Page 11234..1020..»

Comparative analysis of mouse bone marrow and adipose tissue mesenchymal stem cells for critical limb ischemia cell therapy – DocWire News

By daniellenierenberg

This article was originally published here

Stem Cell Res Ther. 2021 Jan 13;12(1):58. doi: 10.1186/s13287-020-02110-x.

ABSTRACT

INTRODUCTION: Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment.

METHODS: For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis.

RESULTS: Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups.

CONCLUSIONS: Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.

PMID:33436054 | DOI:10.1186/s13287-020-02110-x

Read more here:
Comparative analysis of mouse bone marrow and adipose tissue mesenchymal stem cells for critical limb ischemia cell therapy - DocWire News

To Read More: Comparative analysis of mouse bone marrow and adipose tissue mesenchymal stem cells for critical limb ischemia cell therapy – DocWire News
categoriaBone Marrow Stem Cells commentoComments Off on Comparative analysis of mouse bone marrow and adipose tissue mesenchymal stem cells for critical limb ischemia cell therapy – DocWire News | dataJanuary 14th, 2021
Read All

Shipyard worker Brad Lawson from Walney may have saved a stranger’s life with his stem cell donation – NW Evening Mail

By daniellenierenberg

A SHIPYARD worker has potentially saved a stranger's life after donating his stem cells to a person in desperate need.

Brad Lawson, from Walney, first signed up to be a stem cell donor six years ago after an event at his college.

Stem cells are cells with the potential to develop into many different types of cells in the body.

Every 14 minutes, someone is diagnosed with blood cancer such as leukaemia.

For many, a bone marrow or blood stem cell transplant is their only chance.

They need cells from a healthy person with the same tissue type to replace and repair their own damaged cells.

About 30 per cent of people in need can find a suitable donor in their family but the other 70 per cent rely on a stranger to save their lives.

This is what prompted Mr Lawson to travel hundreds of miles to London to give his much-needed donation.

The 23-year-old said: "I first signed onto the register six years ago and hadn't thought much about it since.

"Then I was shocked to get a phone call the other week to say they'd matched a patient with my stem cells.

"It's quite rare to match with someone - it's only one in 800 people so I knew I had to help."

Mr Lawson travelled down to London where he underwent peripheral blood stem cell collection.

The process involves having a course of injections prior to collection to stimulate the bone marrow and increase the number of stem cells and white blood cells in the blood.

He said: "I had no hesitation about going down there when I got the call. When you sign up, you need to be fully committed if you do get a call.

"This could be someone's chance of survival and I would never pull out of something like that.

"The process was actually really easy. It takes about five hours and isn't painful at all.

"I absolutely hate needles and didn't find it painful at all."

Mr Lawson said it felt 'rewarding' to know his donation could have possibly saved a stranger's life.

"You could potentially give someone the chance to survive by signing up," he said.

"It's an amazing thing to do which could seriously make a difference.

"I may be in that position one day where I desperately need stem cells and would like to think someone out there would help me.

"Donations literally saves lives. It's a really rewarding thing to do to be able to help someone in this way."

Mr Lawson is urging the public to sign up to the register.

"Only about two per cent of people in the UK are actually on the register," he said.

"I'm telling everyone to sign up and raise awareness of stem cell donation.

"The more people we can get to sign up, and save lives, the better."

To register, visit: http://www.dkms.org.uk/en/register-now.

Here is the original post:
Shipyard worker Brad Lawson from Walney may have saved a stranger's life with his stem cell donation - NW Evening Mail

To Read More: Shipyard worker Brad Lawson from Walney may have saved a stranger’s life with his stem cell donation – NW Evening Mail
categoriaBone Marrow Stem Cells commentoComments Off on Shipyard worker Brad Lawson from Walney may have saved a stranger’s life with his stem cell donation – NW Evening Mail | dataJanuary 14th, 2021
Read All

A Study of Cord Blood Transplantation in Children and Young Adults with Blood Cancers and Non-Cancerous Blood Disorders – On Cancer – Memorial Sloan…

By daniellenierenberg

Full TitleCord Blood Transplantation in Children and Young Adults with Hematologic Malignancies and Non-Malignant DisordersPurpose

The transplantation of stem cells from umbilical cord blood is a treatment for some blood cancers and non-cancerous blood or metabolic disorders. Patients routinely receive high doses of chemotherapy and sometimes radiation before receiving the stem cells to help make room in the bone marrow for new blood stem cells to grow, prevent the body from rejecting the transplanted cells, and help kill any abnormal blood cells in the body. However, the combination of these treatments can have serious side effects.

Researchers are doing this study to find out whether a combination of the chemotherapy drugs clofarabine, fludarabine, and busulfan (without radiation) is a safe and effective treatment for children and young adults receiving cord blood transplants for blood cancers or non-cancerous blood or metabolic disorders. These three drugs are given intravenously (by vein).

To be eligible for this study, patients must meet several criteria, including but not limited to the following:

For more information about this study and to inquire about eligibility, please contact 1-833-MSK-KIDS.

See the original post:
A Study of Cord Blood Transplantation in Children and Young Adults with Blood Cancers and Non-Cancerous Blood Disorders - On Cancer - Memorial Sloan...

To Read More: A Study of Cord Blood Transplantation in Children and Young Adults with Blood Cancers and Non-Cancerous Blood Disorders – On Cancer – Memorial Sloan…
categoriaBone Marrow Stem Cells commentoComments Off on A Study of Cord Blood Transplantation in Children and Young Adults with Blood Cancers and Non-Cancerous Blood Disorders – On Cancer – Memorial Sloan… | dataJanuary 14th, 2021
Read All

Adipose Derived Stem Cell Therapy Market Analysis and Forecast, 2020-2026 Coherent Market Insights | BioRestorative Therapies, Inc., Celltex…

By daniellenierenberg

The Adipose Derived Stem Cell Therapy Market Research Report is a resource, which provides current as well as upcoming technical and financial details of the industry to 2027. This report gives you so important and essentials data of Market size, share, trends, Growth, applications, forecast and cost analysis. Delivery development in North America, China, Europe, and South East Asia, Japan as well as in the Globe. The report proves to be indispensable when it comes to market definition, classifications, applications and engagements. The market report also computes the market size and revenue generated from the sales. The industry analysis report presents the key statistics on the market status of global and regional manufacturers and also acts as a valuable source of leadership and direction. What is more, theAdipose Derived Stem Cell Therapy market report analyses and provides historic data along with the current performance of the market

Adipose derived stem cells (ADSCs) are stem cells derived from adipocytes, and can differentiate into variety of cell types. ADSCs have multipotency similar to bone marrow mesenchymal stem cells, thus ADSCs substitute for bone marrow as a source of stem cells. Numerous manual and automatic stem cell separation procedures are adopted in order to separate adipose stem cells (ASCs) from adipose tissue. Flow cytometry can also be used to isolate ADSCs from other stem cells within a cell solution.

This Press Release will help you to Know the Volume, growth with Impacting Trends. Get SAMPLE PDF (Including Full TOC, Table & Figures) at:

Get PDF Brochure Of This Research Report @ https://www.coherentmarketinsights.com/insight/request-pdf/2357

Global Adipose Derived Stem Cell Therapy Market competition by Top Key Players: BioRestorative Therapies, Inc., Celltex Therapeutics Corporation, Antria, Inc., Cytori Therapeutics Inc., Intrexon Corporation, Mesoblast Ltd., iXCells Biotechnologies, Pluristem Therapeutics, Inc., Thermo Fisher Scientific, Inc., Tissue Genesis, Inc., Cyagen US Inc., Celprogen, Inc., and Lonza Group, among others.

Adipose Derived Stem Cell Therapy Market section by Region:

The Middle East and Africa North AmericaSouth AmericaEuropeAsia-Pacific

Segmentation: The report has been separated into different categories, such as product type, application, end user, and region. Every segment is evaluated based on the CAGR, share and growth potential. In the regional analysis, the report highlights the prospective region, which should generate opportunities in the global Adipose Derived Stem Cell Therapy market in the years to come. This segmented analysis will surely prove to be a useful tool for readers, stakeholders and market participants to get a full picture of the Adipose Derived Stem Cell Therapy global market and its growth potential in the years to come.

TheAdipose Derived Stem Cell TherapyMarket report offers a plethora of insights which include:

LIMITED TIME OFFER Hurry Up!

Get Discount For Buyers UPTO 30% OFF On Any Research Report

Apply Promo Code CMIFIRST1000 And Get Instant Discount Of USD 1000

Ask For Discount Before Purchasing This Business Report @ https://www.coherentmarketinsights.com/insight/request-discount/2357

Important Information that can be extracted from the Report:

Assessment of the COVID-19 impact on the growth of the Adipose Derived Stem Cell Therapy MarketSuccessful market entry strategies formulated by emerging market playersPricing and marketing strategies adopted by established market playersCountry-wise assessment of the Adipose Derived Stem Cell Therapy Market in key regionsYear-on-Year growth of each market segment over the forecast period 2026

TheAdipose Derived Stem Cell TherapyMarket report considers the following years to predict market growth:

The GlobalAdipose Derived Stem Cell TherapyMarket is displayed in 13 Chapters:

Chapter 1: Market Overview, Drivers, Restraints and OpportunitiesChapter 2: Market Competition by ManufacturersChapter 3: Production by RegionsChapter 4: Consumption by RegionsChapter 5: Production, By Types, Revenue and Market share by TypesChapter 6: Consumption, By Applications, Market share (%) and Growth Rate by ApplicationsChapter 7: Complete profiling and analysis of ManufacturersChapter 8: Manufacturing cost analysis, Raw materials analysis, Region-wise manufacturing expensesChapter 9: Industrial Chain, Sourcing Strategy and Downstream BuyersChapter 10: Marketing Strategy Analysis, Distributors/TradersChapter 11: Market Effect Factors AnalysisChapter 12: Market ForecastChapter 13:Adipose Derived Stem Cell Therapy Research Findings and Conclusion, Appendix, methodology and data source

More here:
Adipose Derived Stem Cell Therapy Market Analysis and Forecast, 2020-2026 Coherent Market Insights | BioRestorative Therapies, Inc., Celltex...

To Read More: Adipose Derived Stem Cell Therapy Market Analysis and Forecast, 2020-2026 Coherent Market Insights | BioRestorative Therapies, Inc., Celltex…
categoriaBone Marrow Stem Cells commentoComments Off on Adipose Derived Stem Cell Therapy Market Analysis and Forecast, 2020-2026 Coherent Market Insights | BioRestorative Therapies, Inc., Celltex… | dataJanuary 14th, 2021
Read All

Alterations of NK Cell Phenotype in the Disease Course of Multiple Myeloma – DocWire News

By daniellenierenberg

This article was originally published here

Cancers (Basel). 2021 Jan 10;13(2):E226. doi: 10.3390/cancers13020226.

ABSTRACT

Accumulating evidence demonstrates important roles for natural killer (NK) cells in controlling multiple myeloma (MM). A prospective flow cytometry-based analysis of NK cells in the blood and bone marrow (BM) of MM patient subgroups was performed (smoldering (SMM), newly diagnosed (ND), relapsed/refractory, (RR) and post-stem cell transplantation (pSCT)). Assessments included the biomarker expression and function of NK cells, correlations between the expression of receptors on NK cells with their ligands on myeloma cells, and comparisons between MM patient subgroups and healthy controls. The most striking differences from healthy controls were found in RR and pSCT patients, in which NK cells were less mature and expressed reduced levels of the activating receptors DNAM-1, NKG2D, and CD16. These differences were more pronounced in the BM than in blood, including upregulation of the therapeutic targets TIM3, TIGIT, ICOS, and GITR. Their expression suggests NK cells became exhausted upon chronic encounters with the tumor. A high expression of SLAMF7 on blood NK cells correlated with shorter progression-free survival. This correlation was particularly evident in ND patients, including on mature CD56dim NK cells in the BM. Thus, our NK cell analysis identified possible therapeutic targets in MM and a biomarker with prognostic potential for disease progression.

PMID:33435153 | DOI:10.3390/cancers13020226

Read more here:
Alterations of NK Cell Phenotype in the Disease Course of Multiple Myeloma - DocWire News

To Read More: Alterations of NK Cell Phenotype in the Disease Course of Multiple Myeloma – DocWire News
categoriaBone Marrow Stem Cells commentoComments Off on Alterations of NK Cell Phenotype in the Disease Course of Multiple Myeloma – DocWire News | dataJanuary 14th, 2021
Read All

Stem Cell Assay Market | Know the aspects that will serve as game-changers for the market – BioSpace

By daniellenierenberg

Stem cell assay refers to the procedure of measuring the potency of antineoplastic drugs, on the basis of their capability of retarding the growth of human tumor cells. The assay consists of qualitative or quantitative analysis or testing of affected tissues and tumors, wherein their toxicity, impurity, and other aspects are studied.

With the growing number of successful stem cell therapy treatment cases, the global market for stem cell assays will gain substantial momentum. A number of research and development projects are lending a hand to the growth of the market. For instance, the University of Washingtons Institute for Stem Cell and Regenerative Medicine (ISCRM) has attempted to manipulate stem cells to heal eye, kidney, and heart injuries. A number of diseases such as Alzheimers, spinal cord injury, Parkinsons, diabetes, stroke, retinal disease, cancer, rheumatoid arthritis, and neurological diseases can be successfully treated via stem cell therapy. Therefore, stem cell assays will exhibit growing demand.

