cellular antioxidant molecule, glutathione (GSH). The aim of this study was to investigate the effects of pre-treatment with NAC on the apoptosis resistance and bone regeneration capability of BMSCs. Rat femur-derived BMSCs were treated in growth medium with or without 5mM NAC for 6h, followed by exposure to 100MH2O2 for 24h to induce oxidative stress. Pre-treatment with NAC significantly increased intracellular GSH levels by up to two fold and prevented H2O2-induced intracellular redox imbalance, apoptosis and senescence. When critical-sized rat femur defects were filled with a collagen sponge containing fluorescent-labeled autologous BMSCs with or without NAC treatment, the number of apoptotic and surviving cells in the transplanted site after 3 days was significantly lower and higher in the NAC pre-treated group, respectively. By the 5th week, significantly enhanced new bone formation was observed in the NAC pre-treated group. These data suggest that pre-treatment of BMSCs with NAC before local transplantation enhances bone regeneration via reinforced resistance to oxidative stress-induced apoptosis at the transplanted site.

Acute inflammation

Apoptosis

Cell conditioning

Glutathione

Local transplantation

Senescence

Recommended articlesCiting articles (0)

2018 Elsevier Ltd. All rights reserved.

Originally posted here:
Preconditioning of bone marrow-derived mesenchymal stem ...

To Read More: Preconditioning of bone marrow-derived mesenchymal stem …
categoriaBone Marrow Stem Cells commentoComments Off on Preconditioning of bone marrow-derived mesenchymal stem … | dataMay 20th, 2019
Read All

Bone marrow failure – Wikipedia

By admin

Bone marrow failure occurs in individuals who produce an insufficient amount of red blood cells, white blood cells or platelets. Red blood cells transport oxygen to be distributed throughout the bodys tissue. White blood cells fight off infections that enter the body. Bone marrow also contains platelets, which trigger clotting, and thus help stop the blood flow when a wound occurs. [1]

Bone marrow failure is associated with three types of diseases, Fanconi anemia (FA), dyskeratosis congenita, and aplastic anemia. Fanconi anemia is an inherited blood disorder due to abnormal breakages in DNA genes. It is linked to hyperpigmentation, which is the darkening of an area of skin or nails caused by increased melanin. According to Histopathology, However, in about 30% of FA patients no physical abnormalities are found.[2] Dyskeratosis congenita often affects multiple parts of the body. Individuals with this disorder usually show changes in skin pigmentations, unusual fingernail growth, and mucosa leukoplakia; the inner part of the mouth is encased with white patches that may never resolve.[2] Aplastic anemia happens when bone marrow doesnt produce enough new blood cells throughout the body. Aplastic anemia is an acquired autoimmune disease, which occurs when the immune system mistakenly attacks and destroys healthy body tissue.[3]

Bone marrow failure in both children and adults can be either inherited or acquired. Inherited bone marrow failure is often the cause in young children, while older children and adults may acquire the disease later in life.[4] A maturation defect in genes is a common cause of inherited bone marrow failure.[5] The most common cause of acquired bone marrow failure is aplastic anemia.[5] Working with chemicals such as benzene could be a factor in causing the illness. Other factors include radiation or chemotherapy treatments, and immune system problems.

The two most common signs and symptoms of bone marrow failure are bleeding and bruising. Blood may be seen throughout the gums, nose or the skin, and tend to last longer than normal. Children have a bigger chance of seeing blood in their urine or stools, which results in digestive problems with an unpleasant scent. Individuals with this condition may also encounter tooth loss or tooth decay. Chronic fatigue, shortness of breath, and recurrent colds can also be symptoms of bone marrow failure.[6]

The type of treatment depends on the severity of the patients bone marrow failure disease. Blood transfusion is one treatment. Blood is collected from volunteer donors who agree to let doctors draw blood stem cells from their blood or bone marrow for transplantation.[7] Blood that is taken straight from collected blood stem cells is known as peripheral blood stem cell donation. A peripheral stem cell donor must have the same blood type as the patient receiving the blood cells. Once the stem cells are in the patients body through an IV, the cells mature and become blood cells. Before donation, a drug is injected into the donor, which increases the number of stem cells into their body. Feeling cold and lightheaded, having numbness around the mouth and cramping in the hands are common symptoms during the donation process. After the donation, the amount of time for recovery varies for every donor, But most stem cell donors are able to return to their usual activities within a few days to a week after donation.[7]

Read more:
Bone marrow failure - Wikipedia

To Read More: Bone marrow failure – Wikipedia
categoriaBone Marrow Stem Cells commentoComments Off on Bone marrow failure – Wikipedia | dataMay 12th, 2019
Read All

Blood and Bone Marrow Transplant | National Heart, Lung …

By admin

When the healthy stem cells come from you, the procedure is called an autologous transplant. When the stem cells come from another person, called a donor, it is an allogeneic transplant. Blood or bone marrow transplants most commonly are used to treat blood cancers or other kinds of blood diseases that decrease the number of healthy blood cells in the body. These transplants also may be used to treat other disorders.

For allogeneic transplants, your doctor will try to find a donor whose blood cells are the best match for you. Your doctor will consider using cells from your close family members, from people who are not related to you and who have registered with the National Marrow Donor Program, or from publicly stored umbilical cord blood. Although it is best to find a donor who is an exact match to you, new transplant procedures are making it possible to use donors who are not an exact match.

Blood or bone marrow transplants are usually performed in a hospital. Often, you must stay in the hospital for one to two weeks before the transplant to prepare. During this time, you will have a narrow tube placed in one of your large veins. You may be given medicine to make you sleepy for this procedure. You also will receive special medicines and possibly radiation to destroy your abnormal stem cells and to weaken your immune system so that it wont reject the donor cells after the transplant.

On the day of the transplant, you will be awake and may get medicine to relax you during the procedure. The stem cells will be given to you through the narrow tube in your vein. The stem cells will travel through your blood to your bone marrow, where they will begin making new healthy blood cells.

After the transplant, your doctor will check your blood counts every day to see if new blood cells have started to grow in your bone marrow. Depending on the type of transplant, you may be able to leave, but stay near the hospital, or you may need to remain in the hospital for weeks or months. The length of time will depend on how your immune system is recovering and whether or not the transplanted cells stay in your body. Before you leave the hospital, the doctors will give you detailed instructions that you must follow to prevent infection and other complications. Your doctor will keep monitoring your recovery, possibly for up to oneyear.

Although blood or bone marrow transplant is an effective treatment for some conditions, the procedure can cause early or late complications. The required medicines and radiation can cause nausea, vomiting, diarrhea, tiredness, mouth sores, skin rashes, hair loss, or liver damage. These treatments also can weaken your immune system and increase your risk for infection. Some people may experience a serious complication called graft-versus-host disease if the donated stem cells attack the body. Other people may reject the donor stem cells after the transplant, which can be an extremely serious complication.

VisitBlood-Forming Stem Cell Transplantsfor more information about this topic.

Here is the original post:
Blood and Bone Marrow Transplant | National Heart, Lung ...

To Read More: Blood and Bone Marrow Transplant | National Heart, Lung …
categoriaBone Marrow Stem Cells commentoComments Off on Blood and Bone Marrow Transplant | National Heart, Lung … | dataApril 11th, 2019
Read All

Stem Cells from Fat vs. Bone Marrow Best Sources for …

By admin

Stromal vascular fraction was dramatically better than bone marrow concentrate in its ability to differentiate into cartilage.Two other important features were also well documented in this study. SVF created significantly more colony forming units than BMC, another significant predictor of healing response. Perhaps most importantly, SVF was dramatically better than BMC in its ability to differentiate into cartilage.

Second, a study by Han Chao et al has also demonstrated that fat derived stem cells also have a higher proliferation potential for neural tissue and are a better source for not only cartilage regeneration but also for nervous system regeneration.

The studies gave a very comprehensive look at comparing BMC and SVF in the ability to repair cartilage damage in a same procedure protocol. Every significant measurement comparing bone marrow to adipose tissue for stem cell harvesting demonstrated that adipose derived stem cells provided better cell content and superior ability to differentiate into cartilage than bone marrow. Our extensive clinical experience with the procedure for Colorado patients suffering from pain in the knees, other joints, soft tissue, and a wide range of back problems clearly demonstrates the same.

