Page 11234..1020..»

Bone Marrow Transplant Market: North America to Dominate Market through 2027; Europe to Witness Steady Growth Over 2021-2027 UNLV The Rebel Yell -…

By daniellenierenberg

Bone marrow transplantation, also referred to as hematopoieticular somatic cell transplantation, may be a sort of major surgery . It involves the transplantation of multidimensional, immature, and constantly dividing stem-cells from bone marrow, duct , or other sources. It are often autologous, polyglobulogenic or maybe syngenetic. This treatment are often wont to treat a good range of great diseases, like MS , red blood cell disease, paralysis agitans , disease , bone marrow cancer, leukemia, bone infection, myeloma , age related degeneration and more.

The PDF for the study can be requested using the following link: https://www.coherentmarketinsights.com/insight/request-pdf/232

Market Dynamics

High prevalence of cancer is predicted to propel growth of the worldwide bone marrow transplant market. as an example , consistent with Leukemia and Lymphoma Society, 176,200 people within the US are expected to be diagnosed with leukemia, lymphoma or myeloma in 2019. Moreover, increasing adoption of bone marrow transplant is additionally expected to assist in growth of the market. as an example , in August 2020, CytoDyn Inc., a late-stage biotechnology company, announced its efforts to duplicate Berlin and London patients HIV cure by using leronlimab during bone marrow transplant for five HIV patients who even have cancer.

Availability of effective therapies for the treatment of acute graft versus host disease is predicted to supply lucrative growth opportunities for players within the global bone marrow transplant market. as an example , in September 2020, Avalon GloboCare Corp., a clinical-stage developer of cell-based technologies and therapeutics, launched its new allogeneic mesenchymal stromal cell therapeutic platform a possible therapy for COVID-19 and for bone marrow transplant related complications of acute graft versus host disease.

However, bone marrow transplant may cause various complications like acute graft versus host disease, which is predicted to hinder growth of the worldwide bone marrow transplant market.

Among regions, the center East is predicted to witness significant growth within the global bone marrow transplant market, due to increasing adoption of bone marrow transplant within the region. as an example , in July 2020, Abu Dhabi Stem Cells Centre (ADSCC) and Sheikh Khalifa Medical City announced the primary ever successful bone marrow transplant administered within the UAE.

Competitive Analysis

Major players operating within the global bone marrow transplant market include, Lonza Group Ltd., Merck Millipore Corporation, Sanofi-Aventis LLC, AllCells LLC, STEMCELL Technologies, and American Type Culture Collection (ATCC) Inc.

Key players within the global bone marrow transplant market are focused on adopting collaboration and partnership strategies to expand their product portfolio. as an example , in November 2019, Lonza Group Ltd. partnered with Cryoport, Inc. within the cell and gene therapy field and across Lonzas vein-to-vein delivery network.

We also offer 15% FREE Report customization.Get This premium report with Instant US$ 2000 discount @ https://www.coherentmarketinsights.com/promo/buynow/232

Contact Us

Mr. ShahCoherent Market Insights1001 4th Ave, #3200Seattle, WA 98154Phone: US +12067016702 / UK +4402081334027Email: sales@coherentmarketinsights.com

Originally posted here:
Bone Marrow Transplant Market: North America to Dominate Market through 2027; Europe to Witness Steady Growth Over 2021-2027 UNLV The Rebel Yell -...

To Read More: Bone Marrow Transplant Market: North America to Dominate Market through 2027; Europe to Witness Steady Growth Over 2021-2027 UNLV The Rebel Yell -…
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Transplant Market: North America to Dominate Market through 2027; Europe to Witness Steady Growth Over 2021-2027 UNLV The Rebel Yell -… | dataSeptember 1st, 2021
Read All

Bone Marrow-Derived Stem Cells (BMSCS) Market : Size & Trends Shows a Rapid Growth by 2028 UNLV The Rebel Yell – UNLV The Rebel Yell

By daniellenierenberg

DBMR has added a new report titled Bone Marrow-Derived Stem Cells (BMSCS) Market with analysis provides the insights which bring marketplace clearly into the focus and thus help organizations make better decisions. With a devotion and commitment of supreme level of resilience and integrated approaches, Bone Marrow-Derived Stem Cells (BMSCS) Market research report has been structured. The report also puts a light on growth opportunity assessment (GOA), customer insights (CI), competitive business intelligence (CBI), and distribution channel assessment (DCA). This world class market report analyses and evaluates the important industry trends, market size, market share estimates, and sales volume with which industry can speculate the strategies to increase return on investment (ROI). The statistics have been represented in the graphical format for an unambiguous understanding of facts and figures.

An influential Bone Marrow-Derived Stem Cells (BMSCS) Market report brings into focus plentiful of factors such as the general market conditions, trends, inclinations, key players, opportunities, and geographical analysis which all aids to take business towards the growth and success. This report provides the broader perspective of the market place with its comprehensive market insights and analysis which eases surviving and succeeding in the market. Moreover, this market report explains better market perspective in terms of product trends, marketing strategy, future products, new geographical markets, future events, sales strategies, customer actions or behaviors. Hence, the credible report brings into the focus, the more important aspects of the market or industry.

Bone marrow-derivedstem cells(BMSCS) market is expected to gain market growth in the forecast period of 2020 to 2027. Data Bridge Market Research analyses the market to growing at a CAGR of 10.4% in the above-mentioned forecast period. Increasing awareness regarding the benefits associates with the preservation of bone marrow derived stem cells will boost the growth of the market.

Get Sample Report + All Related Graphs & Charts @

https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-bone-marrow-derived-stem-cells-bmscs-market

The major players covered in the bone marrow-derived stem cells (BMSCS) market report are CBR Systems, Inc, Cordlife Sciences India Pvt. Ltd., Cryo-Cell International, Inc.ESPERITE N.V., LifeCell International Pvt. Ltd., StemCyte India Therapeutics Pvt. Ltd, PerkinElmer Inc, Global Cord Blood Corporation., Smart Cells International Ltd., Vita 34 among other domestic and global players. Market share data is available for Global, North America, Europe, Asia-Pacific (APAC), Middle East and Africa (MEA) and South America separately. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.

Some of the factors such as introduction of novel technologies for the preservation of stem cells and their storage, surging investment that will help in research activities leading to stem cells benefits, adoption of hemotopoietic stem cell transplantation system will accelerate the growth of the bone marrow-derived stem cells (BMSCS) market in the forecast period of 2020-2027. Various factors that will create opportunities in the bone marrow-derived stem cells (BMSCS) market are increasing occurrences of various diseases along with rising applications in emerging economies.

Large cost of operation and strict regulatory framework will restrict the growth of bone marrow-derived stem cells (BMSCS) market in the above mentioned forecast period. Ethical concern leading to stem cells will become the biggest challenge in the market growth.

Global Bone Marrow-Derived Stem Cells (BMSCS) Market By Service Type (Sample Preservation and Storage, Sample Analysis, Sample Processing, Sample Collection and Transportation), Application (Personalized Banking Applications, Research Applications, Clinical Applications), Country (U.S., Canada, Mexico, Germany, Italy, U.K., France, Spain, Netherland, Belgium, Switzerland, Turkey, Russia, Rest of Europe, Japan, China, India, South Korea, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia- Pacific, Brazil, Argentina, Rest of South America, South Africa, Saudi Arabia, UAE, Egypt, Israel, Rest of Middle East & Africa), Market Trends and Forecast to 2027

Global Bone Marrow-Derived Stem Cells (BMSCS) Market Scope and Market Size

Bone marrow-derivedstem cells(BMSCS) market is segmented on the basis of service type and application. The growth amongst these segments will help you analyse meagre growth segments in the industries, and provide the users with valuable market overview and market insights to help them in making strategic decisions for identification of core market applications.

Thisbonemarrow-derived stem cells (BMSCS) market report provides details of new recent developments, trade regulations, import export analysis, production analysis, value chain optimization, market share, impact of domestic and localised market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on bone marrow-derived stem cells (BMSCS) market contactData Bridge Market Researchfor anAnalyst Brief, our team will help you take an informed market decision to achieve market growth.

Grab Your Report at an Impressive 30% Discount! Please click Here @https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-bone-marrow-derived-stem-cells-bmscs-market

Healthcare Infrastructure Growth Installed Base and New Technology Penetration

Bone marrow-derived stem cells (BMSCS) market also provides you with detailed market analysis for every country growth in healthcare expenditure for capital equipments, installed base of different kind of products for bone marrow-derived stem cells (BMSCS) market, impact of technology using life line curves and changes in healthcare regulatory scenarios and their impact on the bone marrow-derived stem cells (BMSCS) market. The data is available for historic period 2010 to 2018.

For More Insights Get Detailed TOC @ https://www.databridgemarketresearch.com/toc/?dbmr=global-bone-marrow-derived-stem-cells-bmscs-market

Competitive Landscape and Bone Marrow-Derived Stem Cells (BMSCS) Market Share Analysis

Bone marrow-derived stem cells (BMSCS) market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies focus related to bone marrow-derived stem cells (BMSCS) market.

About Data Bridge Market Research:

Data Bridge Market Researchset forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.

Contact:

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Email:Corporatesales@databridgemarketresearch.com

More here:
Bone Marrow-Derived Stem Cells (BMSCS) Market : Size & Trends Shows a Rapid Growth by 2028 UNLV The Rebel Yell - UNLV The Rebel Yell

To Read More: Bone Marrow-Derived Stem Cells (BMSCS) Market : Size & Trends Shows a Rapid Growth by 2028 UNLV The Rebel Yell – UNLV The Rebel Yell
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow-Derived Stem Cells (BMSCS) Market : Size & Trends Shows a Rapid Growth by 2028 UNLV The Rebel Yell – UNLV The Rebel Yell | dataSeptember 1st, 2021
Read All

Could gene therapies be used to cure more people with HIV? – aidsmap

By daniellenierenberg

Medical science is starting to license and use drugs and procedures that change the genetic code inside the bodys cells, and to correct the bad code that can give rise to conditions such as cancer and the auto-immune diseases. Since HIV is a disease that results from a virus inserting such a piece of bad code into our genes, such therapies could be used to snip out that code and effect a cure.

This was what attendees at last months International AIDS Society Conference on HIV Science (IAS 2021) heard at the workshop on curing HIV. The workshop opened with two introductory talks by Professor Hans-Peter Kiem, the chair of gene therapy at the Fred Hutchinson Cancer Research Center in Seattle in the US (the Fred Hutch) and, in a joint presentation, by the Fred Hutchs Dr Jennifer Adair and Dr Cissy Kityo of the Joint Clinical Research Centre (JCRC) in Kampala, Uganda.

The latter talk was a sign of acknowledgement that, while the prospects for genetic medicine are brighter than ever before, their expense and sophistication do not fit well with the global epidemiology of HIV, which mainly affects the worlds poorest and most disadvantaged communities. Despite this, Fred Hutch and JCRC have embarked upon a joint research programme to develop within the next few years a genetic therapy treatment for HIV that could be realistically scaled up for use in lower-income settings.

A unit of heredity, that determines a specific feature of the shape of a living organism. This genetic element is a sequence of DNA (or RNA, for viruses), located in a very specific place (locus) of a chromosome.

A type of experimental treatment in which foreign genetic material (DNA or RNA) is inserted into a person's cells to prevent or fight disease.

To eliminate a disease or a condition in an individual, or to fully restore health. A cure for HIV infection is one of the ultimate long-term goals of research today. It refers to a strategy or strategies that would eliminate HIV from a persons body, or permanently control the virus and render it unable to cause disease. A sterilising cure would completely eliminate the virus. A functional cure would suppress HIV viral load, keeping it below the level of detection without the use of ART. The virus would not be eliminated from the body but would be effectively controlled and prevented from causing any illness.

The body's mechanisms for fighting infections and eradicating dysfunctional cells.

In cell biology, a structure on the surface of a cell (or inside a cell) that selectively receives and binds to a specific substance. There are many receptors. CD4 T cells are called that way because they have a protein called CD4 on their surface. Before entering (infecting) a CD4 T cell (that will become a host cell), HIV binds to the CD4 receptor and its coreceptor.

HIV cure research pioneer Dr Paula Cannon of the University of Southern California, chairing the session, said: After several decades of effort and false starts, gene therapies now hold out promise for diseases that were previously untreatable.

Hans-Peter Kiem acknowledged the pivotal role of community advocacy in supporting cure research, noting that his project, defeatHIV, was one of the first beneficiaries of a grant from the Martin Delaney Collaboratories, named after the celebrated US treatment activist who died in 2009.

The other factor that gave impetus to HIV cure research was, of course, the announcement that someone had been cured: Timothy Ray Brown, whose HIV elimination was first announced in 2008 and who came forward publicly in 2010. He died in 2019 from the leukaemia whose treatment led to his HIV cure but by then had had 13 years of post-HIV life. He had survived long enough to talk with Adam Castillejo, the second person cured of HIV, and encourage him to come forward too.

Timothy and Adams stories showed that HIV could be cured, and with a crude form of gene therapy too: cancer patients, they were both given bone marrow transplants from donors whose T-cells lacked the gene for the CCR5 receptor, which is necessary for nearly all HIV infection.

But there have only been two cures for two reasons: firstly, bone marrow transplant is itself a very risky procedure involving deleting and replacing the entire immune system of already sick patients. In 2014 Browns doctor, Gero Hutter, reported that Timothy Ray Brown was only one of out of eight patients on whom the procedure had been tried, but that all the others had died.

Secondly, compatible bone marrow donors are hard to come by as it is, and restricting them to the 1% or so of people who lack the CCR5 receptor, all of them of northern European ancestry, means very few people could benefit from this approach. Attempting transplant with T-cells that do not lack CCR5, in the hope that replacing the immune system with cells from a person without cancer will also get rid of their HIV anyway, has produced temporary periods of undetectable HIV off therapy, but the virus has always come back.

(People like Brown and Castillejo, whose HIV infection was cured by medical intervention, need to be distinguished from people who seem to have spontaneously cured themselves, such as Loreen Willenberg: such people are of course of great interest to cure researchers, but the trick is to make it happen consistently in other people.)

Brown and Castillejos cures, as transplants, were so-called allogenic, meaning that the HIV-resistant cells came from another person. Better would be autogenic transplants, in which immune system cells are taken from a person with HIV, genetically altered in the lab dish to make them resistant to HIV, and then re-introduced. This type of procedure written about for aidsmap as long ago as 2011 by treatment advocate Matt Sharp, who underwent one.

The repertoire of gene therapies is not restricted to CCR5 deletion. Gene therapy is immensely versatile, and could be used in a number of ways.

Instead of using gene therapy to make cells resistant to HIV, it could directly repair defective genes in cells by means of cut-and-paste technology such as CRISPR/Cas9. This is already being used in trials for some genetic conditions such as cystic fibrosis and sickle-cell anaemia. Given that HIV-infected cells are also defective in the sense that they contain lengths of foreign DNA that shouldnt be there, they are amenable to the same molecular editing. Early trials have produced promising results but the challenge, as it has been in a lot of gene therapy, is to ensure that the cells containing DNA are almost entirely eliminated.

One way of doing this is not to delete the HIV DNA from infected cells but to preferentially kill off the cells themselves by creating so-called chimeric antigen receptor (CAR) T-cells. These are T-lymphocytes whose genes have been modified so that their usual receptors such as CD4 or CD8 have been replaced with receptors attuned very specifically to antigens (foreign or unusual proteins) displayed by infected cells and cancer cells. A couple of CAR cell therapies are already licensed for cancers; the problem with HIV is that the reservoir cells do not display immune-stimulating antigens on their surfaces. This means that CAR T-cells would have to be used alongside drugs such as PD-1 inhibitors that stop the cells retreating into their quiescent reservoir phase, an approach demonstrated at IAS 2021.

A couple of other approaches could be used to produce either vaccines or cures. One is to engineer B-cells so they produce broadly neutralising antibodies. A way of tweaking them to do this, called germline targeting, is covered was also discussed at IAS 2021, but if we manage to generate B-cells that can do this, we could then in theory directly edit their genes to make them do the same thing.

"Timothy Ray Brown and Adam Castillejo were both given bone marrow transplants from donors whose T-cells lacked the gene for the CCR5 receptor."

The other way is to induce cells to make viral antigens or virus-like particles that the immune system then reacts to. Scientists have been working on this technique for 20 years and it triumphed last year when the Pfizer and Moderna vaccines against the SARS-CoV-2 virus had over 90% success in suppressing symptomatic COVID-19. These vaccines are not genetic engineering in the sense of altering the genome of cells; rather, they introduce a product of the genetic activation in cells, the messenger RNA that is produced when genes are read and which is sent out into the rest of the cell to tell it to make proteins.

However because HIV is more variable and less immunogenic than SARS-CoV-2, the vaccine induced by the RNA would have to be something that looked much more like a whole virus than just the bare spike protein induced by the Pfizer and Moderna vaccines. If there was such a vaccine could be used both therapeutically as well as in prevention, by stimulating an immune reaction to activated HIV-infected cells. Moderna have announced they will now resume the HIV vaccine research they were working on when COVID-19 hit.

The problem with all these more gentle procedures is that it has proved difficult to replace all the HIV-susceptible cells with the HIV-resistant or HIV-sensitised ones: although engraftment takes place, meaning that the autologous cells are not rejected by the body and are able to establish a population for some time (in some animal experiments, replacing as much as 90% of the native immune cells), eventually the unaltered immune cells tend to win out because the introduced cells lack the deep reservoir of replenishing cells.

Kiem said that the way scientists have been trying to get round this is to only select and alter so-called haematopoeic stem cells (HSCs). These rare and long-lived cells, found in the bone marrow, are the replenishing reservoir of the immune system. They differentiate when they reproduce and give rise to all the immune cells that do different things: CD4 and CD8 T-lymphocytes, B-cells that make antibodies, macrophages that engulf pathogens, dendritic cells, monocytes, natural killer cells, and others.

Altering HSCs genetically so that they are able to fight HIV in one way or another could in theory give rise to a persistent, HIV-resistant immune system. They could in theory lie in wait and be ready to produce effector cells of various types. They would be ready when a new HIV infection comes along (if used as a vaccine) or when HIV viral rebound happens and there is detectable virus in the body (if used as part of a cure). If a person with CAR-engineered stem cells could have repeated cycles of treatment interruption, their HIV reservoir could in theory slowly be deleted.

