Page 10«..9101112..2030..»

Dystrogen Therapeutics Announces That Treatment With Dystrophin Expressing Chimeric (DEC) Cells Improves Cardiac Function in Preclinical Duchenne’s…

By daniellenierenberg

CHICAGO, Nov.5, 2019 /PRNewswire/ -- Scientists from Dystrogen Therapeutics Corp. published data supporting cardioprotective effects of the Company's therapy for muscular dystrophy disorders. Cardiomyopathy is the most devastating cause of morbidity and mortality in Duchenne Muscular Dystrophy (DMD) patients and affects 30% of patients by 14years of age and 50% of patients by 18years of age. Heart failure in these patients is the result of cardiac myocyte death and fibrosis, leading to both diastolic and systolic dysfunction. Dystrogen Therapeutics Corp has developed an engineered chimeric cell therapy which has been previously shown to restore muscle function in pre-clinical studies. For Duchenne's muscular dystrophy, the company has developed dystrophin expressing chimeras "DECs." Using the company's proprietary technology, DECs are created by an ex vivo fusion of allogeneic human myoblast from a healthy donor with autologous human myoblast received from DMD patient. DECs have been shown to maintain the ability to express normal dystrophin protein in previously published pre-clinical studies. The new study published in the October 15th, 2019 online edition of the journal Stem Cell Reports and Reviewsconfirmed the protective effect of DEC on cardiac function after intraosseous delivery shown by increased values of both ejection fraction and fractional shortening, which at 90days revealed a rebound effect when compared to the vehicle injected controls and mice receiving not-chimeric cell therapy. Moreover, these functional improvements correlated with restoration of dystrophin expression in cardiac muscle at 90days post-DEC treatment.

"These findings are potentially significant for the treatment of DMD," said Dr. Maria Siemionow, MD, PhD Dystrogen Therapeutics Corp chief scientific officer and the therapy's inventor. "This study establishes DEC as a promising new option for cardiac protection and potential amelioration of DMD related cardiac pathology."

"These data add to the growing body of literature supporting the potential of our chimeric cell platform to restore systemic muscle function, with less potential side effects then gene therapy-based approaches," said Dr. Kris Siemionow, MD, PhD Dystrogen Therapeutics Corp CEO. "We are very pleased to have these data published in a highly relevant journal for the field and look forward to further exploring this opportunity."

About Dystrogen Therapeutics

Dystrogen Therapeutics is a clinical-stage life sciences company committed to developing personalized therapies for rare diseases. The company has developed a chimeric cell therapy platform. Dystrophin expressing chimeras "DEC" are based on ex vivo fusion of allogeneic human myoblast derived from donors with autologous human myoblast received from the DMD patient, where chimeric cells maintain the ability to express normal dystrophin protein. DEC cells increase the number/pool of normal myoblasts and reduce inflammation. DEC cells induce replacement of fibrotic tissue, thus significantly improving muscle strength and function in DMD pre-clinical studies. The therapy minimizes immune response effects and the need for immunosuppression. This new approach will be based on delivery and restoration of dystrophin in affected muscles preventing the premature loss of mobility and early mortality of DMD patients. The company is planning on enrolling patients for its DEC chimeric cell therapy Duchenne muscular dystrophy trial. This therapy offers a unique advantage and allows the patient's body and immune system to accept the chimeric cells without rejection. Pre-clinical results have demonstrated that increased dystrophin levels correlate with improved functional outcomes. First clinical results from DEC therapy are expected in late 2020.

Contact: info@dystrogen.com

View original content:http://www.prnewswire.com/news-releases/dystrogen-therapeutics-announces-that-treatment-with-dystrophin-expressing-chimeric-dec-cells-improves-cardiac-function-in-preclinical-duchennes-study-300951205.html

SOURCE Dystrogen Therapeutics Corp

Visit link:
Dystrogen Therapeutics Announces That Treatment With Dystrophin Expressing Chimeric (DEC) Cells Improves Cardiac Function in Preclinical Duchenne's...

To Read More: Dystrogen Therapeutics Announces That Treatment With Dystrophin Expressing Chimeric (DEC) Cells Improves Cardiac Function in Preclinical Duchenne’s…
categoriaCardiac Stem Cells commentoComments Off on Dystrogen Therapeutics Announces That Treatment With Dystrophin Expressing Chimeric (DEC) Cells Improves Cardiac Function in Preclinical Duchenne’s… | dataNovember 5th, 2019
Read All

Future Outlook: Autologous Stem Cell Based Therapies Market Prediction and Analysis Offered By New Study 2019 2025: Leading Key Players: JCR…

By daniellenierenberg

A Qualitative Research Study done by Crystal Market Research on Global Autologous Stem Cell Based Therapies Market report provides current and future trends are outlined to determine the overall attractiveness and to single out profitable Autologous Stem Cell Based Therapies trends to gain a stronger position in Industry anticipated to reflect a positive growth trend in Upcoming years as well. Global Autologous Stem Cell Based Therapies market provide in depth coverage from various aspects and scenario to future trends and opportunities. This Autologous Stem Cell Based Therapies report provide latest customized and syndicated research along with consulting services.

Get FREE Research Sample Copy @https://www.crystalmarketresearch.com/report-sample/HC022437

The detailed study of global Autologous Stem Cell Based Therapies market report portraying the current landscape and important projections for market forecast, growth trend. This report is an whole guide for new aspirant to understand the trending values and Autologous Stem Cell Based Therapies future trend. The report arranged dependent on a top to bottom market examination with contributions from industry expert.

Continue

Get Discount of This Precious Report @ https://www.crystalmarketresearch.com/check-discount/HC022437

Autologous Stem Cell Based Therapies report studies market share and growth opportunity covering regions:

Get Customised Research Report: https://www.crystalmarketresearch.com/customization/HC022437

Contacts Us:

Judy | 304 South Jones Blvd, Suite 1896

Las Vegas NV 89107

United States

E-mail: sales@crystalmarketresearch.com | Ph: +1-888-213-4282

Excerpt from:
Future Outlook: Autologous Stem Cell Based Therapies Market Prediction and Analysis Offered By New Study 2019 2025: Leading Key Players: JCR...

To Read More: Future Outlook: Autologous Stem Cell Based Therapies Market Prediction and Analysis Offered By New Study 2019 2025: Leading Key Players: JCR…
categoriaCardiac Stem Cells commentoComments Off on Future Outlook: Autologous Stem Cell Based Therapies Market Prediction and Analysis Offered By New Study 2019 2025: Leading Key Players: JCR… | dataNovember 5th, 2019
Read All

Head-To-Head Analysis: BioRestorative Therapies (OTCMKTS:BRTX) versus Livongo Health (OTCMKTS:LVGO) – Casper Courier

By daniellenierenberg

BioRestorative Therapies (OTCMKTS:BRTX) and Livongo Health (NASDAQ:LVGO) are both medical companies, but which is the better investment? We will contrast the two companies based on the strength of their dividends, risk, analyst recommendations, valuation, institutional ownership, profitability and earnings.

Profitability

This table compares BioRestorative Therapies and Livongo Healths net margins, return on equity and return on assets.

Analyst Recommendations

This is a breakdown of recent ratings for BioRestorative Therapies and Livongo Health, as provided by MarketBeat.

Livongo Health has a consensus price target of $44.20, suggesting a potential upside of 87.93%. Given Livongo Healths higher probable upside, analysts clearly believe Livongo Health is more favorable than BioRestorative Therapies.

Institutional & Insider Ownership

0.1% of Livongo Health shares are owned by institutional investors. 17.9% of BioRestorative Therapies shares are owned by insiders. Strong institutional ownership is an indication that large money managers, endowments and hedge funds believe a stock will outperform the market over the long term.

Valuation and Earnings

This table compares BioRestorative Therapies and Livongo Healths top-line revenue, earnings per share (EPS) and valuation.

BioRestorative Therapies has higher earnings, but lower revenue than Livongo Health.

Summary

Livongo Health beats BioRestorative Therapies on 7 of the 9 factors compared between the two stocks.

BioRestorative Therapies Company Profile

BioRestorative Therapies, Inc. develops therapeutic products and medical therapies using cell and tissue protocols, primarily involving adult stem cells for the treatment of disc/spine disease and metabolic disorders. The company's lead cell therapy candidate is the BRTX-100, which focuses on providing non-surgical treatment for protruding and bulging lumbar discs in patients suffering from chronic lumbar disc disease. It also develops the ThermoStem program, a pre-clinical program for the treatment of metabolic diseases, such as type 2 diabetes, obesity, hypertension, and other metabolic disorders, as well as cardiac deficiencies. In addition, the company provides curved needle device, a needle system with a curved inner cannula that allows access to difficult-to-locate regions for the delivery or removal of fluids and other substances. Further, it offers skin care products under the Stem Pearls brand name. BioRestorative Therapies, Inc. has a research and development agreement with Rohto Pharmaceutical Co., Ltd.; and a research agreement with Pfizer, Inc. and the University of Pennsylvania. The company was formerly known as Stem Cell Assurance, Inc. and changed its name to BioRestorative Therapies, Inc. in August 2011. BioRestorative Therapies, Inc. was incorporated in 1997 and is headquartered in Melville, New York.