Using the most effective combination of autologous stem cell sources is one of several criteria to identify a legitimate stem cell clinic. Other important characteristics we recommend paying attention to when choosing a stem cell clinic, include the presence of a physician who owns and operates the clinic, X-ray guided injections administered by a trained injection specialist, and a clinic that takes time to discuss your questions. A review of your imaging and clinical data is needed in order to determine if stem cell therapy is right for you.

*Individual patient results may vary. Contact us today to find out if stem cell therapy may be able to help you.

See the original post here:
Stem Cells from Fat vs. Bone Marrow Best Sources for ...

To Read More: Stem Cells from Fat vs. Bone Marrow Best Sources for …
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cells from Fat vs. Bone Marrow Best Sources for … | dataApril 5th, 2019
Read All

Bone Marrow Stem Cells Stall Out in Chronic Lymphocytic …

By admin

Snow and ice cause cars to stall out on the road to their destination. In patients with CLL, its their stem cells that stall out and researchers want to know why.

For patients who have chronic lymphocytic leukemia, fighting off a serious infection can be difficult and often is just not possible. And a team of Mayo researchers is starting to find out why in a paper published recently in the journal Leukemia.

What is Chronic Lymphocytic Leukemia?

This disease is cancer of an immune cell called a B lymphocyte. These cells form in bone marrow and migrate out to patrol in the blood stream and lymphoid organs. But in chronic lymphocytic leukemia, the immune system is depleted, a state called immunodeficiency. Because of that, people with this type of leukemia are prone to serious infections and the diseases those may cause. They are also prone to developing other types of cancer.

And its those resulting problems that may ultimately contribute to death explains Kay Medina, Ph.D., a Mayo Clinic immunologist. Dr. Medina specializes in how immune cells develop from bone marrow stem cells.

In our bone marrow, stem cells convert to red blood cells, platelets or a variety of immune cells. Those are then sent into the blood stream where they do their job. Red blood cells replace cells that are worn out.

White blood cells patrol the byways of our circulation, chasing down everything from cellular debris to bacteria to virus particles.But not in patients with chronic lymphocytic leukemia.

Joining the Team

Research on chronic lymphocytic leukemia is going on in several labs at Mayo Clinic. Dr. Medina got involved after speaking with colleagues Wei Ding, M.B.B.S, Ph.D., and Neil Kay, M.D., both chronic lymphocytic leukemia physician researchers.

Mayo has a strong tradition of encouraging physician/basic research collaborations to advance knowledge of disease mechanisms, development, and assessment of new treatment approaches, says Dr. Medina.

The basic research helps us understand the cause of the disease, in this case the leukemia cell, but it also helps to understand what the disease does to other parts of the body, such as the lymph nodes, spleen, blood and bone marrow, she says.

Bone marrow is the organ that replenishes all cells in the immune system but has not been evaluated for functional proficiency in CLL patients, explains Dr. Medina.

Checking out the Cells and their Environment

Kay Medina, Ph.D.

Dr. Medinas team, with funding from Mayo Clinics Center for Biomedical Discovery, decided to look at bone marrow stem cells and their ability to generate all blood cell types. Some of the immune deficiency may be the result of treatment, but untreated patients have the same problem. The chronic nature of the disease itself may also dampen immune activity. But Dr. Medina explains that the leukemia cells may promote an environment that suppresses immune function.

Our research seeks to add to the discussion by identifying additional ways patients with CLL are unable to fight off tumors and other diseases, says Dr. Medina.

In a paper published late last year, Dr. Medina and her team, including first author Bryce Manso who is a student in the Mayo Clinic Graduate School of Biomedical Sciences, examined bone marrow and blood samples from chronic lymphocytic leukemia patients and healthy controls to determine the frequency of bone marrow stem cells in each sample and how well they did their job.

Bryce Manso, presenting a poster to a conference attendee.

The authors reported that, in general, samples from patients with chronic lymphocytic leukemia have fewer stem cells in their bone marrow, and those stem cells that remain work less well than stem cells from controls.

Stalled-Out Bone Marrow Stem Cells

As to why this happens, the authors found that it was linked to loosening controls for the on/off switches which regulate this process, proteins called transcription factors. These proteins regulate key functions in the cell, and are out of whack in samples from chronic lymphocytic leukemia patients. They may prevent bone marrow stem cells from pursuing a pathway for development; stalling-out their ability to differentiate, resulting in decreased production of important blood cells that provide the first line of defense against infectious agents.

But, Dr. Medina cautions, there is more to this story.

This is an emerging area of research in that its both a unique explanation for the clinical problem of immune deficiency and it has been minimally studied, says Dr. Medina. Future studies are planned to look at specific transcription factors that control stem cell differentiation as well as how the presence of leukemic cells in the bone marrow alter blood cell development. They will then relate this information to clinically relevant complications reported in chronic lymphocytic leukemia patients, she says.

Basic Research to Improve Patient Care

Dr. Medina, her team, and their clinical colleagues hope that by understanding how bone marrow function is impaired in chronic lymphocytic leukemia patients, they can develop unique strategies to boost bone marrow function or find alternate treatments that do not block or modify marrow function.

Through this work we hope to find ways to reduce infections and the incidence of second cancers in chronic lymphocytic leukemia patients. Our research has the potential to improve quality of life as well as extend the lives of these patients says Dr. Medina.

###

Related Resources:

Tags: basic science, blood cancer, cancer, Center for Biomedical Discovery, chronic lymphocytic leukemia, Findings, immunology, Kay Medina, leukemia, Mayo Clinic Cancer Center, Neil Kay, News, Progress Updates, Wei Ding

Go here to see the original:
Bone Marrow Stem Cells Stall Out in Chronic Lymphocytic ...

To Read More: Bone Marrow Stem Cells Stall Out in Chronic Lymphocytic …
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Stem Cells Stall Out in Chronic Lymphocytic … | dataApril 2nd, 2019
Read All

Bone Marrow Stem Cells | NSI Stem Cell

By admin

Stem cell therapies have come a long way since the 1970s and 1980s. Today the ethical issues of harvesting stem cells have long been resolved through the discovery of several sources of potent stem cell types. Common sources include in the umbilical cord and placenta (post birth), bone marrow, and the fatty layer that lies just beneath everyones skin (adipose fat tissue). Of these resources, by far the most commonly accessed in the United States are adipose fat and bone marrow stem cells.The National Stem Cell Institute (NSI), a leading stem cell clinic in the U.S., has seen the development of these living resources usher in an exciting new age known as regenerative medicine. Because of their potency and new technologies that allow ease of access, stem cells are changing the very face of medicine. In particular, the harvesting of bone marrow stem cells has developed into a procedure that is minimally invasive, far more comfortable than bone marrow harvesting of the past, and able to be complete in just a few hours.Some Basics About Bone Marrow Stem CellsBone marrow is the living tissue found in the center of our bones. Marrow is a soft, sponge-like tissue. There are two types of bone marrow: red marrow and yellow marrow. In adults, red marrow is found mainly in the central skeleton, such as the pelvis, sternum, cranium, ribs, vertebrae, and scapulae. But it is also found in the ends of long bones such as in the arms and legs.When it comes to bone marrow stem cells, red marrow is what its all about. Red marrow holds an abundance of them. Stem cells are a kind of protocell that has not yet been assigned an exact physical or neurological function. You can think of them as microscopic packets of potential that stay on high alert for signals telling them where they are needed and what type of cell they need to become.Bone marrow stem cells are multipotent, which means they have the ability to become virtually any type of tissue cell, including:

Continued here:
Bone Marrow Stem Cells | NSI Stem Cell

To Read More: Bone Marrow Stem Cells | NSI Stem Cell
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Stem Cells | NSI Stem Cell | dataMarch 31st, 2019
Read All

Blood and bone marrow stem cell donation – Mayo Clinic

By admin

Overview

If you are planning to donate stem cells, you have agreed to allow doctors to draw bone marrow stem cells from either your blood or bone marrow for transplantation.

There are two broad types of stem cells: embryonic and bone marrow stem cells. Embryonic stem cells are studied in therapeutic cloning and other types of research. Bone marrow stem cells are formed and mature in the bone marrow and are then released into the bloodstream. This type of stem cell is used in the treatment of cancers.

In the past, surgery to draw bone marrow stem cells directly from the bone was the only way to collect stem cells. Today, however, it's more common to collect stem cells from the blood. This is called peripheral blood stem cell donation.