"Gene therapies are astonishingly expensive."

As mentioned above, although genetic medicine shows enormous promise, the complexity and expense of its techniques means that at present it is unlikely to benefit most people who really need it.

Hans-Peter Kiem said that currently about 60 million people have conditions that could benefit from gene therapy. The vast majority of these either have HIV (37 million) or haemoglobinopathies blood-malformation diseases such as sickle-cell anaemia and thalassaemia that are also concentrated in the lower-income world (20 million).

Dr Jennifer Adair, one of the first researchers to have proposed collaboration on gene therapies for HIV with African institutes, said that gene therapies have already been licensed for conditions such as thalassaemia, spinal muscular atrophy, T-cell lymphoma and a form of early-onset blindness.

But they are astonishingly expensive. The worlds most expensive drug tag goes, depending on which source you read, either to Zynteglo, a genetic medicine correcting malformed beta-haemoglobin and licensed in the US for thalassaemia, or Zolgensma, a drug licensed in Europe and given to children to correct the defective gene that results in spinal muscular atrophy.

Both cost about 1.8 million for a single dose. The price is not just due to the cost of the complex engineering used to make them, but because they are used to treat rare diseases and so have a small market.

At present the technology need to engineer autogenic genetically engineered cells is, if anything, even more expensive and complex than that needed to introduce allogenic cells. It can involve in the region of ten staff and a workspace of 50 square metres per patient. Recently a so-called gene therapy in a box has been made available that can reduce the area needed to produce autogenic genetically-engineered cells from 50 to less than one square metre, and the staff need to one or two, But what is really needed is genetic engineering in a shot; a therapy similar to a vector or RNA vaccine that can be introduced as an injection and produces the genetic changes needed within the body.

Undaunted by the challenges, the US National Institutes of Health are collaborating with the Bill and Melinda Gates foundation to work on a combined programme of HIV and sickle-cell-anaemia genetic therapy (given that something that works for one could be adapted to work with the other).

And the Fred Hutchinson Center has teamed up with the Joint Clinical Research Centre in Uganda with the very ambitious goal of making a genetic therapy that would be at least ready for human testing within two years in an African setting, and that could be scaled up to be economical for Africa if successful.

Dr Cissy Kityo of JCRC in Uganda told the conference that as of 2020, there were 373 trials of gene therapy products registered, of which 35 were in phase III efficacy trials. The global budget for regenerative medicine, which includes genetic therapy and related techniques, was $19.9 billion, having jumped by 30% since the previous year. The US Food and Drug Administration projects that based on the current rate of progress and the development pipeline, they may be licensing around 100 gene-therapy products a year by 2025.

This branch of medicine is no longer exotic, she said. Now steps have to be taken to trial gene therapies in the people who needed them most, and to turn the exotic into the affordable, she added.

Read this article:
Could gene therapies be used to cure more people with HIV? - aidsmap

To Read More: Could gene therapies be used to cure more people with HIV? – aidsmap
categoriaBone Marrow Stem Cells commentoComments Off on Could gene therapies be used to cure more people with HIV? – aidsmap | dataSeptember 1st, 2021
Read All

Poseida Therapeutics Presents Preliminary Results from Phase 1 Trial of P-PSMA-101 at the 6th Annual CAR-TCR Summit | DNA RNA and Cells | News…

By daniellenierenberg

DetailsCategory: DNA RNA and CellsPublished on Tuesday, 31 August 2021 18:23Hits: 284

Encouraging data confirming activity in a solid tumor indication presented on first nine patients at low dose cohorts in ongoing autologous CAR-T trial in metastatic castrate-resistant prostate cancer

Three patients showed a greater than 50% decline in prostate-specific antigen (PSA) and concordant PSMA-PET imaging results, including one patient at lowest dose with evidence of complete tumor elimination

Favorable safety profile with modest overall rates of CRS and no neurotoxicity observed

SAN DIEGO, CA, USA I August 31, 2021 I Poseida Therapeutics, Inc. (Nasdaq: PSTX), a clinical-stage biopharmaceutical company utilizing proprietary genetic engineering platform technologies to create cell and gene therapeutics with the capacity to cure, today announced preliminary results from its Phase 1 clinical trial of P-PSMA-101, the Company's solid tumor autologous CAR-T product candidate to treat patients with metastatic castrate-resistant prostate cancer (mCRPC). These data will be presented at the 6th Annual CAR-TCR Summit virtual meeting at 10:00am ET today in a presentation entitled, "P-PSMA-101 is a High-Tscm Autologous CAR-T Targeting PSMA Producing Exceptionally Deep and Durable Responses in Castration-Resistant Metastatic Prostate Cancer."

"We are excited about the preliminary data from our Phase 1 trial of P-PSMA-101, which provides further evidence of the effectiveness of our CAR-T platform for solid tumor cancers," said Eric Ostertag, M.D., Ph.D., Chief Executive Officer of Poseida, who will present at the CAR-TCR Summit. "To date, other CAR-T therapeutics have not had much success outside of hematologic malignancies. The deep and durable responses in our trial demonstrate that CAR-T products have the potential to work well against solid tumors, even at low doses, when using the appropriate technology platform."

Efficacy:

As of the cutoff date, the study had enrolled a total of nine patients with mCRPC: five patients at Dose A who each received a single treatment of 0.25X10E6 cells/kg (an average of about 20M cells), and four patients at Dose B, who each received a single treatment of 0.75X10E6 cells/kg (an average of about 60M cells). All patients received a lymphodepletion regimen consisting of 30 mg/m2 fludarabine + 300 mg/m2 cyclophosphamide. Patients were heavily pre-treated, having received an average of six prior lines of therapy with a median time since diagnosis of 6.4 years.

Key findings included:

-Five patients dosed showed measurable declines in PSA levels-Three patients treated showed a greater than 50% decline in PSA levels and had concordant improvements in PSMA-PET imaging-One patient demonstrated evidence of complete tumor elimination and remains in a durable response of greater than five months at the time of this presentation

"This innovative Poseida PSMA-directed CAR T cell platform has demonstrated a robust anti-tumor response in patients with metastatic castration resistant prostate cancer," commented Susan F. Slovin, M.D., Ph.D., Associate Vice Chair of Academic Administration at Memorial Sloan Kettering Cancer Center and investigator on the trial. "This is the first time that I have seen such impressive responses with an immunotherapy product. The responses of my patients in the trial are far beyond my expectations."

Safety and Tolerability:

P-PSMA-101 demonstrated a favorable safety and tolerability profile. After a previously reported case of Macrophage Activation Syndrome (MAS) exacerbated by patient non-compliance, only three cases of possible Cytokine Release Syndrome (CRS) were observed, which were all low grade (1/2) and were managed well with early treatment. No cases of neurotoxicity (CRES/ICANS) were observed as of the cutoff date.

The Phase 1 trial is an open label, multi-center, 3+3 dose-escalating study designed to assess the safety of P-PSMA-101 in up to 40 adult subjects with mCRPC. The primary objectives of this study are to determine the safety, efficacy, and maximum tolerated dose of P-PSMA-101. Additional information about the study is available at http://www.clinicaltrials.gov using identifier: NCT04249947.

"We believe the key to success in solid tumors is a product with a high percentage of desirable stem cell memory T cells (Tscm)," said Matthew Spear, M.D., Chief Medical Officer of Poseida. "In this study, we have demonstrated that a high-percentage Tscm CAR-T product can home to the bone marrow and, in at least one case, completely eliminate tumor. This bone marrow homing property may be particularly important for bone avid diseases such as prostate adenocarcinoma. Importantly, the favorable tolerability associated with our Tscm CAR-T products has carried over to prostate cancer where we have so far seen manageable cytokine release syndrome and no neurotoxicity."

Company-Hosted Conference Call and Webcast Information

Poseida's management team will host a conference call and webcast today, August 31, 2021 at 11:00am ET. The dial-in conference call numbers for domestic and international callers are (866) 939-3921 and (678) 302-3550, respectively. The conference ID number for the call is 50220147. Participants may access the live webcast and the accompanying presentation materials on Poseida's website at http://www.poseida.com in the Investors section under Events and Presentations. An archived replay of the webcast will be available for 30 days following the event.

Additional CAR-TCR Summit Highlights

Presentation: "Developing CAR-T Cells for Multiple Myeloma: From Autologous to Allogeneic"Session Date/Time: Wednesday, September 1, 2021, 4:00pm ETPresenter: Matthew Spear, M.D., CMO, Poseida Therapeutics

This presentation will outline Phase 1 and 2 development of the Company's lead autologous P-BCMA-101 CAR-T therapy and insights that were used to develop a fully allogeneic version, P-BCMA-ALLO1 that is expected to enter the clinic soon. The presentation will be part of the afternoon session on the Clinical Management Track.

Presentation: "Advancing Nonviral Manufacturing for Multi-Product Allogeneic T-Cell Therapies"Session Date/Time: Wednesday, September 1, 2021, 4:30pm ETPresenter: Devon Shedlock, Ph.D., SVP Research & Development, Poseida Therapeutics

This presentation will discuss how Poseida's piggyBac DNA Delivery System, Cas-CLOVER Site-specific Gene Editing System and Booster Molecule are used to manufacture multi-product, fully allogeneic T-cell therapies. The Company will also discuss how efficient multiplexed Cas-CLOVER gene editing exhibits low to no off-target editing or translocations as determined by next-generation sequencing, and how the Company's Booster Molecule helps to protect against the "allo tax," maintaining a favorable high-stem cell memory T cell (Tscm) product and enabling up to hundreds of doses in a single manufacturing run. This presentation will be part of the afternoon session on the Manufacturing Track.

Presentation: "Developing 'Off-the-Shelf' CAR-T Cells for Bone Marrow Transplant Conditioning"Session Date/Time: Thursday, September 2, 2021, 9:00am ETPresenter: Nina Timberlake, Ph.D., Associate Director, Research (Gene Therapy), Poseida Therapeutics

This presentation will discuss leveraging the piggyBac DNA Delivery System and Cas-CLOVER Site-specific Gene Editing System to generate off-the-shelf fully allogeneic CAR-T cells to specifically target hematopoietic cells in the bone marrow. This potential therapeutic could be used as a non-myeloablative conditioning regimen for hematopoietic stem cell transplant or as a therapeutic for the treatment of acute myeloid leukemia (AML). The presentation will occur as part of the conference's Focus Day, "CAR-TCR Beyond Oncology: Fundamental Biology & Mechanisms of Action Beyond Oncology."

The full presentations at the CAR-TCR Summit will be made available on Poseida's website at their respective session times.

About Poseida Therapeutics, Inc.

Poseida Therapeutics is a clinical-stage biopharmaceutical company dedicated to utilizing our proprietary genetic engineering platform technologies to create next generation cell and gene therapeutics with the capacity to cure. We have discovered and are developing a broad portfolio of product candidates in a variety of indications based on our core proprietary platforms, including our non-viral piggyBac DNA Delivery System, Cas-CLOVER Site-specific Gene Editing System and nanoparticle- and AAV-based gene delivery technologies. Our core platform technologies have utility, either alone or in combination, across many cell and gene therapeutic modalities and enable us to engineer our wholly-owned portfolio of product candidates that are designed to overcome the primary limitations of current generation cell and gene therapeutics. To learn more, visit http://www.poseida.com to connect with us on Twitter and LinkedIn.

SOURCE: Poseida Therapeutics

See the article here:
Poseida Therapeutics Presents Preliminary Results from Phase 1 Trial of P-PSMA-101 at the 6th Annual CAR-TCR Summit | DNA RNA and Cells | News...

To Read More: Poseida Therapeutics Presents Preliminary Results from Phase 1 Trial of P-PSMA-101 at the 6th Annual CAR-TCR Summit | DNA RNA and Cells | News…
categoriaBone Marrow Stem Cells commentoComments Off on Poseida Therapeutics Presents Preliminary Results from Phase 1 Trial of P-PSMA-101 at the 6th Annual CAR-TCR Summit | DNA RNA and Cells | News… | dataSeptember 1st, 2021
Read All

Bone Therapeutics announces topline results from Phase III knee osteoarthritis study with its enhanced viscosupplement JTA – GlobeNewswire

By daniellenierenberg

REGULATED INFORMATION

No statistically significant difference in knee pain reduction between JTA-004, placebo and active comparator, 3months after treatment; favorable JTA-004 safety profile similar to placebo and comparator

Prime focus on the continued development and expansion of its mesenchymal stromal cell based allogeneic cell and gene therapy platform

Management to host conference call today at 4pm CEST / 10am EST - details provided below

Gosselies, Belgium, 30August 2021, 7am CEST BONE THERAPEUTICS (Euronext Brussels and Paris: BOTHE), the cell therapy company addressing unmet medical needs in orthopedics and other diseases, today announces that the Phase III knee osteoarthritis study with its enhanced viscosupplement JTA-004 did not meet the primary and consequently the key secondary endpoints.

The primary objective of the JTA-004 Phase III study was to demonstrate the efficacy of JTA-004 in reducing osteoarthritic knee pain compared to placebo as measured by the WOMAC pain subscale three months after treatment. A key secondary objective was the comparison between JTA-004 and comparator Hylan G-F 20 in knee pain relief at month 3. Despite JTA-004s favorable safety profile, the study did not achieve its main objectives as no statistically significant difference in pain reduction could be observed between any of the treatment, placebo and comparator groups, with all treatment arms showing similar efficacy.

A statistically significant difference in favor of JTA-004 and the active comparator versus placebo was seen in a post-hoc analysis in a subset of patients with higher pain scores at entry.

The Company, in collaboration with existing and potential partners, will consider the options for the future of JTA-004 development.

The execution of the study was flawless and a good safety profile was observed in line with previous results. These JTA-004 efficacy results are disappointing. Knee osteoarthritis studies are recognized across the industry to be challenging to evaluate. They are also frequently complicated by a high placebo effect. We will continue to analyze the data and will consider potential next steps, said Miguel Forte, Chief Executive Officer of Bone Therapeutics. We are now fully committed to the clinical development of our advanced MSC allogeneic cell and gene therapy platform. Bone Therapeutics is concentrating on the development of this platform for the large market of orthopedic indications, with ALLOB. The progress with this platform has enabled us to expand it to other indications, including immunomodulation.

Bone Therapeutics is focused on the development of its core assets, the allogeneic cell therapy platform, including ALLOB. ALLOB is currently being evaluated in a randomized, double-blind, placebo-controlled Phase IIb study in 178patients with fresh tibial fractures at risk of delayed or non-union. 5% to 10% of complicated long bone fractures evolve to delayed union and non-union. This study will assess the potential for a single percutaneous injection of ALLOB to accelerate fracture healing and prevent late-stage complications in these patients. Recruitment is expected to be completed in the first half of 2022 and topline results by the end of 2022. Should the pandemic continue, Bone Therapeutics may have to re-evaluate these timelines and, in that eventuality, will communicate again to the market.

Bone Therapeutics is intensifying its efforts to expand its preclinical and clinical pipeline with additional indications by enhancing and professionalizing the therapeutic capacity of its cell and gene therapy platform. This includes the development of a next generation of genetically engineered mesenchymal stromal cells (MSC) and the use of highly scalable and versatile cell sources such as induced pluripotent stem cells (iPSC).

Conference call

The management of Bone Therapeutics will host a conference call today at 4:00 pm CEST / 10:00 am EST. To participate in the conference call, please select your dial-in number from the list below quoting the conference ID 825 1002 3115#:

Belgium: +32 2 290 9360France: +33 1 7095 0103United Kingdom: +44 208 080 6592United States: +1 646 876 9923

About JTA-004 and Phase III knee osteoarthritis study

JTA-004 is Bone Therapeutics next generation of intra-articular injectable for the treatment of osteoarthritic pain in the knee. It consists of a unique mix of hyaluronic acid - a natural component of knee synovial fluid, plasma proteins, and a fast-acting analgesic. JTA-004 intends to provide added lubrication and protection to the cartilage of the arthritic joint and to alleviate osteoarthritic pain.

The JTA-004 Phase III study is a controlled, randomized, double-blind trial. It evaluates the potential of a single, intra-articular injection of JTA-004 to reduce osteoarthritic pain in the knee, compared to placebo or Hylan G-F 20, the leading osteoarthritis treatment on the market. The study is being conducted in 22 centers across six European countries as well as Hong Kong. More than 700 patients with mild to moderate symptomatic knee osteoarthritis were treated in this study.

About Knee Osteoarthritis

Osteoarthritis (OA), also known as degenerative joint disease, is the most common chronic joint condition in which the protective cartilage in the joints progressively break down resulting in joint pain, swelling, stiffness and limited range of motion. The knee is one of the joints that are mostly affected by osteoarthritis, with an estimated 250 million cases worldwide.

The prevalence of knee osteoarthritis (KOA) is expected to increase in the coming years due to increasingly aging and obese population. Currently, there is no cure for KOA and treatments focus on relieving and controlling pain and symptoms, preventing disease progression, minimizing disability, and improving quality of life. Most drugs prescribed to KOA patients are topical or oral analgesics and anti-inflammatory drugs. Ultimately, severe KOA leads to highly invasive surgical interventions such as total knee replacement.

About Bone Therapeutics

Bone Therapeutics is a leading biotech company focused on the development of innovative products to address high unmet needs in orthopedics and other diseases. The Company has a diversified portfolio of cell therapies at different stages ranging from pre-clinical programs in immunomodulation to mid stage clinical development for orthopedic conditions, targeting markets with large unmet medical needs and limited innovation.

Bone Therapeutics core technology is based on its cutting-edge allogeneic cell and gene therapy platform with differentiated bone marrow sourced Mesenchymal Stromal Cells (MSCs) which can be stored at the point of use in the hospital. Currently in pre-clinical development, BT-20, the most recent product candidate from this technology, targets inflammatory conditions, while the leading investigational medicinal product, ALLOB, represents a unique, proprietary approach to bone regeneration, which turns undifferentiated stromal cells from healthy donors into bone-forming cells. These cells are produced via the Bone Therapeutics scalable manufacturing process. Following the CTA approval by regulatory authorities in Europe, the Company has initiated patient recruitment for the Phase IIb clinical trial with ALLOB in patients with difficult tibial fractures, using its optimized production process. ALLOB continues to be evaluated for other orthopedic indications including spinal fusion, osteotomy, maxillofacial and dental.