Livongo Health Company Profile

Livongo Health, Inc. provides an integrated suite of solutions for the healthcare industry in North America. It solutions promote health behavior change based on real-time data capture supported by intuitive devices and insights driven by data science. The company offers a platform that provides cellular-connected devices, supplies, informed coaching, data science-enabled insights, and facilitates access to medications. Its products include Livongo for Diabetes, Livongo for Hypertension, Livongo for Prediabetes and Weight Management, and Livongo for Behavioral Health by myStrength. The company was formerly known as EosHealth, Inc. and changed its name to Livongo Health, Inc. in 2014. Livongo Health, Inc. was incorporated in 2008 and is headquartered in Mountain View, California.

Read more:
Head-To-Head Analysis: BioRestorative Therapies (OTCMKTS:BRTX) versus Livongo Health (OTCMKTS:LVGO) - Casper Courier

To Read More: Head-To-Head Analysis: BioRestorative Therapies (OTCMKTS:BRTX) versus Livongo Health (OTCMKTS:LVGO) – Casper Courier
categoriaCardiac Stem Cells commentoComments Off on Head-To-Head Analysis: BioRestorative Therapies (OTCMKTS:BRTX) versus Livongo Health (OTCMKTS:LVGO) – Casper Courier | dataNovember 5th, 2019
Read All

Latest Released Report on Autologous Stem Cell Based Therapies Market to Witness the Highest Growth Globally in Coming Years: Osiris…

By daniellenierenberg

Crystal Market Research has recently updated its massive report catalog by adding a fresh study titled Global Autologous Stem Cell Based Therapies Market Report 2019. The Autologous Stem Cell Based Therapies market report presents an analytical study that is defined based on the various parameters and trends followed by the global Autologous Stem Cell Based Therapies market. The report contains the assessment of futuristic growth based on past growth models and currently accompanied by the market. Extensive information on factors entered and market growth forecasts are also included in the market.

Global Autologous Stem Cell Based Therapies Market report provides an in-depth study of industry size, share, trend, opportunities within the latest research report added by CMR. The report consists of market sizes and forecast for the period from 2019 to 2025, and compounded annual growth rate (CAGR%) measured for individual segments and regional markets, competitive landscape of main market players, vital analysis of market dynamics and profiling of key providers collaborating in the Autologous Stem Cell Based Therapies market.

Continue

Get overview of FREE sample report @ https://www.crystalmarketresearch.com/report-sample/HC022437

Read more or inquiry about Autologous Stem Cell Based Therapies research @ https://www.crystalmarketresearch.com/send-an-enquiry/HC022437

Access discount related details @ https://www.crystalmarketresearch.com/check-discount/HC022437

Contacts Us:

Judy | 304 South Jones Blvd, Suite 1896

Las Vegas NV 89107

United States

E-mail:

sales@crystalmarketresearch.com

| Ph: +1-888-213-4282

Excerpt from:
Latest Released Report on Autologous Stem Cell Based Therapies Market to Witness the Highest Growth Globally in Coming Years: Osiris...

To Read More: Latest Released Report on Autologous Stem Cell Based Therapies Market to Witness the Highest Growth Globally in Coming Years: Osiris…
categoriaCardiac Stem Cells commentoComments Off on Latest Released Report on Autologous Stem Cell Based Therapies Market to Witness the Highest Growth Globally in Coming Years: Osiris… | dataNovember 3rd, 2019
Read All

InGeneron Announces Publication of Preclinical Results for its Cell Therapy in Chronic Ischemic Heart Failure – Business Wire

By daniellenierenberg

HOUSTON--(BUSINESS WIRE)--InGeneron, Inc., a regenerative medicine and cell therapy company, today announced the publication of promising results in developing a novel treatment for chronic ischemic heart failure using its regenerative cell therapy platform.

A newly-released research paper published in the World Journal of Stem Cells provides missing pieces of evidence for a fundamental change in the treatment of chronic ischemic heart failure, showing efficacy and safety of a novel stem cell treatment in cardiology. Patients with heart failure as a consequence of previous myocardial infarction are a large and currently underserved patient population, due to the lack of regenerative treatment options.

The publication, performed in a pig model for the study of chronic myocardial infarction, evidences for the first time that regeneration of the damaged tissue in the heart - responsible for chronic ischemic heart failure - is possible. Specifically, the study demonstrates that InGenerons fresh, uncultured, autologous adipose derived regenerative cells (UA-ADRCs) - isolated and administered at point of care - provide a significant improvement of cardiac circulatory parameters in chronic ischemic heart failure. The results show that the mean cardiac output increased by 37%, the mean left ventricular mass increased by 29% and the mean relative amount of scar volume of the left ventricular wall decreased by 21% six weeks after treatment with the cells. All results were statistically significant compared to the control group. Notably, on average only 18 gram of adipose tissue were required to recover the averaged 18 million cells injected to achieve the reported effects.

The findings represent an important step in research, laying the foundation for new frontiers on cardiac regeneration of chronic ischemic heart failure in human patients. While previous studies indicated that stem cells (including UA-ADRCs) might be of benefit in acute myocardial infarction, this benchmark had previously not been achieved by studies of autologous stem cells for chronic heart failure following myocardial infarction.

Haenel et al., the authors of the publication, attribute the success of the study to two important improvements over previous attempts. The primary success factor was the use of InGeneron's technology for isolating the stem cells at point of care. In this regard, a recent publication by Winnier et al. (PLoS One 2019;14:e0221457) demonstrated that the technology used (TransposeRT / Matrase; InGeneron, Inc., Houston, TX, USA), provides the highest published number of living, uncultured, autologous, adult pluripotent stem cells recovered per gram of adipose tissue.

The second differentiator to all previously published results for myocardial regeneration is the application method to the damaged heart. Haenel et al. administered the stem cells retrograde through the hearts venous system, precisely to the area in need of regeneration. This retrograde injection technique, combined with a temporary blockage of the coronary vein at the level of a previous arterial occlusion, allowed the stem cells to overcome the endothelial barrier and thereby created a homogenous distribution of injected cells throughout the damaged myocardial tissue.

Dr. Eckhard Alt, Executive Chair of InGeneron, Inc. and senior author of the study, commented "this therapy, which may be performed in an ambulatory setting without the known risks associated with major anticoagulation, delivers the stem cells in about 15 minutes and involves a total treatment time of approximately 3 hours. This gives hope that millions of patients suffering from chronic ischemic heart failure might benefit from rebuilding the heart with their own stem cells".

The study, entitled "Unmodified autologous stem cells at point of care for chronic myocardial infarction", by Haenel et al. was published in the World Journal of Stem Cells on October 26, 2019.

While the company is advancing its ongoing clinical programs for key orthopedic conditions, additional studies are designed to validate the clinical potential of stem cells in patients with coronary artery disease and chronic heart failure.

About InGeneron

InGeneron is a clinical stage cell therapy company enabling novel, safe and evidence-based regenerative medicine therapies. Our purpose is to set new therapeutic standards by developing treatments that unlock the healing potential of each patients own regenerative cells processed at the point of care for same-day application. We focus on helping patients who are impacted by musculoskeletal indications and are pursuing research to extend the application of our platform technology to additional treatment areas.

http://www.ingeneron.com

View post:
InGeneron Announces Publication of Preclinical Results for its Cell Therapy in Chronic Ischemic Heart Failure - Business Wire

To Read More: InGeneron Announces Publication of Preclinical Results for its Cell Therapy in Chronic Ischemic Heart Failure – Business Wire
categoriaCardiac Stem Cells commentoComments Off on InGeneron Announces Publication of Preclinical Results for its Cell Therapy in Chronic Ischemic Heart Failure – Business Wire | dataNovember 1st, 2019
Read All

Global Cell Based Assay & High Content Screening Markets, 2020-2024 | Forecast by Application with Executive & Consultant Guides -…

By daniellenierenberg

DUBLIN--(BUSINESS WIRE)--The "Cell Based Assay & High Content Screening Markets Market Forecasts by Application, With Executive and Consultant Guides and including Customized Forecasting and Analysis 2020 to 2024" report has been added to ResearchAndMarkets.com's offering.

Cell Based Assays are a mainstay of drug development and scientific research, but growth is now accelerating as new immuno-oncology markets create unprecedented investment in the race to cure cancer. On top of this new technology is allowing Cell Based Assays to be used to measure any aspect of cell function. This market just keeps on growing with no end in sight. The workhorse of the pharmaceutical industry is becoming a central player in biotechnology.

This is a complex area but this readable report will bring the entire management team up to speed, on both the technology and the opportunity.

The technology is moving faster than the market. Genomics and Immunology are playing a role too. Find opportunities and pitfalls. Understand growth expectations and the ultimate potential market size.