Get Brochure of the Report @ https://www.tmrresearch.com/sample/sample?flag=B&rep_id=40

Another key development in the stem cell assay market is the development of innovative stem cell therapies. In April 2017, for instance, the first participant in an innovative clinical trial at the University of Wisconsin School of Medicine and Public Health was successfully treated with stem cell therapy. CardiAMP, the investigational therapy, has been designed to direct a large dose of the patients own bone-marrow cells to the point of cardiac injury, stimulating the natural healing response of the body.

Newer areas of application in medicine are being explored constantly. Consequently, stem cell assays are likely to play a key role in the formulation of treatments of a number of diseases.

Global Stem Cell Assay Market: Overview

The increasing investment in research and development of novel therapeutics owing to the rising incidence of chronic diseases has led to immense growth in the global stem cell assay market. In the next couple of years, the market is expected to spawn into a multi-billion dollar industry as healthcare sector and governments around the world increase their research spending.

The report analyzes the prevalent opportunities for the markets growth and those that companies should capitalize in the near future to strengthen their position in the market. It presents insights into the growth drivers and lists down the major restraints. Additionally, the report gauges the effect of Porters five forces on the overall stem cell assay market.

Global Stem Cell Assay Market: Key Market Segments

For the purpose of the study, the report segments the global stem cell assay market based on various parameters. For instance, in terms of assay type, the market can be segmented into isolation and purification, viability, cell identification, differentiation, proliferation, apoptosis, and function. By kit, the market can be bifurcated into human embryonic stem cell kits and adult stem cell kits. Based on instruments, flow cytometer, cell imaging systems, automated cell counter, and micro electrode arrays could be the key market segments.

In terms of application, the market can be segmented into drug discovery and development, clinical research, and regenerative medicine and therapy. The growth witnessed across the aforementioned application segments will be influenced by the increasing incidence of chronic ailments which will translate into the rising demand for regenerative medicines. Finally, based on end users, research institutes and industry research constitute the key market segments.

The report includes a detailed assessment of the various factors influencing the markets expansion across its key segments. The ones holding the most lucrative prospects are analyzed, and the factors restraining its trajectory across key segments are also discussed at length.

Global Stem Cell Assay Market: Regional Analysis

Regionally, the market is expected to witness heightened demand in the developed countries across Europe and North America. The increasing incidence of chronic ailments and the subsequently expanding patient population are the chief drivers of the stem cell assay market in North America. Besides this, the market is also expected to witness lucrative opportunities in Asia Pacific and Rest of the World.

Get Table of Content of the Report @ https://www.tmrresearch.com/sample/sample?flag=T&rep_id=40

Global Stem Cell Assay Market: Vendor Landscape

A major inclusion in the report is the detailed assessment of the markets vendor landscape. For the purpose of the study the report therefore profiles some of the leading players having influence on the overall market dynamics. It also conducts SWOT analysis to study the strengths and weaknesses of the companies profiled and identify threats and opportunities that these enterprises are forecast to witness over the course of the reports forecast period.

Some of the most prominent enterprises operating in the global stem cell assay market are Bio-Rad Laboratories, Inc (U.S.), Thermo Fisher Scientific Inc. (U.S.), GE Healthcare (U.K.), Hemogenix Inc. (U.S.), Promega Corporation (U.S.), Bio-Techne Corporation (U.S.), Merck KGaA (Germany), STEMCELL Technologies Inc. (CA), Cell Biolabs, Inc. (U.S.), and Cellular Dynamics International, Inc. (U.S.).

About TMR Research

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Contact:

Rohit Bhisey

TMR Research,

3739 Balboa St # 1097,

San Francisco, CA 94121

United States

Tel: +1-415-520-1050

Visit Site: https://www.tmrresearch.com/

Read more:
Stem Cell Assay Market | Know the aspects that will serve as game-changers for the market - BioSpace

To Read More: Stem Cell Assay Market | Know the aspects that will serve as game-changers for the market – BioSpace
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cell Assay Market | Know the aspects that will serve as game-changers for the market – BioSpace | dataJanuary 14th, 2021
Read All

Bone Therapeutics and Rigenerand sign partnership for cell therapy process development – GlobeNewswire

By daniellenierenberg

Gosselies, Belgium and Modena, Italy, 14January 2021, 7am CET BONE THERAPEUTICS (Euronext Brussels and Paris: BOTHE), the cell therapy company addressing unmet medical needs in orthopedics and other diseases, and Rigenerand SRL, the biotech company that both develops and manufactures medicinal products for cell therapy applications, primarily for regenerative medicine and oncology, today announce the signing of a first agreement for a process development partnership.

Allogeneic mesenchymal stem cell (MSC) therapies are currently being developed at an incredible pace and are evaluated in numerous clinical studies covering diverse therapeutic areas such as bone and cartilage conditions, liver, cardiovascular and autoimmune diseases in which MSCs could have a significant positive effect. Advances in process development to scale up these therapies could have major impacts for both their approval and commercial viability. This will be essential to bring these therapies to market to benefit patients as quickly as possible, said Miguel Forte, CEO, Bone Therapeutics. Hence, whilst Bone Therapeutics is driving on its existing clinical development programs, we have signed a first formal agreement with Rigenerand as a fellow MSC-based organization. This will result in both companies sharing extensive expertise in the process development and manufacturing of MSCs and cell and gene therapy medicinal products. Bone Therapeutics also selected Rigenerand to partner with for their additional experience with wider process development of advanced therapy medicinal products (ATMPs), including the conditioning and editing of MSCs. Rigenerand was founded by Massimo Dominici, a world opinion leader in the cell therapy with an unparalleled MSC expertise and knowledge.

The scope of collaborations between Bone Therapeutics and Rigenerand aims to focus on different aspects of product and process development for Bone Therapeutics expanding therapeutic portfolio. Rigenerand will contribute to improving the processes involved in the development and manufacture of Bone Therapeutics MSC based allogeneic differentiated cell therapy products as they advance towards patients. The first collaboration between the two organizations will initially focus on augmented professional bone-forming cells cells that are differentiated and programmed for a specific task. There is also potential for Bone Therapeutics to broaden its therapeutic targets and explore new mechanisms of action with potential gene modifications for its therapeutic portfolio.

In addition to Rigenerands MSC expertise, Bone Therapeutics also selected Rigenerand as a partner for Rigenerands GMP manufacturing facility. This facility, situated in Modena, Italy, has been designed to host a number of types of development processes for ATMPs. These include somatic, tissue engineered and gene therapy processes. These multiple areas of Rigenerand capabilities enable critical development of new processes and implementation of the gene modification of existing processes. In addition, Rigenerand has built considerable experience in cGMP manufacturing of MSC-based medicinal products, including those that are genetically modified.

Process development and manufacturing is a key part of the development for ATMPs internationally. Navigating these therapies through the clinical development phase and into the market requires a carefully considered process development pathway, said Massimo Dominici, scientific founder, Rigenerand, professor of medical oncology, and former President of the International Society for Cell & Gene Therapy (ISCT). This pathway needs to be flexible, as both the market and materials of these therapies continues to evolve alongside an improved clinical efficacy.

Rigenerand will offer considerable input from its experience of MSC-based therapies to enable Bone Therapeutics to keep and further accelerate the pace in development of the product processes of its MSC based allogeneic differentiated cell therapy as they advance towards patients, said Giorgio Mari, CEO, Rigenerand. We will continue to use our MSC expertise in the development of Rigenerands own products, as well as in process development and manufacturing cell and gene therapies for partner organizations across the globe.

About Bone Therapeutics

Bone Therapeutics is a leading biotech company focused on the development of innovative products to address high unmet needs in orthopedics and other diseases. The Company has a, diversified portfolio of cell and biologic therapies at different stages ranging from pre-clinical programs in immunomodulation to mid-to-late stage clinical development for orthopedic conditions, targeting markets with large unmet medical needs and limited innovation.

Bone Therapeutics is developing an off-the-shelf next-generation improved viscosupplement, JTA-004, which is currently in Phase III development for the treatment of pain in knee osteoarthritis. Consisting of a unique combination of plasma proteins, hyaluronic acid - a natural component of knee synovial fluid, and a fast-acting analgesic, JTA-004 intends to provide added lubrication and protection to the cartilage of the arthritic joint and to alleviate osteoarthritic pain and inflammation. Positive Phase IIb efficacy results in patients with knee osteoarthritis showed a statistically significant improvement in pain relief compared to a leading viscosupplement.

Bone Therapeutics core technology is based on its cutting-edge allogeneic cell therapy platform with differentiated bone marrow sourced Mesenchymal Stromal Cells (MSCs) which can be stored at the point of use in the hospital. Currently in pre-clinical development, BT-20, the most recent product candidate from this technology, targets inflammatory conditions, while the leading investigational medicinal product, ALLOB, represents a unique, proprietary approach to bone regeneration, which turns undifferentiated stromal cells from healthy donors into bone-forming cells. These cells are produced via the Bone Therapeutics scalable manufacturing process. Following the CTA approval by regulatory authorities in Europe, the Company has initiated patient recruitment for the Phase IIb clinical trial with ALLOB in patients with difficult tibial fractures, using its optimized production process. ALLOB continues to be evaluated for other orthopedic indications including spinal fusion, osteotomy, maxillofacial and dental.

Bone Therapeutics cell therapy products are manufactured to the highest GMP (Good Manufacturing Practices) standards and are protected by a broad IP (Intellectual Property) portfolio covering ten patent families as well as knowhow. The Company is based in the BioPark in Gosselies, Belgium. Further information is available at http://www.bonetherapeutics.com.

About Rigenerand

Rigenerand SRL is a biotech company that both develops and manufactures medicinal products for cell therapy applications, primarily for regenerative medicine and oncology and 3D bioreactors as alternative to animal testing for pre-clinical investigations.

Rigenerand operates through three divisions:

Rigenerand is developing RR001, a proprietary ATMP gene therapy medicinal product for the treatment of pancreatic ductal adenocarcinoma (PDAC). RR001 has been granted an Orphan Drug Designation (ODD) by US-FDA and from the European Medicine Agency. The Clinical trial is expected to start in Q2 2021.

Rigenerand is headquartered in Medolla, Modena, Italy, with more than 1,200 square metres of offices, R&D and quality control laboratories and a cell factory of 450 square metres of sterile cleanroom (EuGMP Grade-B) with BSL2/BSL3 suites for cell and gene therapies manufacturing. It combines leaders and academics from biopharma and medical device manufacturing sectors.

For further information, please contact:

Bone Therapeutics SAMiguel Forte, MD, PhD, Chief Executive OfficerJean-Luc Vandebroek, Chief Financial OfficerTel: +32 (0)71 12 10 00investorrelations@bonetherapeutics.com

For Belgian Media and Investor Enquiries:BepublicCatherine HaquenneTel: +32 (0)497 75 63 56catherine@bepublic.be

International Media Enquiries:Image Box CommunicationsNeil Hunter / Michelle BoxallTel: +44 (0)20 8943 4685neil.hunter@ibcomms.agency / michelle@ibcomms.agency

For French Media and Investor Enquiries:NewCap Investor Relations & Financial CommunicationsPierre Laurent, Louis-Victor Delouvrier and Arthur RouillTel: +33 (0)1 44 71 94 94bone@newcap.eu

Certain statements, beliefs and opinions in this press release are forward-looking, which reflect the Company or, as appropriate, the Company directors current expectations and projections about future events. By their nature, forward-looking statements involve a number of risks, uncertainties and assumptions that could cause actual results or events to differ materially from those expressed or implied by the forward-looking statements. These risks, uncertainties and assumptions could adversely affect the outcome and financial effects of the plans and events described herein. A multitude of factors including, but not limited to, changes in demand, competition and technology, can cause actual events, performance or results to differ significantly from any anticipated development. Forward looking statements contained in this press release regarding past trends or activities should not be taken as a representation that such trends or activities will continue in the future. As a result, the Company expressly disclaims any obligation or undertaking to release any update or revisions to any forward-looking statements in this press release as a result of any change in expectations or any change in events, conditions, assumptions or circumstances on which these forward-looking statements are based. Neither the Company nor its advisers or representatives nor any of its subsidiary undertakings or any such persons officers or employees guarantees that the assumptions underlying such forward-looking statements are free from errors nor does either accept any responsibility for the future accuracy of the forward-looking statements contained in this press release or the actual occurrence of the forecasted developments. You should not place undue reliance on forward-looking statements, which speak only as of the date of this press release.

Original post:
Bone Therapeutics and Rigenerand sign partnership for cell therapy process development - GlobeNewswire

To Read More: Bone Therapeutics and Rigenerand sign partnership for cell therapy process development – GlobeNewswire
categoriaBone Marrow Stem Cells commentoComments Off on Bone Therapeutics and Rigenerand sign partnership for cell therapy process development – GlobeNewswire | dataJanuary 14th, 2021
Read All

Companies In The Global G-CSF (Granulocyte Colony Stimulating Factors) Market Are Focusing On Mergers And Acquisitions And Strategic Partnerships To…

By daniellenierenberg

LONDON, Jan. 14, 2021 (GLOBE NEWSWIRE) -- New year, new updates! Our reports have been revised for market size, forecasts, and strategies to take on 2021 after the COVID-19 impact: https://www.thebusinessresearchcompany.com/global-market-reports

As per The Business Research Companys research on the global granulocyte colony stimulating factors market, the focus areas for many companies in the G-CSF market has shifted to increasing mergers and acquisitions to acquire more production capabilities. Large prime manufactures are forming joint ventures or buying small or midsized companies to acquire new capabilities or gain access to new markets.