Bone Therapeutics cell therapy products are manufactured to the highest GMP (Good Manufacturing Practices) standards and are protected by a broad IP (Intellectual Property) portfolio covering ten patent families as well as knowhow. The Company is based in the BioPark in Gosselies, Belgium. Further information is available at http://www.bonetherapeutics.com.

For further information, please contact:

Bone Therapeutics SAMiguel Forte, MD, PhD, Chief Executive OfficerJean-Luc Vandebroek, Chief Financial OfficerTel: +32 (0)71 12 10 00investorrelations@bonetherapeutics.com

For Belgian Media and Investor Enquiries:BepublicCatherine HaquenneTel: +32 (0)497 75 63 56catherine@bepublic.be

International Media Enquiries:Image Box CommunicationsNeil Hunter / Michelle BoxallTel: +44 (0)20 8943 4685neil.hunter@ibcomms.agency / michelle@ibcomms.agency

For French Media and Investor Enquiries:NewCap Investor Relations & Financial CommunicationsPierre Laurent, Louis-Victor Delouvrier and Arthur RouillTel: +33 (0)1 44 71 94 94bone@newcap.eu

Certain statements, beliefs and opinions in this press release are forward-looking, which reflect the Company or, as appropriate, the Company directors current expectations and projections about future events. By their nature, forward-looking statements involve a number of risks, uncertainties and assumptions that could cause actual results or events to differ materially from those expressed or implied by the forward-looking statements. These risks, uncertainties and assumptions could adversely affect the outcome and financial effects of the plans and events described herein. A multitude of factors including, but not limited to, changes in demand, competition and technology, can cause actual events, performance or results to differ significantly from any anticipated development. Forward looking statements contained in this press release regarding past trends or activities should not be taken as a representation that such trends or activities will continue in the future. As a result, the Company expressly disclaims any obligation or undertaking to release any update or revisions to any forward-looking statements in this press release as a result of any change in expectations or any change in events, conditions, assumptions or circumstances on which these forward-looking statements are based. Neither the Company nor its advisers or representatives nor any of its subsidiary undertakings or any such persons officers or employees guarantees that the assumptions underlying such forward-looking statements are free from errors nor does either accept any responsibility for the future accuracy of the forward-looking statements contained in this press release or the actual occurrence of the forecasted developments. You should not place undue reliance on forward-looking statements, which speak only as of the date of this press release.

View original post here:
Bone Therapeutics announces topline results from Phase III knee osteoarthritis study with its enhanced viscosupplement JTA - GlobeNewswire

To Read More: Bone Therapeutics announces topline results from Phase III knee osteoarthritis study with its enhanced viscosupplement JTA – GlobeNewswire
categoriaBone Marrow Stem Cells commentoComments Off on Bone Therapeutics announces topline results from Phase III knee osteoarthritis study with its enhanced viscosupplement JTA – GlobeNewswire | dataSeptember 1st, 2021
Read All

I blamed stress for my three-month period but it turned out to be much more sinister… – The Sun

By daniellenierenberg

A WOMAN blamed stress for her three-month long period until doctors found out the true cause was devastating.

Bansri Dhokia, 30, from Ealing, West London, is now urging others to see their GP as soon as they are unwell.

8

She thought at worst, her odd periods, fatigue and breathlessness would be down to anaemia or low thyroid function that could be treated with medication.

But the truth was far worse, and Bansri was diagnosed with a blood cancer.

Bansri was taken into hospital that night where she stayed for 12 weeks having intense treatment to save her life.

Speaking of her symptoms, which started in May 2020, Bansri said: I blamed it on being overworked.

With blood cancer, the symptoms are often quite vague and hard to diagnose.

I really noticed the fatigue first. I could sleep for 12 hours a night and still feel exhausted.

Then I started to get breathless all the time. There were activities like climbing stairs or walking down the road that I used to find easy but was suddenly finding more difficult.

Bansris heavy period, which had been ongoing for three months, was particularly unusual for her.

She made repeated trips to the doctor to find out what was wrong but kept being pushed back.

I just knew something wasn't right and repeatedly asked for blood tests, Banrsri said.

The first four blood tests between May and July came back clear and by the time she had a fifth on 21 July, she was starting to get fed up.

Busy with work, Bansri almost missed the appointment but luckily, her husband Amrit Sagoo encouraged her to go.

She said: I went for the blood test in the afternoon and that evening, I was brushing my teeth when I got a call to say the ambulance was coming to collect me.

They explained I needed to go to hospital right away. I thought it was just for a night and packed an overnight bag.

"I didnt know what was wrong and that I would end up staying in hospital for 12 weeks.

Tests at the Royal London hospital revealed Bansri had acute lymphoblastic leukaemia (ALL), a rare cancer affecting just 790 people in the UK each year, mostly children and young people.

8

8

8

A problem in the bone marrow leads to insufficient important blood cells, causing symptoms of unusual bleeding, tiredness and muscle aches.

Almost seven in 10 will survive ALL for five years or longer after diagnosis, and four in ten in those aged 25 to 64.

Bansri said: I didn't know much about leukaemia. I was really scared for my life. I had no idea what the prognosis was. I just cried and I kept questioning why this was happening to me."

With lockdown restrictions still in place, Bansri had to tell her friends and family about her diagnosis over Zoom.

She said: It was the hardest thing I have ever had to do. I asked my sister to gather my family in the living room. We are very close and I could not look at her because I just couldn't deal with seeing the sadness in her face."

Bansri started chemotherapy straight away, because ALL is very aggressive and develops quickly.

She said: "It was so upsetting seeing pieces of my hair fall out on my pillow. I was growing it as we were planning to have Hindu and Sikh religious wedding ceremonies in 2020, after our civil wedding the year before.

"One day I just asked the nurse to shave my head, and in that moment, I felt really empowered."

But one of the hardest parts of the treatment - which she now needs therapy to recover from - is that she couldnt have visitors for the first eight weeks due to Covid.

8

8

Bansri then needed a stem cell transplant to improve the chances that she would go into remission.

During the procedure, the patient has stem cells of a donor, sometimes a complete stranger, injected into their blood. The cells find their way to the bone marrow, helping it to start making normal cells again.

Most people who are white Europeans find a match from a related or unrelated donor on a large registry, but 400 UK patients don't find a suitable donor each year.

Bansri said: I knew immediately that being from an Indian background, there was a very low chance that I would find a match.

According to charities, donors are more likely to be white, and people from minority ethnic backgrounds are more likely to have rarer tissue types, making it harder to find patients from these backgrounds a matching donor.

That was quite scary because I knew how important it was to have a donor to save my life, Bansri said.

Luckily one of Bansris two siblings was a match, and the transplant took place in February 2021.

Bansri said: My recovery is going well so far but a stem cell transplant comes with many side effects, which are lifelong.

I have a long road to go but I take it day by day. Each month I get through is a success."

Bansri is vulnerable to infections because the transplant made her immune system weaker, and so she and her husband are still having to shield.

Bansri is urging people to join the stem cell donor register, particularly those in Asian communities.

HOW YOU CAN HELP SAVE A LIFE

REGISTERING to be a blood stem cell donor is easy.

Even if you can't donate to your relative, you might be ableto become a donor for someone else. You can do this by contacting one of the UK registers.

There are different donor registersin the UK.These work with each otherand with international registersto match donors with people who need stem cells.

You can sign up with:

8

8

She said: People often have a misconception that, when you join the donor registry, you're giving something up, for example, in a kidney transplant, you do give up your kidney, and it's a longer recovery time.

My sibling was in hospital for a few hours on the day and didn't have any side effects afterwards.

In my community, cancer is a bit of a taboo subject and people dont speak about it so I think there is a lack of awareness of the importance of signing up to be on the register.

Bansri is also taking part in the Leukaemia Cares Spot Leukaemia campaign, which urges the general public to understand and recognise the signs.

She said: I want to see more Asian people talking about it because its not the fault of the person - its just bad luck.

If youre experiencing any of the symptoms, contact your GP and ask for a blood test. Early diagnosis saves lives.

Symptoms of acute lymphoblastic leukaemia

The NHS says most of the symptoms of ALL are caused by a lack of healthy blood cells. They include:

In some cases, the affected cells can spread from your bloodstream into your central nervous system. This can cause neurological symptoms (related to the brain and nervous system), including:

Read this article:
I blamed stress for my three-month period but it turned out to be much more sinister... - The Sun

To Read More: I blamed stress for my three-month period but it turned out to be much more sinister… – The Sun
categoriaBone Marrow Stem Cells commentoComments Off on I blamed stress for my three-month period but it turned out to be much more sinister… – The Sun | dataSeptember 1st, 2021
Read All

Adult T-cell leukemia: Types, symptoms, and treatment – Medical News Today

By daniellenierenberg

T-cell leukemia is an uncommon form of cancer that causes a type of white blood cells known as T cells to grow uncontrollably in a persons bone marrow. Adult T-cell leukemia (ATL) is one form of the condition and results from a viral infection.

This information comes from the American Cancer Society.

Experts call the virus that causes ATL human T-cell leukemia virus type-1 (HTLV-1). This virus can also cause a type of lymphoma that begins in the immune system rather than the bone marrow. Doctors refer to the two conditions collectively as adult T-cell leukemia/lymphoma (ATLL).

This article looks at the types, symptoms, and causes of ATL. It also considers the treatment options and survival rates for those with the condition.

T-cell leukemia is a relatively rare form of cancer. Like other types of leukemia, it affects blood-forming cells in the bone marrow. These are cells that will go on to become blood cells but that are still in their early, or immature, form.

In addition to plasma, blood consists of red blood cells, white blood cells, and platelets. These cells go through several stages of development before becoming mature.

T-cell leukemia causes an abnormality in a specific type of immature white blood cells, known as T lymphocytes or T cells. T cells protect the body from infection. If these cells become cancerous, they divide and grow uncontrollably.

ATL is a type of T-cell leukemia caused by HTLV-1. The condition is rare in the United States, but it is more common in Japan, parts of Africa, South America, the Middle East, and the Caribbean.

Most people who contract HTLV-1 do not go on to develop any serious disease. HTLV-1 affects around 10 million people globally, but only 25% of them develop symptomatic ATLL.

There are four subtypes of ATLL:

Learn about the differences between leukemia and lymphoma here.

Symptoms of ATL can vary depending on the subtype a person has. People with the smoldering subtype may not have noticeable symptoms or may only develop a few skin lesions.

People with more aggressive forms of ATL may experience:

Hypercalcemia can be serious. It causes symptoms such as:

Children who develop ATLL often experience the acute or lymphomatous subtypes. Many develop an enlarged thymus, an organ that resides in front of the trachea, or windpipe. This can cause breathing problems.

To diagnose ATLL, a doctor will need to take samples of blood, bone marrow, or tissue. This may involve:

A healthcare professional can take blood from a vein in the arm, whereas bone or bone marrow usually comes from a hip bone.

A specialist will then examine the samples for signs of ATLL using various methods. They may use a microscope to examine them closely, or machines that test the samples proteins and DNA.

It is possible for ATL to go into remission. This means doctors cannot detect ATL in the body, and a person has no symptoms. Remission can be permanent or temporary.

However, ATL is often aggressive. The acute, lymphoma, and unfavorable chronic subtypes are more difficult to treat, while the favorable chronic and smoldering subtypes have a better prognosis.

For slow-growing forms of ATL, doctors may adopt a watch and wait approach to see whether the condition progresses. If the symptoms are mild and do not progress, a person may not need treatment or may not require it for some time.

Around 25% of cases of chronic or smoldering ATLL ultimately progress to the acute form. Anyone with acute ATLL typically undergoes treatment.

First-line treatment for ATL is antiviral therapy. Those with the lymphoma subtype seem to respond better to chemotherapy. Depending on the circumstances, a doctor may recommend one or both approaches.

Some individuals may also receive a stem cell transplantation from a donor, although this combined treatment is still under evaluation for its effectiveness.

Clinical trials are also testing the potential of immunomodulating drugs for ATL treatment.

ATL has a short overall survival rate, even with prompt treatment. This is because ATL is resistant to chemotherapy.

Data from 20002009 show that ATL patients who underwent intensive chemotherapy followed by stem cell transplantation had average survival times of:

Anyone who has completed treatment for ATLL will receive continuous health monitoring as part of their follow-up care. As the time spent in remission increases, these appointments become less frequent.

ATL occurs due to an infection with HTLV-1, a virus that belongs to the same class of viruses as HIV.

Similarly to HIV, HTLV-1 spreads through contact with bodily fluids. It can transmit through:

There is no cure or vaccine for HTLV-1. There is also no consistent method of screening for HTLV-1 worldwide and no way for doctors to predict who will go on to develop ATL. For this reason, preventing its spread is vital for preventing ATL.

However, because most people with HTLV-1 experience no symptoms, this can be challenging. Few studies have looked at the best ways of preventing HTLV-1 transmission.

Approaches that may help include:

Individuals should seek guidance from a doctor if they have any concerning symptoms, such as new rashes, skin lesions, or persistent fatigue.

They should also contact a doctor if they have come into contact with HTLV-1 at any point.

Where possible, schedule regular doctor visits. These give doctors an opportunity to perform physical examinations and obtain blood tests, as necessary. These may pick up on early signs of illness.

Some people with the slow-growing subtypes of T-cell leukemia have no symptoms. For these individuals, it is essential to visit a doctor as soon as any symptoms appear, because this could be a sign of the disease progressing.

ATL is a type of leukemia that affects the bodys T cells, which play a crucial role in the immune system. An HTLV-1 infection causes ATL.

ATL is often aggressive and difficult to treat. Those with a slow-growing subtype, such as smoldering ATL, usually have a better prognosis. The treatment may involve chemotherapy, antiviral drugs, or stem cell transplantation.

Read this article:
Adult T-cell leukemia: Types, symptoms, and treatment - Medical News Today

To Read More: Adult T-cell leukemia: Types, symptoms, and treatment – Medical News Today
categoriaBone Marrow Stem Cells commentoComments Off on Adult T-cell leukemia: Types, symptoms, and treatment – Medical News Today | dataAugust 19th, 2021
Read All

Hancock man advocates for national bone marrow and stem cell registry that saved his life – Monadnock Ledger Transcript

By daniellenierenberg

John Davy of Hancock marks two birthdays. The first isNov. 16, the day he was born in 1941. The second is Jan. 6,the day in 2014 when he received a lifesaving stem-cell transplantthanks to a complete stranger.

Now, John and his wife Sandhy Kale have become advocates for Be the Match, the national stem cell registry that found John his rare genetic match.

How often in the world do you get to save someones life? Davy asked. You fantasize about it sometimes. Heres an opportunity for anyone between 18 and 44 to do just that.

Davy said he began feeling abnormally tired sometime in 2013. One day, he walked to the mailbox, only a few hundred feet away from his front door, and had to stop several times on his way back to his house.

I said, Thats not me. Theres something off here, Davy said.

Davy went in to the hospital for some testing, and after a few false starts looking at his heart and running stress tests, doctors performed a Complete Blood Count, or CBC.

My blood count was so low, it wouldnt support life, he said.

Thats when Davy received his diagnosis. Myelodysplastic syndrome, or MDS, a form of blood cancer.

My first thought was, OK, what are we going to do about this? Davy said. Thats when the doctor told me there was no cure.

MDS cannot be cured through usual chemotherapy or radiation treatments. However, it can be treated with bone marrow or, as with Davy, the transplant of stem cells.

After receiving a second opinion, and speaking with a doctor experienced with stem cell transplants, Davy went on the national stem cell registry, known as Be the Match.

He was told he might have to wait upwards of a year before finding his match. But Davy got lucky in only three months, a viable donor joined the registry.

Davy knows little about the man who saved his life. He was 30 years old at the time, and a member of the United States military. Be the Match allows donors and patients to connect, if both sides are interested, but while John said he would love to shake the mans hand, his donor has wished to remain anonymous.

If I could speak to him, I would thank him profusely. For someone to be that generous, to donate to someone that hes never met, is astounding, Davy said.

Joining the Be the Match registry is as simple as swabbing a cheek.

Your genetic profile goes into the system, and, if donors are found to be a match to any patients waiting for transplants, only then are they called to go through the donation process.

There are two ways to donate stem cells. In either case, the donor will first undergo two injections to increase the production of their stem cells. In the first type of donation procedure, liquid bone marrow is extracted using a needle while the donor is under anesthesia. But the much more common way to donate used about 80 percent of the time is through a blood donation.

Similar to the process for donating plasma, the donor has blood drawn, it is cycled by a machine to remove only the stem cells, and the remaining blood is returned to the donor.

The recipient of the stem cells has to undergo a process to suppress their immune system, and the donated stem cells are given to the patient.

Because the immune system has to be repressed to accept the new cells, there is danger in the procedure, and even those who successfully accept the new stem cells can experience side effects of graft-verses-host reactions.

There is no guarantee, Kale said. This is a chance. You can take it if you want. Even if it buys you four or five years, you might get to see your kids graduating, your grandkids grow up. It was worth it to us.

And for Davy, they said, there was no other option. He accepted the risk, and said hes one of the lucky ones he had one minor reaction resulting in a rash across his chest, but overall, since his transplant, he has been able to resume a normal life. Today, seven years later, he is on no medications, and has no restrictions for how he can live his life.

It is that new lease on life that Davy said convinced himself and Sandhy that they had to become involved with Be the Match on a level besides being a recipient of their services. The two are now advocates for the system, traveling to drives to tell their story, and Davy acts as a support person for patients who may be recipients of transplants, telling them about what to expect in the process.

Its crucial, Davy said, to get as many people on the registry as possible. Because matches work on how genetically compatible two people are, people of similar ethnic backgrounds are more likely to match, and your ethnicity greatly impacts the likelihood of finding a good match.

White patients are the most likely to find a match within the system, at a rate of 79 percent. Native Americans have a 60 percent chance, Hispanic people a 48 percent, Asian 47 percent, and Black people only 29 percent.

Thats why Sandhy and I try to get as many people involved as we can, Davy said. The more people in the registry, the better chance you have.

Be the Match currently has a donor drive scheduled for Aug. 14 from 10 a.m. to 2 p.m. at E. Paul Community Center at 61 South Street in Troy. To join the registry you must be between the ages of 18 and 44 and be in good general health, and committed to donating to anyone in need. If you cannot attend the physical drive, a free cheek swab kit will be mailed to you. If you are interested in a kit, text TroyFD to 61474.