Key Topics Covered

1. Introduction and Market Definition

1.1 What are Cell Based Assays?

1.2 Clinical Trial Failures

1.2.1 Immuno-oncology Plays a Leading Role in Cell Based Assays

1.3 Market Definition

1.3.1 Market Size

1.3.2 Currency

1.3.3 Years

1.4 Methodology

1.4.1 Authors

1.4.2 Sources

1.5 U.S. Medical Market and Pharmaceutical Research Spending - Perspective

1.5.1 U.S. Expenditures for Pharmaceutical Research

2. Cell Based Assays - Guide to Technology

2.1 Cell Cultures

2.1.1 Cell Lines

2.1.2 Primary Cells

2.1.3 Stem Cells

2.1.3.1 iPSC's - The Special Case

2.2 Cell Assays

2.3 Cell Viability Assays

2.3 Cell Proliferation Assays

2.4 Cytotoxicity Assays

2.5 Cell Senescence Assays

2.6 Apoptosis

2.7 Autophagy

2.8 Necrosis

2.9 Oxidative Stress

2.10 2D vs. 3D

2.11 Signalling Pathways, GPCR

2.12 Immune Regulation & Inhibition

2.13 Reporter Gene Technology

2.14 CBA Design & Development

2.15 Cell Based Assays - The Takeaway

3. Industry Overview

3.1 Players in a Dynamic Market

3.1.1 Academic Research Lab

3.1.2 Contract Research Organization

3.1.3 Genomic Instrumentation Supplier

3.1.5 Cell Line and Reagent Supplier

3.1.6 Pharmaceutical Company

3.1.7 Audit Body

3.1.8 Certification Body

4. Market Trends

4.1 Factors Driving Growth

4.1.1 Candidate Growth

4.1.2 Immuno-oncology

4.1.3 Genomic Blizzard

4.1.4 Technology Convergence

4.1.5 The Insurance Effect

4.2 Factors Limiting Growth

4.2.1 CBA Development Challenges

4.2.2 Instrument Integration

4.2.3 Protocols

4.3 Technology Development

4.3.1 3D Assays

4.3.2 Automation

4.3.3 Software

4.3.4 Primary Cells

4.3.5 Signalling and Reporter Genes

4.3.6 The Next Five Years

5. Cell Based Assays Recent Developments

5.1 Recent Developments - Importance and How to Use This Section

5.1.1 Importance of These Developments

5.1.2 How to Use This Section

6. Profiles of Key Cell Based Assay Companies

7. Global Market Size

7.1 Cell Based Assay Global Market Size by Region with Charts

7.2 Cell Based Assays Global Market Size by Type with Charts

8. Global Market by User Type

8.1 Pharmaceutical Market

8.1.1 Pharmaceutical Market by Region with Chart

8.2 Basic Research Market

8.2.1 Basic Research Market by Region with Chart

8.3 Industrial/Cosmetic Market

8.3.1 Industrial/Cosmetic Market by Region with Chart

9. Cell Based Assay by Product Class

9.1 Instrument Market

9.1.1 Instrument Market by Region with Chart

9.2 Reagent Market

9.2.1 Reagent Market by Region with Chart

9.3 Services Market

9.3.1 Services Market by Region with Chart

9.4 Software Market

9.4.1 Software Market by Region with Chart

10. Appendices

10.1 FDA Cancer Drug Approvals by Year

10.2 Clinical Trials Started 2010 to 2016

10.3 Share of Pharma R&D by Country

Companies Mentioned

For more information about this report visit https://www.researchandmarkets.com/r/atsea9

See the original post here:
Global Cell Based Assay & High Content Screening Markets, 2020-2024 | Forecast by Application with Executive & Consultant Guides -...

To Read More: Global Cell Based Assay & High Content Screening Markets, 2020-2024 | Forecast by Application with Executive & Consultant Guides -…
categoriaCardiac Stem Cells commentoComments Off on Global Cell Based Assay & High Content Screening Markets, 2020-2024 | Forecast by Application with Executive & Consultant Guides -… | dataOctober 30th, 2019
Read All

The Stars in Our Brains – Duke Department of Neurology

By daniellenierenberg

More than 10 million people worldwideabout 1 percent of people over age 60live with Parkinsons disease. There are treatments that can help control symptoms, but there is no cure.

The hallmark of the disease is the death of certain brain cellsneurons that produce dopamine. Most Parkinsons researchers have focused on studying these cells. But what if the disease starts elsewhere? What if it involves not only neurons but other cells that interact with neurons? In particular, what role is played by astrocytes, star-shaped cells that nurture and help form the connections, or synapses, between the neurons?

(This article by Angela Spivey, with photos by Alex Boerner, originally appeared in Duke Medical Alumni News. Read that story here.)

Thats the question a team of Duke researchers led by Cagla Eroglu, PhD, associate professor of cell biology and neurobiology, is exploring, thanks to a $1 million grant from the Chan Zuckerberg Initiative.

Sitting in her office, Eroglu picks up an orange plastic object that resembles a piece of coral, its tentacles branching this way and that. This is a model of a mouse astrocyte, she says. It can interact with 100,000 synapses at the same time. Astrocytes, she explains, infiltrate the brain, touching everything within their reach. They communicate with its synapses, regulating blood flow and metabolism.

Astrocytes from the Greek astron, meaning "star"have traditionally been thought of as support cells. But that thinking is changing. Since astrocytes are in such close contact and continuously communicating with synapses, we are beginning to appreciate that they are also fundamentally involved in regulating brain function, Eroglu says.

Collaborating with Albert La Spada, MD, PhD, Eroglu found that a certain gene known to be important in Parkinsons is more highly expressed in astrocytes than in neurons. And when the researchers mutated that gene in astrocytes, they saw some intriguing changes. This still-unpublished work laid the foundation for their proposal to the Chan Zuckerberg Initiative, which is bringing together experimental scientists from divergent fields to take a fresh look at the causes of neurodegenerative disorders.

There are vanishingly few papers that have delved into how astrocytes are contributing to the Parkinsons disease process, says La Spada, professor of neurology and vice chair of research for the Department of Neurology. This is an area that's been under-studied, and I think that the results that we're generating are suggesting that it deserves more attention.In addition to his long experience studying neurodegenerative diseases, La Spada brings expertise in growing astrocytes from induced pluripotent stem cells (IPSCs). That process starts by growing skin cells from a skin biopsy from a Parkinsons patient. Then we use what's called a reprogramming protocol to basically revert them to stem cells that are pluripotent. Once you create the IPSCs, you could use them to make any cell you wanta muscle cell or a cardiac cell or a neuron or an astrocyte, La Spada says. The beauty of this is, it comes from the patient who has the disease of interest."

His labs expertise will only grow because of the Chan Zuckerberg Initiative, which has formed focus groups for grantees around various areas, such as stem cell modeling, CRISPR gene-editing technology, bioinformatic analysis of data sets, and more. We're meeting other researchers from around the world who are doing really unique things. It's a chance for us all to compare notes, and I think this will accelerate all of our endeavors, La Spada says.

Rounding out the team is Nicole Calakos, MD, PhD, a scientist and clinician who treats patients with movement disorders, including Parkinsons. Calakos says that when she first met Eroglu, she was intrigued by her idea that since astrocytes are involved in sculpting the language of neurons, perhaps they play a role in the events that can lead to disease.

Everybody has been fixated like a magnet on the idea that the problem is the neuron that's dying, Calakos says. Cagla said, Hey, let's think outside of the box of that dead cell. Lets consider whether astrocytes are like the soil around a plant, providing the nutrition, and allowing it to form roots, and maybe that is whats broken. Why aren't we even thinking about this critical piece of the brain?

Eroglu puts it this way: Maybe the problem is loss of connections between neurons, even before they die.

Calakos says that part of the reason she came to Duke was the close intermingling of physicians and bench scientists. Because of how the community is at Duke, Cagla and I had been exchanging ideas and collaborating over the years, she says. The Chan Zuckerberg grant is an opportunity to get together as a formal team. I think it's really forward-thinking of them to have teams of basic scientists and practicing physicians all talking to each other.

The Chan Zuckerberg Initiative was launched in December 2015 by Mark Zuckerberg, founder and CEO of Facebook, and Priscilla Chan, a pediatrician and founder and CEO of The Primary School in East Palo Alto. In addition to her clinical insight, Calakos brings expertise in electrophysiologyreal-time recording and observation of electrical signals coming from brain cells. We can listen to the language of synapses, she says. They speak in electrical currents,which we can measure. Eroglu believes that by learning all they can about how astrocytes support synaptic development and health in the normal brain, they may find ways to stop neurodegenerative diseases like Parkinsons.

We are seeing aging as a part of development, Eroglu says. If your house is built on a strong base, then it might last longer. Whereas, if you build it in another way, it may be there for a while, but gradually start to break down.

This doesn't mean that we are destined to have neurodegeneration and we can't do anything. We may be more predisposed to get the disease, but we may not get it if we have done something else in our lives that helps strengthen our brain. I strongly believe that there will be ways to stop neurodegeneration.We will find a way to strengthen the brain connections. If we can figure out the weakest link, then we could concentrate on solving that.

More:
The Stars in Our Brains - Duke Department of Neurology

To Read More: The Stars in Our Brains – Duke Department of Neurology
categoriaCardiac Stem Cells commentoComments Off on The Stars in Our Brains – Duke Department of Neurology | dataOctober 30th, 2019
Read All

Michael Schumacher: Has the racing champ recovered? Stem Cell Therapy doctor unknowingly confirmed Schumi’s procedure? – EconoTimes

By daniellenierenberg

Michael Schumacher was said to have been admitted to a hospital in Paris the past September. Based on the news, he was transported to the medical facility by helicopter, and he was there to receive the procedure called Stem Cell Therapy.