For instance, in June 2019, Pfizer Inc., a US-based pharmaceutical corporation, acquired Array BioPharma Inc. for $48 per share in cash, for a total enterprise value of approximately $11.4 billion. This acquisition strengthens Pfizers innovative biopharmaceutical business and is expected to accelerate its growth trajectory, particularly in the long term. Array BioPharma, a US-based company, is focused on the discovery, development and commercialization of targeted small molecule drugs to treat patients afflicted with cancer.

The G-CSF (Granulocyte Colony Stimulating Factors) market consists of sales of G-CSF drugs and related services. G-CSF-based drugs stimulate the bone marrow to produce granulocytes and stem cells and release them into the bloodstream. G-CSF also stimulates the survival, proliferation, differentiation, and function of neutrophil precursors and mature neutrophils through signal transduction pathways.

Granulocyte colony-stimulating factor based drugs are used to treat several pathophysiological conditions such as neutropenia (febrile neutropenia), acute radiation syndrome, auto-immune diseases and used during stem cell transplantation.

Request For A Sample Of The G-CSF (Granulocyte Colony Stimulating Factors) Market Global Report:

https://www.thebusinessresearchcompany.com/sample.aspx?id=3466&type=smp

The Business Research Companys report titled G-CSF (Granulocyte Colony Stimulating Factors) Global Market Report 2020-30: COVID-19 Growth And Change covers major G-CSF companies, Granulocyte Colony Stimulating Factorsmarket share by company, G-CSF manufacturers, G-CSF market size, and Granulocyte Colony Stimulating Factors market forecasts.

The G-CSF market is concentrated, with a small number of large players dominating the market. The top eight competitors in the market made up to 89.1% of the total market. The market is highly competitive. Companies in the market face completion for new product developments and technological advances. Major players in the market includes, Amgen Inc., Coherus Biosciences Inc., Sandoz (Novartis), Biocon/Mylan, Teva Pharmaceutcals Inc., Chugai Pharma Inc., Intalfarmaco Group, and Pfizer.

Companies in the Granolocyte Colony Stimulating Factors market are increasing their product innovation through strategic collaborations. To sustain in the increasingly competitive market, companies are developing innovative products as well as sharing skills and expertise with other companies. While companies have long collaborated with each other as well as with academic and research institutions in this market by way of partnerships, in or out-licensing deals, this trend has been increasing over recent years.

For instance, in September 2020, Humanigen, a clinical stage biopharmaceutical company collaborated with Lonza and Catalent to expand manufacturing of COVID-19 therapeutic candidate Lenzilumab. Lenzilumab is the patented Humaneered anti-human granulocyte macrophage-colony stimulating factor (GM-CSF) monoclonal antibody with the potential to prevent and treat cytokine storm, which is believed to cause the acute respiratory distress syndrome in severe COVID-19 cases.

G-CSF (Granulocyte Colony Stimulating Factors) Market Global Report 2020-30: COVID-19 Growth And Change is one of a series of new reports from The Business Research Company that provide G-CSF market overviews, analyze and forecast Granulocyte Colony Stimulating Factors market size and growth for the whole market, G-CSF market segments and G-CSF market geographies, trends, market drivers, market restraints, G-CSF (Granulocyte Colony Stimulating Factors) market leading competitors revenues, profiles and market shares in over 1,000 industry reports, covering over 2,500 market segments and 60 geographies. The report also gives in-depth analysis of the impact of COVID-19 on the market.

The reports draw on 150,000 datasets, extensive secondary research, and exclusive insights from interviews with industry leaders. A highly experienced and expert team of analysts and modelers provides market analysis and forecasts. The reports identify top countries and segments for opportunities and strategies based on market trends and leading competitors approaches.

Here Is A List Of Similar Reports By The Business Research Company:

Oncology Drugs Market - Opportunities And Strategies - Global Forecast To 2030

Pharmaceuticals Market - Opportunities And Strategies Global Forecast To 2030

Oral Biologics And Biosimilars Market - Opportunities And Strategies - Global Forecast To 2030

Filgrastim Biosimilars Market - Opportunities And Strategies Global Filgrastim Biosimilars Market Forecast To 2030

Pegfilgrastim Biosimilars Market - Opportunities And Strategies Global Pegfilgrastim Biosimilars Market Forecast To 2030

Interested to know more about The Business Research Company?

The Business Research Company is a market intelligence firm that excels in company, market, and consumer research. Located globally it has specialist consultants in a wide range of industries including manufacturing, healthcare, financial services, chemicals, and technology.

The Worlds Most Comprehensive Database

The Business Research Companys flagship product, Global Market Model, is a market intelligence platform covering various macroeconomic indicators and metrics across 60 geographies and 27 industries. The Global Market Model covers multi-layered datasets which help its users assess supply-demand gaps.

More here:
Companies In The Global G-CSF (Granulocyte Colony Stimulating Factors) Market Are Focusing On Mergers And Acquisitions And Strategic Partnerships To...

To Read More: Companies In The Global G-CSF (Granulocyte Colony Stimulating Factors) Market Are Focusing On Mergers And Acquisitions And Strategic Partnerships To…
categoriaBone Marrow Stem Cells commentoComments Off on Companies In The Global G-CSF (Granulocyte Colony Stimulating Factors) Market Are Focusing On Mergers And Acquisitions And Strategic Partnerships To… | dataJanuary 14th, 2021
Read All

Magenta Therapeutics Highlights Recent Progress and Expected Timing of 2021 Milestones, Including Fo – PharmiWeb.com

By daniellenierenberg

-- MGTA-145: Three Phase 2 clinical trials ongoing or planned to evaluate MGTA-145, a biologic used in combination with plerixafor to mobilize stem cells; the first clinical trial in patients with multiple myeloma (initial data expected in mid-2021); the first clinical trial with matched donors and patients with acute myeloid leukemia (AML), acute lymphocytic lymphoma (ALL) and myelodysplastic syndromes (MDS) (data expected in the second half of 2021); and the first clinical trial in patients with sickle cell disease (trial initiation expected in the second half of 2021)

-- MGTA-117: Completing GLP toxicology and GMP manufacturing of targeted conditioning antibody-drug conjugate, MGTA-117; plans to initiate clinical trial in acute myeloid leukemia and myelodysplastic syndromes in mid-2021

-- Five abstracts from across Magentas pipeline, including four oral presentations, will be presented at the Transplantation and Cellular Therapy (TCT) Annual Meeting, to be held virtually February 8-12, 2021

-- Magenta also has announced the appointment of experienced biotech executive Alison Lawton to its Board of Directors --

-- Ended 2020 with cash reserves of approximately $145 million that are expected to fund the current operating plan into 2023 --

CAMBRIDGE, Mass.--(BUSINESS WIRE)--Magenta Therapeutics (NASDAQ: MGTA), a clinical-stage biotechnology company developing novel medicines to bring the curative power of immune and blood systems reset via stem cell transplant to more patients, today highlighted progress across its stem cell mobilization and collection and targeted conditioning programs, and set expectations for 2021. These updates will be discussed during a webcast presentation at the 39th Annual J.P. Morgan Healthcare Conference on Thursday, January 14 at 7:50 a.m. PST / 10:50 a.m. EST.

Im exceptionally proud of the entire Magenta team who continued to adapt and execute across our portfolio, despite the disruptions that characterized 2020. This past year, we continued to drive our vision to bring immune and blood systems reset to more patients. We announced four pipeline-expanding partnerships, presented clinical and pre-clinical data across our pipeline and secured the capital that we expect can fund our operations into 2023. We continue to advance four ongoing and planned clinical trials that we believe can advance our portfolio in 2021 and, for MGTA-145 specifically, can provide proof-of-concept for stem cell mobilization across multiple diseases and the first clinical data for MGTA-117 targeted conditioning, said Jason Gardner, D. Phil., President and Chief Executive Officer, Magenta. I am also delighted to welcome Alison Lawtons return to Magentas Board of Directors. Alison brings extensive experience and leadership in both regulatory and business arenas, essential as the Magenta portfolio advances. We look forward to building on the momentum generated in 2020 as we relentlessly focus on execution.

Stem Cell Mobilization and Collection

MGTA-145: Three Phase 2 Clinical Trials Ongoing or Planned

Autologous Stem Cell Transplant of Multiple Myeloma Patients. Previously announced ongoing enrollment continues for the Phase 2 investigator-initiated clinical trial of MGTA-145, used in combination with plerixafor, to mobilize and collect stem cells for autologous stem cell transplantation in multiple myeloma patients at Stanford University. Magenta expects that this trial will provide data on stem cell mobilization and collection, durability of engraftment in transplanted patients and disease outcomes, including progression-free survival. Initial data from the study are expected in mid-2021.

Allogeneic Donor Stem Cell Mobilization and Collection for Stem Cell Transplant in AML, ALL and MDS Patients. Through a collaboration with the National Marrow Donor Program/Be The Match, Magenta plans to initiate, within the next several weeks, a Phase 2 clinical trial using MGTA-145 to mobilize and collect stem cells from allogeneic donors for transplant in patients with AML, ALL and MDS. This clinical trial will evaluate stem cell mobilization, collection, cell quality, engraftment and disease outcomes, including Graft-versus-Host Disease (GvHD), which is of particular importance in the allogeneic transplant setting. Initial data from this clinical trial are expected in the second half of 2021.

Sickle Cell Disease Stem Cell Mobilization and Collection; Cell Characterization; Pre-Clinical Gene Modification Model. In collaboration with bluebird bio, Magenta plans to initiate a Phase 2 clinical trial in the second half of 2021 to evaluate MGTA-145, in combination with plerixafor, for the mobilization and collection of stem cells in adults and adolescents with sickle cell disease (SCD). Each party will characterize the cells and Magenta plans to gene-correct the cells and transplant them into established pre-clinical disease models to evaluate engraftment. Data from this clinical trial could provide proof-of-concept for MGTA-145, in combination with plerixafor, as the preferred mobilization regimen for patients with SCD and, more broadly, across all gene therapy applications where safe, reliable and rapid mobilization of quality stem cells for gene-modification and transplant are necessary components.

About MGTA-145

Magenta is developing MGTA-145 in combination with plerixafor to harness complementary mechanisms to mobilize hematopoietic stem cells (HSCs) for collection and transplantation. This combination has the potential to be the preferred mobilization regimen for safe, rapid and reliable mobilization and collection of HSCs and could improve outcomes in autologous and allogeneic stem cell transplantation.

Targeted Conditioning

MGTA-117: Plans to Initiate Phase 1 Clinical Trial in mid-2021; Initial Safety and Pharmacokinetics (PK) data to be assessed in the fourth quarter of 2021

AML and MDS. Magenta is completing its IND-enabling GLP toxicology studies and GMP manufacturing process for MGTA-117, the first antibody-drug conjugate (ADC) candidate from the companys research platform for targeted conditioning of patients prior to receiving a stem cell transplant for blood cancers or gene therapy drug products. Later this month, Magenta expects to complete its initial discussions with the U.S. Food and Drug Administration regarding the design of the first-in-human clinical trial. Magenta expects to file an Investigational New Drug (IND) application and, upon approval, plans to initiate a Phase 1 clinical trial in mid-2021 to assess the safety and PK in the first cohort of patients in the fourth quarter of 2021.

About MGTA-117

MGTA-117, Magentas most advanced conditioning program, is a CD117-targeted antibody engineered for the transplant setting and conjugated to amanitin, a payload in-licensed from Heidelberg Pharma. MGTA-117 is designed to precisely deplete only hematopoietic stem and progenitor cells to clear space in the bone marrow prior to transplant, which supports long-term engraftment and disease outcomes in patients. MGTA-117 has shown high selectivity, potent efficacy, wide safety margins and broad tolerability in non-human primate models.

Cash Guidance

With focused allocation of resources on the Companys clinical trials and advancement of its research platform, the Company now believes its cash position will fund its operations into the first quarter of 2023.

Alison Lawton Background

Ms. Lawton is an executive leader with more than 30 years of experience in biopharma. She served as President and Chief Executive Officer of Kaleido Biosciences, Inc. (Nasdaq: KLDO) from August 2018 to June 2020, and served as President and Chief Operating Officer from December 2017 to August 2018. Prior to joining Kaleido Biosciences, Inc., Ms. Lawton served as Chief Operating Officer at Aura Biosciences, Inc., an oncology therapeutics company, from January 2015 until December 2017, and, prior to joining Aura, served as a consultant to Aura from March 2014 to December 2014. From January 2013 to January 2014, Ms. Lawton served as Chief Operating Officer at OvaScience Inc., a life sciences company. From 2014 to 2017, Ms. Lawton served as a biotech consultant for various companies, including as Chief Operating Officer consultant at X4 Pharmaceuticals. Prior to that, Ms. Lawton spent more than 20 years in various positions of increasing responsibility including Senior VP and General Manager of Biosurgery and prior, Senior VP of Market Access at Genzyme Corporation, a global biopharmaceutical company, and subsequently at Sanofi S.A., also a global biopharmaceutical company, following the acquisition of Genzyme by Sanofi in 2011. Additionally, Ms. Lawton previously served two terms as the industry representative on the U.S. Food & Drug Administrations Cell & Gene Therapy Advisory Committee and as Chairman of the Board of the Regulatory Affairs Professional Society. Ms. Lawton currently serves on the boards of directors of ProQR Therapeutics N.V., X4 Pharmaceuticals Inc. and Aeglea Biotherapeutics Inc. Ms. Lawton previously served on the boards of directors of Magenta Therapeutics, Kaleido Biosciences Inc., Verastem, Inc., CoLucid Pharmaceuticals, Inc. prior to its acquisition by Eli Lilly and Cubist Pharmaceuticals, Inc. prior to its acquisition by Merck & Co. Ms. Lawton holds a B.Sc. in pharmacology from Kings College, University of London.