Excerpt from:
Hancock man advocates for national bone marrow and stem cell registry that saved his life - Monadnock Ledger Transcript

To Read More: Hancock man advocates for national bone marrow and stem cell registry that saved his life – Monadnock Ledger Transcript
categoriaBone Marrow Stem Cells commentoComments Off on Hancock man advocates for national bone marrow and stem cell registry that saved his life – Monadnock Ledger Transcript | dataAugust 6th, 2021
Read All

Global Hematopoietic Stem Cell Transplantation Market to 2027 – Size, Share, Outlook, and Opportunity Analysis – ResearchAndMarkets.com – Business…

By daniellenierenberg

DUBLIN--(BUSINESS WIRE)--The "Hematopoietic Stem Cell Transplantation (HSCT) Market - Size, Share, Outlook, and Opportunity Analysis, 2019 - 2027" report has been added to ResearchAndMarkets.com's offering.

The global hematopoietic stem cell transplantation market is expected to witness significant growth during the forecast period owing to the increasing prevalence of leukemia and lymphoma. According to Center for Disease Control and Prevention (CDC), in the U.S., around 45,360 people were diagnosed with leukemia in 2013, leading to 23,549 fatalities (13,625 men and 9,924 women). According to the same source the condition is more prevalent among men than women. Leukemia accounts for around 3% of all new cancer cases.

Hematopoietic stem cell transplantation is a procedure in which multipotent hematopoietic stem cells sourced from peripheral blood cells, bone marrow, or umbilical cord blood are transplanted into the patient. Hematopoietic stem cell transplantation is commonly used in the treatment of lymphoma (Hodgkin, Non-Hodgkin), leukemia, multiple myeloma, thalassemia, sickle cell anemia, and osteoporosis. It includes two transplantation sources; 1) autologous, that uses stem cells from the patient's own body, 2) and allogeneic that sources stem cells from a donor's body. According to World Health Organization (WHO), over 50,000 hematopoietic stem cell transplantation procedures are carried out globally, every year and this number is expected to increase over the years.

Company Profiles

Key features of the study:

Key Topics Covered:

1. Research Objectives and Assumptions

2. Market Overview

3. Market Dynamics, Regulations, and Trends Analysis

4. Impact Analysis of COVID-19

5. Global Hematopoietic Stem Cell Transplantation (HSCT) Market, By Transplant Type, 2016 - 2027, (US$ Million)

6. Global Hematopoietic Stem Cell Transplantation (HSCT) Market, By Indication, 2016 - 2027, (US$ Million)

7. Global Hematopoietic Stem Cell Transplantation (HSCT) Market, By Application, 2016 - 2027, (US$ Million)

8. Global Hematopoietic Stem Cell Transplantation (HSCT) Market, By Region, 2016 - 2027, (US$ Million)

9. Competitive Landscape

10. Section

For more information about this report visit https://www.researchandmarkets.com/r/jtneqg

See the original post:
Global Hematopoietic Stem Cell Transplantation Market to 2027 - Size, Share, Outlook, and Opportunity Analysis - ResearchAndMarkets.com - Business...

To Read More: Global Hematopoietic Stem Cell Transplantation Market to 2027 – Size, Share, Outlook, and Opportunity Analysis – ResearchAndMarkets.com – Business…
categoriaBone Marrow Stem Cells commentoComments Off on Global Hematopoietic Stem Cell Transplantation Market to 2027 – Size, Share, Outlook, and Opportunity Analysis – ResearchAndMarkets.com – Business… | dataAugust 6th, 2021
Read All

Safety of Stem Cell Therapy for Chronic Knee Pain Confirmed in New Study – SciTechDaily

By daniellenierenberg

A study released inSTEM CELLS Translational Medicinehas confirmed the safety of a novel type of cellular therapy for knee pain caused by osteoarthritis. Conducted by a multi-institutional team of researchers in Japan who had developed the new therapy, the study was designed to confirm that their treatment which involves transplanting the patients own mesenchymal stem cells (MSCs) into the affected knee did not cause tumors.

The results showed that five years after transplantation, osteoarthritis-related tears to the knee meniscus had healed and, just as importantly, none of the patients experienced any serious side effects from the treatment. The meniscus is a crescent-shaped cartilage in the knee joint that plays a role in shock absorption. Age-related damage to the meniscus often leads to the progression of osteoarthritis of the knee.

Chronic knee pain is a major issue for the aging, affecting approximately 25 percent of all adults, according to the Centers for Disease Control and Prevention (CDC). Osteoarthritis is the most common cause of this condition in people aged 50 and older. Along with pain, which can be debilitating, knee problems can significantly affect the persons mobility and quality of life.

Knee replacement surgery is the gold standard of treatment, with the majority of people experiencing a dramatic reduction in pain and, thus, improvement in their ability to live a normal life. However, though rare, such surgery does come with risks such as the possibility of infection.

Lead investigator Mitsuru Mizuno, DVM, Ph.D. and corresponding author Ichiro Sekiya, M.D., Ph.D. Credit: AlphaMed Press

Cellular therapies are showing great potential as a less invasive way to treat difficult-to-heal knee injuries. The team behind the current study, which included researchers from Tokyo Medical and Dental University, Kyoto University and Kazusa DNA Research Institute, recently developed a therapy involving the transplantation of MSCs derived from the knees soft tissue (the synovium) into the injured meniscus. MSCs are multipotent adult stem cells present in the umbilical cord, bone marrow, fat, dental and other body tissues. Their ability to secrete biologically active molecules that exert beneficial effects on injured tissues makes them a promising target in regenerative medicine.

But some stem cell treatments have been known to cause tumors, which is why the team wanted to ensure that their therapy was free of any negative side effects. In particular, they wanted to investigate the safety of any MSCs that might show a type of chromosomal disorder called trisomy 7.

Trisomy 7 occurs frequently in patients with severe knee disease such as osteoarthritis. The detection of trisomy 7 in epithelial cells has been associated with tumor formation. However, the safety of these cells after transplantation has not been investigated. Thats what we wanted to learn from this study, said corresponding author Ichiro Sekiya, M.D., Ph. D., director and professor of the Center for Stem Cell and Regenerative Medicine (CSCRM) at Tokyo Medical and Dental University.

Mitsuru Mizuno, DVM, Ph.D., assistant professor with CSCRM, served as the studys lead investigator. He reported on the results. We recruited 10 patients for the study and transplanted their own stem cells into the affected knee joints, then followed up with MRIs over the next five years. The images revealed that tears in the patients knee meniscus were obscured three years after transplantation. We also identified trisomy 7 in three of the patients, yet no serious adverse events including tumor formation were observed in any of them.

Dr. Sekiya added, Keep in mind that these were autologous MSCs used in our study, which means that the transplanted MSCs came from the patients themselves. Any problems that might arise in the case of allogeneic cells, which are donated by someone other than the patient, still need to be determined.

Nevertheless, we believe that these data suggest that MSCs with trisomy 7 are safe for transplantation into human knees and show much promise in treating osteoarthritis.

This study highlights the ability of a patients own stem cells to potentially heal torn cartilage in the knee, said Anthony Atala, M.D., Editor-in-Chief ofSTEM CELLS Translational Medicineand director of the Wake Forest Institute for Regenerative Medicine. These outcomes suggest a potential approach that could change the overall physical health of patients who suffer from osteoarthritis and experience debilitating joint pain. We look forward to the continuation of this research to further document clinical efficacy.

Reference: Transplantation of human autologous synovial mesenchymal stem cells with trisomy 7 into the knee joint and 5 years of follow-up by Mitsuru Mizuno, Kentaro Endo, Hisako Katano, Naoki Amano, Masaki Nomura, Yoshinori Hasegawa, Nobutake Ozeki, Hideyuki Koga, Naoko Takasu, Osamu Ohara, Tomohiro Morio and Ichiro Sekiya, 3 August 2021, STEM CELLS Translational Medicine.DOI: 10.1002/sctm.20-0491

Continue reading here:
Safety of Stem Cell Therapy for Chronic Knee Pain Confirmed in New Study - SciTechDaily

To Read More: Safety of Stem Cell Therapy for Chronic Knee Pain Confirmed in New Study – SciTechDaily
categoriaBone Marrow Stem Cells commentoComments Off on Safety of Stem Cell Therapy for Chronic Knee Pain Confirmed in New Study – SciTechDaily | dataAugust 6th, 2021
Read All

Insights on the Hematopoietic Stem Cell Transplantation Global Market to 2027 – Key Drivers, Restraints and Opportunities – Yahoo Finance

By daniellenierenberg

Dublin, Aug. 03, 2021 (GLOBE NEWSWIRE) -- The "Hematopoietic Stem Cell Transplantation (HSCT) Market - Size, Share, Outlook, and Opportunity Analysis, 2019 - 2027" report has been added to ResearchAndMarkets.com's offering.

Hematopoietic stem cell transplantation is a procedure in which multipotent hematopoietic stem cells sourced from peripheral blood cells, bone marrow, or umbilical cord blood are transplanted into the patient. Hematopoietic stem cell transplantation is commonly used in the treatment of lymphoma (Hodgkin, Non-Hodgkin), leukemia, multiple myeloma, thalassemia, sickle cell anemia, and osteoporosis. It includes two transplantation sources; 1) autologous, that uses stem cells from the patient's own body, 2) and allogeneic that sources stem cells from a donor's body. According to World Health Organization (WHO), over 50,000 hematopoietic stem cell transplantation procedures are carried out globally, every year and this number is expected to increase over the years.

Market Dynamics

The global hematopoietic stem cell transplantation market is expected to witness significant growth during the forecast period owing to the increasing prevalence of leukemia and lymphoma. According to Center for Disease Control and Prevention (CDC), in the U.S., around 45,360 people were diagnosed with leukemia in 2013, leading to 23,549 fatalities (13,625 men and 9,924 women). According to the same source the condition is more prevalent among men than women. Leukemia accounts for around 3% of all new cancer cases.

Key features of the study:

This report provides in-depth analysis of the global hematopoietic stem cell transplantation market, market size (US$ Mn), and compound annual growth rate (CAGR %) for the forecast period 2020-2027, considering 2019 as the base year

It elucidates potential revenue opportunity across different segments and explains attractive investment proposition matrix for this market

This study also provides key insights about market drivers, restraints, opportunities, new product launches or approval, market trends, regional outlook, and competitive strategies adopted by leading players

It profiles key players in the global hematopoietic stem cell transplantation market based on the following parameters - company overview, financial performance, product portfolio, geographical presence, distribution strategies, key developments, and strategies

Key players covered as a part of this study are Pluristem Therapeutics Inc., CellGenix GmbH, Regen Biopharma Inc., Lonza Group, Kiadis Pharma, Taiga Biotechnologies, Inc., Takeda Pharmaceutical Company Limited, Escape Therapeutics, Inc., Bluebird Bio, Talaris Therapeutics, Inc., Marker Therapeutics Inc., and Stempeutics Research Pvt Ltd.

Insights from this report would allow marketers and management authorities of companies to make informed decision with respect to future product launches, government initiatives, technological upgradation, market expansion, and marketing tactics

The global hematopoietic stem cell transplantation market report caters to various stakeholders in this industry, including investors, product manufacturers, distributors, and suppliers in the hematopoietic stem cell transplantation market, research and consulting firms, new entrants, and financial analysts.

Key Topics Covered:

1. Research Objectives and Assumptions

Story continues

2. Market Overview

3. Market Dynamics, Regulations, and Trends Analysis

Market Dynamics

Drivers

Restraints

Market Opportunities

Impact Analysis

Key Developments

Pipeline Analysis

PEST Analysis

Reimbursement Scenario

Regulatory Scenario

Epidemiology

Government Initiatives

Treatment Algorithm

4. Impact Analysis of COVID-19

5. Global Hematopoietic Stem Cell Transplantation (HSCT) Market, By Transplant Type, 2016 - 2027, (US$ Million)

Introduction

Market Share Analysis, 2020 and 2027 (%)

Y-o-Y Growth Analysis, 2017 - 2027

Segment Trends

Autologous

Introduction

Market Size and Forecast, and Y-o-Y Growth, 2016 - 2027, (US$ Million)

Allogeneic

Introduction

Market Size and Forecast, and Y-o-Y Growth, 2016 - 2027, (US$ Million)

6. Global Hematopoietic Stem Cell Transplantation (HSCT) Market, By Indication, 2016 - 2027, (US$ Million)

Introduction

Market Share Analysis, 2020 and 2027 (%)

Y-o-Y Growth Analysis, 2017 - 2027

Segment Trends

Acute Myeloid Leukemia (AML)

Introduction

Market Size and Forecast, and Y-o-Y Growth, 2016 - 2027, (US$ Million)

Acute Lymphoblastic Leukemia (ALL)

Introduction

Size and Forecast, and Y-o-Y Growth, 2016 - 2027, (US$ Million)

Hodgkin lymphoma (HL)

Introduction

Size and Forecast, and Y-o-Y Growth, 2016 - 2027, (US$ Million)

Non-Hodgkin Lymphoma (NHL)

Introduction

Size and Forecast, and Y-o-Y Growth, 2016 - 2027, (US$ Million)

Multiple Myeloma (MM)

Introduction

Size and Forecast, and Y-o-Y Growth, 2016 - 2027, (US$ Million)

Other Non-malignant Disorders

Introduction

Size and Forecast, and Y-o-Y Growth, 2016 - 2027, (US$ Million)

7. Global Hematopoietic Stem Cell Transplantation (HSCT) Market, By Application, 2016 - 2027, (US$ Million)

Introduction

Market Share Analysis, 2020 and 2027 (%)

Y-o-Y Growth Analysis, 2017 - 2027

Segment Trends

Bone Marrow Transplant (BMT)

Introduction

Market Size and Forecast, and Y-o-Y Growth, 2016 - 2027, (US$ Million)

Peripheral Blood Stem Cells Transplant (PBSCT)

Introduction

Size and Forecast, and Y-o-Y Growth, 2016 - 2027, (US$ Million)

Cord Blood Transplant (CBT)

Introduction

Size and Forecast, and Y-o-Y Growth, 2016 - 2027, (US$ Million)

8. Global Hematopoietic Stem Cell Transplantation (HSCT) Market, By Region, 2016 - 2027, (US$ Million)

Introduction

Market Share Analysis, By Region, 2020 and 2027 (%)

Y-o-Y Growth Analysis, By Region, 2017 - 2027

Regional Trends

North America

Market Size and Forecast, By Transplant Type, 2016 - 2027, (US$ Million)

Market Size and Forecast, By Indication, 2016 - 2027, (US$ Million)

Market Size and Forecast, By Application, 2016 - 2027, (US$ Million)

Market Size and Forecast, By Country, 2016 - 2027, (US$ Million)

U.S.

Canada

Europe

Market Size and Forecast, By Transplant Type, 2016 - 2027, (US$ Million)

Market Size and Forecast, By Indication, 2016 - 2027, (US$ Million)

Market Size and Forecast, By Application, 2016 - 2027, (US$ Million)

Market Size and Forecast, By Country, 2016 - 2027, (US$ Million)

U.K.

Germany

Italy

France

Link:
Insights on the Hematopoietic Stem Cell Transplantation Global Market to 2027 - Key Drivers, Restraints and Opportunities - Yahoo Finance

To Read More: Insights on the Hematopoietic Stem Cell Transplantation Global Market to 2027 – Key Drivers, Restraints and Opportunities – Yahoo Finance
categoriaBone Marrow Stem Cells commentoComments Off on Insights on the Hematopoietic Stem Cell Transplantation Global Market to 2027 – Key Drivers, Restraints and Opportunities – Yahoo Finance | dataAugust 6th, 2021
Read All

Global Stem Cell Banking Market to Reach US$11.3 Billion by the Year 2027 – Yahoo Finance

By daniellenierenberg

Abstract: Global Stem Cell Banking Market to Reach US$11. 3 Billion by the Year 2027. Amid the COVID-19 crisis, the global market for Stem Cell Banking estimated at US$7.

New York, Aug. 04, 2021 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Global Stem Cell Banking Industry" - https://www.reportlinker.com/p05799719/?utm_source=GNW 1 Billion in the year 2020, is projected to reach a revised size of US$11.3 Billion by 2027, growing at a CAGR of 6.8% over the analysis period 2020-2027.Placental and Cord Blood Stem Cells, one of the segments analyzed in the report, is projected to grow at a 7.4% CAGR to reach US$7.3 Billion by the end of the analysis period.After an early analysis of the business implications of the pandemic and its induced economic crisis, growth in the Adipose Tissue-Derived Stem Cells (ADSCS) segment is readjusted to a revised 6.3% CAGR for the next 7-year period. This segment currently accounts for a 6.6% share of the global Stem Cell Banking market.

The U.S. Accounts for Over 29.5% of Global Market Size in 2020, While China is Forecast to Grow at a 6.4% CAGR for the Period of 2020-2027

The Stem Cell Banking market in the U.S. is estimated at US$2.1 Billion in the year 2020. The country currently accounts for a 29.55% share in the global market. China, the world second largest economy, is forecast to reach an estimated market size of US$2 Billion in the year 2027 trailing a CAGR of 6.4% through 2027. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at 6.4% and 5.5% respectively over the 2020-2027 period. Within Europe, Germany is forecast to grow at approximately 5.5% CAGR while Rest of European market (as defined in the study) will reach US$2 Billion by the year 2027.

Bone Marrow-Derived Stem Cells (BMSCS) Segment Corners a 10.3% Share in 2020

In the global Bone Marrow-Derived Stem Cells (BMSCS) segment, USA, Canada, Japan, China and Europe will drive the 5.4% CAGR estimated for this segment. These regional markets accounting for a combined market size of US$592.8 Million in the year 2020 will reach a projected size of US$858.7 Million by the close of the analysis period. China will remain among the fastest growing in this cluster of regional markets. Led by countries such as Australia, India, and South Korea, the market in Asia-Pacific is forecast to reach US$1.3 Billion by the year 2027.

Select Competitors (Total 78 Featured)

Story continues

Cord Blood Registry

CordLife Group Ltd.

Cryo-Cell International, Inc.

Cryo-Save AG

Global Cord Blood Corporation

LifeCell International Pvt., Ltd.

Smart Cells International Ltd.

StemCyte Inc.