Stem cells can also be collected from umbilical cord blood at birth. However, only a small amount of blood can be retrieved from the umbilical cord, so this type of transplant is generally reserved for children and small adults.

Every year, thousands of people in the U.S. are diagnosed with life-threatening diseases, such as leukemia or lymphoma, for which a stem cell transplant is the best or the only treatment. Donated blood stem cells are needed for these transplants.

You might be considering donating blood or bone marrow because someone in your family needs a stem cell transplant and doctors think you might be a match for that person. Or perhaps you want to help someone else maybe even someone you don't know who's waiting for a stem cell transplant.

Bone marrow stem cells are collected from the posterior section of the pelvic bone under general anesthesia. The most serious risk associated with donating bone marrow involves the use and effects of anesthesia during surgery. After the surgery, you might feel tired or weak and have trouble walking for a few days. The area where the bone marrow was taken out might feel sore for a few days. You can take a pain reliever for the discomfort. You'll likely be able to get back to your normal routine within a couple of days, but it may take a couple of weeks before you feel fully recovered.

The risks of this type of stem cell donation are minimal. Before the donation, you'll get injections of a medicine that increases the number of stem cells in your blood. This medicine can cause side effects, such as bone pain, muscle aches, headache, fatigue, nausea and vomiting. These usually disappear within a couple of days after you stop the injections. You can take a pain reliever for the discomfort. If that doesn't help, your doctor can prescribe another pain medicine for you.

For the donation, you'll have a thin, plastic tube (catheter) placed in a vein in your arm. If the veins in your arms are too small or have thin walls, you may need to have a catheter put in a larger vein in your neck, chest or groin. This rarely causes side effects, but complications that can occur include air trapped between your lungs and your chest wall (pneumothorax), bleeding, and infection. During the donation, you might feel lightheaded or have chills, numbness or tingling around your mouth, and cramping in your hands. These will go away after the donation.

If you want to donate stem cells, you can talk to your doctor or contact the National Marrow Donor Program, a federally funded nonprofit organization that keeps a database of volunteers who are willing to donate.

If you decide to donate, the process and possible risks of donating will be explained to you. You will then be asked to sign a consent form. You can choose to sign or not. You won't be pressured to sign the form.

After you agree to be a donor, you'll have a test called human leukocyte antigen (HLA) typing. HLAs are proteins found in most cells in your body. This test helps match donors and recipients. A close match increases the chances that the transplant will be a success.

If you sign up with a donor registry, you may or may not be matched with someone who needs a blood stem cell transplant. However, if HLA typing shows that you're a match, you'll undergo additional tests to make sure you don't have any genetic or infectious diseases that can be passed to the transplant recipient. Your doctor will also ask about your health and your family history to make sure that donation will be safe for you.

A donor registry representative may ask you to make a financial contribution to cover the cost of screening and adding you to the registry, but this is usually voluntary. Because cells from younger donors have the best chance of success when transplanted, anyone between the ages of 18 and 44 can join the registry for free. People ages 45 to 60 are asked to pay a fee to join; age 60 is the upper limit for donors.

If you're identified as a match for someone who needs a transplant, the costs related to collecting stem cells for donation will be paid by that person or by his or her health insurance.

Collecting stem cells from bone marrow is a type of surgery and is done in the operating room. You'll be given an anesthetic for the procedure. Needles will be inserted through the skin and into the bone to draw the marrow out of the bone. This process usually takes one to two hours.

After the bone marrow is collected, you'll be taken to the recovery room while the anesthetic wears off. You may then be taken to a hospital room where the nursing staff can monitor you. When you're fully alert and able to eat and drink, you'll likely be released from the hospital.

If blood stem cells are going to be collected directly from your blood, you'll be given injections of a medication to stimulate the production of blood stem cells so that more of them are circulating in your bloodstream. The medication is usually started several days before you're going to donate.

During the donation, blood is usually taken out through a catheter in a vein in your arm. The blood is sent through a machine that takes out the stem cells. The rest of the blood is then returned to you through a vein in your other arm. This process is called apheresis. It takes two to six hours and is done as an outpatient procedure. You'll typically undergo two to four apheresis sessions, depending on how many blood stem cells are needed.

Recovery times vary depending on the individual and type of donation. But most blood stem cell donors are able to return to their usual activities within a few days to a week after donation.

Recovery times vary depending on the individual and type of donation. But most blood stem cell donors are able to return to their usual activities within a few days to a week after donation.

Explore Mayo Clinic studies testing new treatments, interventions and tests as a means to prevent, detect, treat or manage this disease.

Dec. 20, 2018

Read the original post:
Blood and bone marrow stem cell donation - Mayo Clinic

To Read More: Blood and bone marrow stem cell donation – Mayo Clinic
categoriaBone Marrow Stem Cells commentoComments Off on Blood and bone marrow stem cell donation – Mayo Clinic | dataMarch 24th, 2019
Read All

Whole Bone Marrow – AllCells.com

By admin

Bone Marrow (BM) contains hematopoietic stem/progenitor cells, which have the potential to self-renew, proliferate, and differentiate into multi-lineage blood cells. Multipotent, non-hematopoietic stem cells, such as mesenchymal stem cells, can be isolated from human BM as well. These non-hematopoietic, mesenchymal stem cells are capable of both self-renewal and differentiation into bone, cartilage, muscle, tendons, and fat. BM is drawn into a 60cc syringe containing heparin (80 U/mL of BM) from the posterior iliac crest, 25 mL/site, from a maximum of four sites.CustomizationLet us know how we can customize your product today Custom InquiryDonor CriteriaAge18-65 years oldWeight>= 130 lbsScreened before donationHIV (HIV 1 & 2 Ab)HBV (Surface Antigen HbsAg)HCV (HCVAb)Donation FrequencyMinimum 10 weeks between donationsDonors with any of the following will be excluded from donatingPregnancyHistory of heart, lung, liver, or kidney diseaseHistory of asthmaBlood and bleeding disorders including sickle cell diseaseNeurologic disordersAutoimmune disordersCancerDiabetesOther CriteriaMust be in general good healthMust have accessible hipsComplete Blood Count lab test must meet protocol specsRequired to sign procedure-specific consent form

View original post here:
Whole Bone Marrow - AllCells.com

To Read More: Whole Bone Marrow – AllCells.com
categoriaBone Marrow Stem Cells commentoComments Off on Whole Bone Marrow – AllCells.com | dataMarch 23rd, 2019
Read All

Bone Marrow Transplant | CureSearch

By admin

Before the transplant admission:

When the healthcare team decides that BMT is the best treatment option for your child, they will schedule a lengthy conversation with you to explain the procedure. They will explain the many risks associated with BMT, as well as what you can expect before, during, and after the transplant.

Your child will undergo testing to make sure he/she is healthy enough to withstand the rigors of transplant. Testing will include evaluation of the heart function with electrocardiogram (ECG) and kidney and liver function, and infection status. Depending upon the disease, a bone marrow aspirate and spinal tap may be performed.

When your child is deemed healthy enough for BMT, physicians will usually insert a central line catheter that allows easy access to a large vein in the chest. The catheter will be used to deliver the new stem cells, as well as blood, antibiotics, and other medications during treatment.

Preparation Before Transplant:

Your child will be given preparative treatment, called conditioning before the transplant. Conditioning includes high doses of chemotherapy and sometimes, radiation of the whole body. The type and purpose of conditioning depends upon your childs underlying diagnosis but may include:

Commonly used drugs include:

The Transplant

Once conditioning is complete, stem cells are given through a catheter. This is very similar to a blood transfusion. After traveling through the bloodstream to the bone marrow, the transplanted stem cells will begin to make red and white blood cells, and platelets.

It can take between 14 and 30 days for enough blood cells, particularly white blood cells, to be created so the body can fight infection. The identification of new blood cells and an increase in white blood cells following BMT is called engraftment. Until then, your child will be at a high risk for infection, anemia, and bleeding. Your child will remain in the hospital until he or she is well enough for discharge.

See the rest here:
Bone Marrow Transplant | CureSearch

To Read More: Bone Marrow Transplant | CureSearch
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Transplant | CureSearch | dataMarch 14th, 2019
Read All

Bone marrow transplant | UF Health, University of Florida …

By admin

Definition

A bone marrow transplant is a procedure to replace damaged or destroyed bone marrow with healthy bone marrow stem cells.