According to The Telegraph, Schumachers latest treatment is giving his family and friends the big hope that his condition would improve. The treatment is one of the latest procedures that was developed to help people suffering from various illnesses. It uses stem cells to treat patients and help prevent disease or certain health conditions.

Did Schumi really try the Stem Cell Therapy for his condition?

Michael Schumachers health is a closely guarded matter so no knows exactly how he is doing after coming out of his coma more than five years ago. It can be recalled that he sustained a grave head injury after hitting a rock while skiing in the Alps in 2013.

Thus, it is not surprising if details of this alleged stem cell procedure are also being kept a secret by his family. They would not even confirm if he was really hospitalized for the treatment but a nurse supposedly said that Schumi is now conscious after the procedure. La Parisien via Mirror reported that an unnamed nurse claimed that the F1 legend showed signs of recovery.

"Yes he is in my service," she said. "And I can assure you that he is conscious."

Doctor may have confirmed the therapy

It was said that Dr. Philippe Menasche, a French cardiac surgeon, performed the procedure on Michael Schumacher and when the news broke out for the first time, he slammed the people who were alleging that his treatment on Schumi was only experimental.

As per Australias 7News, the doctor hit out the media for covering the treatment on Michael Schumacher and giving out false information. When the media called his advanced procedures experimental, he refuted the claims and said that he dont perform miracles.

"My team and I are not doing an experiment, an abominable term that is not in line with a serious medical view, he told the Italian newspaper La Republica. In any case, Menasch reaction was meant to defend his stem cell therapy treatment however, he seemed to have unknowingly confirmed that he treated Michael Schumacher as well.

See more here:
Michael Schumacher: Has the racing champ recovered? Stem Cell Therapy doctor unknowingly confirmed Schumi's procedure? - EconoTimes

To Read More: Michael Schumacher: Has the racing champ recovered? Stem Cell Therapy doctor unknowingly confirmed Schumi’s procedure? – EconoTimes
categoriaCardiac Stem Cells commentoComments Off on Michael Schumacher: Has the racing champ recovered? Stem Cell Therapy doctor unknowingly confirmed Schumi’s procedure? – EconoTimes | dataOctober 28th, 2019
Read All

Plant of the week: Plant thought to boost milk production now used for skin eruptions – Cyprus Mail

By daniellenierenberg

What Are Cookies

As is common practice with almost all professional websites, our site uses cookies, which are tiny files that are downloaded to your device, to improve your experience.

This document describes what information they gather, how we use it and why we sometimes need to store these cookies. We will also share how you can prevent these cookies from being stored however this may downgrade or break certain elements of the sites functionality.

How We Use Cookies

We use cookies for a variety of reasons detailed below. Unfortunately, in most cases there are no industry standard options for disabling cookies without completely disabling the functionality and features they add to the site. It is recommended that you leave on all cookies if you are not sure whether you need them or not, in case they are used to provide a service that you use.

The types of cookies used on this website can be classified into one of three categories:

Disabling Cookies

You can prevent the setting of cookies by adjusting the settings on your browser (see your browsers Help option on how to do this). Be aware that disabling cookies may affect the functionality of this and many other websites that you visit. Therefore, it is recommended that you do not disable cookies.

Third Party Cookies

In some special cases we also use cookies provided by trusted third parties. Our site uses [Google Analytics] which is one of the most widespread and trusted analytics solutions on the web for helping us to understand how you use the site and ways that we can improve your experience. These cookies may track things such as how long you spend on the site and the pages that you visit so that we can continue to produce engaging content. For more information on Google Analytics cookies, see the official Google Analytics page.

Google Analytics

Google Analytics is Googles analytics tool that helps our website to understand how visitors engage with their properties. It may use a set of cookies to collect information and report website usage statistics without personally identifying individual visitors to Google. The main cookie used by Google Analytics is the __ga cookie.

In addition to reporting website usage statistics, Google Analytics can also be used, together with some of the advertising cookies, to help show more relevant ads on Google properties (like Google Search) and across the web and to measure interactions with the ads Google shows.

Learn more about Analytics cookies and privacy information.

Use of IP Addresses.An IP address is a numeric code that identifies your device on the Internet. We might use your IP address and browser type to help analyze usage patterns and diagnose problems on this website and to improve the service we offer to you. But without additional information your IP address does not identify you as an individual.

Your Choice.When you accessed this website, our cookies were sent to your web browser and stored on your device. By using our website,you agree to the use of cookies and similar technologies.

More Information

Hopefully the above information has clarified things for you. As it was previously mentioned, if you are not sure whether you want to allow the cookies or not, it is usually safer to leave cookies enabled in case it interacts with one of the features you use on our site. However, if you are still looking for more information, then feel free to contact us via email at [emailprotected]

The rest is here:
Plant of the week: Plant thought to boost milk production now used for skin eruptions - Cyprus Mail

To Read More: Plant of the week: Plant thought to boost milk production now used for skin eruptions – Cyprus Mail
categoriaCardiac Stem Cells commentoComments Off on Plant of the week: Plant thought to boost milk production now used for skin eruptions – Cyprus Mail | dataOctober 25th, 2019
Read All

Regenerative Medicine Market Industry Outlook, Growth Prospects and Key Opportunities – Health News Office

By daniellenierenberg

Regenerative Medicine Market: Snapshot

Regenerative medicine is a part of translational research in the fields of molecular biology and tissue engineering. This type of medicine involves replacing and regenerating human cells, organs, and tissues with the help of specific processes. Doing this may involve a partial or complete reengineering of human cells so that they start to function normally.

Order Brochure for more Detailed Information @https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1889

Regenerative medicine also involves the attempts to grow tissues and organs in a laboratory environment, wherein they can be put in a body that cannot heal a particular part. Such implants are mainly preferred to be derived from the patients own tissues and cells, particularly stem cells. Looking at the promising nature of stem cells to heal and regenerative various parts of the body, this field is certainly expected to see a bright future. Doing this can help avoid opting for organ donation, thus saving costs. Some healthcare centers might showcase a shortage of organ donations, and this is where tissues regenerated using patients own cells are highly helpful.

There are several source materials from which regeneration can be facilitated. Extracellular matrix materials are commonly used source substances all over the globe. They are mainly used for reconstructive surgery, chronic wound healing, and orthopedic surgeries. In recent times, these materials have also been used in heart surgeries, specifically aimed at repairing damaged portions.

Cells derived from the umbilical cord also have the potential to be used as source material for bringing about regeneration in a patient. A vast research has also been conducted in this context. Treatment of diabetes, organ failure, and other chronic diseases is highly possible by using cord blood cells. Apart from these cells, Whartons jelly and cord lining have also been shortlisted as possible sources for mesenchymal stem cells. Extensive research has conducted to study how these cells can be used to treat lung diseases, lung injury, leukemia, liver diseases, diabetes, and immunity-based disorders, among others.

Global Regenerative Medicine Market: Overview

The global market for regenerative medicine market is expected to grow at a significant pace throughout the forecast period. The rising preference of patients for personalized medicines and the advancements in technology are estimated to accelerate the growth of the global regenerative medicine market in the next few years. As a result, this market is likely to witness a healthy growth and attract a large number of players in the next few years. The development of novel regenerative medicine is estimated to benefit the key players and supplement the markets growth in the near future.

Request TOC for Facts & Tables @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=1889

Global Regenerative Medicine Market: Key Trends

The rising prevalence of chronic diseases and the rising focus on cell therapy products are the key factors that are estimated to fuel the growth of the global regenerative medicine market in the next few years. In addition, the increasing funding by government bodies and development of new and innovative products are anticipated to supplement the growth of the overall market in the next few years.

On the flip side, the ethical challenges in the stem cell research are likely to restrict the growth of the global regenerative medicine market throughout the forecast period. In addition, the stringent regulatory rules and regulations are predicted to impact the approvals of new products, thus hampering the growth of the overall market in the near future.

Global Regenerative Medicine Market: Market Potential

The growing demand for organ transplantation across the globe is anticipated to boost the demand for regenerative medicines in the next few years. In addition, the rapid growth in the geriatric population and the significant rise in the global healthcare expenditure is predicted to encourage the growth of the market. The presence of a strong pipeline is likely to contribute towards the markets growth in the near future.

Global Regenerative Medicine Market: Regional Outlook

In the past few years, North America led the global regenerative medicine market and is likely to remain in the topmost position throughout the forecast period. This region is expected to account for a massive share of the global market, owing to the rising prevalence of cancer, cardiac diseases, and autoimmunity. In addition, the rising demand for regenerative medicines from the U.S. and the rising government funding are some of the other key aspects that are likely to fuel the growth of the North America market in the near future.

Furthermore, Asia Pacific is expected to register a substantial growth rate in the next few years. The high growth of this region can be attributed to the availability of funding for research and the development of research centers. In addition, the increasing contribution from India, China, and Japan is likely to supplement the growth of the market in the near future.

Avail the Discount on this Report @https://www.tmrresearch.com/sample/sample?flag=D&rep_id=1889

Global Regenerative Medicine Market: Competitive Analysis

The global market for regenerative medicines is extremely fragmented and competitive in nature, thanks to the presence of a large number of players operating in it. In order to gain a competitive edge in the global market, the key players in the market are focusing on technological developments and research and development activities. In addition, the rising number of mergers and acquisitions and collaborations is likely to benefit the prominent players in the market and encourage the overall growth in the next few years.