Upcoming Presentations at the 2021 Transplantation and Cellular Therapy (TCT) Annual Meeting

Title: MGTA-145 / Plerixafor-Mediated HSC Mobilization and Intravenous HDAd5/35++ Vector Injection into Mice Allows for Efficient In Vivo HSC Transduction and Stable Gene Marking in Peripheral Blood Cells (Oral Abstract, #16)Presenting Author: Chang Li, Ph.D., Division of Medical Genetics, Department of Medicine, University of WashingtonDate and Time of Oral Presentation: Monday, February 8, 2021, 2:30 PM CST

Title: MGTA-145, In Combination with Plerixafor in a Phase 1 Clinical Study, Mobilizes Large Numbers of Hematopoietic Stem Cells and a Graft with Potent Immunosuppressive Properties for Autologous and Allogeneic Transplant (Oral Abstract, #35)Presenting Author: Kevin Goncalves, Ph.D., Magenta TherapeuticsDate and Time of Oral Presentation: Tuesday, February 9, 2021, 3:00 PM CST

Title: MGTA-456, A CD34 Expanded Cord Blood Product, Permits Selection of Better HLA Matched Units and Results in Rapid Hematopoietic Recovery, Uniform Engraftment and Reduced Graft-Versus-Host Disease in Adults with High-Risk Hematologic Malignancies (Oral Abstract, #31)Presenting Author: Heather Stefanski, M.D., Ph.D., Assistant Professor, Department of Pediatrics, University of MinnesotaDate and Time of Oral Presentation: Tuesday, February 9, 2021, 3:00 PM CST

Title: A Single Dose of a Novel Anti-Human CD117-Amanitin Antibody Drug Conjugate (ADC) Engineered for a Short Half-life Provides Dual Conditioning and Anti-Leukemia Activity and Extends Survival Compared to Standard of Care in Multiple Pre-clinical Models of Acute Myeloid Leukemia (AML) (Oral Abstract, #53)Presenting Author: Leanne Lanieri, M.S., Magenta TherapeuticsDate and Time of Oral Presentation: Wednesday, February 10, 2021, 3:00 PM CST

Title: Targeted CD45 Antibody Drug Conjugate Enables Full Mismatch Allogeneic Hematopoietic Stem Cell Transplantation in a Murine HSCT Model as a Single Agent (AML) (Poster #242)Lead Author: Sharon Hyzy, M.S., Magenta Therapeutics

About Magenta Therapeutics

Magenta Therapeutics is a clinical-stage biotechnology company developing medicines to bring the curative power of immune system reset through stem cell transplant to more patients with blood cancer, genetic diseases and autoimmune diseases. Magenta is combining leadership in stem cell biology and biotherapeutics development with clinical and regulatory expertise, a unique business model and broad networks in the stem cell transplant world to revolutionize immune reset for more patients.

Magenta is based in Cambridge, Mass. For more information, please visit http://www.magentatx.com.

Follow Magenta on Twitter: @magentatx.

Forward-Looking Statement

This press release may contain forward-looking statements and information within the meaning of The Private Securities Litigation Reform Act of 1995 and other federal securities laws, including express or implied statements regarding Magentas future expectations, plans and prospects, including, without limitation, statements regarding expectations and plans for presenting clinical data, projections regarding our long-term growth, cash, cash equivalents and marketable securities, the anticipated timing of our clinical trials and regulatory filings, the development of our product candidates and advancement of our clinical programs, the timing, progress and success of our collaborations, as well as other statements containing words such as may, will, could, should, expects, intends, plans, anticipates, believes, estimates, predicts, projects, seeks, endeavor, potential, continue or the negative of such words or other similar expressions that can be used to identify forward-looking statements. The express or implied forward-looking statements included in this press release are only predictions and are subject to a number of risks, uncertainties and assumptions, including, without limitation: uncertainties inherent in clinical studies and in the availability and timing of data from ongoing clinical studies; whether interim results from a clinical trial will be predictive of the final results of the trial; whether results from pre-clinical studies or earlier clinical studies will be predictive of the results of future trials; the expected timing of submissions for regulatory approval or review by governmental authorities; regulatory approvals to conduct trials or to market products; whether Magenta's cash resources will be sufficient to fund Magenta's foreseeable and unforeseeable operating expenses and capital expenditure requirements; risks, assumptions and uncertainties regarding the impact of the continuing COVID-19 pandemic on Magentas business, operations, strategy, goals and anticipated timelines, Magentas ongoing and planned pre-clinical activities, Magentas ability to initiate, enroll, conduct or complete ongoing and planned clinical trials, Magentas timelines for regulatory submissions and Magentas financial position; and other risks concerning Magenta's programs and operations set forth under the caption Risk Factors in Magentas Annual Report on Form 10-K filed on March 3, 2020, as updated by Magentas most recent Quarterly Report on Form 10-Q and its other filings with the Securities and Exchange Commission. In light of these risks, uncertainties and assumptions, the forward-looking events and circumstances discussed in this press release may not occur and actual results could differ materially and adversely from those anticipated or implied in the forward-looking statements. You should not rely upon forward-looking statements as predictions of future events. Although Magenta believes that the expectations reflected in the forward-looking statements are reasonable, it cannot guarantee that the future results, levels of activity, performance or events and circumstances reflected in the forward-looking statements will be achieved or occur. Moreover, except as required by law, neither Magenta nor any other person assumes responsibility for the accuracy and completeness of the forward-looking statements included in this press release. Any forward-looking statement included in this press release speaks only as of the date on which it was made. We undertake no obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future events or otherwise, except as required by law.

Magenta Therapeutics:Lyndsey Scull, Director, Corporate Communications, Magenta Therapeutics202-213-7086lscull@magentatx.com

Investor inquiries:Jill Bertotti, W2O Group714-225-6726jbertotti@w2ogroup.com

Media inquiries:Dan Budwick1ABdan@1abmedia.com

Read more from the original source:
Magenta Therapeutics Highlights Recent Progress and Expected Timing of 2021 Milestones, Including Fo - PharmiWeb.com

To Read More: Magenta Therapeutics Highlights Recent Progress and Expected Timing of 2021 Milestones, Including Fo – PharmiWeb.com
categoriaBone Marrow Stem Cells commentoComments Off on Magenta Therapeutics Highlights Recent Progress and Expected Timing of 2021 Milestones, Including Fo – PharmiWeb.com | dataJanuary 14th, 2021
Read All

Cate Dyer of StemExpress is Named Businesswoman of the Year! – PRNewswire

By daniellenierenberg

SACRAMENTO, Calif., Jan. 12, 2021 /PRNewswire/ --The Sacramento Metropolitan Chamber of Commerce announced it will name Cate Dyer, CEO of StemExpress, the "Businesswoman of the Year" at their 126th Annual Business Awards. Since 1895, Metro Chamber has recognized Sacramento's most esteemed players in the business community. The 2021 Annual Dinner and Business Awards will be held virtually for the first time, and Ms. Dyer will receive this extraordinary honor on February 5th, 2021.

Ms. Dyer founded StemExpress in 2010 to accelerate the cure and prevention of significant medical conditions at life-changing speed. StemExpress supports medical research, clinical trials, commercialization of disease specific treatment, cell and gene therapies, precision and regenerative medicine, as well as researchers and clinicians from all around the world who are developing new treatments and cures. StemExpress has a network of healthcare partnerships that includes over 50 hospitals in Europe as well as three (3) US healthcare systems that encompasses 31 hospitals, 35 outpatient facilities and 20 individual practices. StemExpress is currently the nation's leading biospecimen provider of human primary cells, stem cells, human bone marrow, cord blood, peripheral blood, maternal blood, and disease-state products for academic, biotechnological, diagnostic, pharmaceutical and contract research organizations. StemExpress is registered with the U.S. Food and Drug Administration (FDA) and has seven (7) independently owned and operated brick-and mortar cellular clinics across the United States to collect blood, cells and tissue from patients and donors. These clinics include state-of-the-art cell manufacturing laboratories for clinical and research purposes, and CLIA certified/high-complexity diagnostics.

Since inception, StemExpress has been committed to transformative, positive impacts on the community. In line with this commitment, StemExpress immediately recognized the unparalleled challenges the COVID-19 virus presented to its communities, healthcare entities, local businesses, and the economy at large. In a matter of weeks, the company built out a seamless, end-to-end COVID-19 testing solution, all while continuing to grow its core cellular business. This end-to-end solution includes on-line patient registration, scheduling, specimen collection, pop-up site management, and laboratory testing using gold-standard PCR testing at high-volume capacity with rapid turn-around times. StemExpress directly and proudly supports frontline workers, inner city communities, hospitals, skilled nursing facilities, school districts, correctional facilities, utility companies, major league sports, tribal territories and territorial governments, among others. Through public health partnerships, StemExpress has also provided free testing services to vulnerable members of the community, including the uninsured and other under-represented populations.

The 2021 Annual Business Awards will pay tribute to Cate Dyer's extraordinary effort to support Sacramento's communities, businesses, and the heroes who keep our economy moving.

Contact: [emailprotected]

SOURCE StemExpress

https://www.stemexpress.com

Continued here:
Cate Dyer of StemExpress is Named Businesswoman of the Year! - PRNewswire

To Read More: Cate Dyer of StemExpress is Named Businesswoman of the Year! – PRNewswire
categoriaBone Marrow Stem Cells commentoComments Off on Cate Dyer of StemExpress is Named Businesswoman of the Year! – PRNewswire | dataJanuary 14th, 2021
Read All

Errant Gene Therapeutics, LLC (EGT) Pushing Clinical Trial of Potentially Curative Treatment for Beta-Thalassemia and Eventually Sickle Cell Disease -…

By daniellenierenberg

TAMPA, Fla.--(BUSINESS WIRE)--The technology, developed by scientists at Memorial Sloan Kettering Cancer Center ("MSKCC"), headed by Dr. Michel Sadelain and Errant Gene Therapeutics, is a one-time treatment that inserts an encoded gene into a patient's own bone marrow stem cells restoring the production of normal hemoglobin. This technology is known as Thalagen.

In June of 2020, an abstract was released to the European Hematology Association (EHA) noting the results of patients treated in a clinical trial at MSK with the EGT vector. The abstract is based on patients treated with the 2009 EGT-produced vector in the MSK Clinical Trial. The EHA abstract, submitted by Simona Raso, reports that 2 out of 3 Thalassemia patients treated with EGTs vector have sustained dramatic reduction in blood transfusions after 8 and 5 years, respectively. These 3 patients are the only Thalassemic patients treated with Lentiglobin in the US for whom there is an 8-year follow-up. The abstract is publicly available on the European Hematology Associations website at the following address:

https://library.ehaweb.org/eha/2020/eha25th/293982/simona.raso.gene.therapy.with.the.lentiviral.vector.tns9.3.55.produces.html?f=menu%3D14%2Abrowseby%3D8%2Asortby%3D2%2Amedia%3D3%2Aspeaker%3D731017.

The reductions in transfusions for the patients reported in the EHA abstract means a marked reduction in risk and damage created by the chronic transfusions, transferred diseases and iron build-up. One of the patients with significant transfusion deduction used the EGT-produced vector with a mild chemotherapeutic prep-regimen. The abstract does not report any clonal dominance. EGT is the only company with experience in development of a non-myeloablative potential treatment for Thalassemia patients.

EGT produced the worlds first commercial batch of gene therapy vector in 2009. The EGT vector uses the wild-type beta globin gene, the most natural form of the gene.

EGT Founder, Patrick Girondi noted, After some delay, we are happy to be moving forward once again, and the EHA abstract is incredible news for patients. Today, with modern production, enhancers, improved filtration and other prep regimen drugs, we believe that the vector EGT will produce in 2021, honed by 12 years of advancement in the field and using modern transduction enhancers will cure Thalassemia patients and that EGT will make quick headway towards curing Sickle Cell patients using the same therapy.

EGT, a gene therapy pioneers goal is to make medicines which are safe and accessible to patients. EGT believes the EGT vector to be more natural and therefore safer. Additionally, the cost of the treatment is drastically lower than that of competing products. EGT will work with regulatory agencies to continue the trial, formerly sponsored by Memorial Sloan Kettering Cancer Center NCT01639690.

Ronald Capano of Cooleys Anemia International says, This clinical trial means so much to so many and represents the work and dedication of our organization and that of the family and friends of all Thalassemia and Sickle Cell anemia patients, particularly those with compromised organs.

About Errant Gene Therapeutics, LLC

Errant Gene Therapeutics (also known as EGT) is a privately held biopharmaceutical company established in 2003 headquartered in Tampa, Florida. In addition to its ongoing support of gene therapy for beta-thalassemia and Sickle Cell anemia, EGT is a pioneer in the emerging field of epigenetics, and its patented portfolio of small molecule histone deacetylase inhibitors, which change the way cells express their genetic material. EGTs lead compound, CG-1521, targets inflammatory breast cancer and hormone refractory prostate cancer. CG-1521 results have been published in scientific venues.