Bone marrow is the soft, fatty tissue inside your bones. The bone marrow produces blood cells. Stem cells are immature cells in the bone marrow that give rise to all of your different blood cells.

Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; Umbilical cord blood transplant; Aplastic anemia - bone marrow transplant; Leukemia - bone marrow transplant; Lymphoma - bone marrow transplant; Multiple myeloma - bone marrow transplant

Before the transplant, chemotherapy, radiation, or both may be given. This may be done in 2 ways:

There are three kinds of bone marrow transplants:

A stem cell transplant is usually done after chemotherapy and radiation is complete. The stem cells are delivered into your bloodstream usually through a tube called a central venous catheter. The process is similar to getting a blood transfusion. The stem cells travel through the blood into the bone marrow. Most times, no surgery is needed.

Donor stem cells can be collected in two ways:

A bone marrow transplant replaces bone marrow that is either not working properly or has been destroyed (ablated) by chemotherapy or radiation. Doctors believe that for many cancers, the donor's white blood cells may attack any remaining cancer cells, similar to when white cells attack bacteria or viruses when fighting an infection.

Your health care provider may recommend a bone marrow transplant if you have:

A bone marrow transplant may cause the following symptoms:

Possible complications of a bone marrow transplant depend on many things, including:

Complications may include:

Your provider will ask about your medical history and do a physical exam. You will have many tests before treatment begins.

Before transplant, you will have 1 or 2 tubes, called catheters, inserted into a blood vessel in your neck or arms. This tube allows you to receive treatments, fluids, and sometimes nutrition. It is also used to draw blood.

Your provider will likely discuss the emotional stress of having a bone marrow transplant. You may want to meet with a counselor. It is important to talk to your family and children to help them understand what to expect.

You will need to make plans to help you prepare for the procedure and handle tasks after your transplant:

A bone marrow transplant is usually done in a hospital or medical center that specializes in such treatment. Most of the time, you stay in a special bone marrow transplant unit in the center. This is to limit your chance of getting an infection.

Depending on the treatment and where it is done, all or part of an autologous or allogeneic transplant may be done as an outpatient. This means you do not have to stay in the hospital overnight.

How long you stay in the hospital depends on:

While you are in the hospital:

After you leave the hospital, be sure to follow instructions on how to care for yourself at home.

How well you do after the transplant depends on:

A bone marrow transplant may completely or partially cure your illness. If the transplant is a success, you can go back to most of your normal activities as soon as you feel well enough. Usually it takes up to 1 year to recover fully, depending on what complications occur.

Complications or failure of the bone marrow transplant can lead to death.

Bashir Q, Champlin R. Hematopoietic stem cell transplantation. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE, eds. Abeloff's Clinical Oncology. 5th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap 30.

Heslop HE. Overview and choice of donor of hematopoietic stem cell transplantation. In: Hoffman R, Benz EJ, Silberstein LE, et al, eds. Hematology: Basic Principles and Practice. 7th ed. Philadelphia, PA: Elsevier; 2018:chap 103.

Read this article:
Bone marrow transplant | UF Health, University of Florida ...

To Read More: Bone marrow transplant | UF Health, University of Florida …
categoriaBone Marrow Stem Cells commentoComments Off on Bone marrow transplant | UF Health, University of Florida … | dataMarch 13th, 2019
Read All

Is donating bone marrow painful? | Anthony Nolan

By admin

The myth that stem cell or bone marrow donation is painful is extremely common and worryingly, it often stops people from registering to donate.

In 2016, a YouGov survey found that a shocking 34% of young men who wouldnt sign up as a stem cell donor were just tooscared that the experience would be painful.

We urgently need that to change because it couldnt be further from the truth.

I would 100% recommend it to other people. Its comfortable, painless and so worthwhile.Zachary, stem cell donor

It was painless and thats coming from someone with a fear of needles! I remember being amazed at how simple it was.Sean, stem cell donor

90% of people now donate directly from their bloodstream, in a procedure known as peripheral blood stem cell donation (PBSC).

Youll receive a series of four hormone injections to make your stem cells multiply into the bloodstream. Then youll head to a clinic, where the stem cells will be extracted from one arm, and your blood returned to the other.

And thats it. Some people report flu-like symptoms from the hormone injections, but these are usually mild and vanish within a few days.

Ive felt worse after a few bruising encounters on the football pitch. Within a week of the donation, I was back on my feet and feeling much better; all in all, its a very small price to pay for what could be achieved.Liam, bone marrow donor

Some people have asked me if it was painful or difficult. It was actually quite simple and nothing compared to what the recipient is going through at the same time.Andrew, stem cell and bone marrow donor

Just 10% of people are asked to donate from the bone marrow itself.

This is the procedure that lies at the root of the bone marrow donation is painful myth but in reality, it takes place under general anaesthetic, so you wont feel any pain while its happening.

Afterwards, youll probably feel a bit tired and bruised, and we recommend that you take a short break from work to recover. But thats all and it makes a lifesaving difference.

Tackling the myth that stem cell or bone marrow donation is painful is one of our biggest priorities.

Thats why we often ask our donors to share their stories, to bust the myths and show the world what donation is really like.

For a wide variety of donation experiences, just check out the Anthony Nolan Facebook page we usually add one or two new stories every week!

If you're aged 16-30, sign up to our lifesaving register by clicking on the link below:

Read more:
Is donating bone marrow painful? | Anthony Nolan

To Read More: Is donating bone marrow painful? | Anthony Nolan
categoriaBone Marrow Stem Cells commentoComments Off on Is donating bone marrow painful? | Anthony Nolan | dataFebruary 12th, 2019
Read All

Stem Cells Used in Cord Blood Treatments

By admin

Stem cells are powerful, adaptable cells that can be used to promote healing and reverse damage. Stem cells are found in various places within the human body, but the purest stem cells are found in the umbilical cord.

Stem cells can be used in treatments for many different types of diseases. One of the main places young stem cells are found is in cord blood, which can be stored at birth and saved for future use if needed. Stem cells are also found in other places in the human body, including blood and bone marrow.

Regenerative transplants use stem cells from three main sources:

Bone marrow is tissue located in the center of your bones, making healthy blood cells that strengthen your immune system and fight off outside infections. A large amount of cells are located in bone marrow, and doctors frequently use hip bone marrow for most transplants, since the stem cells in this area are the most plentiful.

When doctors remove bone marrow, the patient receives anesthesia. This puts them to sleep and numbs any pain from the surgery. Doctors then insert a large needle, and pull the liquid marrow out. Once enough bone marrow is harvested, the solution is filtered and cryogenically frozen.

When a patient needs bone marrow for a transplant, stem cells are thawed and injected into the bloodstream. The cells then make their way to the bone marrow, and start producing new blood cells this process usually takes a few weeks.

While most people have a small amount of stem cells in their bloodstream, donors produce more stem cells after taking growth factor hormones. Doctors give these medications a few days before stem cell harvesting, which makes the bone marrow push more cells into the bloodstream.

During the harvesting procedure, doctors use a catheter to draw out blood. The blood moves through a machine, which separates stem cells and allows these cells to be put into storage. This process takes a few hours, and may be repeated over several days in order for doctors to get enough stem cells.

Stem cells are injected into the veins during a peripheral blood transplant, and naturally work their way to the bone marrow. Once there, the new cells start increasing healthy blood count. Compared to bone marrow transplants, cells from peripheral blood are usually faster, creating new blood cells within two weeks.

Umbilical cord blood contains a large amount of stem cells. If parents sign up for personalized storage or donation, medical staff will remove stem cells from the umbilical cord and placenta. The blood is then cryogenically frozen, and put into long-term storage.

While the stem cell count is smaller during a cord blood transplant, these cells multiply quickly, and researchers are studying new methods to increase cells naturally. Compared to bone marrow, cord blood cells multiply faster and dont require an exact match type to complete a successful transplant. Some techniques medical experts are testing to increase the amount of stem cells include:

While all three stem cell sources are used in similar procedures, they each have advantages and drawbacks. Bone marrow transplants are the traditional form of therapy, but peripheral blood cells are becoming more popular, since doctors often get more stem cells from the bloodstream.