Some of the key players operating in the regenerative medicine market across the globe are Vericel Corporation, Japan Tissue Engineering Co., Ltd., Stryker Corporation, Acelity L.P. Inc. (KCI Licensing), Organogenesis Inc., Medtronic PLC, Cook Biotech Incorporated, Osiris Therapeutics, Inc., Integra Lifesciences Corporation, and Nuvasive, Inc. A large number of players are anticipated to enter the global market throughout the forecast period.

Go here to read the rest:
Regenerative Medicine Market Industry Outlook, Growth Prospects and Key Opportunities - Health News Office

To Read More: Regenerative Medicine Market Industry Outlook, Growth Prospects and Key Opportunities – Health News Office
categoriaCardiac Stem Cells commentoComments Off on Regenerative Medicine Market Industry Outlook, Growth Prospects and Key Opportunities – Health News Office | dataOctober 25th, 2019
Read All

BioRestorative Therapies Receives A Second Patent in Australia For Its Metabolic Program – Yahoo Finance

By daniellenierenberg

MELVILLE, N.Y., Oct. 23, 2019 (GLOBE NEWSWIRE) -- BioRestorative Therapies, Inc. (the Company") (BRTX), a life sciences company focused on stem cell-based therapies, today announced that the Australia Patent Office has issued a Certificate of Grant for the Companys patent application titled Human Brown Adipose Derived Stem Cells and Uses.

This is the second patent issued for the Companys brown fat technology in Australia and adds to three other patents related to BioRestoratives metabolic program (ThermoStem Program) that have previously been issued to the Company in the United States and other countries.

This patent will allow for the protection of a specific isolated human brown adipose tissue stem cell line capable of differentiating into multiple cell types. This particular cell line possesses strong characteristics applicable for potential therapeutic uses for treating a wide range of degenerative and metabolic disorders, including diabetes, hypertension, cardiac deficiency and obesity.

This patent, granted by the Australian Patent Office for our metabolic program, adds to our growing family of IP surrounding and protecting our brown fat metabolic cell program, said Mark Weinreb, CEO of BioRestorative Therapies. In particular, our invention relates to an isolated brown fat stem cell line that we expect to be used in our development of cell-based therapies to treat metabolic disorders.

About BioRestorative Therapies, Inc.

BioRestorative Therapies, Inc. (www.biorestorative.com) develops therapeutic products using cell and tissue protocols, primarily involving adult stem cells. Our two core programs, as described below, relate to the treatment of disc/spine disease and metabolic disorders:

Disc/Spine Program (brtxDISC): Our lead cell therapy candidate, BRTX-100, is a product formulated from autologous (or a persons own) cultured mesenchymal stem cells collected from the patients bone marrow. We intend that the product will be used for the non-surgical treatment of painful lumbosacral disc disorders. The BRTX-100 production process utilizes proprietary technology and involves collecting a patients bone marrow, isolating and culturing stem cells from the bone marrow and cryopreserving the cells. In an outpatient procedure, BRTX-100 is to be injected by a physician into the patients damaged disc. The treatment is intended for patients whose pain has not been alleviated by non-invasive procedures and who potentially face the prospect of surgery. We have received authorization from the Food and Drug Administration to commence a Phase 2 clinical trial using BRTX-100 to treat persistent lower back pain due to painful degenerative discs.

Metabolic Program (ThermoStem): We are developing a cell-based therapy to target obesity and metabolic disorders using brown adipose (fat) derived stem cells to generate brown adipose tissue (BAT). BAT is intended to mimic naturally occurring brown adipose depots that regulate metabolic homeostasis in humans. Initial preclinical research indicates that increased amounts of brown fat in the body may be responsible for additional caloric burning as well as reduced glucose and lipid levels. Researchers have found that people with higher levels of brown fat may have a reduced risk for obesity and diabetes.

Story continues

Forward-Looking Statements

This press release contains "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, and such forward-looking statements are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. You are cautioned that such statements are subject to a multitude of risks and uncertainties that could cause future circumstances, events or results to differ materially from those projected in the forward-looking statements as a result of various factors and other risks, including, without limitation, whether the Company will be able to consummate the private placement and the satisfaction of closing conditions related to the private placement and those set forth in the Company's Form 10-K filed with the Securities and Exchange Commission. You should consider these factors in evaluating the forward-looking statements included herein, and not place undue reliance on such statements. The forward-looking statements in this release are made as of the date hereof and the Company undertakes no obligation to update such statements.

CONTACT:Email: ir@biorestorative.com

See the original post here:
BioRestorative Therapies Receives A Second Patent in Australia For Its Metabolic Program - Yahoo Finance

To Read More: BioRestorative Therapies Receives A Second Patent in Australia For Its Metabolic Program – Yahoo Finance
categoriaCardiac Stem Cells commentoComments Off on BioRestorative Therapies Receives A Second Patent in Australia For Its Metabolic Program – Yahoo Finance | dataOctober 23rd, 2019
Read All

Hemostemix Announces Positive Results and Conclusions Reported in Phase II CLI Trial Abstract – Yahoo Finance

By daniellenierenberg

CALGARY, Alberta, Oct. 21, 2019 (GLOBE NEWSWIRE) -- Hemostemix Inc. (Hemostemix or the Company) (TSX VENTURE: HEM; OTCQB: HMTXF), a biotechnology company developing and commercializing blood-derived stem cell therapies for unmet medical conditions, is pleased to provide a summary of the presentation entitled Autologous Stem Cell Treatment for CLI Patients with No Revascularization Options: An Update of the Hemostemix ACP-01 Trial With 4.5 Year Followup. Lead investigator Dr. York Hsiang, Professor of Vascular Surgery, University of British Columbia gave this update at the 41st Annual Canadian Society for Vascular Surgery Meeting on September 14, 2019.

Dr. Hsiang reported on the blinded results from the long-term follow-up of the first cohort of patients enrolled at two trial sites, Vancouver Coastal Health Research Institute (VCHRI) located in Vancouver, BC, led by principal investigator, Dr. York N. Hsiang, MB, ChB, MHSc, FRCSC and University Health Network, Peter Monk Cardiac Centre located in Toronto, Ontario, led by principal investigator Dr. Thomas Lindsay, MDCM, MSc, FRCSC, FACS.

Following is a summary of the results and conclusion:

In addition, the Companys Data Safety Monitoring Board (DSMB) recently met to review patient safety data in the ongoing Phase II clinical trial for CLI. The DSMB did not find safety concerns with ACP-01 and recommended continuing to enroll patients in the trial. The clinical trial is ongoing at 13 clinical sites in the US and Canada, with several additional sites in the process of being initiated. To date, 46 of the planned 95 patients have been enrolled and treated in the study.

We are very pleased with these blinded long term follow up results, and the recommendation of the DSMB, which are consistent with the findings reported in our two previous published studies of ACP-01 in CLI patients, said Dr. Alan Jacobs, President and Chief Medical Officer of Hemostemix. Patients with critical limb ischemia face a high rate of amputation when revascularization treatment options are exhausted, so seeing this level of improvement, and outcomes maintained for up to 4.5 years after treatment, is extremely encouraging.

ABOUT HEMOSTEMIX INC.

Hemostemix is a publicly traded clinical-stage biotechnology company that develops and commercializes innovative blood-derived cell therapies for medical conditions not adequately addressed by current treatments. It is one of the first clinical-stage biotech companies to test a stem-cell therapy in an international, multicenter, Phase II clinical trial for patients with critical limb ischemia (CLI), a severe form of peripheral artery disease (PAD) caused by reduced blood flow to the legs. The Phase II trial targets a participants diseased tissue with proprietary cells grown from his or her blood that can support the formation of new blood vessels. The Companys intellectual property portfolio includes over 50 patents issued or pending throughout the world. Hemostemix has a manufacturing contract with Aspire Health Science, LLC (Aspire), for the production of ACP-01 and for research and development purposes at Aspires Orlando, Florida, facility. Building towards commercialization, Hemostemix has also licensed the use, sale and import of ACP-01 for certain indications to Aspire in certain jurisdictions. The Company is continuing research and development of its lead product, ACP-01 with other applications, including cardiovascular, neurological and vascular indications.

For more information, please visit http://www.hemostemix.comor email office@hemostemix.com.

Contact:

Kyle Makofka, CEOSuite 2150, 300 5th Avenue S.W.Calgary, Alberta T2P 3C4Phone: (403) 506-3373E-Mail: kmakofka@hemostemix.com

Neither the TSX Venture Exchange nor its Regulation Service Provider (as that term is defined under the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

Forward-Looking Statements

This release may contain forward-looking statements. Forward-looking statements are statements that are not historical facts and are generally, but not always, identified by the words expects, plans, anticipates, believes, intends, estimates, projects, potential, and similar expressions, or that events or conditions will, would, may, could, or should occur. Although Hemostemix believes the expectations expressed in such forward-looking statements are based on reasonable assumptions, such statements are not guarantees of future performance and actual results may differ materially from those in forward-looking statements. Forward-looking statements are based on the beliefs, estimates, and opinions of Hemostemix management on the date such statements were made. By their nature forward-looking statements are subject to known and unknown risks, uncertainties, and other factors which may cause actual results, events or developments to be materially different from any future results, events or developments expressed or implied by such forward-looking statements. Such factors include, but are not limited to, the Companys stage of development, future clinical trial results, long-term capital requirements and future ability to fund operations, future developments in the Companys markets and the markets in which it expects to compete, risks associated with its strategic alliances and the impact of entering new markets on the Companys operations. Each factor should be considered carefully and readers are cautioned not to place undue reliance on such forward-looking statements. Hemostemix expressly disclaims any intention or obligation to update or revise any forward-looking statements whether as a result of new information, future events, or otherwise.