Excerpt from:
Errant Gene Therapeutics, LLC (EGT) Pushing Clinical Trial of Potentially Curative Treatment for Beta-Thalassemia and Eventually Sickle Cell Disease -...

To Read More: Errant Gene Therapeutics, LLC (EGT) Pushing Clinical Trial of Potentially Curative Treatment for Beta-Thalassemia and Eventually Sickle Cell Disease -…
categoriaBone Marrow Stem Cells commentoComments Off on Errant Gene Therapeutics, LLC (EGT) Pushing Clinical Trial of Potentially Curative Treatment for Beta-Thalassemia and Eventually Sickle Cell Disease -… | dataJanuary 14th, 2021
Read All

Errant Gene Therapeutics, LLC ("EGT") Pushing Clinical Trial of Potentially Curative Treatment for Beta-Thalassemia and Eventually Sickle…

By daniellenierenberg

The technology, developed by scientists at Memorial Sloan Kettering Cancer Center ("MSKCC"), headed by Dr. Michel Sadelain and Errant Gene Therapeutics, is a one-time treatment that inserts an encoded gene into a patient's own bone marrow stem cells restoring the production of normal hemoglobin. This technology is known as Thalagen.

In June of 2020, an abstract was released to the European Hematology Association (EHA) noting the results of patients treated in a clinical trial at MSK with the EGT vector. The abstract is based on patients treated with the 2009 EGT-produced vector in the MSK Clinical Trial. The EHA abstract, submitted by Simona Raso, reports that 2 out of 3 Thalassemia patients treated with EGTs vector have sustained dramatic reduction in blood transfusions after 8 and 5 years, respectively. These 3 patients are the only Thalassemic patients treated with Lentiglobin in the US for whom there is an 8-year follow-up. The abstract is publicly available on the European Hematology Associations website at the following address:

https://library.ehaweb.org/eha/2020/eha25th/293982/simona.raso.gene.therapy.with.the.lentiviral.vector.tns9.3.55.produces.html?f=menu%3D14%2Abrowseby%3D8%2Asortby%3D2%2Amedia%3D3%2Aspeaker%3D731017.

The reductions in transfusions for the patients reported in the EHA abstract means a marked reduction in risk and damage created by the chronic transfusions, transferred diseases and iron build-up. One of the patients with significant transfusion deduction used the EGT-produced vector with a mild chemotherapeutic prep-regimen. The abstract does not report any clonal dominance. EGT is the only company with experience in development of a non-myeloablative potential treatment for Thalassemia patients.

EGT produced the worlds first commercial batch of gene therapy vector in 2009. The EGT vector uses the wild-type beta globin gene, the most natural form of the gene.

EGT Founder, Patrick Girondi noted, "After some delay, we are happy to be moving forward once again, and the EHA abstract is incredible news for patients. Today, with modern production, enhancers, improved filtration and other prep regimen drugs, we believe that the vector EGT will produce in 2021, honed by 12 years of advancement in the field and using modern transduction enhancers will cure Thalassemia patients and that EGT will make quick headway towards curing Sickle Cell patients using the same therapy."

Story continues

EGT, a gene therapy pioneers goal is to make medicines which are safe and accessible to patients. EGT believes the EGT vector to be more natural and therefore safer. Additionally, the cost of the treatment is drastically lower than that of competing products. EGT will work with regulatory agencies to continue the trial, formerly sponsored by Memorial Sloan Kettering Cancer Center NCT01639690.

Ronald Capano of Cooleys Anemia International says, "This clinical trial means so much to so many and represents the work and dedication of our organization and that of the family and friends of all Thalassemia and Sickle Cell anemia patients, particularly those with compromised organs."

About Errant Gene Therapeutics, LLC

Errant Gene Therapeutics (also known as EGT) is a privately held biopharmaceutical company established in 2003 headquartered in Tampa, Florida. In addition to its ongoing support of gene therapy for beta-thalassemia and Sickle Cell anemia, EGT is a pioneer in the emerging field of epigenetics, and its patented portfolio of small molecule histone deacetylase inhibitors, which change the way cells express their genetic material. EGTs lead compound, CG-1521, targets inflammatory breast cancer and hormone refractory prostate cancer. CG-1521 results have been published in scientific venues.

View source version on businesswire.com: https://www.businesswire.com/news/home/20210111005273/en/

Contacts

Patrick Girondi, Founderpgirondi@errantgene.com (312) 441-1800 Office(312) 498-0025 Cell

Jason Feldman, BDOjfeldman@errantgene.com (312) 441-1800 x11

Here is the original post:
Errant Gene Therapeutics, LLC ("EGT") Pushing Clinical Trial of Potentially Curative Treatment for Beta-Thalassemia and Eventually Sickle...

To Read More: Errant Gene Therapeutics, LLC ("EGT") Pushing Clinical Trial of Potentially Curative Treatment for Beta-Thalassemia and Eventually Sickle…
categoriaBone Marrow Stem Cells commentoComments Off on Errant Gene Therapeutics, LLC ("EGT") Pushing Clinical Trial of Potentially Curative Treatment for Beta-Thalassemia and Eventually Sickle… | dataJanuary 14th, 2021
Read All

Information and choices for women and couples at risk of having a baby with sickle cell disease – GOV.UK

By daniellenierenberg

Public Health England (PHE) created this information on behalf of the NHS. In this information, the word we refers to the NHS service that provides screening.

You should read this information if the result of your antenatal screening test for sickle cell and thalassaemia (SCT) shows you are at risk of having a baby with sickle cell disease.

This is because your blood test showed that:

This information will help you and your health professional talk through the next stages of your care during this pregnancy. It should support, but not replace, any discussions you have.

This information explains:

Sickle cell disease is the name for a group of conditions inherited from biological parents that affect the haemoglobin in red blood cells. The most serious type is called sickle cell anaemia.

In the UK, sickle cell disease is most common in people with an African or Caribbean family background, but it is also seen in people with family origins from other parts of the world.

People with sickle cell disease have red blood cells that can become misshapen, which:

Sickle cell disease is a serious lifelong condition, but long-term treatment can help manage many of the symptoms. People with sickle cell disease can lead long, active and fulfilling lives if they manage their condition well and have the right care and support.

The main symptoms of sickle cell disease are:

Other symptoms can include delayed growth, strokes and lung problems.

People with sickle cell disease need specialist care throughout their lives. Daily antibiotics and regular vaccinations can reduce the risk of infections. Blood transfusions can also be given to treat serious cases of anaemia. Some children with sickle cell disease benefit from taking a medicine called hydroxycarbamide which helps prevent many complications.

People with sickle cell disease can do a number of things to manage pain, avoid infections and stay as healthy as possible. Your healthcare professional can give you more advice about living with sickle cell disease.

The only cure for sickle cell disease is a bone marrow (or stem cell) transplant, which replaces damaged blood cells with healthy ones. This is a complicated procedure which is only suitable for people with serious complications from the disease who have a matching donor.

Sickle cell disease is inherited from genes passed on by both biological parents. It is not a result of anything you have or have not done.

If both biological parents are carriers of the haemoglobin gene, known as haemoglobin S, their baby can inherit the haemoglobin S gene from both of them. This is the most common and most serious type of sickle cell disease.

Babies can inherit other types of sickle cell disease if one parent carries the sickle cell gene (haemoglobin S) and the other parent has another haemoglobin gene such as beta thalassaemia or haemoglobin C. Your health professional can discuss this with you, so that you understand exactly what condition your baby could inherit, and how serious it could be.

If you and your childs biological father are both carriers then there is a 1 in 4 (25%) chance your child will inherit sickle cell disease. There is a 2 in 4 (50%) chance that your child will be a carrier, and a 1 in 4 (25%) chance your child will have normal haemoglobin. These chances are the same in every pregnancy when both parents are carriers.

The diagram below shows how genetic inheritance works. Both parents in this diagram are carriers. They are drawn in 2 colours to show they have one usual haemoglobin gene (green) and one unusual gene (blue).

There is a 1 in 4 chance of this baby inheriting the condition, a 2 in 4 chance of them being a carrier and a 1 in 4 chance they will not have the condition.

You can choose if you want a test to find out for sure if your unborn baby has inherited sickle cell disease or not. This is called prenatal diagnosis (PND). It is your decision to have this test or not.

All babies are offered the newborn blood spot test for sickle cell disease whether a PND has been carried out or not. The test is offered when the baby is 5 days old and results received before the baby is 28 days old.

You will be offered either a chorionic villus sampling (CVS) or amniocentesis diagnostic test.

CVS tests are usually done between 11 and 14 weeks of pregnancy but can be done later.

Amniocentesis tests are usually done between 15 and 20 weeks of pregnancy.

There are 3 possible results from a PND test. It can show that your baby:

In rare cases the screening laboratory cannot give a result. If this happens, you will be contacted and offered a repeat PND test.

If the result shows that your baby has normal haemoglobin or is a carrier, then your pregnancy care will continue as usual.

If a PND test shows your baby has inherited sickle cell disease, your healthcare professional will talk to you and offer support. You should also have the chance to talk to a specialist.

You may choose to:

If you decide to continue with the pregnancy the specialist team will:

If you decide to end your pregnancy the specialist team will give you information about what this involves and how you will be supported.

Only you know what is the best decision for your family.

Whatever decision you make, your healthcare professionals will support you.

If you and your partner are planning a pregnancy and are both carriers, there is a 1 in 4 (25%) chance your baby could inherit sickle cell disease. These chances are the same in each and every pregnancy that you have together.

You may discuss the following with your GP, midwife or specialist counsellor:

This can be performed after 11 weeks giving more time to consider your choices if the baby has sickle cell disease. You would need to see your GP or midwife as soon as you know you are pregnant.

PGD is a reproductive treatment used in in-vitro fertilisation (IVF) which involves checking the genes or chromosomes of your embryos for a specific genetic condition. It can help to avoid a pregnancy with a genetic condition for which a couple is at risk. You can ask to see a genetic counsellor to discuss this option.

This means either you or your partner would not be a biological parent of your baby. You can discuss this option with your healthcare professional.

For more information, see:

The NHS Screening Programmes use personal information from your NHS records to invite you for screening at the right time. Public Health England also uses your information to ensure you receive high quality care and to improve the screening programmes. Find out more about how your information is used and protected, and your options.

Read the original here:
Information and choices for women and couples at risk of having a baby with sickle cell disease - GOV.UK

To Read More: Information and choices for women and couples at risk of having a baby with sickle cell disease – GOV.UK
categoriaBone Marrow Stem Cells commentoComments Off on Information and choices for women and couples at risk of having a baby with sickle cell disease – GOV.UK | dataJanuary 14th, 2021
Read All

MorphoSys and Incyte Announce Acceptance by Health Canada of the New Drug Submission for Tafasitamab – PharmiWeb.com

By daniellenierenberg

DGAP-News: MorphoSys AG / Key word(s): Miscellaneous12.01.2021 / 22:00 The issuer is solely responsible for the content of this announcement.

Media Release

MorphoSys and Incyte Announce Acceptance by Health Canada of the New Drug Submission for Tafasitamab

PLANEGG/MUNICH, Germany and MONTREAL, Canada - January 12, 2021 - MorphoSys AG (FSE: MOR; Prime Standard Segment; MDAX & TecDAX; NASDAQ:MOR) and Incyte (NASDAQ: INCY) today announced that Health Canada has accepted the New Drug Submission (NDS) for tafasitamab, an anti-CD19 antibody. The application seeks approval of tafasitamab in combination with lenalidomide, followed by tafasitamab monotherapy, for the treatment of adult patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL), including DLBCL arising from low grade lymphoma, who are not eligible for, or refuse, autologous stem cell transplant (ASCT).

"With the acceptance of the NDS by Health Canada, review of the data can begin, an important step on the path to making tafasitamab available in Canada for use in combination with lenalidomide in eligible patients with relapsed or refractory DLBCL," said Jose Brisebois, Ph.D., Head of Medical Affairs, Incyte Biosciences Canada. "We intend to work closely with Health Canada as we seek to bring this innovative targeted therapeutic option to the clinical community and to appropriate patients for whom few treatment options exist."

"This important milestone moves tafasitamab in combination with lenalidomide into the regulatory review process in Canada, with the potential to significantly advance patient care in the treatment of relapsed or refractory DLBCL," said Nuwan Kurukulasuriya, Ph.D., Senior Vice President Global Medical Affairs, MorphoSys.

The NDS, submitted by Incyte, is based on data from the L-MIND study evaluating tafasitamab in combination with lenalidomide as a treatment for patients with relapsed or refractory DLBCL not eligible for autologous stem cell transplant, and is supported by the RE-MIND study, an observational retrospective study in relapsed or refractory DLBCL.

Incyte has exclusive commercialization rights for tafasitamab outside of the United States and, if approved, Incyte will hold the marketing authorization for tafasitamab in Canada. This NDS marks the second marketing application that Incyte Biosciences Canada has made to Health Canada since establishing operations in Canada in April 2020.

About Diffuse Large B-cell Lymphoma (DLBCL)DLBCL is the most common type of non-Hodgkin lymphoma in adults worldwide1, characterized by rapidly growing masses of malignant B-cells in the lymph nodes, spleen, liver, bone marrow or other organs. It is an aggressive disease with about 40% of patients not responding to initial therapy or relapsing thereafter2, leading to a high medical need for new, effective therapies3, especially for patients who are not eligible for an autologous stem cell transplant in this setting.