The procedure for peripheral blood harvesting is easier on the patient than a bone marrow transplant, and stem cell transplants are faster. However, the chances for graft-versus-host disease, where donated cells attack the patients body, are much higher after a peripheral blood transplant.

Cord blood transplants are the least invasive, since they come from an external source the umbilical cord.

The biggest advantage for cord blood is the immaturity of the cells, which means transplants do not require an exact match. For bone marrow and peripheral blood transplants, donors need to match the patients cellular structure. However, cord blood cells can adapt to a wide variety of patients, and dont require donor matching. Chances for graft-versus-host disease are also much lower for cord blood transplants.

Patients and doctors can avoid graft-versus-host disease, and other dangerous side effects, by using HLA matching.

Multipotent stem cells develop into organ system cells, and are made from two different types of cells:

HSCs can become any type of blood cell or cellular blood component inside the body, including white blood cells and red blood cells. These cells are found in umbilical cord blood and are multipotent, which means they can develop into more than one cell type.

This cell type has been used in over 1 million patient transplants around the world.

MSCs can turn into bone, cartilage, fat tissue, and more. Although they are associated with bone marrow, these cells are also found in umbilical cord blood. These cells can function as connective tissue, which connects vital organs inside the body. Like HSCs, MSCs are multipotent.

Pluripotent cells can replace any type of cellular system in the body. Cord blood contains a rich variety of pluripotent stem cells, which allows treatment for a large amount of patients.

iPS cells are artificially-made pluripotent stem cells. This technique allows medical staff to create additional pluripotent cells, which will increase treatment options for patients using stem cell therapy in the near future.

ES cells are pluripotent, and similar to iPS cells, but come from an embryo. However, this kills the fertilized baby inside the embryo. This type of cell also has a high chance for graft-versus-host disease, when transplanted cells attack the patients body.

Your adult cells have one disadvantage to cord blood cells they cannot change their cell type. When stem cells from cord blood and tissue are transplanted, they adjust to fit the individual patient and replace damaged cells. Adult stem cells are also older, which means they have been exposed to disease, and may damage patients after the transplant. Compared to cord blood cells, adult cells have a higher chance for graft-versus-host disease.

Cord blood contains a wide variety of cell types, but there are different stem cell sources available to patients in need of a transplant.

Last Updated on February 15th, 2017

Excerpt from:
Stem Cells Used in Cord Blood Treatments

To Read More: Stem Cells Used in Cord Blood Treatments
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cells Used in Cord Blood Treatments | dataFebruary 12th, 2019
Read All

Bone Marrow for Spine and Orthopaedic Stem Cell Treatment …

By admin

Stem cells are the next frontier in the treatment of orthopaedic and spinal disorders, and the Cary Orthopaedics team is leading the way.

Using stem cells harvested from an adult patients own bone marrow,Dr. Sameer Mathurand Dr. Nael Shanti both board-certified orthopaedic spinal surgeons have developed a minimally invasive remedy for those suffering from degenerative disc disease, back pain and spinal arthritis. Applying a similar approach, Cary OrthosDr. Douglas Martini a fellowship-trained, board-certified orthopaedic surgeon specializing in sports medicine has crafted a pain-relief solution for patients living with osteoarthritis and soft tissue injuries.

Multiple research studies have shown a significant reduction in low back and joint pain and improved function after stem cell injections. While these treatments are new, 80% to 90% of patients are already reporting improvement in their symptoms after orthopaedic stem cell treatments.

Many patients suffering from degenerative disc diseases or low back pain are often not ideal candidates for surgery, and some who have chosen to undergo surgery have had unsatisfactory results. Therefore, the typical remedy for chronic orthopaedic conditions is extensive physical therapy combined with oral anti-inflammatory medications. The result: The majority of patients still had to live with pain.

Physicians at Cary Orthopaedics are utilizing orthopaedic stem cell treatment using the patients own bone marrow, the soft, spongy tissue found in the center of bones. Bone marrow in adults contains a rich reservoir of multipotent stem cells also known as Mesenchymal Precursor Cells (MPCs) that can be extracted from the patients pelvis or hip bone. Due to their unique, regenerative composition, these cells can become various types of tissues including soft tissue, bone or cartilage, which make them an excellent resource for repairing and rebuilding damaged tissue, accelerating the healing process and improving overall function.

Thanks to advancements in technology, the removal and harvesting process has become easier and less expensive. Since this is a minimally invasive procedure, it has fewer side effects compared to traditional surgery, and it causes minimal discomfort to the patient.

Bone marrow injections are a breakthrough for patients in pain. Dr. Martini, a sports medicine physician at Cary Orthopaedics, has been active in the sports medicine community, previously serving as team physician for the Carolina Hurricanes, numerous colleges, and local high schools. After 25 years of experience in sports medicine, he realizes the need for improved treatment options for the greying athlete. He has begun incorporating bone marrow aspirate concentrate (BAC) into the treatment of both acute and chronic soft tissue and joint-related injuries. I believe this will be equally helpful to the patient who needs to exercise for overall health benefits as it would be for those who need to stay at their peak athletic performance, says Dr. Martini.

We have found based on our research and experience that stem cell therapy can be very safe and effective when used with the appropriate patient population, said Kevin G. Morrison, PA-C, a member of Dr. Martinis team. All the feedback to this point has been quite positive, both on the process of having the procedure done as well as the early response. But ultimately long-term data will need to be compiled and critically examined.

Much of the previous research into stem cells has centered around placental stem cells, which can also adapt into other types of tissues. However, these have not performed well when put to the test for orthopaedic treatment. Bone marrow aspirate concentrate provides MPCs that can transform into osteocytes, chondrocytes and adipocytes, all of which are important in treating orthopedic conditions.

The latest research around mesenchymal stem cells, specifically bone marrow aspiration, is certainly promising. Dr. Martini will continue to collect more data and review patients responses.

Dr. Mathur has been an instrumental force in elevating the level of patient care at Cary Orthopaedic Spine Center since joining the practice in 2008. Dr. Mathur completed his medical school at the University of Pennsylvania and spinal reconstructive fellowship at the Rush University Medical Center in Chicago. He also taught at Dana Farber Cancer Institute in Boston. Over the last 10 years, in conjunction with the National Institutes of Health, he has conducted significant study of disc degeneration and analysis of the expression of genes that may damage the disc.

In the past decade, there have been several advancements in spinal surgery, but regenerative medicine is the next frontier, said Dr. Mathur. I see so many patients that have low back pain and leg pain from degenerative disc disease. For many, there is no good surgical treatment, and stem cell injections may be a viable option.

As an orthopaedic spine specialist, Dr. Mathur is not only an expert in spinal surgery but also in the diagnosis and treatment of a wide range of spinal problems. His depth of experience allows him to best determine whether a patient would benefit from physical therapy, stem cell injections or surgical intervention. When providing stem cell treatment, Dr. Mathur performs a single injection for all patients, whereas other clinics typically require multiple injections over several weeks.

There is currently extensive, ongoing research on the application of stem cell therapy and tissue regeneration, including an application for spinal cord injury and disc pathology, which is very exciting, said Dr. Shanti, who has dedicated a great deal of time researching the potential impact stem cell therapy can provide for his patients. Dr. Shanti believes stem cell therapy is the next great advancement in healthcare with an application for a wide spectrum of medical conditions.

Recently recognized as Top Orthopaedic Doctor by The Leading Physicians of the World for the outstanding patient care, Dr. Shantis in-depth experience and understanding of the spine allows him to guide his patients especially those with chronic back pain to the most appropriate path of treatment with the shared collaborative goal of pain relief. Dr. Shanti completed his spine surgery fellowship training at the prestigious New England Baptist Hospital, Tufts University program with an emphasis on minimally invasive spine surgery, and he has authored and presented multiple papers and textbooks on the advancement of minimally invasive spine surgery.

Orthopaedic stem cell treatment is an excellent solution for patients with degenerative disc disease and also those suffering from arthritis of the spine, bulging disc, low back pain, facet joint pain or disc with annular tears.

The stem cell injection is a same-day procedure that generally takes one hour to perform. The actual extraction of bone marrow takes up to 10 minutes. The bone marrow extraction site typically the back of the patients hip or pelvis bone is numbed using a mixture of local anesthetics. A suctioned syringe is attached to a long needle that reaches the posterior aspect of the hip. The patient may experience a minimal amount of discomfort during the extraction.