ViaCord

Vita 34 AG

Read the full report: https://www.reportlinker.com/p05799719/?utm_source=GNW

I. METHODOLOGY

II. EXECUTIVE SUMMARY

1. MARKET OVERVIEW Influencer Market Insights World Market Trajectories Impact of Covid-19 and a Looming Global Recession Stem Cells, Application Areas, and the Different Types - A Prelude Applications of Stem Cells Types of Stem Cells Cord Blood Umbilical Cord Tissue Bone Marrow Stem Cells Adipose-Derived Stem Cells (ADSCs) Number of Clinical Trials Using Adipose Stem Cells: 2007-2018 Number of Adipose Stem Cell Trials by Phase: 2007 to 2018 Human Embryo-Derived Stem Cells (HESCS) Global Stem Cell Banking Market Poised for a Rapid Growth Developed Regions Lead, Emerging Economies to Spearhead Future Growth List of Family Cord Blood Banks in the US Placental and Cord Blood Banks Dominate the Cord Blood Banking Market Global Number of Annual Newborns and Private Cord Blood Banks Global Select Leading Cord Blood Banks Based on Inventory A Peek into China?s Cord Blood Banking Industry Evolving Landscape of Cord Blood Banking Industry Placental Stem Cells and Potential Clinical Applications EXHIBIT 1: Global Cord Blood Banking Market Share Breakdown (%) by Bank Type: 2019 EXHIBIT 2: US Cord Blood Banking Market by Bank Type (in %) for 2019 Changing Business Models for Stem Cell Banking

2. FOCUS ON SELECT PLAYERS Cord Blood Registry (CBR) Systems, Inc. (USA) Cordlife Group Limited (Singapore) Cryo Stemcell Private Limited (India) Cryo-Cell International, Inc. (USA) Cryoviva Biotech Private Limited (India) Global Cord Blood Corporation (China) LifeCell International Pvt. Ltd (India) Smart Cells International Ltd. (UK) StemCyte (USA) Takara Bio Europe AB (Europe) ViaCord (US) Vita34 AG (Germany)

3. MARKET TRENDS & DRIVERS Increasing Investments in Stem Cell-Based Research Widen Prospects for Stem Cell Banking Market EXHIBIT 3: Stem Cell Research Funding in the US (in US$ Million) for the Years 2011 through 2017 Stem Cell Research Policies Impact Funding Volumes Adult Stem Cell Research Gains Traction, Accelerating Research Funding Adult Stem Cells Vs. Embryonic Stem Cells: A Comparison Embryonic Stem Cell Research Bogged Down by Ethical Issues & Technical Hurdles Induced Pluripotent Stem Cell (iPSC) Research: The Latest Vertical Sustained Emphasis on Mesenchymal Stem Cell Research Emergence of Advanced Technologies for Stem Cell Preservation, Storage and Processing Augurs Well for Market Growth Growing Incidence of Major Diseases to Boost the Demand for Stem Cells, Driving Stem Cell Banking EXHIBIT 4: Worldwide Incidence of Cancer (2012, 2018 & 2040): Number of New Cases Diagnosed Table 8: World Cancer Incidence by Cancer Type (2018): Number of New Cancer Cases Reported (in Thousands) for Breast, Cervix uteri, Colorectum, Liver, Lung, Oesophagus, Prostate, Stomach and Others

Table 9: Fatalities by Heart Conditions - Estimated Percentage Breakdown for Cardiovascular Disease, Ischemic Heart Disease, Stroke, and Others

Table 10: Global Annual Medical Cost of CVD in US$ Billion (2010-2030) Ageing Demographics to Drive Demand for Stem Cell Banking Global Aging Population Statistics - Opportunity Indicators Table 3: Elderly Population (60+ Years) as a Percentage of Total Population (2017 & 2050)

Table 4: Global Aging Population (2017 & 2050): Population of 60+ Individuals in ?000s and as a Percentage of Total Population

Table 5: Life Expectancy for Select Countries in Number of Years: 2018 Bone Marrow Stem Cells Market on a Rapid Growth Path, Spurring the Need for Stem Cell Banking Development of Regenerative Medicine Accelerates Demand for Mesenchymal Stem Cell Banking Table 2: Global Regenerative Medicines Market by Category (2019): Percentage Breakdown for Biomaterials, Stem Cell Therapies and Tissue Engineering Rise in Volume of Orthopedic Procedures Boosts Prospects for Stem Cell Banking Table 1: Global Orthopedic Surgical Procedure Volume (2010-2020) (in Million) Increasing Demand for Stem Cell Based Bone Grafts: Promising Growth Ahead for Stem Cell Banking Rise in the Number of Hematopoietic Stem Cell Transplantation Procedures Propels Market Expansion Hematopoietic Stem Cell Storage Dental Mesenchymal Stem Cells: An Evolving Niche Therapeutic Potential of Dental Pulp Stem Cells (DPSCs) in Various Diseases High Operational Costs of Stem Cell Banking - A Key Market Restraint

4. GLOBAL MARKET PERSPECTIVE Table 1: World Current & Future Analysis for Stem Cell Banking by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Million for Years 2020 through 2027 and % CAGR

Table 2: World 7-Year Perspective for Stem Cell Banking by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets for Years 2020 & 2027

Table 3: World Current & Future Analysis for Placental and Cord Blood Stem Cells by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Million for Years 2020 through 2027 and % CAGR

Table 4: World 7-Year Perspective for Placental and Cord Blood Stem Cells by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 5: World Current & Future Analysis for Adipose Tissue-Derived Stem Cells (ADSCS) by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Million for Years 2020 through 2027 and % CAGR

Table 6: World 7-Year Perspective for Adipose Tissue-Derived Stem Cells (ADSCS) by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 7: World Current & Future Analysis for Bone Marrow-Derived Stem Cells (BMSCS) by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Million for Years 2020 through 2027 and % CAGR

Table 8: World 7-Year Perspective for Bone Marrow-Derived Stem Cells (BMSCS) by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 9: World Current & Future Analysis for Human Embryo-Derived Stem Cells (HESCS) by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Million for Years 2020 through 2027 and % CAGR

Table 10: World 7-Year Perspective for Human Embryo-Derived Stem Cells (HESCS) by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 11: World Current & Future Analysis for Dental Pulp-Derived Stem Cells (DPSCS) by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Million for Years 2020 through 2027 and % CAGR

Table 12: World 7-Year Perspective for Dental Pulp-Derived Stem Cells (DPSCS) by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 13: World Current & Future Analysis for Other Stem Cell Sources by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Million for Years 2020 through 2027 and % CAGR

Table 14: World 7-Year Perspective for Other Stem Cell Sources by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 15: World Current & Future Analysis for Sample Preservation and Storage by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Million for Years 2020 through 2027 and % CAGR

Table 16: World 7-Year Perspective for Sample Preservation and Storage by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 17: World Current & Future Analysis for Sample Analysis by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Million for Years 2020 through 2027 and % CAGR

Table 18: World 7-Year Perspective for Sample Analysis by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 19: World Current & Future Analysis for Sample Processing by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Million for Years 2020 through 2027 and % CAGR

Table 20: World 7-Year Perspective for Sample Processing by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 21: World Current & Future Analysis for Sample Collection and Transportation by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Million for Years 2020 through 2027 and % CAGR

Table 22: World 7-Year Perspective for Sample Collection and Transportation by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 23: World Current & Future Analysis for Personalized Banking Applications by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Million for Years 2020 through 2027 and % CAGR

Table 24: World 7-Year Perspective for Personalized Banking Applications by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 25: World Current & Future Analysis for Research Applications by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Million for Years 2020 through 2027 and % CAGR

Table 26: World 7-Year Perspective for Research Applications by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

Table 27: World Current & Future Analysis for Clinical Applications by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Million for Years 2020 through 2027 and % CAGR

Table 28: World 7-Year Perspective for Clinical Applications by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027

III. MARKET ANALYSIS

UNITED STATES Table 29: USA Current & Future Analysis for Stem Cell Banking by Source - Placental and Cord Blood Stem Cells, Adipose Tissue-Derived Stem Cells (ADSCS), Bone Marrow-Derived Stem Cells (BMSCS), Human Embryo-Derived Stem Cells (HESCS), Dental Pulp-Derived Stem Cells (DPSCS) and Other Stem Cell Sources - Independent Analysis of Annual Sales in US$ Million for the Years 2020 through 2027 and % CAGR

Table 30: USA 7-Year Perspective for Stem Cell Banking by Source - Percentage Breakdown of Value Sales for Placental and Cord Blood Stem Cells, Adipose Tissue-Derived Stem Cells (ADSCS), Bone Marrow-Derived Stem Cells (BMSCS), Human Embryo-Derived Stem Cells (HESCS), Dental Pulp-Derived Stem Cells (DPSCS) and Other Stem Cell Sources for the Years 2020 & 2027

Table 31: USA Current & Future Analysis for Stem Cell Banking by Service Type - Sample Preservation and Storage, Sample Analysis, Sample Processing and Sample Collection and Transportation - Independent Analysis of Annual Sales in US$ Million for the Years 2020 through 2027 and % CAGR

Table 32: USA 7-Year Perspective for Stem Cell Banking by Service Type - Percentage Breakdown of Value Sales for Sample Preservation and Storage, Sample Analysis, Sample Processing and Sample Collection and Transportation for the Years 2020 & 2027

Table 33: USA Current & Future Analysis for Stem Cell Banking by Application - Personalized Banking Applications , Research Applications and Clinical Applications - Independent Analysis of Annual Sales in US$ Million for the Years 2020 through 2027 and % CAGR

Table 34: USA 7-Year Perspective for Stem Cell Banking by Application - Percentage Breakdown of Value Sales for Personalized Banking Applications , Research Applications and Clinical Applications for the Years 2020 & 2027

CANADA Table 35: Canada Current & Future Analysis for Stem Cell Banking by Source - Placental and Cord Blood Stem Cells, Adipose Tissue-Derived Stem Cells (ADSCS), Bone Marrow-Derived Stem Cells (BMSCS), Human Embryo-Derived Stem Cells (HESCS), Dental Pulp-Derived Stem Cells (DPSCS) and Other Stem Cell Sources - Independent Analysis of Annual Sales in US$ Million for the Years 2020 through 2027 and % CAGR

Table 36: Canada 7-Year Perspective for Stem Cell Banking by Source - Percentage Breakdown of Value Sales for Placental and Cord Blood Stem Cells, Adipose Tissue-Derived Stem Cells (ADSCS), Bone Marrow-Derived Stem Cells (BMSCS), Human Embryo-Derived Stem Cells (HESCS), Dental Pulp-Derived Stem Cells (DPSCS) and Other Stem Cell Sources for the Years 2020 & 2027

Table 37: Canada Current & Future Analysis for Stem Cell Banking by Service Type - Sample Preservation and Storage, Sample Analysis, Sample Processing and Sample Collection and Transportation - Independent Analysis of Annual Sales in US$ Million for the Years 2020 through 2027 and % CAGR

Table 38: Canada 7-Year Perspective for Stem Cell Banking by Service Type - Percentage Breakdown of Value Sales for Sample Preservation and Storage, Sample Analysis, Sample Processing and Sample Collection and Transportation for the Years 2020 & 2027

Table 39: Canada Current & Future Analysis for Stem Cell Banking by Application - Personalized Banking Applications , Research Applications and Clinical Applications - Independent Analysis of Annual Sales in US$ Million for the Years 2020 through 2027 and % CAGR

Table 40: Canada 7-Year Perspective for Stem Cell Banking by Application - Percentage Breakdown of Value Sales for Personalized Banking Applications , Research Applications and Clinical Applications for the Years 2020 & 2027

JAPAN Table 41: Japan Current & Future Analysis for Stem Cell Banking by Source - Placental and Cord Blood Stem Cells, Adipose Tissue-Derived Stem Cells (ADSCS), Bone Marrow-Derived Stem Cells (BMSCS), Human Embryo-Derived Stem Cells (HESCS), Dental Pulp-Derived Stem Cells (DPSCS) and Other Stem Cell Sources - Independent Analysis of Annual Sales in US$ Million for the Years 2020 through 2027 and % CAGR

Table 42: Japan 7-Year Perspective for Stem Cell Banking by Source - Percentage Breakdown of Value Sales for Placental and Cord Blood Stem Cells, Adipose Tissue-Derived Stem Cells (ADSCS), Bone Marrow-Derived Stem Cells (BMSCS), Human Embryo-Derived Stem Cells (HESCS), Dental Pulp-Derived Stem Cells (DPSCS) and Other Stem Cell Sources for the Years 2020 & 2027

Table 43: Japan Current & Future Analysis for Stem Cell Banking by Service Type - Sample Preservation and Storage, Sample Analysis, Sample Processing and Sample Collection and Transportation - Independent Analysis of Annual Sales in US$ Million for the Years 2020 through 2027 and % CAGR

Table 44: Japan 7-Year Perspective for Stem Cell Banking by Service Type - Percentage Breakdown of Value Sales for Sample Preservation and Storage, Sample Analysis, Sample Processing and Sample Collection and Transportation for the Years 2020 & 2027

Table 45: Japan Current & Future Analysis for Stem Cell Banking by Application - Personalized Banking Applications , Research Applications and Clinical Applications - Independent Analysis of Annual Sales in US$ Million for the Years 2020 through 2027 and % CAGR

Table 46: Japan 7-Year Perspective for Stem Cell Banking by Application - Percentage Breakdown of Value Sales for Personalized Banking Applications , Research Applications and Clinical Applications for the Years 2020 & 2027

CHINA Table 47: China Current & Future Analysis for Stem Cell Banking by Source - Placental and Cord Blood Stem Cells, Adipose Tissue-Derived Stem Cells (ADSCS), Bone Marrow-Derived Stem Cells (BMSCS), Human Embryo-Derived Stem Cells (HESCS), Dental Pulp-Derived Stem Cells (DPSCS) and Other Stem Cell Sources - Independent Analysis of Annual Sales in US$ Million for the Years 2020 through 2027 and % CAGR

Table 48: China 7-Year Perspective for Stem Cell Banking by Source - Percentage Breakdown of Value Sales for Placental and Cord Blood Stem Cells, Adipose Tissue-Derived Stem Cells (ADSCS), Bone Marrow-Derived Stem Cells (BMSCS), Human Embryo-Derived Stem Cells (HESCS), Dental Pulp-Derived Stem Cells (DPSCS) and Other Stem Cell Sources for the Years 2020 & 2027

Table 49: China Current & Future Analysis for Stem Cell Banking by Service Type - Sample Preservation and Storage, Sample Analysis, Sample Processing and Sample Collection and Transportation - Independent Analysis of Annual Sales in US$ Million for the Years 2020 through 2027 and % CAGR

Table 50: China 7-Year Perspective for Stem Cell Banking by Service Type - Percentage Breakdown of Value Sales for Sample Preservation and Storage, Sample Analysis, Sample Processing and Sample Collection and Transportation for the Years 2020 & 2027

Table 51: China Current & Future Analysis for Stem Cell Banking by Application - Personalized Banking Applications , Research Applications and Clinical Applications - Independent Analysis of Annual Sales in US$ Million for the Years 2020 through 2027 and % CAGR

Table 52: China 7-Year Perspective for Stem Cell Banking by Application - Percentage Breakdown of Value Sales for Personalized Banking Applications , Research Applications and Clinical Applications for the Years 2020 & 2027

EUROPE Table 53: Europe Current & Future Analysis for Stem Cell Banking by Geographic Region - France, Germany, Italy, UK and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Million for Years 2020 through 2027 and % CAGR

Table 54: Europe 7-Year Perspective for Stem Cell Banking by Geographic Region - Percentage Breakdown of Value Sales for France, Germany, Italy, UK and Rest of Europe Markets for Years 2020 & 2027

Table 55: Europe Current & Future Analysis for Stem Cell Banking by Source - Placental and Cord Blood Stem Cells, Adipose Tissue-Derived Stem Cells (ADSCS), Bone Marrow-Derived Stem Cells (BMSCS), Human Embryo-Derived Stem Cells (HESCS), Dental Pulp-Derived Stem Cells (DPSCS) and Other Stem Cell Sources - Independent Analysis of Annual Sales in US$ Million for the Years 2020 through 2027 and % CAGR

Table 56: Europe 7-Year Perspective for Stem Cell Banking by Source - Percentage Breakdown of Value Sales for Placental and Cord Blood Stem Cells, Adipose Tissue-Derived Stem Cells (ADSCS), Bone Marrow-Derived Stem Cells (BMSCS), Human Embryo-Derived Stem Cells (HESCS), Dental Pulp-Derived Stem Cells (DPSCS) and Other Stem Cell Sources for the Years 2020 & 2027

Table 57: Europe Current & Future Analysis for Stem Cell Banking by Service Type - Sample Preservation and Storage, Sample Analysis, Sample Processing and Sample Collection and Transportation - Independent Analysis of Annual Sales in US$ Million for the Years 2020 through 2027 and % CAGR

Table 58: Europe 7-Year Perspective for Stem Cell Banking by Service Type - Percentage Breakdown of Value Sales for Sample Preservation and Storage, Sample Analysis, Sample Processing and Sample Collection and Transportation for the Years 2020 & 2027

Table 59: Europe Current & Future Analysis for Stem Cell Banking by Application - Personalized Banking Applications , Research Applications and Clinical Applications - Independent Analysis of Annual Sales in US$ Million for the Years 2020 through 2027 and % CAGR

Table 60: Europe 7-Year Perspective for Stem Cell Banking by Application - Percentage Breakdown of Value Sales for Personalized Banking Applications , Research Applications and Clinical Applications for the Years 2020 & 2027

FRANCE Table 61: France Current & Future Analysis for Stem Cell Banking by Source - Placental and Cord Blood Stem Cells, Adipose Tissue-Derived Stem Cells (ADSCS), Bone Marrow-Derived Stem Cells (BMSCS), Human Embryo-Derived Stem Cells (HESCS), Dental Pulp-Derived Stem Cells (DPSCS) and Other Stem Cell Sources - Independent Analysis of Annual Sales in US$ Million for the Years 2020 through 2027 and % CAGR