About L-MINDThe L-MIND trial is a single arm, open-label, multicenter Phase 2 study (NCT02399085) investigating the combination of tafasitamab and lenalidomide in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL) who have had at least one, but no more than three prior lines of therapy, including an anti-CD20 targeting therapy (e.g. rituximab), who are not eligible for high-dose chemotherapy or refuse subsequent autologous stem cell transplant. The study's primary endpoint is Overall Response Rate (ORR). Secondary outcome measures include Duration of Response (DoR), Progression-Free Survival (PFS) and Overall Survival (OS). In May 2019, the study reached its primary completion.

For more information about L-MIND, visit https://clinicaltrials.gov/ct2/show/NCT02399085

About RE-MINDRE-MIND, an observational retrospective study (NCT04150328), was designed to isolate the contribution of tafasitamab in combination with lenalidomide and to prove the combinatorial effect. The study compares real-world response data of patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL) who received lenalidomide monotherapy with the efficacy outcomes of the tafasitamab-lenalidomide combination, as investigated in MorphoSys' L-MIND trial. RE-MIND collected the efficacy data from 490 relapsed or refractory DLBCL patients in the U.S. and EU. Qualification criteria for matching patients of both studies were pre-specified. As a result, 76 eligible RE-MIND patients were identified and matched 1:1 to 76 of 80 L-MIND patients based on important baseline characteristics. Objective Response Rates (ORR) were validated based on this subset of 76 patients in RE-MIND and L-MIND, respectively. The primary endpoint of RE-MIND was met and shows a statistically significant superior best ORR of the tafasitamab-lenalidomide combination compared to lenalidomide monotherapy.

For more information about RE-MIND, visit https://clinicaltrials.gov/ct2/show/NCT04150328.

About TafasitamabTafasitamab is a humanized Fc-modified cytolytic CD19 targeting monoclonal antibody. In 2010, MorphoSys licensed exclusive worldwide rights to develop and commercialize tafasitamab from Xencor, Inc. Tafasitamab incorporates an XmAb(R) engineered Fc domain, which mediates B-cell lysis through apoptosis and immune effector mechanism including Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC) and Antibody-Dependent Cellular Phagocytosis (ADCP). In January 2020, MorphoSys and Incyte entered into a collaboration and licensing agreement to further develop and commercialize tafasitamab globally. Following approval by the U.S. Food and Drug Administration in July 2020, tafasitamab is being co-commercialized by MorphoSys and Incyte in the United States. Incyte has exclusive commercialization rights outside the United States.

Tafasitamab is being clinically investigated as a therapeutic option in B-cell malignancies in a number of ongoing combination trials.

XmAb(R) is a registered trademark of Xencor, Inc.

The safety and efficacy of tafasitamab is under review and the market authorization in Canada has not yet been obtained.

About MorphoSysMorphoSys (FSE & NASDAQ: MOR) is a commercial-stage biopharmaceutical company dedicated to the discovery, development and commercialization of innovative therapies for patients suffering from cancer and autoimmune diseases. Based on its leading expertise in antibody, protein and peptide technologies, MorphoSys, together with its partners, has developed and contributed to the development of more than 100 product candidates, of which 27 are currently in clinical development. In 2017, Tremfya(R), developed by Janssen Research & Development, LLC and marketed by Janssen Biotech, Inc., for the treatment of plaque psoriasis, became the first drug based on MorphoSys' antibody technology to receive regulatory approval. In July 2020, the U.S. Food and Drug Administration (FDA) granted accelerated approval of MorphoSys' proprietary product Monjuvi(R) (tafasitamab-cxix) in combination with lenalidomide in patients with a certain type of lymphoma. Headquartered near Munich, Germany, the MorphoSys group, including the fully owned U.S. subsidiary MorphoSys US Inc., has more than 600 employees. More information at http://www.morphosys.com or http://www.morphosys-us.com.

Monjuvi(R) is a registered trademark of MorphoSys AG.

Tremfya(R) is a registered trademark of Janssen Biotech, Inc.

About Incyte Incyte is a Wilmington, Delaware-based, global biopharmaceutical company focused on finding solutions for serious unmet medical needs through the discovery, development and commercialization of proprietary therapeutics. For additional information on Incyte, please visit Incyte.com and follow @Incyte.

MorphoSys Forward-looking Statements This communication contains certain forward-looking statements concerning the MorphoSys group of companies, including the expectations regarding Monjuvi's ability to treat patients with relapsed or refractory diffuse large B-cell lymphoma, the further clinical development of tafasitamab-cxix, including ongoing confirmatory trials, additional interactions with regulatory authorities and expectations regarding future regulatory filings and possible additional approvals for tafasitamab-cxix as well as the commercial performance of Monjuvi. The words "anticipate," "believe," "estimate," "expect," "intend," "may," "plan," "predict," "project," "would," "could," "potential," "possible," "hope" and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. The forward-looking statements contained herein represent the judgment of MorphoSys as of the date of this release and involve known and unknown risks and uncertainties, which might cause the actual results, financial condition and liquidity, performance or achievements of MorphoSys, or industry results, to be materially different from any historic or future results, financial conditions and liquidity, performance or achievements expressed or implied by such forward-looking statements. In addition, even if MorphoSys' results, performance, financial condition and liquidity, and the development of the industry in which it operates are consistent with such forward-looking statements, they may not be predictive of results or developments in future periods. Among the factors that may result in differences are MorphoSys' expectations regarding risks and uncertainties related to the impact of the COVID-19 pandemic to MorphoSys' business, operations, strategy, goals and anticipated milestones, including its ongoing and planned research activities, ability to conduct ongoing and planned clinical trials, clinical supply of current or future drug candidates, commercial supply of current or future approved products, and launching, marketing and selling current or future approved products, the global collaboration and license agreement for tafasitamab, the further clinical development of tafasitamab, including ongoing confirmatory trials, and MorphoSys' ability to obtain and maintain requisite regulatory approvals and to enroll patients in its planned clinical trials, additional interactions with regulatory authorities and expectations regarding future regulatory filings and possible additional approvals for tafasitamab-cxix as well as the commercial performance of Monjuvi, MorphoSys' reliance on collaborations with third parties, estimating the commercial potential of its development programs and other risks indicated in the risk factors included in MorphoSys' Annual Report on Form 20-F and other filings with the U.S. Securities and Exchange Commission. Given these uncertainties, the reader is advised not to place any undue reliance on such forward-looking statements. These forward-looking statements speak only as of the date of publication of this document. MorphoSys expressly disclaims any obligation to update any such forward-looking statements in this document to reflect any change in its expectations with regard thereto or any change in events, conditions or circumstances on which any such statement is based or that may affect the likelihood that actual results will differ from those set forth in the forward-looking statements, unless specifically required by law or regulation.

Incyte Forward-looking Statements Except for the historical information set forth herein, the matters set forth in this press release, including statements regarding whether or when tafasitamab might be approved in Canada for the treatment of, and whether or when tafasitamab might provide a successful treatment option for, in combination with lenalidomide, certain patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL), and the L-MIND and RE-MIND clinical trial programs. These forward-looking statements are based on the Company's current expectations and subject to risks and uncertainties that may cause actual results to differ materially, including unanticipated developments in and risks related to: unanticipated delays; further research and development and the results of clinical trials possibly being unsuccessful or insufficient to meet applicable regulatory standards or warrant continued development; the ability to enroll sufficient numbers of subjects in clinical trials; determinations made by Canadian regulatory authorities or other regulatory authorities, including the U.S. FDA; the Company's dependence on its relationships with its collaboration partners; the efficacy or safety of the Company's products and the products of the Company's collaboration partners; the acceptance of the Company's products and the products of the Company's collaboration partners in the marketplace; market competition; sales, marketing, manufacturing and distribution requirements; greater than expected expenses; expenses relating to litigation or strategic activities; and other risks detailed from time to time in the Company's reports filed with the Securities and Exchange Commission, including its Form 10-Q for the quarter ending September 30, 2020. The Company disclaims any intent or obligation to update these forward-looking statements.

Contacts:

References1Sarkozy C, et al. Management of relapsed/refractory DLBCL. Best Practice Research & Clinical Haematology. 2018 31:209-16. doi.org/10.1016/j.beha.2018.07.014.2 Skrabek P, et al. Emerging therapies for the treatment of relapsed or refractory diffuse large B cell lymphoma. Current Oncology. 2019 26(4): 253-265. doi.org/10.3747/co.26.5421.3 Skrabek P, et al. Emerging therapies for the treatment of relapsed or refractory diffuse large B cell lymphoma. Current Oncology. 2019 26(4): 253-265. doi.org/10.3747/co.26.5421.

12.01.2021 Dissemination of a Corporate News, transmitted by DGAP - a service of EQS Group AG.The issuer is solely responsible for the content of this announcement.

The DGAP Distribution Services include Regulatory Announcements, Financial/Corporate News and Press Releases. Archive at http://www.dgap.de

Originally posted here:
MorphoSys and Incyte Announce Acceptance by Health Canada of the New Drug Submission for Tafasitamab - PharmiWeb.com

To Read More: MorphoSys and Incyte Announce Acceptance by Health Canada of the New Drug Submission for Tafasitamab – PharmiWeb.com
categoriaBone Marrow Stem Cells commentoComments Off on MorphoSys and Incyte Announce Acceptance by Health Canada of the New Drug Submission for Tafasitamab – PharmiWeb.com | dataJanuary 14th, 2021
Read All

Warm Up with Homemade Broths and Stocks – The Source Weekly

By daniellenierenberg

Abowl of hot soup or warm broth can take the chill out of a cold winter day. While grocery store shelves are usually stocked with an array of canned and boxed varieties, making a delicious broth for sipping or a stock as a base for other soups and recipes is something you can do while doing other things, such as working on your computer or doing the laundry. Once you get it going, you only have to check on it occasionally until it's done.

According to Food & Wine, the difference between stock and broth is minimal. A stock is to be made with bones in addition to a mirepoix, a mix of carrots, onions and celery. At its most basic, broth is simply any liquid that meat has been cooked in. A broth can also be made with just vegetables. While broth is something you sip, stock is typically used as a base in sauces and soups, providing body rather than flavor.

As author Sally Fallon Morell points out in her book, "Nourishing Broth: An Old-Fashioned Remedy for the Modern World," bone broth has rich dissolves of collagen, cartilage, bone and marrow which give the body the right stuff to rebuild and rejuvenatestuff such as vitamins, minerals, amino acids and healing sugars.

"Deep in the center of bones is marrow, a creamy substance valued by our ancestors for its life-giving, reproduction-enhancing, and brain-building fat and cholesterol. As the seed of blood and stem cells, it's prized as a sacred, energizing, and regenerative food in native cultures all over the world," Morell writes. Of course, most are aware of the benefits of eating plenty of plants in our diet, too.

Whether you're going for bones or carrots or both, the basic technique is the same. Simmer veggie scraps or bones in water for a long, slow time (in the case of straight-up vegetable broth, it can be finished in one hour or less).

Simple Vegetable BrothA swirl of your favorite oil1 onion, chopped2 stalks celery, chopped2 large carrots, choppedLeftover vegetable scraps you have on hand (onion skins, carrot ends, celery leaves, herbs, potato peels, greens, etc.)Several cloves of garlic, smashedFresh parsley/thymePinch of saltTwo bay leavesWater to cover

Saut chopped veggies in a bit of oil or water to soften. Add salt, herbs, bay leaves and water to cover. Bring to almost boiling, then turn heat down to simmer for 45-60 minutes, longer if desired. Strain. Cool.

Basic Bone Broth

Roast bones on baking sheet in hot oven (400 degrees) for 30 minutes. Place bones and vegetables in big pot. Cover with water. Bring to an easy roll then immediately turn heat down. Simmer uncovered, skimming scum as it rises. Cook for 24-72 hours. Turn off overnight, turn back on to simmer next morning. During last 10 minutes of cooking, toss in fresh parsley for added flavor. Let broth cool before straining. Store in fridge up to one week or freezer up to six months.

Pro Tips:

The number one goal for bone broth/stock is to get it gelatinous, meaning it sets up in a solid gel if you put it in the fridge. Bones, such as knucklebones and chicken/pig feet with lots of cartilage help make the broth gelatinous. Include meaty bones, such as short ribs, to add flavor.

Water should just cover the bones.

Never overheat the broth/stock. A roiling boil will break down collagen fibers that won't coagulate when cooled. So heat over medium heat only until the liquid starts to "roll," then turn the heat down until it barely simmers.

Simmer with the lid off to prevent boiling and allow the gradual reduction of the stock and concentration of gelatin.

To avoid cloudiness, skim the scum that rises to the top as the liquid starts to cook and occasionally throughout cooking.

To freeze stock, only fill the container full.

Read the rest here:
Warm Up with Homemade Broths and Stocks - The Source Weekly

To Read More: Warm Up with Homemade Broths and Stocks – The Source Weekly
categoriaBone Marrow Stem Cells commentoComments Off on Warm Up with Homemade Broths and Stocks – The Source Weekly | dataJanuary 14th, 2021
Read All

Gamida Cell to Present Full Data from Phase 3 Study of Omidubicel at TCT, the Combined Transplantation and Cellular Therapy Meetings of ASTCT and…

By daniellenierenberg

CARLSBAD, Calif., Jan. 12, 2021 /PRNewswire/ Today Callaway Golf Company (NYSE: ELY), an industry leader in golf equipment and innovation, announced its new family of Apex Irons and Apex Hybrids. These irons provide exceptional forged performance and A.I.-designed ball speed technologies for a wide range of players. And the hybrids feature new Jailbreak A.I. Velocity Blades for fast ball speeds in versatile, high performance offerings.