The sample is collected, transferred through a filter, and then placed into a centrifuge for spinning. The speed separates the stem cells and platelets from the bone marrow. This concentration of stem cells is then reintroduced into the degenerative or painful area under image guidance with fluoroscopy to confirm accurate placement.

The harvesting site will be numb for 1 to 2 hours after the procedure, so the patient will need to have transportation home. It is permissible to fly after the treatment, but this may cause increased pain or discomfort.

Stem cell therapy relies on the bodys own regenerative process to heal, which takes time. Patients have seen the benefits in two to three months after treatment; however, many have noticed improvements in symptoms sooner.

The recommended age range for the treatment is 20 to 70 years old. As the body ages, the quality and quantity of stem cells slowly decline. After age 70, patients may experience a sharper decline in stem cells, resulting in less beneficial outcomes.

If you think you might be a candidate for orthopaedic stem cell therapy treatment, contact Cary Orthopaedics to schedule a consultation.

Read more:
Bone Marrow for Spine and Orthopaedic Stem Cell Treatment ...

To Read More: Bone Marrow for Spine and Orthopaedic Stem Cell Treatment …
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow for Spine and Orthopaedic Stem Cell Treatment … | dataFebruary 2nd, 2019
Read All

Become a Donor | The Bone Marrow Foundation

By admin

Jack, diagnosed with Acute Myelogenous Leukemia (AML), and his donor Kristy

To become a donor it just takes a small vial of blood or swab of cheek cells to be typed as a bone marrow/stem cell donor. There are many patients who are desperately waiting to find a donor match. You may be able to save someones life. There are donor registry sites throughout the country.

You must be between the ages of 18 and 60 and in general good health. You should be committed to helping any patient. A simple blood test or cheek cell swab that is given through an authorized National Marrow Donor Program Donor Center or Recruitment Group is needed to obtain your HLA tissue type so it can be entered into the National Registry. You will have to complete a short health questionnaire and sign a form stating that you understand what it means to be listed in the Registry.

The cost for HLA tissue typing ranges from $45 to $96 depending on the Donor Center, the level of testing performed, and the laboratory that analyzes the test results. There may be funding available to offset this cost through the Donor Center. After the initial testing, all medical expenses are covered by the recipient or the recipients insurance. Please contact your local Donor Center for further information.

To find out more information and to become a donor:

Delete Blood Cancer | DKMS1-866-340-3567www.deletebloodcancer.org

The National Marrow Donor Program/Be The Match1-800-654-1247www.marrow.org

The American Bone Marrow Donor Registry1-800-745-2452www.abmdr.org

The Gift of Life1-800-9MARROWwww.giftoflife.org

The Icla da Silva Foundation, Inc.Helping Children and Adults with Leukemia(866) FDN-ICLAwww.icla.org

Every 15 minutes, someone in the United States is diagnosed with a medical condition (over 35,000 people a year) such as leukemia, anemias, myelodysplastic disorders and other life-threatening diseases that require treatment with bone marrow/stem cell transplants. Nearly 70 percent of these patients must rely on an unrelated donor to offer them this precious gift of life. Unfortunately, many patients who are in need of a bone marrow/stem cell transplant cannot find a suitable donor no relatives that match and no match among volunteer donors.

Fortunately, there is an alternative that has been researched and is now proving to be a good option for many of these patientsstem cells from a newborns placental and umbilical cord blood. A newborns umbilical cord and placenta contains stem cells that are the building blocks for mature blood and immune system cells. Umbilical cord blood is collected at the time of birth under controlled conditions, shipped to a blood bank where it is tested, typed and stored.

Two studies published in The New England Journal of Medicine, Volume 351:2276-285 and an editorial by Miguel A. Sanz, M.D., Ph.D. in the same issue, concluded that cord blood should be considered as an acceptable source of stem cells in the absence of a matched bone marrow donor. For many gravely ill patients (who do not have an available donor who is a match), the immediate availability of typed cord blood units is a compelling reason for its use. And for ethnic minorities, who may have unique combinations of HLA types, the chances of finding a donor match with cord blood is greater than from the existing bone marrow donor pool.

If you have a family history of certain diseases you might choose to save your babys cord blood with a private bank. Alternatively, you can donate the cord blood to a public bank. The Bone Marrow Foundation encourages you to direct any questions you have concerning the use and storage of cord blood to your physician or other appropriate health care professional. The following are further resources for more information on public and private banking:

Public Banking National Marrow Donor Program1-800-654-1247www.marrow.org

National Cord Blood ProgramNew York Blood Center310 East 67th StreetNew York, NY 100211-866- 767-NCBP (6227)www.nationalcordbloodprogram.org

Parents Guide to Cord Blood Bankingwww.parentsguidecordblood.org

Original post:
Become a Donor | The Bone Marrow Foundation

To Read More: Become a Donor | The Bone Marrow Foundation
categoriaBone Marrow Stem Cells commentoComments Off on Become a Donor | The Bone Marrow Foundation | dataJanuary 31st, 2019
Read All

What is BMC, Bone Marrow Stem Cell Therapy?

By admin

Bone Marrow Concentrate (BMC) Therapy, also known as Bone Marrow Aspirate Concentrate (BMAC) Therapy, is a promising cutting-edge regenerative therapy to help accelerate healing in moderate to severe osteoarthritis and tendon injuries. While similar to Platelet Rich Plasma (PRP) in its ability to harness the bodys ability to heal itself through the aid of growth factors, BMC also utilizes regenerative cells that are contained within a patients own bone marrow. The marrow contains a rich reservoir of pluripotent stem cells that can be withdrawn from the patients hip bone and used for the procedure. Unlike other cells of the body, stem cells are undifferentiated, meaning they are able to replicate themselves into various types of tissue.

In the past, the process of removing and harvesting these cells was often difficult and expensive. With recent medical advancements in both the aspiration of the bone marrow and harvesting of the regenerative cells, the procedure can be done with minimal discomfort and patients are sent home the same day. The process is relatively simple. The patient is first numbed using a mixture of local anesthetics. Under the guidance of an X-Ray machine, the physician then removes a small amount of the patients bone marrow from the hip bone which is then placed into a centrifuge to separate the regenerative cells and platelets from the rest of the blood products. The final product is a concentrate which has approximately 5-10 times the baseline levels of regenerative cells and growth factors. This point of care treatment allows for minimal manipulation of cells which are then injected to the injured area. The entire process takes approximately 2 hours and patients go home the same day.

Follow this link:
What is BMC, Bone Marrow Stem Cell Therapy?

To Read More: What is BMC, Bone Marrow Stem Cell Therapy?
categoriaBone Marrow Stem Cells commentoComments Off on What is BMC, Bone Marrow Stem Cell Therapy? | dataJanuary 24th, 2019
Read All

Bone Marrow & Stem Cell Transplant | Weill Cornell Medicine

By admin

Bone Marrow & Stem Cell Transplant

The Bone Marrow and Stem Cell Transplant Program at Weill Cornell Medicine was established with the mission of providing the best care and most innovative research in a compassionate and comfortable environment.

We take a multidisciplinary approach to care for patients with cancer and blood diseases who need stem cell transplants, providing world-class clinical care in collaboration with experts in leukemia, lymphoma, myeloma and other blood disorders. Based at NewYork-Presbyterian/Weill Cornell Medical Center, one of the top ten general hospitals in the nation, the expertise of our consulting team is unsurpassed.

Our patients and families cope with life-threatening illness; as such, sensitivity and compassion are a priority for our team. We view each patient as an individual, and our approach ensures that each treatment regimen is narrowly tailored to meet the unique, changing needs of our patients and their families before, during and after transplant.

As New Yorks premier healthcare institution, Weill Cornell Medicine is at the forefront of scientific research and clinical trials, enabling us to provide a full range of diagnostic and treatment protocols, including the latest breakthroughs in medicine.