Story continues

Continued here:
Hemostemix Announces Positive Results and Conclusions Reported in Phase II CLI Trial Abstract - Yahoo Finance

To Read More: Hemostemix Announces Positive Results and Conclusions Reported in Phase II CLI Trial Abstract – Yahoo Finance
categoriaCardiac Stem Cells commentoComments Off on Hemostemix Announces Positive Results and Conclusions Reported in Phase II CLI Trial Abstract – Yahoo Finance | dataOctober 22nd, 2019
Read All

Bayer Announces Recipients of the Pulmonary Hypertension Accelerated Bayer (PHAB) Awards at CHEST Annual Meeting 2019 – PRNewswire

By daniellenierenberg

WHIPPANY, N.J., Oct. 21, 2019 /PRNewswire/ -- Bayer today announced recipients of the inaugural Pulmonary Hypertension Accelerated Bayer (PHAB) Awards, a U.S.-based research grant program created to support clinical research in pulmonary hypertension (PH), with a focus on pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). The recipients will receive a combined total of $1 million in grants over a two-year period, making the PHAB Awards one of the largest industry-funded grant programs focused on PAH and CTEPH in the U.S. The eight award recipients were formally announced at a ceremony during the American College of Chest Physicians (CHEST) Annual Meeting in New Orleans on Sunday, October 20, 2019.

"Supporting a new generation of researchers is imperative to ensure we continue the progress that has been made during the past decade in pulmonary hypertension and its related conditions," said Aleksandra Vlajnic, M.D., Senior Vice President & Head Medical Affairs Americas at Bayer. "Our hope is that the PHAB Awards program will encourage researchers to think creatively about solving the significant treatment and patient care challenges that remain, knowing Bayer is committed to providing the support needed to help bring those ideas to fruition. We want to congratulate all of the applicants on their winning proposals."

The recipients are:

The PHAB Awards recipients were selected by an independent Grants Review Committee, consisting of the following eminent PH leaders:

"I would like to thank and recognize the Grants Review Committee for their time and commitment, and the PH community in the U.S. for their overwhelming response to the inaugural PHAB Awards," said Sameer Bansilal, M.D., M.S., Medical Director, U.S. Medical Affairs at Bayer. "We look forward to an even greater response next year and encourage eligible applicants to start thinking about submitting their research proposals."

The PHAB Award eligibility, review and category criteria were modeled after the National Institutes of Health (NIH) system; entries were graded on significance, investigator(s), innovation, approach, and environment.

For more information on the PHAB Awards visit: https://www.phab-awards.com/awards/or e-mail PHAB.awards@bayer.com.

Grants were made on the merits of the research, and research must be posted on ClinicalTrials.gov. Every effort should be made to publish or present study outcomes. If the research is not conducted the grant must be returned.

About Pulmonary Arterial Hypertension (PAH)Pulmonary Arterial Hypertension (PAH, WHO Group 1) is defined by elevated pressure in the arteries going from the right side of the heart to the lungs. Typical symptoms of PAH include shortness of breath on exertion, fatigue, weakness, chest pain and syncope. PAH is caused by abnormalities in the walls of the pulmonary arteries.1,2

About Chronic Thromboembolic Pulmonary Hypertension (CTEPH)Chronic Thromboembolic Pulmonary Hypertension (CTEPH, WHO Group 4) is a progressive type of pulmonary hypertension, in which it is believed that thromboembolic occlusion (organized blood clots) of pulmonary vessels gradually lead to an increased blood pressure in the pulmonary arteries, resulting in an overload of the right heart.3,4 CTEPH may evolve after prior episodes of acute pulmonary embolism, but the pathogenesis is not yet completely understood. The standard and potentially curative treatment for CTEPH is pulmonary thromboendarterectomy (PTE), a surgical procedure in which the blood vessels of the lungs are cleared of clot and scar material.5,6 However, a considerable number of patients with CTEPH (20%-40%) are not operable and in up to 35 percent of patients, the disease persists or reoccurs after PTE.7

About BayerBayer is a global enterprise with core competencies in the life science fields of health care and nutrition. Its products and services are designed to benefit people by supporting efforts to overcome the major challenges presented by a growing and aging global population. At the same time, the Group aims to increase its earning power and create value through innovation and growth. Bayer is committed to the principles of sustainable development, and the Bayer brand stands for trust, reliability and quality throughout the world. In fiscal 2018, the Group employed around 117,000 people and had sales of 39.6 billion euros. Capital expenditures amounted to 2.6 billion euros, R&D expenses to 5.2 billion euros. For more information, go to http://www.bayer.us.

Our online press service is just a click away: http://www.bayer.us/en/newsroomFollow us on Facebook: http://www.facebook.com/pharma.bayer Follow us on Twitter: https://twitter.com/Bayerus

Media Contact:David Patti, +1-973-452-6793Bayer, U.S. Product Communications david.patti@bayer.com

Forward-Looking StatementsThis release may contain forward-looking statements based on current assumptions and forecasts made by Bayer management. Various known and unknown risks, uncertainties and other factors could lead to material differences between the actual future results, financial situation, development or performance of the company and the estimates given here. These factors include those discussed in Bayer's public reports which are available on the Bayer website at http://www.bayer.com. The company assumes no liability whatsoever to update these forward-looking statements or to conform them to future events or developments.

References:1Galie et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart. 2016;37:67119.2American Lung Association. Pulmonary Hypertension. Accessed November 22, 2017. http://www.lung.org/lung-health-and-diseases/lung-disease-lookup/pulmonary-hypertension.3Piazza G and Goldhaber SZ. Chronic thromboembolic pulmonary hypertension. N Engl J Med. 2011; 364: 351-360.4 Simonneau G et al. Updated Clinical Classification of Pulmonary Hypertension. Journal of the American College of Cardiology. 2013; 62(25):5 D'Armini M. Diagnostic advances and opportunities in chronic thromboembolic pulmonary hypertension. Eur Respir Rev. 2015; 24: 253262.6 Kim et al. Chronic thromboembolic pulmonary hypertension. J Am Coll Cardiol. 2013; 62: D92-9.7 Mathai et al. Quality of life in patients with chronic thromboembolic pulmonary hypertension. Eur Respir J. 2016 Aug; 48(2): 526537.

SOURCE Bayer

http://www.bayer.us

Read this article:
Bayer Announces Recipients of the Pulmonary Hypertension Accelerated Bayer (PHAB) Awards at CHEST Annual Meeting 2019 - PRNewswire

To Read More: Bayer Announces Recipients of the Pulmonary Hypertension Accelerated Bayer (PHAB) Awards at CHEST Annual Meeting 2019 – PRNewswire
categoriaCardiac Stem Cells commentoComments Off on Bayer Announces Recipients of the Pulmonary Hypertension Accelerated Bayer (PHAB) Awards at CHEST Annual Meeting 2019 – PRNewswire | dataOctober 22nd, 2019
Read All

Hemostemix Announces Positive Results and Conclusions Reported in Phase II CLI Trial Abstract – GlobeNewswire

By daniellenierenberg

CALGARY, Alberta, Oct. 21, 2019 (GLOBE NEWSWIRE) -- Hemostemix Inc. (Hemostemix or the Company) (TSX VENTURE: HEM; OTCQB: HMTXF), a biotechnology company developing and commercializing blood-derived stem cell therapies for unmet medical conditions, is pleased to provide a summary of the presentation entitled Autologous Stem Cell Treatment for CLI Patients with No Revascularization Options: An Update of the Hemostemix ACP-01 Trial With 4.5 Year Followup. Lead investigator Dr. York Hsiang, Professor of Vascular Surgery, University of British Columbia gave this update at the 41st Annual Canadian Society for Vascular Surgery Meeting on September 14, 2019.

Dr. Hsiang reported on the blinded results from the long-term follow-up of the first cohort of patients enrolled at two trial sites, Vancouver Coastal Health Research Institute (VCHRI) located in Vancouver, BC, led by principal investigator, Dr. York N. Hsiang, MB, ChB, MHSc, FRCSC and University Health Network, Peter Monk Cardiac Centre located in Toronto, Ontario, led by principal investigator Dr. Thomas Lindsay, MDCM, MSc, FRCSC, FACS.

Following is a summary of the results and conclusion:

In addition, the Companys Data Safety Monitoring Board (DSMB) recently met to review patient safety data in the ongoing Phase II clinical trial for CLI. The DSMB did not find safety concerns with ACP-01 and recommended continuing to enroll patients in the trial. The clinical trial is ongoing at 13 clinical sites in the US and Canada, with several additional sites in the process of being initiated. To date, 46 of the planned 95 patients have been enrolled and treated in the study.