Apex 21, Apex Pro 21, and Apex DCB Irons

Apex is widely recognized for establishing the forged distance category, and the Apex 21 Irons deliver an exceptional level of performance and craftsmanship. They're the first forged Apex irons with an A.I-designed Flash Face Cup, for high ball speeds and increased spin robustness across the face. Increased forgiveness comes from a massive Tungsten Energy Core, while the 100% forged body and proprietary urethane microspheres deliver remarkable sound and feel at impact. Callaway has also enhanced the shaping for even better turf interaction.

In the players category, new Apex Pro 21 Irons promote Tour distance and performance for scratch or single-digit handicap golfers. They also utilize an A.I.-designed Flash Face in each iron for high COR's and fast ball speeds, along with extremely soft feel from an all-new forged 1025 hollow body construction and urethane microspheres. There are up to 90 grams of tungsten in the longer irons, the most ever for any Apex model, to improve launch characteristics while simultaneously improving forgiveness.

In the game-improvement category, new Apex DCB Irons extend the forged Apex offering to a wider group of golfers than ever before. They combine the look, feel and performance of a forged players club with the forgiveness of a deep cavity back. The deep cavity back design and enhanced sole width promote easy launch and solid turf interaction out of a variety of lies. The irons are engineered with an A.I.-designed Flash Face Cup, up to 50 grams of tungsten per iron for outstanding launch and forgiveness on off-center hits, and forged feel.

All of these Apex Irons will be available for online pre-order on January 26, and at retail on February 11, at a price of $1,480 for a standard 8-piece steel set ($185 per individual steel iron), and $1,600 for a standard 8-piece graphite set ($200 per individual graphite iron). Combo sets are also available.

Apex 21 and Apex Pro 21 Hybrids

The Apex 21 Hybrids are suited to help a wide range of players. They feature new Jailbreak A.I. Velocity Blades designed to increase vertical stiffness near the sole of the club, promoting more speed low on the face where players often mishit their hybrids. The blades allow the Face Cup to flex on the crown to create better spin rate consistency, and the bars are spread to enhance torsional stiffness, to provide more forgiveness across the face.

Every model and every face in the Apex Hybrids are uniquely designed using advanced A.I. This proven ball speed technology puts an even greater emphasis on center and off-center ball speeds. To create high launch and forgiveness. Callaway has implemented a massive amount of tungsten, and the adjustable hosel helps to optimize loft, trajectory and control.

Apex Pro Hybrids also incorporate Jailbreak A.I. Velocity Blades and an A.I-designed Flash Face. The Forged 455 steel provides strength and flexibility, while the iron-like design and fixed hosel create a look at address that highly skilled players prefer.

These new hybrids will all be available for online pre-order on January 26, and at retail on February 11, at a price of $269.99 each.

The Apex Family

Apex is synonymous with legendary performance and we've created a truly special offering with our new 2021 lineup, said Callaway Sr. VP of R&D, Dr. Alan Hocknell. Now we've implemented A.I.-designed ball speeds, enhanced launch characteristics, and reliable forgiveness to advance this iconic name. There's nothing like our best, and that's Apex.

About Callaway Golf Company Callaway Golf Company (NYSE: ELY) is a premium golf equipment and active lifestyle company with a portfolio of global brands, including Callaway Golf, Odyssey, OGIO, TravisMathew and Jack Wolfskin. Through an unwavering commitment to innovation, Callaway manufactures and sells premium golf clubs, golf balls, golf and lifestyle bags, golf and lifestyle apparel and other accessories. For more information please visitwww.callawaygolf.com, http://www.odysseygolf.com,www.ogio.com, http://www.travismathew.com,andwww.jack-wolfskin.com.

MEDIA CONTACTS: Jeff NewtonCallaway Golf Company[emailprotected]

View original content to download multimedia:http://www.prnewswire.com/news-releases/callaway-golf-announces-new-apex-irons-and-hybrids-301205740.html

SOURCE Callaway Golf

Go here to see the original:
Gamida Cell to Present Full Data from Phase 3 Study of Omidubicel at TCT, the Combined Transplantation and Cellular Therapy Meetings of ASTCT and...

To Read More: Gamida Cell to Present Full Data from Phase 3 Study of Omidubicel at TCT, the Combined Transplantation and Cellular Therapy Meetings of ASTCT and…
categoriaBone Marrow Stem Cells commentoComments Off on Gamida Cell to Present Full Data from Phase 3 Study of Omidubicel at TCT, the Combined Transplantation and Cellular Therapy Meetings of ASTCT and… | dataJanuary 12th, 2021
Read All

Bone Marrow Processing Systems Market Recent developments in the competitive landscape forecast 2018 2025 – SoccerNurds

By daniellenierenberg

Bone marrow aspiration and trephine biopsy are usually performed on the back of the hipbone, or posterior iliac crest. An aspirate can also be obtained from the sternum (breastbone). For the sternal aspirate, the patient lies on their back, with a pillow under the shoulder to raise the chest. A trephine biopsy should never be performed on the sternum, due to the risk of injury to blood vessels, lungs or the heart.

The need to selectively isolate and concentrate selective cells, such as mononuclear cells, allogeneic cancer cells, T cells and others, is driving the market. Over 30,000 bone marrow transplants occur every year. The explosive growth of stem cells therapies represents the largest growth opportunity for bone marrow processing systems.

Get PDF Sample for the Report:https://www.trendsmarketresearch.com/report/sample/3374

Europe and North America spearheaded the market as of 2018, by contributing over 74.0% to the overall revenue. Majority of stem cell transplants are conducted in Europe, and it is one of the major factors contributing to the lucrative share in the cell harvesting system market.

In 2018, North America dominated the research landscape as more than 54.0% of stem cell clinical trials were conducted in this region. The region also accounts for the second largest number of stem cell transplantation, which is further driving the demand for harvesting in the region.

You can Buy This Report from Here @https://www.trendsmarketresearch.com/checkout/3374/Single

Asia Pacific is anticipated to witness lucrative growth over the forecast period, owing to rising incidence of chronic diseases and increasing demand for stem cell transplantation along with stem cell-based therapy. Japan and China are the biggest markets for harvesting systems in Asia Pacific. Emerging countries such as Mexico, South Korea, and South Africa are also expected to report lucrative growth over the forecast period. Growing investment by government bodies on stem cell-based research and increase in aging population can be attributed to the increasing demand for these therapies in these countries.

Major players operating in the global bone marrow processing systems market are ThermoGenesis (Cesca Therapeutics inc.), RegenMed Systems Inc., MK Alliance Inc., Fresenius Kabi AG, Harvest Technologies (Terumo BCT), Arthrex, Inc. and others.

To Get Discount:https://www.trendsmarketresearch.com/report/discount/3374

Read the rest here:
Bone Marrow Processing Systems Market Recent developments in the competitive landscape forecast 2018 2025 - SoccerNurds

To Read More: Bone Marrow Processing Systems Market Recent developments in the competitive landscape forecast 2018 2025 – SoccerNurds
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Processing Systems Market Recent developments in the competitive landscape forecast 2018 2025 – SoccerNurds | dataJanuary 12th, 2021
Read All

Four promising COVID-19 therapies being tested at nearby UVA – Rappahannock News

By daniellenierenberg

Over the past nine months, clinical trials conducted at the University of Virginia have led to new treatments for patients fighting COVID-19 and new tools for health care workers saving lives around the commonwealth and world.

We have been able to learn very quickly, and try new things that have changed the way we approach treatment for this virus, said Dr. Kyle Enfield, a professor and physician in pulmonary and critical care medicine who has helped to coordinate clinical trials at UVA Health.

We are seeing clinical research happen at a speed that has never been seen before, both for drug therapies and vaccine development, Dr. Linda Duska, associate dean for clinical research in the School of Medicine, added. Weve also seen funding and the regulatory apparatus really adapt to this pandemic, while maintaining rigorous standards.

Four clinical trials of COVID-19 drug therapies either underway or completed at UVA, and their implications for patients and for the ongoing pandemic, are summarized below.

A single-site trial based at UVA, the study examines the use of convalescent plasma derived from blood donated by recovered COVID-19 patients to treat patients hospitalized with the virus, but not yet in intensive care. In theory, the antibodies in the plasma will bind to virus cells, blocking them from harming healthy cells.

Convalescent plasma therapy has been around for more than 100 years, and there has been a lot of interest in it since COVID-19 appeared, said Dr. Jeff Sturek, who specializes in pulmonary and critical care medicine and is the principal investigator for the trial. We wanted to bring this therapy to UVA, to contribute to the development of the field and to offer our patients as many options as possible.

The trial was approved in April and patients were enrolled at UVA from May to August. Researchers are now in the process of analyzing results, which look promising.

UVA is part of a multisite Adaptive COVID-19 Treatment Trial, or ACTT, testing the antiviral drug remdesivir in adults hospitalized with COVID-19.

Results from the first part of the trial found that the drug sped recovery time in patients with advanced cases of COVID-19, prompting the U.S. Food and Drug Administration to issue an emergency use authorization for remdesivir. It was the first drug authorized to treat COVID-19.

The trial is now in its third phase; it began with comparing remdesivir to a placebo drug, and then progressed to pairing different drugs with remdesivir, to see which combination was most effective.

The trial was designed to be iterative, to allow us to continue to adapt the study as we learn more about the drug, Duska said. That lets us continually improve treatment without having to go through a complete restart.

Another multisite trial that includes UVA is investigating if infusion of the mesenchymal stromal cell remestemcel-L, a type of stem cell derived from bone marrow, can increase survival rates among COVID-19 patients experiencing acute respiratory distress syndrome.

The cells have been shown to migrate to the lungs when inflammation occurs and release anti-inflammatory factors that can reduce cytokines secreted by the immune systems. High levels of cytokine production have been associated with severe illness and death among COVID-19 patients.

These adult bone marrow stem cells have been used to treat a variety of inflammatory diseases, which means they have already been through early safety trials and we could move more quickly into a larger trial, said Sturek, also the principal investigator for this trial. We hope that the cells can turn down inflammation in the lungs and help the lungs repair themselves, especially for critical ill patients on ventilators.

The trial is halfway through its enrollment process, with a target of enrolling 300 patients. It has already passed initial safety checks with the National Institutes of Healths Data Safety Monitoring Board.

In this multisite trial, researchers are working to determine if monoclonal antibodies made by the drug company Regeneron Pharmaceuticals can prevent COVID-19 infection among people who have been exposed by someone in their household, but have not yet developed the disease. The trial is testing the same antibody cocktail given to President Trump when he was hospitalized with COVID-19, though with a different use.

In this case, the antibodies are intended to prevent people from getting sick if they have a household member with COVID, Enfield said. So far, UVA has done a good job with recruitment, which is particularly tricky in this case as you have to find people who have been exposed to COVID in their household, but who do not yet have COVID.

UVA is recruiting 40 participants for the study, each of whom will receive four injections of either the antibodies or a placebo. Participants must have been exposed to COVID-19 by someone in their household within the previous 96 hours and continue to live with that person for a month.

Its been a rapid process, and a testament to the multidisciplinary team involved, from infectious disease clinicians and researchers to cell therapy, pulmonary critical care and several other departments, Sturek said. Its been all-hands-on-deck.

{Sign up for the C-19 Daily Update, a free newsletter delivered to your email inbox every morning.}

Read this article:
Four promising COVID-19 therapies being tested at nearby UVA - Rappahannock News

To Read More: Four promising COVID-19 therapies being tested at nearby UVA – Rappahannock News
categoriaBone Marrow Stem Cells commentoComments Off on Four promising COVID-19 therapies being tested at nearby UVA – Rappahannock News | dataJanuary 12th, 2021
Read All

Orchard Therapeutics Announces 2021 Corporate Priorities Supporting the Build-out of its Commercial Business in Hematopoietic Stem Cell (HSC) Gene…

By daniellenierenberg

Preparations on Track for First Half 2021 Commercial Launch of Libmeldy (OTL-200), the First Approved Product for Metachromatic Leukodystrophy (MLD) in the EU

Filing Strategy for OTL-200 Biologics License Application (BLA) in MLD in the U.S. to be Communicated by Mid-2021 Following Additional Regulatory Interactions

Marketing Authorization Application (MAA) Filing for OTL-103 in Wiskott-Aldrich Syndrome (WAS) on Track for Year End 2021 in the EU; Followed by BLA Filing in 2022 in the U.S.

New Clinical Data for OTL-203 (for MPS-I) and OTL-201 (for MPS-IIIA) Accepted for Oral Presentation at February 2021 WORLD Symposium; Preclinical Data from Research Programs in Larger Indications Expected in 2021

$192M in Cash and Investments to Support Strategic Execution into the First Half of 2022

BOSTONandLONDON, Jan. 11, 2021 (GLOBE NEWSWIRE) -- Orchard Therapeutics (Nasdaq: ORTX), a global gene therapy leader, today outlined the companys 2021 strategic priorities in advance of its attendance at the virtual 39thAnnual J.P. Morgan Healthcare Conference. These priorities support the companys plan of building a successful commercial business in HSC gene therapy and advancing its portfolio of investigational medicines for high-value, high-need indications.