Our Team

Our team of internationally-recognized bone marrow transplant and stem cell surgery specialists is known for advanced work and published research in:

Treating patients with aggressive leukemia and myelodysplastic syndromes

Bridge protocols for patients with refractory lymphoma and leukemia

Novel strategies to mobilize stem cells and improve transplantation for patients with multiple myeloma, leukemia and lymphoma

Transplants for solid tumors, severe auto-immune disorders, and AIDS

Treatment

We pride ourselves on exceptional outcomes and offer patients the most advanced diagnostic methods and treatment therapies to improve quality of life, including:

Umbilical cord blood transplant

Outpatient transplant

Autologous stem cell transplant; uses stem cells extracted from the bone marrow or peripheral blood of the patients own blood

Allogeneic stem cell transplant; uses stem cells extracted from the bone marrow or peripheral blood of a matching donor

Hematopoietic stem cell transplant; used to treat certain cancers of the blood/bone marrow, including leukemia and myeloma

Matched unrelated donor stem cell transplantation through the National Donor Matching Program

Non-ablative "mini" transplants

Haplo-Cord Transplant, allowing us to find donors for all patients, regardless of age or ethnic background

Bendamustine, a therapy that is well-tolerated and has excellent response rates in patients with myeloma

Novel forms of transplant, offering hope and success to older patients with leukemia

Clinical Trials

Clinical trials are important to improve outcomes and offer new treatment options. At Weill Cornell Medicine, we conduct more studies in blood cancers than any of our regional peers, allowing us to provide our patients with access to many multi-phase clinical trials. As active members of the international cancer research community, our oncologists also collaborate with other research centers to offer patients the most promising treatments available.

Second Opinions

In concert with your referring physician, we are always available to offer a second opinion in the form of a consultation with one of our specialists.

Why Choose Us?

Our collaborative approach means our patients receive supportive, comprehensive care and the most cutting-edge stem cell therapy and treatments. This enables patients to receive the best possible transplant outcomes. Additionally, we offer more allogeneic stem cell transplants for older adults than any other center in New York City and the entire tri-state area.

For more information or to schedule an appointment, call us at 212-746-2119 or 212-746-2646.

Located in New York City, Weill Cornell Medical College is ranked among the nations best by U.S. News & World Report year after year.

Link:
Bone Marrow & Stem Cell Transplant | Weill Cornell Medicine

To Read More: Bone Marrow & Stem Cell Transplant | Weill Cornell Medicine
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow & Stem Cell Transplant | Weill Cornell Medicine | dataJanuary 24th, 2019
Read All

How Bone Marrow and Stem Cells are Collected | BMT Infonet

By admin

Language English

If you are providing the blood stem cells for a transplant, they will either be collected from your bloodstream (peripheral blood) or from your bone marrow.

The largest concentration of blood stem cells is in your bone marrow. However, the blood stem cells can be moved or "mobilized" out of the bone marrow into the bloodstream (peripheral blood) where they can be easily collected. Most transplants these days use stem cells collected from the bloodstream.

When blood stem cells are collected from the bloodstream, the procedure is called a peripheral blood stem cell collection or harvest.

Prior to the harvest, you will receive injections of a drug such as filgrastim (Neupogen) or plerixifor (Mozobil) over a four to five day period. These drugs move stem cells out of the bone marrow into the bloodstream.

Most people tolerate these drugs well, although mild, flu-like symptoms are common. The symptoms end a few days after the injections stop.

If you are collecting stem cells for your own transplant, chemotherapy drugs may be used to help move the stem cells out of your bone marrow into the bloodstream.

Peripheral blood stem cell collections are done in an outpatient clinic.

The procedure is painless. However, you may feel lightheaded, cold or numb around the lips. Some people feel cramping in their hands which is caused by the blood thinning agent used during the procedure. These symptoms cease when the procedure ends.

The procedure used to collect bone marrow for transplant is called a bone marrow harvest. It is a surgical procedure that takes place in a hospital operating room. Typically it is done as an outpatient procedure.

The amount of bone marrow harvested depends on the size of the patient and the concentration of blood stem cells in your marrow.

Typically one to two quarts of marrow and blood are harvested. While this may sound like a lot, your body can usually replace it in four weeks.

When the anesthesia wears off, you may feel some discomfort in your hip and lower back for several days. The pain is similar to what you would feel if you took a hard fall and bruised your hip. You may find sitting for a long period of time or climbing stairs uncomfortable for a few days. The pain is usually relieved with acetaminophen (Tylenol).

See the article here:
How Bone Marrow and Stem Cells are Collected | BMT Infonet

To Read More: How Bone Marrow and Stem Cells are Collected | BMT Infonet
categoriaBone Marrow Stem Cells commentoComments Off on How Bone Marrow and Stem Cells are Collected | BMT Infonet | dataJanuary 20th, 2019
Read All

Bone marrow suppression – Wikipedia

By admin

Bone marrow suppressionSynonymMyelotoxicity, myelosuppression

Bone marrow suppression also known as myelotoxicity or myelosuppression, is the decrease in production of cells responsible for providing immunity (leukocytes), carrying oxygen (erythrocytes), and/or those responsible for normal blood clotting (thrombocytes).[1] Bone marrow suppression is a serious side effect of chemotherapy and certain drugs affecting the immune system such as azathioprine.[2] The risk is especially high in cytotoxic chemotherapy for leukemia.

Nonsteroidal anti-inflammatory drugs (NSAIDs), in some rare instances, may also cause bone marrow suppression. The decrease in blood cell counts does not occur right at the start of chemotherapy because the drugs do not destroy the cells already in the bloodstream (these are not dividing rapidly). Instead, the drugs affect new blood cells that are being made by the bone marrow.[3] When myelosuppression is severe, it is called myeloablation.[4]

Many other drugs including common antibiotics may cause bone marrow suppression. Unlike chemotherapy the effects may not be due to direct destruction of stem cells but the results may be equally serious. The treatment may mirror that of chemotherapy-induced myelosuppression or may be to change to an alternate drug or to temporarily suspend treatment.

Because the bone marrow is the manufacturing center of blood cells, the suppression of bone marrow activity causes a deficiency of blood cells. This condition can rapidly lead to life-threatening infection, as the body cannot produce leukocytes in response to invading bacteria and viruses, as well as leading to anaemia due to a lack of red blood cells and spontaneous severe bleeding due to deficiency of platelets.

Parvovirus B19 inhibits erythropoiesis by lytically infecting RBC precursors in the bone marrow and is associated with a number of different diseases ranging from benign to severe. In immunocompromised patients, B19 infection may persist for months, leading to chronic anemia with B19 viremia due to chronic marrow suppression.[5]

Bone marrow suppression due to azathioprine can be treated by changing to another medication such as mycophenolate mofetil (for organ transplants) or other disease-modifying drugs in rheumatoid arthritis or Crohn's disease.

Bone marrow suppression due to anti-cancer chemotherapy is much harder to treat and often involves hospital admission, strict infection control, and aggressive use of intravenous antibiotics at the first sign of infection.[citation needed]

G-CSF is used clinically (see Neutropenia) but tests in mice suggest it may lead to bone loss.[6][7]

GM-CSF has been compared to G-CSF as a treatment of chemotherapy-induced myelosuppression/Neutropenia.[8]

In developing new chemotherapeutics, the efficacy of the drug against the disease is often balanced against the likely level of myelotoxicity the drug will cause. In-vitro colony forming cell (CFC) assays using normal human bone marrow grown in appropriate semi-solid media such as ColonyGEL have been shown to be useful in predicting the level of clinical myelotoxicity a certain compound might cause if administered to humans.[9] These predictive in-vitro assays reveal effects the administered compounds have on the bone marrow progenitor cells that produce the various mature cells in the blood and can be used to test the effects of single drugs or the effects of drugs administered in combination with others.

Go here to see the original:
Bone marrow suppression - Wikipedia

To Read More: Bone marrow suppression – Wikipedia
categoriaBone Marrow Stem Cells commentoComments Off on Bone marrow suppression – Wikipedia | dataJanuary 3rd, 2019
Read All

What is a Bone Marrow Transplant (Stem Cell Transplant …

By admin

A bone marrow transplant, also called a stem cell transplant, is a treatment for some types of cancer. For example, you might have one if you have leukemia, multiple myeloma, or some types of lymphoma. Doctors also treat some blood diseases with stem cell transplants.

In the past, a stem cell transplant was more commonly called a bone marrow transplant because the stem cells were collected from the bone marrow. Today, stem cells are usually collected from the blood, instead of the bone marrow. For this reason, they are now often called stem cell transplants.

A part of your bones called bone marrow makes blood cells. Marrow is the soft, spongy tissue inside bones. It contains cells called hematopoietic stem cells (pronounced he-mah-tuh-poy-ET-ick). These cells can turn into several other types of cells. They can turn into more bone marrow cells. Or they can turn into any type of blood cell.