We are very pleased with these blinded long term follow up results, and the recommendation of the DSMB, which are consistent with the findings reported in our two previous published studies of ACP-01 in CLI patients, said Dr. Alan Jacobs, President and Chief Medical Officer of Hemostemix. Patients with critical limb ischemia face a high rate of amputation when revascularization treatment options are exhausted, so seeing this level of improvement, and outcomes maintained for up to 4.5 years after treatment, is extremely encouraging.

ABOUT HEMOSTEMIX INC.

Hemostemix is a publicly traded clinical-stage biotechnology company that develops and commercializes innovative blood-derived cell therapies for medical conditions not adequately addressed by current treatments. It is one of the first clinical-stage biotech companies to test a stem-cell therapy in an international, multicenter, Phase II clinical trial for patients with critical limb ischemia (CLI), a severe form of peripheral artery disease (PAD) caused by reduced blood flow to the legs. The Phase II trial targets a participants diseased tissue with proprietary cells grown from his or her blood that can support the formation of new blood vessels. The Companys intellectual property portfolio includes over 50 patents issued or pending throughout the world. Hemostemix has a manufacturing contract with Aspire Health Science, LLC (Aspire), for the production of ACP-01 and for research and development purposes at Aspires Orlando, Florida, facility. Building towards commercialization, Hemostemix has also licensed the use, sale and import of ACP-01 for certain indications to Aspire in certain jurisdictions. The Company is continuing research and development of its lead product, ACP-01 with other applications, including cardiovascular, neurological and vascular indications.

For more information, please visit http://www.hemostemix.comor email office@hemostemix.com.

Contact:

Kyle Makofka, CEOSuite 2150, 300 5th Avenue S.W.Calgary, Alberta T2P 3C4Phone: (403) 506-3373E-Mail: kmakofka@hemostemix.com

Neither the TSX Venture Exchange nor its Regulation Service Provider (as that term is defined under the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

Forward-Looking Statements

This release may contain forward-looking statements. Forward-looking statements are statements that are not historical facts and are generally, but not always, identified by the words expects, plans, anticipates, believes, intends, estimates, projects, potential, and similar expressions, or that events or conditions will, would, may, could, or should occur. Although Hemostemix believes the expectations expressed in such forward-looking statements are based on reasonable assumptions, such statements are not guarantees of future performance and actual results may differ materially from those in forward-looking statements. Forward-looking statements are based on the beliefs, estimates, and opinions of Hemostemix management on the date such statements were made. By their nature forward-looking statements are subject to known and unknown risks, uncertainties, and other factors which may cause actual results, events or developments to be materially different from any future results, events or developments expressed or implied by such forward-looking statements. Such factors include, but are not limited to, the Companys stage of development, future clinical trial results, long-term capital requirements and future ability to fund operations, future developments in the Companys markets and the markets in which it expects to compete, risks associated with its strategic alliances and the impact of entering new markets on the Companys operations. Each factor should be considered carefully and readers are cautioned not to place undue reliance on such forward-looking statements. Hemostemix expressly disclaims any intention or obligation to update or revise any forward-looking statements whether as a result of new information, future events, or otherwise.

Read this article:
Hemostemix Announces Positive Results and Conclusions Reported in Phase II CLI Trial Abstract - GlobeNewswire

To Read More: Hemostemix Announces Positive Results and Conclusions Reported in Phase II CLI Trial Abstract – GlobeNewswire
categoriaCardiac Stem Cells commentoComments Off on Hemostemix Announces Positive Results and Conclusions Reported in Phase II CLI Trial Abstract – GlobeNewswire | dataOctober 21st, 2019
Read All

Best Growth Report On Autologous Stem Cell Based Therapies Market Survey 2019 Industry Outlines, Future Trends, Forecasts And Regional Segmented…

By daniellenierenberg

Crystal Market Research has recently announced Latest Innovative Report on Global Autologous Stem Cell Based Therapies Market 2025 gives an exact assessment of authentic and current market size, share, income, request, generation, utilization (worth and volume), and market improvement as well as reliable estimations up to 2025. It likewise examines Autologous Stem Cell Based Therapies Market scope, potential, benefit, and attractiveness which significantly studies Industry execution at a moment level. Besides, it reveals insight into competition segmentation, environment and leading organizations that are considered as a portion of the significant features of the market.

In Order To Request For Free Sample Copy Click @https://www.crystalmarketresearch.com/report-sample/HC022437

Continue

This Autologous Stem Cell Based Therapies Market study offers a synopsis of the Industry on a global level that helps users in the decision-making processes, which helps to boost their businesses. An exhaustive investigation of the competitive framework of the worldwide Autologous Stem Cell Based Therapies Market has been given, introducing insights into the organization profiles, financial status, ongoing advancements and the SWOT examination.

Get Discount of This Precious Report @ https://www.crystalmarketresearch.com/check-discount/HC022437

Geographically, this Autologous Stem Cell Based Therapies report studies market share and growth opportunity in these key regions, covering:

Get Customised Research Report: https://www.crystalmarketresearch.com/customization/HC022437

Contacts Us:

Judy | 304 South Jones Blvd, Suite 1896

Las Vegas NV 89107

United States

E-mail: sales@crystalmarketresearch.com | Ph: +1-888-213-4282

Visit link:
Best Growth Report On Autologous Stem Cell Based Therapies Market Survey 2019 Industry Outlines, Future Trends, Forecasts And Regional Segmented...

To Read More: Best Growth Report On Autologous Stem Cell Based Therapies Market Survey 2019 Industry Outlines, Future Trends, Forecasts And Regional Segmented…
categoriaCardiac Stem Cells commentoComments Off on Best Growth Report On Autologous Stem Cell Based Therapies Market Survey 2019 Industry Outlines, Future Trends, Forecasts And Regional Segmented… | dataOctober 21st, 2019
Read All

Bayer Announces Recipients of the Pulmonary Hypertension Accelerated Bayer (PHAB) Awards at CHEST Annual Meeting 2019 – BioSpace

By daniellenierenberg

WHIPPANY, N.J., Oct. 21, 2019 /PRNewswire/ -- Bayer today announced recipients of the inaugural Pulmonary Hypertension Accelerated Bayer (PHAB) Awards, a U.S.-based research grant program created to support clinical research in pulmonary hypertension (PH), with a focus on pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). The recipients will receive a combined total of $1 million in grants over a two-year period, making the PHAB Awards one of the largest industry-funded grant programs focused on PAH and CTEPH in the U.S. The eight award recipients were formally announced at a ceremony during the American College of Chest Physicians (CHEST) Annual Meeting in New Orleans on Sunday, October 20, 2019.

"Supporting a new generation of researchers is imperative to ensure we continue the progress that has been made during the past decade in pulmonary hypertension and its related conditions," said Aleksandra Vlajnic, M.D., Senior Vice President & Head Medical Affairs Americas at Bayer. "Our hope is that the PHAB Awards program will encourage researchers to think creatively about solving the significant treatment and patient care challenges that remain, knowing Bayer is committed to providing the support needed to help bring those ideas to fruition. We want to congratulate all of the applicants on their winning proposals."

The recipients are:

The PHAB Awards recipients were selected by an independent Grants Review Committee, consisting of the following eminent PH leaders:

"I would like to thank and recognize the Grants Review Committee for their time and commitment, and the PH community in the U.S. for their overwhelming response to the inaugural PHAB Awards," said Sameer Bansilal, M.D., M.S., Medical Director, U.S. Medical Affairs at Bayer. "We look forward to an even greater response next year and encourage eligible applicants to start thinking about submitting their research proposals."

The PHAB Award eligibility, review and category criteria were modeled after the National Institutes of Health (NIH) system; entries were graded on significance, investigator(s), innovation, approach, and environment.

For more information on the PHAB Awards visit: https://www.phab-awards.com/awards/or e-mail PHAB.awards@bayer.com.

Grants were made on the merits of the research, and research must be posted on ClinicalTrials.gov. Every effort should be made to publish or present study outcomes. If the research is not conducted the grant must be returned.

About Pulmonary Arterial Hypertension (PAH)Pulmonary Arterial Hypertension (PAH, WHO Group 1) is defined by elevated pressure in the arteries going from the right side of the heart to the lungs. Typical symptoms of PAH include shortness of breath on exertion, fatigue, weakness, chest pain and syncope. PAH is caused by abnormalities in the walls of the pulmonary arteries.1,2

About Chronic Thromboembolic Pulmonary Hypertension (CTEPH)Chronic Thromboembolic Pulmonary Hypertension (CTEPH, WHO Group 4) is a progressive type of pulmonary hypertension, in which it is believed that thromboembolic occlusion (organized blood clots) of pulmonary vessels gradually lead to an increased blood pressure in the pulmonary arteries, resulting in an overload of the right heart.3,4 CTEPH may evolve after prior episodes of acute pulmonary embolism, but the pathogenesis is not yet completely understood. The standard and potentially curative treatment for CTEPH is pulmonary thromboendarterectomy (PTE), a surgical procedure in which the blood vessels of the lungs are cleared of clot and scar material.5,6 However, a considerable number of patients with CTEPH (20%-40%) are not operable and in up to 35 percent of patients, the disease persists or reoccurs after PTE.7

About BayerBayer is a global enterprise with core competencies in the life science fields of health care and nutrition. Its products and services are designed to benefit people by supporting efforts to overcome the major challenges presented by a growing and aging global population. At the same time, the Group aims to increase its earning power and create value through innovation and growth. Bayer is committed to the principles of sustainable development, and the Bayer brand stands for trust, reliability and quality throughout the world. In fiscal 2018, the Group employed around 117,000 people and had sales of 39.6 billion euros. Capital expenditures amounted to 2.6 billion euros, R&D expenses to 5.2 billion euros. For more information, go to http://www.bayer.us.