In a year that challenged how we live and work, Im extremely proud of Orchards achievements in 2020, said Bobby Gaspar, M.D., Ph.D., chief executive officer, Orchard Therapeutics. Our accomplishments were a direct result of the drive and innovation that fuels our commitment to bring our potentially life-saving HSC therapies to patients, including Libmeldy, which is the first product approved for the treatment of eligible patients with early-onset MLD in the EU. With the HSC approach to gene therapy as our scientific foundation, we are focused on the capabilities that can deliver our therapies on a global commercial scale and support our ability to also treat larger indications over time. It has been a privilege to be a pioneer in changing the way medicine is practiced in these conditions, and we look forward to another year of continued execution and scientific progress.

2021 Corporate PrioritiesOrchard has outlined the following key corporate objectives and expected milestones for 2021:

In preparation for a European launch, Orchard has put in place the commercial infrastructure to support Libmeldy as well as future product launches. The company is qualifying five treatment centers in the UK, Germany, Italy, France and the Netherlands with specialized expertise in transplant and disease area knowledge. In addition, the company expects to leverage cross-border and treatment abroad reimbursement pathways in both Europe and markets such as the Middle East and Turkey. Activities are also underway to drive timely MLD patient identification and access, including disease awareness, genetic testing and newborn screening studies, which have started or are on track to initiate in five countries in 2021.

The company also provided an update concerning the impact of the COVID-19 pandemic on certain development activities. These include restrictions to laboratory access at Orchard and third-party service providers, which is impacting the timeline to develop a specific functional potency assay for OTL-103 in WAS, as requested by the FDA. As a result, the company now expects to file a BLA for OTL-103 in the U.S. in 2022. Orchard is utilizing the benefits provided under OTL-103s RMAT designation and plans to continue interacting with the FDA in 2021 to confirm the data package for the BLA filing. In addition, with several of the follow-up visits associated with the companys active clinical trials impacted by COVID-19 travel restrictions and other trial site limitations, Orchard is using alternative data collection approaches to capture the necessary data to support future regulatory filings.

Frank Thomas, president and chief operating officer continued, Starting 2021 with a clear set of strategic priorities is crucial to our ability to effectively manage the business while fueling Orchards continued growth. Our launch preparations for Libmeldy not only mark our evolution towards a fully integrated company but establish a common manufacturing, commercial and operational infrastructure to support multiple future potential products. This work is complemented by our exciting proof-of-concept and research pipeline that we look forward to advancing internally or in partnership.

Key 2020 AchievementsOrchards key 2020 achievements are highlighted below.

Cash GuidanceThe company ended 2020 with approximately $192 million of cash and investments. The company expects that its cash, cash equivalents and marketable securities as of December 31, 2020 will enable the funding of its currently anticipated operating expenses and capital expenditure requirements into the first half of 2022. This excludes the $50 million expected to be available under the companys credit facility and any non-dilutive capital received from potential future partnerships or priority review vouchers.

About Libmeldy / OTL-200

Libmeldy (autologous CD34+ cell enriched population that contains hematopoietic stem and progenitor cells (HSPC) transduced ex vivo using a lentiviral vector encoding the human arylsulfatase-A (ARSA) gene), also known as OTL-200, has been approved by the European Commission for the treatment of MLD in eligible early-onset patients characterized by biallelic mutations in the ARSA gene leading to a reduction of the ARSA enzymatic activity in children with i) late infantile or early juvenile forms, without clinical manifestations of the disease, or ii) the early juvenile form, with early clinical manifestations of the disease, who still have the ability to walk independently and before the onset of cognitive decline. Libmeldy is the first therapy approved for eligible patients with early-onset MLD.

The most common adverse reaction attributed to treatment with Libmeldy was the occurrence of anti-ARSA antibodies. In addition to the risks associated with the gene therapy, treatment with Libmeldy is preceded by other medical interventions, namely bone marrow harvest or peripheral blood mobilization and apheresis, followed by myeloablative conditioning, which carry their own risks. During the clinical studies, the safety profiles of these interventions were consistent with their known safety and tolerability.

For more information about Libmeldy, please see the Summary of Product Characteristics (SmPC) available on the EMA website.

Libmeldy is not approved outside of the European Union, UK, Iceland, Liechtenstein and Norway. OTL-200 is an investigational therapy in the US.

Libmeldy was developed in partnership with the San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget) in Milan, Italy.

About Orchard

Orchard Therapeuticsis a global gene therapy leader dedicated to transforming the lives of people affected by rare diseases through the development of innovative, potentially curative gene therapies. Ourex vivoautologous gene therapy approach harnesses the power of genetically modified blood stem cells and seeks to correct the underlying cause of disease in a single administration. In 2018, Orchard acquired GSKs rare disease gene therapy portfolio, which originated from a pioneering collaboration between GSK and theSan Raffaele Telethon Institute for Gene Therapy inMilan, Italy. Orchard now has one of the deepest and most advanced gene therapy product candidate pipelines in the industry spanning multiple therapeutic areas where the disease burden on children, families and caregivers is immense and current treatment options are limited or do not exist.

Orchard has its global headquarters inLondonandU.S.headquarters inBoston. For more information, please visitwww.orchard-tx.com, and follow us on TwitterandLinkedIn.

Availability of Other Information About Orchard

Investors and others should note that Orchard communicates with its investors and the public using the company website (www.orchard-tx.com), the investor relations website (ir.orchard-tx.com), and on social media (TwitterandLinkedIn), including but not limited to investor presentations and investor fact sheets,U.S. Securities and Exchange Commissionfilings, press releases, public conference calls and webcasts. The information that Orchard posts on these channels and websites could be deemed to be material information. As a result, Orchard encourages investors, the media, and others interested in Orchard to review the information that is posted on these channels, including the investor relations website, on a regular basis. This list of channels may be updated from time to time on Orchards investor relations website and may include additional social media channels. The contents of Orchards website or these channels, or any other website that may be accessed from its website or these channels, shall not be deemed incorporated by reference in any filing under the Securities Act of 1933.

Forward-Looking Statements

This press release contains certain forward-looking statements about Orchards strategy, future plans and prospects, which are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements include express or implied statements relating to, among other things, Orchards business strategy and goals, including its plans and expectations for the commercialization of Libmeldy, the therapeutic potential of Libmeldy (OTL-200) and Orchards product candidates, including the product candidates referred to in this release, Orchards expectations regarding its ongoing preclinical and clinical trials, including the timing of enrollment for clinical trials and release of additional preclinical and clinical data, the likelihood that data from clinical trials will be positive and support further clinical development and regulatory approval of Orchard's product candidates, and Orchards financial condition and cash runway into the first half of 2022. These statements are neither promises nor guarantees and are subject to a variety of risks and uncertainties, many of which are beyond Orchards control, which could cause actual results to differ materially from those contemplated in these forward-looking statements. In particular, these risks and uncertainties include, without limitation: the risk that prior results, such as signals of safety, activity or durability of effect, observed from clinical trials of Libmeldy will not continue or be repeated in our ongoing or planned clinical trials of Libmeldy, will be insufficient to support regulatory submissions or marketing approval in the US or to maintain marketing approval in the EU, or that long-term adverse safety findings may be discovered; the risk that any one or more of Orchards product candidates, including the product candidates referred to in this release, will not be approved, successfully developed or commercialized; the risk of cessation or delay of any of Orchards ongoing or planned clinical trials; the risk that Orchard may not successfully recruit or enroll a sufficient number of patients for its clinical trials; the risk that prior results, such as signals of safety, activity or durability of effect, observed from preclinical studies or clinical trials will not be replicated or will not continue in ongoing or future studies or trials involving Orchards product candidates; the delay of any of Orchards regulatory submissions; the failure to obtain marketing approval from the applicable regulatory authorities for any of Orchards product candidates or the receipt of restricted marketing approvals; the inability or risk of delays in Orchards ability to commercialize its product candidates, if approved, or Libmeldy, including the risk that Orchard may not secure adequate pricing or reimbursement to support continued development or commercialization of Libmeldy; the risk that the market opportunity for Libmeldy, or any of Orchards product candidates, may be lower than estimated; and the severity of the impact of the COVID-19 pandemic on Orchards business, including on clinical development, its supply chain and commercial programs. Given these uncertainties, the reader is advised not to place any undue reliance on such forward-looking statements.

Other risks and uncertainties faced by Orchard include those identified under the heading "Risk Factors" in Orchards quarterly report on Form 10-Q for the quarter endedSeptember 30, 2020, as filed with theU.S. Securities and Exchange Commission(SEC), as well as subsequent filings and reports filed with theSEC. The forward-looking statements contained in this press release reflect Orchards views as of the date hereof, and Orchard does not assume and specifically disclaims any obligation to publicly update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as may be required by law.

Contacts

InvestorsRenee LeckDirector, Investor Relations+1 862-242-0764Renee.Leck@orchard-tx.com

MediaChristine HarrisonVice President, Corporate Affairs+1 202-415-0137media@orchard-tx.com

Go here to see the original:
Orchard Therapeutics Announces 2021 Corporate Priorities Supporting the Build-out of its Commercial Business in Hematopoietic Stem Cell (HSC) Gene...

To Read More: Orchard Therapeutics Announces 2021 Corporate Priorities Supporting the Build-out of its Commercial Business in Hematopoietic Stem Cell (HSC) Gene…
categoriaBone Marrow Stem Cells commentoComments Off on Orchard Therapeutics Announces 2021 Corporate Priorities Supporting the Build-out of its Commercial Business in Hematopoietic Stem Cell (HSC) Gene… | dataJanuary 12th, 2021
Read All

Brave West Lothian women discovers back pain is actually deadly blood cancer – Daily Record

By daniellenierenberg

A brave West Lothian mum was floored after doctors found her sciatica pain was actually a symptom of a deadly blood cancer which had hollowed out her bones.

Judith Green had suffered from back pain on several occasions over the last 10 years but was repeatedly told it was likely due to a trapped nerve and would resolve itself.

The 42-year-olds pain became too much in June 2019 when she woke screaming in the middle of the night before repeatedly vomiting blood over the next two days.

She took herself to St Johns Hospital in Livingston where doctors soon made the shock diagnosis of myeloma cancer which had left her kidneys functioning at only 15 per cent.

The mum-of-two was told that the condition - which normally affects men over the age of 60 - was incurable but doctors hoped to extend her life through various treatments.

She underwent a stem cell transplant with her own cells in January 2019 but was heartbroken when medics revealed the cancer had returned just seven months later.

The former waitress has vowed to keep fighting so she can meet her future grandchildren and is urging people to register as stem cell donors in a bid to save more lives.

She explained: I remember thinking but its just a sore back. I had never heard of myeloma before I got diagnosed with it.

I 100 per cent thought I was going to hospital that day because I had sciatica. With myeloma, it eats away at your bone marrow.

My ribs were sore but I brushed it off thinking it was my new bra digging in. When my back hurt, I thought it was the new car seat causing it.

But in reality, I had almost no bone marrow. It was 90 per cent cancerous cells. I just made excuse after excuse but looking back I now realise that it was all part of it.

My kidneys were only working at 15 per cent, which explained why I was so thirsty.

Doctors immediately started Judith on a course of chemotherapy and steroids before attempting to harvest some of her remaining bone marrow.

The first attempt was unsuccessful but the next managed to gather enough cells to provide at least three more transplants.

The cells were then deep frozen before being transplanted back into the mum-of-two in January this year - a move which they hoped would buy her at least 18 more months.

But a blood test in August revealed that the myeloma had returned a lot quicker than expected meaning she now has to undergo a second transplant from a mystery donor.

They then discovered Judith had sepsis and MRSA and having no immune system and blood cancer, Judith said she was the sickest she had ever been.

She continued: They were hoping I would make it 18 months post transplant but they discovered in August that the cancer had returned and it had only worked for seven months.

Thats when we found out that they wouldnt be able to use my own cells again because it wasnt worth putting me through all that again.

So now Ill be going back on chemo in January and getting a transplant from a worldwide donor. Thankfully the transplant team has already found a match for me on the system.

Judith continued: Im really lucky that theres a match out there for me. But there are so many others, who are a lot sicker than I am, that dont have theirs yet.

The reason I wanted to speak out is to raise awareness of myeloma and stem cell donation.

You really could be giving someone a second chance at life by spitting into a tube. Back in the day it was a bone marrow transplant but now its stem cells.

Its no different from giving blood. I would just ask everyone to go have a look into it and see if they want to or are able to register.

Judith, who lives with her two sons and partner Steven (46), added: I may not be able to do some of the things I did before like go to the cinema with the boys but Im still here.

And I hope to be here long enough to see my grandkids. I know Ill keep fighting after that to see them grow up then. But for now, its just taking each day as it comes.

To find out more about stem cell donation for those aged under 30 visit https://www.anthonynolan.org/.

Those over 30 can visit https://www.dkms.org.uk/en.

Continued here:
Brave West Lothian women discovers back pain is actually deadly blood cancer - Daily Record

To Read More: Brave West Lothian women discovers back pain is actually deadly blood cancer – Daily Record
categoriaBone Marrow Stem Cells commentoComments Off on Brave West Lothian women discovers back pain is actually deadly blood cancer – Daily Record | dataJanuary 12th, 2021
Read All

Page 11234..1020..»