Certain cancers and other diseases keep hematopoietic stem cells from developing normally. If they are not normal, neither are the blood cells that they make. A stem cell transplant gives you new stem cells. The new stem cells can make new, healthy blood cells.

The main types of stem cell transplants and other options are discussed below.

Autologous transplant. This is also called an AUTO transplant or high-dose chemotherapy with autologous stem cell rescue.

In an AUTO transplant, you get your own stem cells after doctors treat the cancer. First, your health care team collects stem cells from your blood and freezes them. Next, you have powerful chemotherapy, and rarely, radiation therapy. Then, your health care team thaws your frozen stem cells. They put them back in your blood through a tube placed in a vein (IV).

It takes about 24 hours for your stem cells to reach the bone marrow. Then they start to grow, multiply, and help the marrow make healthy blood cells again.

Allogeneic transplantation. This is also called an ALLO transplant.In an ALLO transplant, you get another persons stem cells. It is important to find someone whose bone marrow matches yours. This is because you have certain proteins on your white blood cells called human leukocyte antigens (HLA). The best donor has HLA proteins as much like yours as possible.

Matching proteins make a serious condition called graft-versus-host disease (GVHD) less likely. In GVHD, healthy cells from the transplant attack your cells. A brother or sister may be the best match. But another family member or volunteer may also work.

Once you find a donor, you receive chemotherapy with or without radiation therapy. Next, you get the other persons stem cells through a tube placed in a vein (IV). The cells in an ALLO transplant are not typically frozen. This way, your doctor can give you the cells as soon as possible after chemotherapy or radiation therapy.

There are 2 types of ALLO transplants. The best type for each person depends on his or her age, health, and the type of disease being treated.

Ablative, which uses high-dose chemotherapy

Reduced intensity, which uses milder doses of chemotherapy

If your health care team cannot find a matched adult donor, there are other options. Research is ongoing to determine which type of transplant will work best for different people.

Umbilical cord blood transplant. This may be an option if you cannot find a donor match. Cancer centers around the world use cord blood.

Parent-child transplant and haplotype mismatched transplant. These types of transplants are being used more often. The match is 50%, instead of near 100%. Your donor might be a parent, child, brother, or sister.

Your doctor will recommend an AUTO or ALLO transplant based mostly on the disease you have. Other factors include the health of your bone marrow and your age and general health. For example, if you have cancer or other disease in your bone marrow, you will probably have an ALLO transplant. In this situation, doctors do not recommend using your own stem cells.

Choosing a transplant is complicated. You will need help from a doctor who specializes in transplants. You might need to travel to a center that does many stem cell transplants. Your donor might also need to go. At the center, you will talk with a transplant specialist and have an examination and medical tests.

Before a transplant, you should also think about non-medical factors. These include:

Who can care for you during treatment

How long you will be away from work and family responsibilities

If your insurance pays for the transplant

Who can take you to transplant appointments

Your health care team can help you find answers to these questions.

The information below tells you the main parts of AUTO and ALLO transplants. Your health care team usually does the steps in order. But sometimes certain steps happen in advance, such as collecting stem cells. Ask your health care team what to expect before, during, and after a transplant.

Part 1: Collecting your stem cells

During this part, you get injections of a medication to raise your number of stem cells.Your doctor may collect stem cells through your veins using standard IVs or a catheter, which is placed in a large vein in the chest. This stays in place throughout your stay at the hospital. The catheter is used to give chemotherapy, other medications, and blood transfusions.

Time: Several days

Where it is done: Clinic or hospital building. You do not need to stay in the hospital overnight.

Part 2: Transplant treatment

You get high doses of chemotherapy, and rarely, radiation therapy.

Time: 5 to 10 days

Where it is done: A clinic or hospital. At many transplant centers, people need to stay in the hospital for the duration of the transplant, usually about 3 weeks. At some centers, a person receives treatment in the clinic and can come in every day.

Part 3: Getting your stem cells back

This part is called the stem cell infusion. Your health care team puts your stem cells back in your blood through the transplant catheter.

Time: Each infusion usually takes less than 30 minutes. You may receive more than 1 infusion.

Where it is done: A clinic or hospital.

Part 4: Recovery

You take antibiotics and other drugs. You get blood transfusions through your transplant catheter, if needed. This is also when your health care team helps with any transplant side effects.

Time: Approximately 2 weeks

Where it is done: A clinic or hospital. You might be staying in the hospital.

Part 1: Collecting stem cells from your donor

During this part, the health care team gives your donor injections of a medication to increase white cells in the blood, if the cells are collected from blood. Some donors will donate bone marrow in the operating room during a procedure which takes several hours.

Time: Varies based on how the stem cells are collected

Where it is done: A clinic or hospital

Part 2: Transplant treatment

You get chemotherapy with or without radiation therapy.

Time: 5 to 7 days

Where it is done: Many ALLO transplants are done in the hospital.

Part 3: Getting the donor cells

This part is called the stem cell infusion. Your health care team puts the donors stem cells in your blood through the transplant catheter. It takes less than 1 hour. The transplant catheter stays in until after treatment.

Time: 1 day

Where it is done: A clinic or hospital

Part 4: Recovery

During the recovery, you receive antibiotics and other drugs. This includes medications to prevent graft-versus-host disease. If needed, you get blood transfusions through your catheter. This is also when your health care team takes care of any side effects from the transplant.

After the transplant, people visit the clinic frequently at first and less often over time.

Time: It varies.For an ablative transplant, people are usually in the hospital for about 4 weeks in total.For a reduced intensity transplant, people are in the hospital or visit the clinic daily for about a week.

The words successful transplant might mean different things to you, your family, and your health care team. Below are 2 ways to measure transplant success: Your blood counts are back to safe levels. A blood count is the number of red cells, white cells, and platelets in your blood. A transplant makes these numbers very low for 1 to 2 weeks. This causes risks of:

Infection from low numbers of white cells, which fight infections

Bleeding from low numbers of platelets, which stop bleeding

Tiredness from low numbers of red cells, which carry oxygen

Doctors lower these risks by giving blood and platelet transfusions after a transplant. You also take antibiotics to help prevent infections. When the new stem cells multiply, they make more blood cells. Then your blood counts improve. This is one way to know if a transplant is a success.

It controls your cancer. Doctors do stem cell transplants with the goal of curing disease. A cure may be possible for some cancers, such as some types of leukemia and lymphoma. For other people, remission is the best result. Remission is having no signs or symptoms of cancer. After a transplant, you need to see your doctor and have tests to watch for any signs of cancer or complications from the transplant.

Talking often with your health care team is important. It gives you information to make decisions about your treatment and care. The following questions may help you learn more about stem cell transplant:

Which type of stem cell transplant would you recommend? Why?

If I will have an ALLO transplant, how will we find a donor? What is the chance of a good match?

What type of treatment will I have before the transplant? Will radiation therapy be used?

How long will my treatment take? How long will I stay in the hospital?

How will a transplant affect my life? Can I work? Can I exercise and do regular activities?

How will we know if the transplant works?

What if the transplant does not work? What if the cancer comes back?

What are the short-term side effects that may happen during treatment or shortly after?

What are the long-term side effects that may happen years later?

What tests will I need later? How often will I need them?

If I am worried about managing the costs of treatment, who can help me with these concerns?

Side Effects of a Bone Marrow Transplant (Stem Cell Transplant)

Bone Marrow Aspiration and Biopsy

Donating Bone Marrow is Easy and Important: Here's Why

How Umbilical Cord BloodCan Save Someone's Life

Bone Marrow Transplants and Older Adults: 3 Important Questions

Be the Match: About Transplant

Be the Match: National Marrow Donor Program

Blood & Marrow Transplant Information Network (BMT InfoNet) National Bone Marrow Transplant Link (nbmtLINK)

U.S. Department of Health and Human Services: Learn About Transplant as a Treatment Option

Read the original here:
What is a Bone Marrow Transplant (Stem Cell Transplant ...

To Read More: What is a Bone Marrow Transplant (Stem Cell Transplant …
categoriaBone Marrow Stem Cells commentoComments Off on What is a Bone Marrow Transplant (Stem Cell Transplant … | dataDecember 30th, 2018
Read All

Page 11234..1020..»