Table 62: France 7-Year Perspective for Stem Cell Banking by Source - Percentage Breakdown of Value Sales for Placental and Cord Blood Stem Cells, Adipose Tissue-Derived Stem Cells (ADSCS), Bone Marrow-Derived Stem Cells (BMSCS), Human Embryo-Derived Stem Cells (HESCS), Dental Pulp-Derived Stem Cells (DPSCS) and Other Stem Cell Sources for the Years 2020 & 2027

Table 63: France Current & Future Analysis for Stem Cell Banking by Service Type - Sample Preservation and Storage, Sample Analysis, Sample Processing and Sample Collection and Transportation - Independent Analysis of Annual Sales in US$ Million for the Years 2020 through 2027 and % CAGR

Table 64: France 7-Year Perspective for Stem Cell Banking by Service Type - Percentage Breakdown of Value Sales for Sample Preservation and Storage, Sample Analysis, Sample Processing and Sample Collection and Transportation for the Years 2020 & 2027

Table 65: France Current & Future Analysis for Stem Cell Banking by Application - Personalized Banking Applications , Research Applications and Clinical Applications - Independent Analysis of Annual Sales in US$ Million for the Years 2020 through 2027 and % CAGR

Table 66: France 7-Year Perspective for Stem Cell Banking by Application - Percentage Breakdown of Value Sales for Personalized Banking Applications , Research Applications and Clinical Applications for the Years 2020 & 2027

GERMANY Table 67: Germany Current & Future Analysis for Stem Cell Banking by Source - Placental and Cord Blood Stem Cells, Adipose Tissue-Derived Stem Cells (ADSCS), Bone Marrow-Derived Stem Cells (BMSCS), Human Embryo-Derived Stem Cells (HESCS), Dental Pulp-Derived Stem Cells (DPSCS) and Other Stem Cell Sources - Independent Analysis of Annual Sales in US$ Million for the Years 2020 through 2027 and % CAGR

Table 68: Germany 7-Year Perspective for Stem Cell Banking by Source - Percentage Breakdown of Value Sales for Placental and Cord Blood Stem Cells, Adipose Tissue-Derived Stem Cells (ADSCS), Bone Marrow-Derived Stem Cells (BMSCS), Human Embryo-Derived Stem Cells (HESCS), Dental Pulp-Derived Stem Cells (DPSCS) and Other Stem Cell Sources for the Years 2020 & 2027

Table 69: Germany Current & Future Analysis for Stem Cell Banking by Service Type - Sample Preservation and Storage, Sample Analysis, Sample Processing and Sample Collection and Transportation - Independent Analysis of Annual Sales in US$ Million for the Years 2020 through 2027 and % CAGR

Table 70: Germany 7-Year Perspective for Stem Cell Banking by Service Type - Percentage Breakdown of Value Sales for Sample Preservation and Storage, Sample Analysis, Sample Processing and Sample Collection and Transportation for the Years 2020 & 2027

Table 71: Germany Current & Future Analysis for Stem Cell Banking by Application - Personalized Banking Applications , Research Applications and Clinical Applications - Independent Analysis of Annual Sales in US$ Million for the Years 2020 through 2027 and % CAGR

Continued here:
Global Stem Cell Banking Market to Reach US$11.3 Billion by the Year 2027 - Yahoo Finance

To Read More: Global Stem Cell Banking Market to Reach US$11.3 Billion by the Year 2027 – Yahoo Finance
categoriaBone Marrow Stem Cells commentoComments Off on Global Stem Cell Banking Market to Reach US$11.3 Billion by the Year 2027 – Yahoo Finance | dataAugust 6th, 2021
Read All

Mums tearful reunion with hospital chaplain she befriended during a bone marrow transplant in London after surprise discovery that he was her donor -…

By daniellenierenberg

A mum-of-three and the hospital chaplain she befriended when she received a bone marrow transplant two years ago have enjoyed a tearful reunion after discovering he was the donor who saved her life.

Clergyman Mario Sant, 39, is one of two hospital chaplains stationed in London as part of a joint venture by the Maltese government and the Catholic Church to support patients sent to the UK for procedures which cannot be performed on the tiny island.

Taking the position six years ago, Maltese national Mario was moved by the plight of a five-year-old boy who needed the same transplant at the famous Great Ormond Street Hospital in 2018 to become a bone marrow donor.

A chaplain based in the UK, Mario was moved by a brave boy to donate stem cells (Collect/PA Real Life).

Sadly, he was too late to help the boy, who died a few months later, but he joined the international database DKMS as a bone marrow donor in December 2018.

In the meantime, he met leukaemia patient Agnes Vella, 59, a mum of three from Malta, in March 2019, who needed stem cells from bone marrow to stop her cancer from returning and they bonded, according to Mario, who said: We got on immediately.

She was at the Royal Marsden in London, and we joked that I could be her donor, as I was called to donate as she arrived.

He added: But her records said the donor was English and I was born in Malta, so we didnt think it was me.

Plus, I donated at a different hospital, so it just didnt fit. I think we both hoped and joked about it, but we thought it wasnt possible.

Neither Mario nor Agnes, a housewife, whose husband Francis, 65, is a retired freight worker, gave it a second thought although their friendship blossomed, and they stayed in touch.

Mario has been living in London for six years (Collect/PA Real Life).

Then, in May 2020, when she felt compelled to thank the donor who had saved her life emailing the DKMS asking if she could contact the stranger that helped her she and Mario were in for a gigantic surprise.

Records revealed that Agnes guardian angel was in fact the hospital chaplain who had become her friend.

It was amazing to discover that I was Agnes donor, said Mario.

Story continues

He added: The work I do is very special. We are there for people during their joy and sadness.

When Agnes called saying she had asked for the details to be released and I got the email instantly asking if I wanted to give the woman I donated to my details, it all added up.

It was amazing, from that moment we knew I was her donor. We just couldnt believe that we had unwittingly shared such a special journey together.

Mario with Agnes on the day of her transplant in March 2018 (Collect/PA Real Life).

Meanwhile, Mario, who has been living in London and supporting Maltese patients for six years, says the amazing news is a poignant reminder of the little boy who inspired him to donate.

He said: Sadly, he had leukaemia and he didnt make it, but its all thanks to this child that I donated.

I spent a lot of time with him and his family at Great Ormond Street.

He added: He was so brave. He needed another bone marrow transplant, but they were struggling to find a match.

I just thought to myself, Why dont I donate? So, I registered, but I didnt realise it can take nine to 10 months to become a bone marrow donor.

I couldnt help the child, but I could help others.

Agnes Vella with her husband Francis, and three children (Collect/PA Real Life).

And, three months after signing up to DKMS, an international non-profit bone marrow donor centre, he was called to donate.

He said: Over that time, I continued working and helping other patients and thats how I met Agnes.

I love my job. London is one of the nicest cities Ive lived in and the work I do is very special.

90% of stem cell cases are taken from the bloodstream

At any one time there are around 2,000 people in the UK in need of a blood stem cell transplant

By January 2021 two million people had registered to be blood stem cell donors in the UK

He added: Maltese patients come over for treatment and so, as a religious state, the government provides two chaplains to help them through their treatment.

For a lot of patients were the only family they have during some dark times, so its really special to be part of it.

For Agnes, who was in remission from leukaemia after previously surviving two bouts of breast cancer, the bone marrow transplant was essential to stop her disease from returning within a year.

Agnes and Francis Vella (Collect/PA Real Life).

And Mario, who donated his own stem cells at Londons Kings College Hospital the day before her op, was there to hold her hand as she was prepared for the procedure at the Royal Marsden.

The transplant was a success and four months later, Agnes returned home to Malta.

But the friends stayed in touch, chatting by phone every week.

And when they discovered he was her donor, their thoughts immediately went to arranging a reunion as soon as Covid travel restrictions allowed it.

So, on July 31, they finally got to have the hug of a lifetime, when they met for the first time since her transplant, at Agnes home in Malta.

I was so excited to see Agnes, said Mario.

We hadnt been able to meet since we found out because of the pandemic. We chat all the time, but we wanted to meet in person.

We laugh that we must be related now, because I was a match. Its crazy to think that in an international database two people from such a small island could be a match.

Im just so grateful shes healthy.

While Agnes was ecstatic to meet up with not just her friend, but the donor who saved her life.

She said: I met Mario when I went to London for treatment. We met every day. He would even come by at weekends and we would have dinner together or a little party with the other patients.

It was really special. We became like a little family.

Mario and Agnes reunited August 2021 (Collect/PA Real Life).

She added: The staff at the Royal Marsden and at the Sir Anthony Mamo oncology centre, where I was on the haematology ward, in Malta took such good care of me, too Im so grateful to them.

When I arrived in London, Mario told me he had been called to donate. But we never thought it would be for me. I was told my donor was English, and though Mario lives in England, hes Maltese, so we felt sure it couldnt be him.

And she is keen for the lifesaving DKMS register, which also operates in Germany, India, Chile, Poland, Africa and the United States to operate in Malta too.

She said: My family wanted to register but they cant as they dont have UK addresses that was why Mario was able to donate.

He saved my life, Im so thankful to him.

MUST PAR: Taking the first steps to register as a potential blood stem cell donor can be done from the comfort of your own home. If you are aged between 17-55 and in good health you can sign up for a home swab kit online at https://www.dkms.org.uk/register-now. Your swabs can then be returned with the enclosed pre-paid envelope to DKMS in order to ensure that your details are added to the UKs aligned stem cell register. [END]

Read the original:
Mums tearful reunion with hospital chaplain she befriended during a bone marrow transplant in London after surprise discovery that he was her donor -...

To Read More: Mums tearful reunion with hospital chaplain she befriended during a bone marrow transplant in London after surprise discovery that he was her donor -…
categoriaBone Marrow Stem Cells commentoComments Off on Mums tearful reunion with hospital chaplain she befriended during a bone marrow transplant in London after surprise discovery that he was her donor -… | dataAugust 6th, 2021
Read All

High-Potency ‘Golden Cells’ Offer Hope to Those With Severe Chronic Back and Neck Pain – Entrepreneur

By daniellenierenberg

August2, 20215 min read

Opinions expressed by Entrepreneur contributors are their own.

A healthy spine must be strong enough to support your entire body, yet flexible enough to allow you to move your limbs. Thats why your spine isnt just one bone, but an intricately designed set of smaller bones called vertebrae each separated by a disc of cartilage.

These discs cushion each vertebra, so they dont grind against each other and cause pain. When degenerative disc disorders set in, however, these cushions wear out. But patients can now take advantage of advanced stem-cell therapy that can heal disc tissue and reduce inflammation, alleviate chronic pain and restore flexibility and range of motion.

While surgery and medications may be treatment options, surgical procedures can be risky and many patients cannot tolerate the side effects of many medications.

Related:This Is HowStem-CellTherapy Treats Serious Brain Injuries

Thats why more patients choose stem-cell therapy a procedure that takes advantage of the bodys natural healing processes. Discover how stem-cell therapy can help you heal more quickly and enjoy a more active lifestylewith less pain.

Advanced stem-cell treatments can help a range of issues:

Another remarkable aspect of the human body is that it actually knows how to heal itself, which is why the latest advancements in stem-cell therapy offerhope to more patients to relieve pain without the need for surgery or medications that can lead to serious side effects.

Because stem cells that come from your bone marrow have the potential to become any type of cell, the body turns those stem cells into specific cells needed to heal various tissues. If you burn your skin, for example, stem cells are turned into new skin cells. If youve injured a muscle, your body uses stem cells to regenerate muscle tissue. And as discs deteriorate, your body can use stem cells to create new disc tissue to rehydrate those discs and return them to a normal shape easing pain and inflammation.

Unfortunately, stem-cell production begins to decline as we age. But with an infusion of millions of fresh new stem cells, the body can use those cells to quickly stimulate healing without the need to go under the knife or risk serious side effects from steroids or the consequences of using addictive pain killers.

Related:Former Quarterback Jim McMahon Calls AdvancedStem-CellTreatment 'Truly Miraculous'

At BioXcellerator, we treat many patients for conditions like these with exceptional results often within days and even more ongoing improvement in the months and years following treatment.

For example, we treated Superbowl champion Mark May, who told us that he noticed improvement in just one day. I feel better. My neck feels a lot better and thats only after 24 hours, May said. Im shockingly surprised about how well its gone so far.

He also said that the first night after his treatment was the first he'd slept in once place in many years.

And army veteran and WWF Hall of Famer Kevin Nash let us know that his stem-cell therapy was a life-changing experience. He said that hes suffered from chronic pain for many years, but the very day after treatment said that when he was walking, I probably passed 300 people. Its the fastest Ive probably walked since I was 30 and that was 30 years ago.

Not only that, butafter two months of stem-cell therapy, he also reported the alleviation of his 24/7 pain.

These are only a few examples of the exceptional results stem cells can offer patients with disorders and injuries in the back and the neck. But its important to realize that the stem cells that various clinics offer can vary widely in quantity and potency. Stem cells derived from the placenta or umbilical cord are considered the gold standard and are rarely available in clinics located in the United States.

Our research team has developed a proprietary protocol for harvesting and reproducing only the most potent stem cells possible. Starting with a specific type of stem cell mesenchymal stem cells (MSCs) from donated umbilical cordswe then test these cells for specific proteins and genes that indicate the highest potential to reduce inflammation and stimulate healing. Then, those cells are reproduced into formulations of millions of high-potency stem cells called Golden Cells for infusion into patients during treatment.

Related:High-Potency 'Golden Cells' Offer Hope to Those With Severe Brain Injuries

In addition to promoting healing of damaged discs, stem-cell therapy can also be an effective treatment for other spinal injuries and diseases, brain injuriesand many other conditions. And one common treatment benefit is that because stem cells help the body better modulate the immune system and have powerful anti-inflammatory properties, stem-cell therapy helps improve immunity, performance and longevity.

Read the original here:
High-Potency 'Golden Cells' Offer Hope to Those With Severe Chronic Back and Neck Pain - Entrepreneur

To Read More: High-Potency ‘Golden Cells’ Offer Hope to Those With Severe Chronic Back and Neck Pain – Entrepreneur
categoriaBone Marrow Stem Cells commentoComments Off on High-Potency ‘Golden Cells’ Offer Hope to Those With Severe Chronic Back and Neck Pain – Entrepreneur | dataAugust 6th, 2021
Read All

Therapeutic Solutions International Receives FDA Clearance to Initiate Phase III Pivotal Registration Trial for JadiCell Universal Donor COVID-19…

By daniellenierenberg

ELK CITY, Idaho, Aug. 5, 2021 /PRNewswire/ -- Therapeutic Solutions International, Inc., (OTC Markets: TSOI), announced today clearance from the Food and Drug Administration (FDA) to initiate a Phase III pivotal trial for registration of the Company's JadiCell universal donor stem cell as a treatment for COVID-19 associated lung failure.

In previous studies the Company has demonstrated the superior activity of JadiCell to other types of stem cells including bone marrow, adipose, cord blood, and placenta. Furthermore, the JadiCell was shown to be 100% effective in saving the lives of COVID-19 patients under the age of 85 in a double-blind placebo controlled clinical trial with patients in the ICU on a ventilator. In patients over the age of 85 the survival rate was 91%1.

"We are thankful for the strong regulatory, basic research and translational team that has worked in successfully obtaining this FDA clearance," said Dr. Thomas E. Ichim, Director of the Company. "FDA clearance to initiate a Phase III clinical trial means we are at the last phase of development before commercially selling the product. This positions us in a highly exclusive place in that to our knowledge no other cells have this potent ability to concurrently suppress inflammation while restoring function of tissue damaged by SAR-CoV-2."

"Having personally seen the effects of JadiCells on patients, I have seen their clinical potential firsthand" said Dr. James Veltmeyer, Chief Medical Officer of the Company. "I am very excited to enter the final step of clinical development before being able to provide these cells to the general population."

"Despite the initial promise of vaccine approaches, there exists a significant portion of the population refusing them and there are also patients in whom vaccines have failed to induce appropriate immunity.Once COVID-19 initiates its pathological cascade leading to lung failure, no therapies exist until now to address this population" said Famela Ramos, Vice President of Business Development. "We are looking forward to leveraging the current clearance not only for obtaining market registration but also for expanding into other COVID-19 related pathologies."

"Today marks a significant milestone in the growth of our Company as we have received the final regulatory clearance before final marketing approval," stated Timothy Dixon, President and CEO of Therapeutic Solutions International. "Successful completion of the agreed upon trial with the FDA will position the Company as a significant force in the global battle against this unseen enemy that to date has caused over 4.25 million deaths. We are extremely proud of our progress and vow to accelerate our work for humanity and for our shareholders."

About Therapeutic Solutions International, Inc.Therapeutic Solutions International is focused on immune modulation for the treatment of several specific diseases. The Company's corporate website is http://www.therapeuticsolutionsint.com,and our public forum is https://board.therapeuticsolutionsint.com/

1Umbilical cord mesenchymal stem cells for COVID19 acute respiratory distress syndrome: A doubleblind, phase 1/2a, randomized controlled trial - Lanzoni - 2021 - STEM CELLS Translational Medicine - Wiley Online Library

[emailprotected]

SOURCE Therapeutic Solutions International, Inc.

Home

Go here to read the rest:
Therapeutic Solutions International Receives FDA Clearance to Initiate Phase III Pivotal Registration Trial for JadiCell Universal Donor COVID-19...

To Read More: Therapeutic Solutions International Receives FDA Clearance to Initiate Phase III Pivotal Registration Trial for JadiCell Universal Donor COVID-19…
categoriaBone Marrow Stem Cells commentoComments Off on Therapeutic Solutions International Receives FDA Clearance to Initiate Phase III Pivotal Registration Trial for JadiCell Universal Donor COVID-19… | dataAugust 6th, 2021
Read All

The Basics of MDS: Diagnosis and Staging – Curetoday.com

By daniellenierenberg

Myelodysplastic syndromes, known commonly as MDS, are a group of bone marrow diseases characterized by bone marrow failure, or an inadequate production of blood counts called cytopenia.

In a presentation at the CURE Educated Patient Leukemia Summit, Dr. Rami Komrokji, section head for Leukemia and MDS and Vice Chair of the Department of Malignant Hematology at Moffit Cancer Center, gave a run down on the diagnosis and staging process for MDS.

Diagnosing MDS

Komrokji explained that the myelo- prefix means bone marrow, and -dysplasia means abnormal-looking cells. When a patient has cytopenia, they may experience certain symptoms.

If patient is anemic, they will have shortness of breath, fatigue, palpitations, said Komrokji in an interview with CURE. If they have low platelets, they will have bleeding tendency, bruising. If they have low white blood cell counts, they will have maybe infections. So usually, either some of those symptoms will prompt blood testing, or on routine physical exam, the patients are found to have low blood counts. So that's usually the initial step.

Doctors will usually look into nutritional deficiencies such as B12, folate and ferritin, said Komrokji. Eventually, the patients will get a bone marrow aspirate and biopsy to diagnose their disease, which includes several parts.

There is the morphologic part, which means the pathologists are looking at the cells under a microscope, explained Komrokji. And then there is also some genetic testing. We look at cytogenetics nowadays, we look at gene mutations. So we put all of this information together to make the diagnosis.

The hematopathologist must see dysplasia, increased myeloblasts (immature cells known as blasts within the bone marrow) or certain cytogenetic abnormalities to make their diagnosis, Komrokji said.

Sometimes the diagnosis is straightforward, but sometimes it could be challenging, he added. It truly depends on an experienced hematopathologist to make the diagnosis.

Staging and Risk Stratification

Once a patient receives an MDS diagnosis, their doctor will go over risk stratification, or understanding what the risk of their disease is, which is what they consider staging, Komrokji said.

Now in MDS, its not like a lung cancer or colon cancer, he said. The disease does not spread around. The staging is based on the blood counts, on the percentage of those myeloblasts or immature cells (and) the chromosomal makeup of the cells. And nowadays, we sometimes also incorporate the presence of gene mis-happenings as well. So we get a lump score to estimate the risk.

Doctors typically use the International Prognostic Scoring System (IPSS) to categorize patients into one of five categories very low, low, intermediate, high and very high. The risk is the impact on survival and whether the disease will transform to leukemia, Komrokji explained. The disease risk must be known in order to tailor the patients treatment to them.

I always advise patients to see a specialized center in MDS, because obviously, those are not that common diseases, he said. A community oncologist could see a few (cases) per year, while an experienced center like in our place, we see like 15 to 20 per week.

Gene Mutations

Komrokji said that understanding gene mutations is an evolving field that is slowly becoming routine.

I advise all patients to inquire if theyve gotten genetic testing or not, he said. This sort of testing will help them understand any abnormalities. Doctors can look at a patients individual gene levels and detect for mutations, of which at least one was identified in 90% of patients with MDS.

Understanding the patients mutation(s) helps them tell whether there is a clonal hematopoiesis or mis-happening that occurred. It can also impact prognosis and allow them to further understand the disease risk.

And finally, some of them are targetable or important to follow through the treatment, said Komrokji. So patients should probably definitely have a genetic testing done. And sometimes after a treatment failure, we repeat it because we see other mutations that we could target with new drugs.

What Causes MDS?

In most cases, the cause of a patients MDS diagnosis is unknown.

We think it's phenomena of senescence or aging of those stem cells in the bone marrow that produces the blood, said Komrokji. Obviously, the process is very complicated. We have billions and billions of cells divide billions of times a day. So you know, as those cells age, mistakes can happen in them.

In most cases, he said, the mis-happenings which lead to the disease are random and at no fault of the patient. It is extremely rare for MDS to be inherited through familial genes.

There are, however, several known risk factors of MDS. If someone has history of another form of cancer and has received chemotherapy or radiation therapy, they may have possible stem cell damage and can develop MDS this is called therapy-related MDS. There has also been association of the disease with benzene exposure, chemical exposure and radiation exposure. Patients who have connective tissue diseases such as rheumatoid arthritis and lupus are at a slightly higher risk of getting MDS due to inflammation in the body and certain medications used to treat those diseases.

I would say there's a lot of better understanding of the disease in the past several years, of genetic mutation testing and incorporating them in practice, Komrokji said. And I think, you know, there are a lot of new treatments on the horizon for patients; there are several clinical trials in advanced phase.

For more news on cancer updates, research and education, dont forget tosubscribe to CUREs newsletters here.

Read the rest here:
The Basics of MDS: Diagnosis and Staging - Curetoday.com

To Read More: The Basics of MDS: Diagnosis and Staging – Curetoday.com
categoriaBone Marrow Stem Cells commentoComments Off on The Basics of MDS: Diagnosis and Staging – Curetoday.com | dataAugust 6th, 2021
Read All

Acute Myeloid Leukemia Fungal Infections: Types and Treatment – Healthline

By daniellenierenberg

Acute myeloid leukemia (AML) is a cancer of the bone marrow and blood. The two most common fungal infections that affect people with AML are aspergillosis and candidiasis.

Invasive fungal infection is a leading cause of illness and mortality in people with acute leukemia. According to a 2019 study, about 12 to 24 percent of people with AML develop invasive fungal infections. But there are medications to prevent and treat these fungal infections.

Read on to find out how AML lowers resistance to fungal infection, as well as prevention and treatment strategies.

AML is a type of blood cancer. It starts in the bone marrow but usually moves into the blood fairly quickly. It tends to develop from white blood cells that dont function as they should.

White blood cells are a vital part of the immune system. When a foreign invader like bacteria, virus, or fungus enters your body, white blood cells spring into action. Their job is to attack the invader and prevent illness.

When you have AML, leukemia cells crowd out healthy white blood cells. The production of new white blood cells becomes impaired.

In addition, treatment for AML involves intense chemotherapy, which can also lower your white blood cell count. As a result, the immune system is suppressed and youre more vulnerable to infection and illness.

Other treatments that can weaken the immune system include:

Other health problems and nutritional deficiencies can also contribute to the suppression of the immune system.

During cancer treatment, your doctor will monitor your white blood cell count, particularly a type of white blood cell called neutrophils. Theyre an important line of defense against infection. If your neutrophil count is low, you have a condition called neutropenia, which increases the risk of infection.

Aspergillus molds and Candida yeasts are the most common fungi to affect people with AML.

Aspergillosis is an infection triggered by Aspergillus. Its a common mold that can be found indoors or outside. Most of us breathe it in every day without cause for concern. But if you have a weakened immune system, you have an increased likelihood of developing the illness.

There are different types of aspergillosis, each causing a different set of symptoms:

While its possible to develop any of these types if you have a weakened immune system, about 10 percent of people with AML develop invasive aspergillosis. This infection most commonly affects the lung.

Candidiasis is an infection caused by Candida. We all have this yeast on our bodies. It only causes problems when it grows out of control or enters the bloodstream or internal organs.

Different types of candidiasis cause different symptoms:

Invasive candidiasis is a serious infection that can affect many parts of the body. In addition to causing fever and chills, invasive candidiasis can affect the:

Some less common types of fungi that can also affect people with AML are:

Fungi are everywhere, so its difficult to completely avoid them. Here are a few things you can do to help lower your risk of infection:

Prevention and treatment for fungal infections in people with AML require an individualized approach. Even if you show no sign of infection, your doctor may prescribe a prophylactic medication designed to prevent a fungal infection. They include:

If you do develop a fungal infection, some drugs above can help treat it. Additional medications used to treat fungal infection are:

Fungal infections can recur. Thats why you may need both antifungal therapy and prophylactic therapy until your blood counts improve.

Medications to prevent or treat fungal infections each have potential benefits and risks. The treatment that is best for you depends on a number of factors, such as:

Symptoms of fungal infections are similar to those of other health conditions. Its a good idea to get in touch with your doctor whenever you have new or worsening symptoms. While some fungal infections are minor, others can be life threatening.

Untreated, fungal infections can spread to other parts of the body. Getting a quick diagnosis means you can start treatment that may prevent illness. Some signs of fungal infection include:

Fungal infections are not uncommon in people with AML. Both AML and chemotherapy can significantly weaken the immune system, increasing risk for infection. Fungal infections can affect a single organ, such as the lungs or sinuses, or they can affect the bloodstream and multiple organs.

Aspergillosis and candidiasis are the most common fungal infections affecting people with AML.

Fortunately, there are medications to help prevent and treat fungal infections. If you have AML, speak with your doctor about your risk factors and how you can prevent fungal infection.

Here is the original post:
Acute Myeloid Leukemia Fungal Infections: Types and Treatment - Healthline

To Read More: Acute Myeloid Leukemia Fungal Infections: Types and Treatment – Healthline
categoriaBone Marrow Stem Cells commentoComments Off on Acute Myeloid Leukemia Fungal Infections: Types and Treatment – Healthline | dataAugust 6th, 2021
Read All

Orchard Therapeutics Reports Second Quarter 2021 Financial Results and Highlights Recent … – The Bakersfield Californian

By daniellenierenberg

Regulatory feedback obtained on OTL-200 (MLD) and OTL-203 (MPS-IH) programs

New HAE collaboration with Pharming Group highlights broad potential for HSC gene therapy

Multiple presentations from neurometabolic programs at MPS Symposia including additional follow-up in MPS-IH

Cash and Investments of Approximately $270M Provide Runway into First Half 2023

BOSTONandLONDON, Aug. 04, 2021 (GLOBE NEWSWIRE) -- Orchard Therapeutics (Nasdaq: ORTX), a global gene therapy leader, today reported financial results for the quarter ended June 30, 2021, as well as recent business updates and upcoming milestones.

This past quarter Orchard has shown great progress against multiple core strategic objectives across the portfolio, said Bobby Gaspar, M.D., Ph.D., chief executive officer of Orchard. Obtaining regulatory clarity from the FDA on our investigational OTL-200 program in early-onset MLD represents a tremendous step toward making a treatment option available for young patients in the U.S. A second neurodegenerative program in MPS-IH is also advancing toward a pivotal trial, incorporating recent feedback from both the U.S. and EU regulatory agencies. In our earlier stage pipeline, were very excited for our new collaboration with Pharming exploring the potential of HSC gene therapy in hereditary angioedema.

Summary of Recent Publication and Business Updates

Data presentations at MPS 2021

Presentations from investigational hematopoietic stem cell (HSC) gene therapy programs in mucopolysaccharidosis type I Hurler syndrome (MPS-IH) and mucopolysaccharidosis type IIIB (MPS-IIIB) were featured at the 16th International Symposium on MPS and Related Diseases on July 23-25, 2021.

OTL-203 for MPS-IH: Updated data for OTL-203 showing positive clinical results in multiple disease manifestations of MPS-IH were highlighted in an oral presentation. With follow-up in five of eight patients now out to two years, all patients treated with OTL-203 continue to show stable cognitive and motor function and growth within the normal range throughout the follow-up period. Treatment with OTL-203 has been generally well-tolerated with a safety profile consistent with the selected conditioning regimen.OTL-202 for MPS-IIIB: Long-term results following HSC gene therapy in a mouse model of MPS-IIIB were also presented. Significant -N-acetylglucosaminidase (NAGLU) enzyme expression was seen in the bone marrow, blood plasma and other somatic tissues following gene therapy. Importantly, at six months post-treatment, sufficient expression of NAGLU enzyme was observed in the brain of mice treated with gene therapy, which led to a normalization of heparin sulfate levels and neurological corrections, which was not observed in mice treated with hematopoietic stem-cell transplantation (HSCT).

Collaboration with Pharming Group for hereditary angioedema (HAE)

On July 1, 2021 Orchard Therapeutics and Pharming Group N.V. announced a strategic collaboration to research, develop, manufacture and commercialize OTL-105, a newly disclosed investigational ex vivo autologous HSC gene therapy for the treatment of HAE. OTL-105 is designed to increase C1 esterase inhibitor (C1-INH) in HAE patient serum to prevent hereditary angioedema attacks. In preclinical studies, to date, OTL-105 demonstrated high levels of SERPING1 gene expression via lentiviral-mediated transduction in multiple cell lines and primary human CD34+ HSCs. A link to the full announcement can be found here.

Under the terms of the collaboration, Pharming has been granted worldwide rights to OTL-105 and will be responsible for clinical development, regulatory filings, and commercialization of the investigational gene therapy, including associated costs. Orchard will lead the completion of IND-enabling activities and oversee manufacturing of OTL-105 during pre-clinical and clinical development, which will be funded by Pharming. Orchard received an upfront payment of $17.5 million in the form of cash and an equity investment and is also eligible to receive up to $189.5 million in development, regulatory and sales milestones as well as mid-single to low double-digit royalty payments on future worldwide sales.

Clinical and Regulatory Updates

In June 2021, Orchard announced several portfolio updates following recent regulatory interactions for the companys investigational programs in metachromatic leukodystrophy (MLD), MPS-IH and Wiskott-Aldrich syndrome (WAS). A link to the full announcement can be found here.

OTL-200 for MLD: Orchard held a productive meeting with the U.S. Food and Drug Administration (FDA) and has received written feedback concerning the clinical package expected to support a Biologics License Application (BLA) for OTL-200 in MLD. Based on the feedback from this meeting and previous interactions, the company is preparing for a BLA filing for OTL-200 in pre-symptomatic, early-onset MLD in late 2022 or early 2023, using data from existing patients. This approach and timeline are subject to the successful completion of the remaining regulatory activities in advance of an expected pre-BLA meeting with FDA, including CMC interactions and demonstration of the natural history data as a representative comparator for the treated population.OTL-203 for MPS-IH: Orchard received feedback on the design of a global registrational trial for OTL-203 following a parallel scientific advice meeting with FDA and the European Medicines Agency (EMA). The interaction offered guidance on the proposed clinical trial protocol from each of the regulatory agencies, including elements of the trial design, comparator arm and recommended endpoints. Orchard will be incorporating this feedback into a revised global clinical study protocol, with study initiation expected to occur in 2022.OTL-201 for MPS-IIIA: The proof-of-concept trial for OTL-201 has met its recruitment goal with the enrollment of a fifth patient. Interim data from this study is expected to be presented at medical meetings in the second half of 2021 and 2022.OTL-103 for WAS: Orchard updated its guidance regarding the Marketing Authorization Application (MAA) and BLA submissions for the OTL-103 program in WAS to take into account work remaining on potency assay development and validation. The company now expects a MAA submission in 2022, subject to further dialogue with EMA, and will provide updated guidance for a BLA submission following additional FDA regulatory interactions.

Research Programs

Orchard plans to announce new preclinical data from research programs in frontotemporal dementia with progranulin mutations (GRN-FTD) and Crohns disease with mutations in the nucleotide-binding oligomerization domain-containing protein 2 (NOD2-CD) in the second half of 2021.

Second Quarter 2021 Financial Results

Research and development expenses were $21.8 million for the second quarter of 2021, compared to $31.6 million in the same period in 2020. The decline is primarily due to non-cash impairment charges of $5.7 million taken in the second quarter of 2020 and other savings associated with our corporate restructuring. R&D expenses include the costs of clinical trials and preclinical work on the companys portfolio of investigational gene therapies, as well as costs related to regulatory, manufacturing, license fees and development milestone payments under the companys agreements with third parties, and personnel costs to support these activities.

Selling, general and administrative expenses were $14.3 million for the second quarter of 2021, compared to $15.7 million in the same period in 2020. The decrease was primarily due to savings associated with personnel and related changes.

Net loss was $36.6 million for the second quarter of 2021, compared to $47.5 million in the same period in 2020. The decline in net loss as compared to the prior year was primarily due to savings realized in our operating expenses as a result of the companys May 2020 updated strategy and corporate restructuring. The company had approximately 124 million ordinary shares outstanding as of June 30, 2021.

Cash, cash equivalents and investments as of June 30, 2021, were $269.3 million compared to $191.9 million as of December 31, 2020 and excludes the $17.5 million in upfront payments from the collaboration with Pharming Group N.V. entered into on July 1, 2021. The increase was primarily driven by net proceeds of $143.6 million from the February 2021 private placement, offset by cash used for operating activities and capital expenditures. The company expects that its cash, cash equivalents and investments as of June 30, 2021 will support its currently anticipated operating expenses and capital expenditure requirements into the first half of 2023. This cash runway excludes the additional $67 million that could become available under the companys credit facility and any non-dilutive capital received from potential future partnerships or priority review vouchers granted by the FDA following future U.S. approvals.

About Libmeldy / OTL-200 Libmeldy (atidarsagene autotemcel), also known as OTL-200, has been approved by the European Commission for the treatment of MLD in eligible early-onset patients characterized by biallelic mutations in the ARSA gene leading to a reduction of the ARSA enzymatic activity in children with i) late infantile or early juvenile forms, without clinical manifestations of the disease, or ii) the early juvenile form, with early clinical manifestations of the disease, who still have the ability to walk independently and before the onset of cognitive decline. Libmeldy is the first therapy approved for eligible patients with early-onset MLD. The most common adverse reaction attributed to treatment with Libmeldy was the occurrence of anti-ARSA antibodies. In addition to the risks associated with the gene therapy, treatment with Libmeldy is preceded by other medical interventions, namely bone marrow harvest or peripheral blood mobilization and apheresis, followed by myeloablative conditioning, which carry their own risks. During the clinical studies, the safety profiles of these interventions were consistent with their known safety and tolerability. For more information about Libmeldy, please see the Summary of Product Characteristics (SmPC) available on the EMA website. Libmeldy is approved in the European Union, UK, Iceland, Liechtenstein and Norway. OTL-200 is an investigational therapy in the US.

Libmeldy was developed in partnership with the San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget) in Milan, Italy. About Orchard

Orchard Therapeuticsis a global gene therapy leader dedicated to transforming the lives of people affected by severe diseases through the development of innovative, potentially curative gene therapies. Our ex vivo autologous gene therapy approach harnesses the power of genetically modified blood stem cells and seeks to correct the underlying cause of disease in a single administration. In 2018, Orchard acquired GSKs rare disease gene therapy portfolio, which originated from a pioneering collaboration between GSK and theSan Raffaele Telethon Institute for Gene Therapy inMilan, Italy. Orchard now has one of the deepest and most advanced gene therapy product candidate pipelines in the industry spanning multiple therapeutic areas where the disease burden on children, families and caregivers is immense and current treatment options are limited or do not exist.

Orchard has its global headquarters inLondonandU.S.headquarters inBoston. For more information, please visit http://www.orchard-tx.com, and follow us on Twitter and LinkedIn.

Availability of Other Information About Orchard

Investors and others should note that Orchard communicates with its investors and the public using the company website ( http://www.orchard-tx.com ), the investor relations website ( ir.orchard-tx.com ), and on social media ( Twitter and LinkedIn ), including but not limited to investor presentations and investor fact sheets,U.S. Securities and Exchange Commissionfilings, press releases, public conference calls and webcasts. The information that Orchard posts on these channels and websites could be deemed to be material information. As a result, Orchard encourages investors, the media, and others interested in Orchard to review the information that is posted on these channels, including the investor relations website, on a regular basis. This list of channels may be updated from time to time on Orchards investor relations website and may include additional social media channels. The contents of Orchards website or these channels, or any other website that may be accessed from its website or these channels, shall not be deemed incorporated by reference in any filing under the Securities Act of 1933.

Forward-Looking Statements

This press release contains certain forward-looking statements about Orchards strategy, future plans and prospects, which are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements include express or implied statements relating to, among other things, Orchards business strategy and goals, including its plans and expectations for the commercialization of Libmeldy, the therapeutic potential of Libmeldy (OTL-200) and Orchards product candidates, including the product candidates referred to in this release, Orchards expectations regarding its ongoing preclinical and clinical trials, including the timing of enrollment for clinical trials and release of additional preclinical and clinical data, the likelihood that data from clinical trials will be positive and support further clinical development and regulatory approval of Orchard's product candidates, and Orchards financial condition and cash runway into the first half of 2023. These statements are neither promises nor guarantees and are subject to a variety of risks and uncertainties, many of which are beyond Orchards control, which could cause actual results to differ materially from those contemplated in these forward-looking statements. In particular, these risks and uncertainties include, without limitation: the risk that prior results, such as signals of safety, activity or durability of effect, observed from clinical trials of Libmeldy will not continue or be repeated in our ongoing or planned clinical trials of Libmeldy, will be insufficient to support regulatory submissions or marketing approval in the US or to maintain marketing approval in the EU, or that long-term adverse safety findings may be discovered; the risk that any one or more of Orchards product candidates, including the product candidates referred to in this release, will not be approved, successfully developed or commercialized; the risk of cessation or delay of any of Orchards ongoing or planned clinical trials; the risk that Orchard may not successfully recruit or enroll a sufficient number of patients for its clinical trials; the risk that prior results, such as signals of safety, activity or durability of effect, observed from preclinical studies or clinical trials will not be replicated or will not continue in ongoing or future studies or trials involving Orchards product candidates; the delay of any of Orchards regulatory submissions; the failure to obtain marketing approval from the applicable regulatory authorities for any of Orchards product candidates or the receipt of restricted marketing approvals; the inability or risk of delays in Orchards ability to commercialize its product candidates, if approved, or Libmeldy, including the risk that Orchard may not secure adequate pricing or reimbursement to support continued development or commercialization of Libmeldy; the risk that the market opportunity for Libmeldy, or any of Orchards product candidates, may be lower than estimated; and the severity of the impact of the COVID-19 pandemic on Orchards business, including on clinical development, its supply chain and commercial programs. Given these uncertainties, the reader is advised not to place any undue reliance on such forward-looking statements.

Other risks and uncertainties faced by Orchard include those identified under the heading "Risk Factors" in Orchards quarterly report on Form 10-Q for the quarter endedJune 30, 2021, as filed with theU.S. Securities and Exchange Commission(SEC), as well as subsequent filings and reports filed with theSEC. The forward-looking statements contained in this press release reflect Orchards views as of the date hereof, and Orchard does not assume and specifically disclaims any obligation to publicly update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as may be required by law.

Condensed Consolidated Statements of Operations Data (In thousands, except share and per share data) (Unaudited)

Condensed Consolidated Balance Sheet Data (in thousands) (Unaudited)

Contacts

Investors Renee Leck Director, Investor Relations +1 862-242-0764 Renee.Leck@orchard-tx.com

Media Benjamin Navon Director, Corporate Communications +1 857-248-9454 Benjamin.Navon@orchard-tx.com

Link:
Orchard Therapeutics Reports Second Quarter 2021 Financial Results and Highlights Recent ... - The Bakersfield Californian

To Read More: Orchard Therapeutics Reports Second Quarter 2021 Financial Results and Highlights Recent … – The Bakersfield Californian
categoriaBone Marrow Stem Cells commentoComments Off on Orchard Therapeutics Reports Second Quarter 2021 Financial Results and Highlights Recent … – The Bakersfield Californian | dataAugust 6th, 2021
Read All

Fate Therapeutics Announces Treatment of First Patient in Landmark Phase 1 Clinical Trial of FT819, the First-ever iPSC-derived CAR T-Cell Therapy |…

By daniellenierenberg

DetailsCategory: DNA RNA and CellsPublished on Tuesday, 03 August 2021 10:03Hits: 951

Off-the-Shelf CAR T-cell Product Candidate Derived from Clonal Master iPSC Line with Novel CD19-specific 1XX CAR Integrated into TRAC Locus

Phase 1 Clinical Study will Evaluate Three Dosing Regimens of FT819 for Patients with Advanced B-cell Leukemias and Lymphomas

SAN DIEGO, CA, USA I August 02, 2021 I Fate Therapeutics, Inc. (NASDAQ: FATE), a clinical-stage biopharmaceutical company dedicated to the development of programmed cellular immunotherapies for patients with cancer, announced today that the first patient has been treated with FT819, an off-the-shelf chimeric antigen receptor (CAR) T-cell therapy targeting CD19+ malignancies. FT819 is the first-ever CAR T-cell therapy derived from a clonal master induced pluripotent stem cell (iPSC) line, a renewable cell source that enables mass production of high quality, allogeneic CAR T cells with greater product consistency, off-the-shelf availability, and broader patient accessibility. FT819 is engineered with several first-of-kind features designed to improve the safety and efficacy of CAR T-cell therapy.

Remarkable clinical outcomes have been achieved through treatment with patient-derived CAR T-cell therapy, however, next-generation approaches are necessary to reach more patients who are in need of these highly-effective therapies, said Scott Wolchko, President and Chief Executive Officer of Fate Therapeutics. Treatment of the first-ever patient with FT819 ushers in a new era for off-the-shelf CAR T-cell therapy, with the potential to overcome the real-world limitations of existing patient- and donor-derived therapeutic approaches and unlock the full potential of CAR T-cell therapy. We would like to thank our collaborators at Memorial Sloan Kettering Cancer Center, whose partnership over the past five years has profoundly contributed to this landmark achievement.

FT819 was designed to specifically address several limitations associated with the current generation of patient- and donor-derived CAR T-cell therapies. Under a collaboration with Memorial Sloan Kettering Cancer Center (MSK) led by Michel Sadelain, M.D., Ph.D., Director, Center for Cell Engineering and Head, Gene Expression and Gene Transfer Laboratory, the Company incorporated several first-of-kind features into FT819 including:

The multi-center Phase 1 clinical trial of FT819 is designed to determine the recommended Phase 2 dose and schedule of FT819 and assess its safety and clinical activity in adult patients with relapsed/refractory acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), and B-cell lymphomas (BCL). Three treatment regimens will be independently evaluated for each type of malignancy in dose escalation: Regimen A as a single dose of FT819; Regimen B as a single dose of FT819 with IL-2 cytokine support; and Regimen C as three fractionated doses of FT819. For each indication and regimen, dose-expansion cohorts may be enrolled to further evaluate the clinical activity of FT819. The first patient with relapsed / refractory ALL was enrolled in Regimen A and received a dose of 90 million cells.

At the 24th American Society of Gene & Cell Therapy Annual Meeting held in May 2021, the Company presented preclinical data demonstrating that FT819 exhibits uniform 1XX CAR expression with complete elimination of endogenous TCR expression. The product candidate was shown to contain a stem- and central-memory T-cell phenotype, and had high-level expression of the activation marker CD25 and the trafficking marker CXCR4 and very low-level expression of the checkpoint proteins PD1, TIM3, CTLA4 and LAG3. Additionally, data from functional assessments showed that FT819 had potent antigen-specific cytolytic activity in vitro against CD19-expressing leukemia and lymphoma cell lines comparable to that of healthy donor-derived CAR T cells, and persisted and maintained tumor clearance in the bone marrow in an in vivo disseminated xenograft model of lymphoblastic leukemia.

Pursuant to a license agreement with MSK, Fate Therapeutics has an exclusive license for all human therapeutic use to U.S. Patent No. 10,370,452, which covers compositions and uses of effector T cells expressing a CAR, where such T cells are derived from a pluripotent stem cell including an iPSC. In addition to the patent rights licensed from MSK, the Company owns an extensive intellectual property portfolio that broadly covers compositions and methods for the genome editing of iPSCs using CRISPR and other nucleases, including the use of CRISPR to insert a CAR in the TRAC locus for endogenous transcriptional control.

Fate Therapeutics haslicensedintellectual propertyfrom MSK on which Dr. Sadelain is aninventor.As a result of the licensing arrangement, MSK has financial interests related to Fate Therapeutics.

About Fate Therapeutics iPSC Product PlatformThe Companys proprietary induced pluripotent stem cell (iPSC) product platform enables mass production of off-the-shelf, engineered, homogeneous cell products that are designed to be administered with multiple doses to deliver more effective pharmacologic activity, including in combination with other cancer treatments. Human iPSCs possess the unique dual properties of unlimited self-renewal and differentiation potential into all cell types of the body. The Companys first-of-kind approach involves engineering human iPSCs in a one-time genetic modification event and selecting a single engineered iPSC for maintenance as a clonal master iPSC line. Analogous to master cell lines used to manufacture biopharmaceutical drug products such as monoclonal antibodies, clonal master iPSC lines are a renewable source for manufacturing cell therapy products which are well-defined and uniform in composition, can be mass produced at significant scale in a cost-effective manner, and can be delivered off-the-shelf for patient treatment. As a result, the Companys platform is uniquely designed to overcome numerous limitations associated with the production of cell therapies using patient- or donor-sourced cells, which is logistically complex and expensive and is subject to batch-to-batch and cell-to-cell variability that can affect clinical safety and efficacy. Fate Therapeutics iPSC product platform is supported by an intellectual property portfolio of over 350 issued patents and 150 pending patent applications.

About FT819FT819 is an investigational, universal, off-the-shelf, T-cell receptor (TCR)-less CD19 chimeric antigen receptor (CAR) T-cell cancer immunotherapy derived from a clonal master induced pluripotent stem cell (iPSC) line, which is engineered with the following features designed to improve the safety and efficacy of CAR19 T-cell therapy: a novel 1XX CAR signaling domain, which has been shown to extend T-cell effector function without eliciting exhaustion; integration of the CAR19 transgene directly into the T-cell receptor alpha constant (TRAC) locus, which has been shown to promote uniform CAR19 expression and enhanced T-cell potency; and complete bi-allelic disruption of TCR expression for the prevention of graft-versus-host disease (GvHD). FT819 demonstrated antigen-specific cytolytic activity in vitro against CD19-expressing leukemia and lymphoma cell lines comparable to that of primary CAR T cells, and persisted and maintained tumor clearance in the bone marrow in an in vivo disseminated xenograft model of lymphoblastic leukemia (Valamehr et al. 2020). FT819 is being investigated in a multi-center Phase 1 clinical trial for the treatment of relapsed / refractory B-cell malignancies, including B-cell lymphoma, chronic lymphocytic leukemia, and acute lymphoblastic leukemia (NCT04629729).

About Fate Therapeutics, Inc.Fate Therapeutics is a clinical-stage biopharmaceutical company dedicated to the development of first-in-class cellular immunotherapies for patients with cancer. The Company has established a leadership position in the clinical development and manufacture of universal, off-the-shelf cell products using its proprietary induced pluripotent stem cell (iPSC) product platform. The Companys immuno-oncology pipeline includes off-the-shelf, iPSC-derived natural killer (NK) cell and T-cell product candidates, which are designed to synergize with well-established cancer therapies, including immune checkpoint inhibitors and monoclonal antibodies, and to target tumor-associated antigens using chimeric antigen receptors (CARs). Fate Therapeutics is headquartered in San Diego, CA. For more information, please visit http://www.fatetherapeutics.com.

SOURCE: Fate Therapeutics

The rest is here:
Fate Therapeutics Announces Treatment of First Patient in Landmark Phase 1 Clinical Trial of FT819, the First-ever iPSC-derived CAR T-Cell Therapy |...

To Read More: Fate Therapeutics Announces Treatment of First Patient in Landmark Phase 1 Clinical Trial of FT819, the First-ever iPSC-derived CAR T-Cell Therapy |…
categoriaBone Marrow Stem Cells commentoComments Off on Fate Therapeutics Announces Treatment of First Patient in Landmark Phase 1 Clinical Trial of FT819, the First-ever iPSC-derived CAR T-Cell Therapy |… | dataAugust 6th, 2021
Read All

Donating a chance at life: Kokomo teacher donates stem cells to 75-year-old woman through Be the Match – Kokomo Perspective

By daniellenierenberg

LIFESAVING After being on the Be the Match registry for eight months, Lacey Jones donated stem cells to a 75-year-old woman battling myeloid leukemia.

A Kokomo teacher has spent part of her summer possibly saving the life of a 75-year-old woman.

Late last month, Lacey Jones, a veterinary careers instructor at the Kokomo Area Career Center, traveled to the Hoxworth Blood Center at the University of Cincinnati to donate stem cells to a woman she was genetically matched with who was battling myeloid leukemia. Now, all Jones hopes is that her stem cells were enough.

I really want nothing more than to hear that she is in remission. That was the emotional part of the process. Once it was all over, I just went to my hotel room, and I could not help but to just kind of cry and cry and cry and pray and hope because you want nothing more than for your cells to work for the patient, Jones said.

But the opportunity to help someone was a chance that some dont ever get. Jones registered as a donor through Be the Match, which operates the national bone marrow registry, late last year after the story of her friends daughter, who was diagnosed with infant leukemia, inspired her to want to help someone.

According to Be the Match, only one of 430 people who register as a donor is selected as a match, and some of those who are selected wait years before theyre matched. For Jones, she became a genetic match for someone in just eight months.

At the end of May, she received a call from Be the Match, letting her know that there was a woman who had been diagnosed with myeloid leukemia, and Jones was a secondary match for her. Jones was told that there was someone who was the primary match who matched just a little better, but in the chance that that donor fell through, Jones would be at the plate.

I just kind of waited around, didnt really think anything of it, and then they called me at the beginning of June. She explained that the original person who matched ended up not being who they really needed, and of course with HIPPA and all that they cant really tell you any of that information as to why, Jones said.

As far as the patient, all Jones was told was that it was a 75-year-old woman who was battling myeloid leukemia somewhere in the world. Jones was asked if shed be available to donate during certain dates, but at that point, there were no details as to where she would be donating or exactly when. What Jones did know, though, was that she would do it.

The process then became a whirlwind of scheduling, logistics, and injections. She went to Indianapolis for lab work to ensure she was healthy enough to donate. Then, for a week leading up to her donation, she was required to take injections of a drug called filgrastim to increase the number of white blood cells in her bloodstream so they could be collected more easily.

Theyre actual injections that are given to people who have cancer to increase the white blood cell count, but theyre given to donors because it increases your bone marrow production. Then what happens is your body naturally expels the extra bone marrow into the bloodstream, she said.

Jones was a bit hesitant because shed never given herself injections before, and she was warned of the side effects that could occur. The most common side effect of filgrastim, she said, was soreness due to the overproduction of bone marrow.

They explained some of the side effects of the filgrastim, and that makes you feel a little intimidated. But because of my passion and my empathy for the patient and hearing about there not being donors and just knowing that I could potentially help save her life, it overruled any type of fear I had, she said.

At the end of June, Jones traveled to Hoxworth Blood Center at the University of Cincinnati to begin the donation.

Now, more than ever, the world needs trustworthy reportingbut good journalism isnt free.Please support us by making a contribution.

There are two donation methods, either marrow or peripheral blood stem cells. The marrow donation is a surgical procedure done under anesthesia. Doctors use needles to retrieve liquid marrow from both sides of the back of a patients pelvic bone. The hospital stay is usually from early morning to late afternoon, according to Be the Match, while some donors are kept overnight for observation.

The peripheral stem cell donation, on the other hand, is a non-surgical procedure that takes place at a blood center or outpatient hospital. Blood is removed through a needle in one arm and passed through a machine that collects only the blood-forming cells and returns the blood through a needle in the donors other arm.

As soon as Jones got to the blood center, nurses took a blood sample to see where her white blood cell count was. A normal count, she said, was between four and 10. Hers was at 42. Because the filgrastim injections were so effective for Jones, she was able to do the peripheral stem cell method.

So began a five-hour process of Jones sitting very still while a machine filtered out blood-forming cells from her left arm and put the blood back in her right arm. The nurses took her blood pressure every 15 minutes to ensure she wasnt having any kind of reaction, and the staff knew down to the minute when her donation would be complete, she said, and had the transfer staff ready.

At the end of the donation, Jones said it was like a movie when the person came in to take her stem cells that would be delivered to the patient.

They actually had somebody come up with the cooler because they flew my sample to the patient. Its almost like a movie. You watch someone come through the big steel door with the cooler and watch them package your sample, she said.

And while she didnt know where the sample was going, she was told the recipient was nowhere close to where they were.

When the process was over, Jones was thankful. She said the nurses told her it was a textbook donation, and the only side effect Jones experienced from the injections was mild soreness.

Three months after the donation, the recipient will have the option to find out who her donor was and to contact Jones if she chooses.

Jones said shed love to one day hear from the recipient.

I want nothing more than to one day get that phone call that says, OK, the person you donated to wants to get in contact with you. I dont know what Ill do. Ill probably cry again, she said.

Jones will remain on the Be the Match registry, and in the event she ever receives a call that shes a match again, she will be ready to go, she said.

To join the bone marrow donor registry, visit join.bethematch.org. The process requires a cheek swab, which can be done with a kit thats mailed to potential donors. Afterward, the person will be added to the registry and have the chance to get matched.

Be the Match encourages those who are contacted to donate to go forward with the donation as theyre the patients best genetic match from the entire registry.

See the article here:
Donating a chance at life: Kokomo teacher donates stem cells to 75-year-old woman through Be the Match - Kokomo Perspective

To Read More: Donating a chance at life: Kokomo teacher donates stem cells to 75-year-old woman through Be the Match – Kokomo Perspective
categoriaBone Marrow Stem Cells commentoComments Off on Donating a chance at life: Kokomo teacher donates stem cells to 75-year-old woman through Be the Match – Kokomo Perspective | dataJuly 22nd, 2021
Read All

Page 11234..1020..»