Our online press service is just a click away: http://www.bayer.us/en/newsroomFollow us on Facebook: http://www.facebook.com/pharma.bayerFollow us on Twitter: https://twitter.com/Bayerus

Media Contact:David Patti, +1-973-452-6793Bayer, U.S. Product Communicationsdavid.patti@bayer.com

Forward-Looking StatementsThis release may contain forward-looking statements based on current assumptions and forecasts made by Bayer management. Various known and unknown risks, uncertainties and other factors could lead to material differences between the actual future results, financial situation, development or performance of the company and the estimates given here. These factors include those discussed in Bayer's public reports which are available on the Bayer website at http://www.bayer.com. The company assumes no liability whatsoever to update these forward-looking statements or to conform them to future events or developments.

References:1Galie et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart. 2016;37:67119.2American Lung Association. Pulmonary Hypertension. Accessed November 22, 2017. http://www.lung.org/lung-health-and-diseases/lung-disease-lookup/pulmonary-hypertension.3Piazza G and Goldhaber SZ. Chronic thromboembolic pulmonary hypertension. N Engl J Med. 2011; 364: 351-360.4 Simonneau G et al. Updated Clinical Classification of Pulmonary Hypertension. Journal of the American College of Cardiology. 2013; 62(25):5 D'Armini M. Diagnostic advances and opportunities in chronic thromboembolic pulmonary hypertension. Eur Respir Rev. 2015; 24: 253262.6 Kim et al. Chronic thromboembolic pulmonary hypertension. J Am Coll Cardiol. 2013; 62: D92-9.7 Mathai et al. Quality of life in patients with chronic thromboembolic pulmonary hypertension. Eur Respir J. 2016 Aug; 48(2): 526537.

View original content to download multimedia:http://www.prnewswire.com/news-releases/bayer-announces-recipients-of-the-pulmonary-hypertension-accelerated-bayer-phab-awards-at-chest-annual-meeting-2019-300940541.html

SOURCE Bayer

Read more from the original source:
Bayer Announces Recipients of the Pulmonary Hypertension Accelerated Bayer (PHAB) Awards at CHEST Annual Meeting 2019 - BioSpace

To Read More: Bayer Announces Recipients of the Pulmonary Hypertension Accelerated Bayer (PHAB) Awards at CHEST Annual Meeting 2019 – BioSpace
categoriaCardiac Stem Cells commentoComments Off on Bayer Announces Recipients of the Pulmonary Hypertension Accelerated Bayer (PHAB) Awards at CHEST Annual Meeting 2019 – BioSpace | dataOctober 21st, 2019
Read All

Analysis on Worldwide Autologous Stem Cell Based Therapies Market Inclinations Exhibit Growing Demand During The Period Until 2025 – Wheel Chronicle

By daniellenierenberg

Crystal Market Research recently offers Exclusive Profitable Report on Global Autologous Stem Cell Based Therapies Market Provides valuable supply of perceptive information for business strategists of Industry Outlook Sizing with Competitive Landscape By 2025

In Order To Request For Free Sample Copy Click @https://www.crystalmarketresearch.com/report-sample/HC022437

According to This New Report Autologous Stem Cell Based Therapies Industry Shares Details AboutMarket Business Opportunities and also highlighting Future Trend Status, risk side analysis, and leveraged with strategic and tactical decision-making support. The competitive Outlook analysis includes capacity, market share, profit margin, market growth, consumer consumption, revenue, Marketing strategies, policies, industry chain that are changing the wave of the Industry are also catered in the report.

Continue

Get Discount of This Precious Report @ https://www.crystalmarketresearch.com/check-discount/HC022437

For comprehensive understanding of market dynamics,the Global Autologous Stem Cell Based Therapies Market is analyzed across key geographies namely:

Get Customised Research Report: https://www.crystalmarketresearch.com/customization/HC022437

Contacts Us:

Judy | 304 South Jones Blvd, Suite 1896

Las Vegas NV 89107

United States

E-mail: sales@crystalmarketresearch.com | Ph: +1-888-213-4282

More:
Analysis on Worldwide Autologous Stem Cell Based Therapies Market Inclinations Exhibit Growing Demand During The Period Until 2025 - Wheel Chronicle

To Read More: Analysis on Worldwide Autologous Stem Cell Based Therapies Market Inclinations Exhibit Growing Demand During The Period Until 2025 – Wheel Chronicle
categoriaCardiac Stem Cells commentoComments Off on Analysis on Worldwide Autologous Stem Cell Based Therapies Market Inclinations Exhibit Growing Demand During The Period Until 2025 – Wheel Chronicle | dataOctober 18th, 2019
Read All

Drug Treats Inflammation Related to Genetic Heart Disease – Technology Networks

By daniellenierenberg

When young athletes experiences sudden cardiac death as they run down the playing field, it's usually due to arrhythmogenic cardiomyopathy (ACM), an inherited heart disease. Now, Johns Hopkins researchers have shed new light on the role of the immune system in the progression of ACM and, in the process, discovered a new drug that might help prevent ACM disease symptoms and progression to heart failure in some patients.

"We realized that heart muscle inflammation in ACM is much more complicated than we thought, but also might provide a therapeutic strategy," saysStephen Chelko, Ph.D., assistant professor of medicine at the Johns Hopkins University School of Medicine and senior author of the new paper, inSept. inCirculation.

In ACM, patients often harbor mutations in any of the five genes that make up the cardiac desmosome -- the gluelike material that holds heart cells together and helps coordinate mechanical and electrical synchronization of heart cells. Because of this, it's often called "a disease of the cardiac desmosome." In patients with ACM, heart cells pull apart over time, and these cells are replaced with damaged and inflamed scar tissue. These scars can increase risk of instances of irregular heart rhythms and lead to sudden cardiac death if the scar tissue causes the heart wall to stiffen and renders it unable to pump.

If a person is aware they carry an ACM-causing genetic mutation, doctors help them avoid cardiac death through lifestyle changes, such as exercise restriction, and medications that keep their heart rate low. However, there are currently no drugs that treat the underlying structural defects of the desmosome. People who live for many years with ACM still accumulate scar tissue and inflammation in their hearts, leading to chronic heart disease.

"We tended in the past to view ACM as something that kills due to a sudden arrhythmic event," said Chelko. "But now we're starting to also see it as a chronic inflammatory disease that can progress more slowly over time, leading to heart failure."

Chelko and his colleagues wanted to determine the molecular cause of inflammation in the hearts of people with ACM. So they studied mice with an ACM-causing mutation, as well as heart muscle cells generated from stem cells isolated from an ACM patient. They found that the inflammation associated with the disease arose from two separate causes. First, they noticed high levels of macrophages, a type of immune cell that's normally found at sites of inflammation, such as around cuts or scrapes that are healing.

"Macrophages are usually the good guys who help heal a wound and then leave," said Chelko. "But in ACM they're permanently setting up shop in the heart, which, over time, reduces its function."

Chelko's team also found that in ACM, the heart cells themselves are triggered by a protein known as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-B) to produce chemicals called cytokines, which act as homing beacons for other inflammatory cells and molecules. When the researchers treated mice or isolated cells with a drug blocking NF-B, heart cells stopped producing many of these cytokines, leading to decreased inflammation and infiltration of inflammatory cells. In mouse models of ACM, animals treated with the NF-B-blocking drug Bay-11-7082 had a twofold increase in heart function, measured by how much blood their hearts could pump over time compared with untreated ACM animals. They also had a twofold reduction of damaged and inflammatory scar tissue in the heart.

More than one-third of patients with ACM who die of sudden cardiac death have no previous cardiac symptoms, so wouldn't ever know to seek treatment. However, for relatives of these people who discover that they carry a genetic mutation causing ACM -- or those who discover the mutation for other reasons -- a drug could help stave off long-term heart disease, Chelko said.

While the Bay-11-7082 drug is currently only used in the lab for experimental purposes, the U.S. Food and Drug Administration has approved canakinumab, a drug that targets the same inflammatory pathway, for use in juvenile arthritis and a collection of rare auto-inflammatory syndromes. Canakinumab is also being studied for use in coronary artery disease. Chelko's group is now investigating whether this drug would have the same effect as Bay-11-7082 in ACM.

"We're very excited to have found an FDA-approved drug that can reduce heart inflammation in ACM, and we're eager to do more research to ultimately help those who carry these genetic mutations," said Chelko.

Reference:Chelko, et al. (2019) Therapeutic Modulation of the Immune Response in Arrhythmogenic Cardiomyopathy. Circulation. DOI:https://doi.org/10.1161/CIRCULATIONAHA.119.040676

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

View post:
Drug Treats Inflammation Related to Genetic Heart Disease - Technology Networks

To Read More: Drug Treats Inflammation Related to Genetic Heart Disease – Technology Networks
categoriaCardiac Stem Cells commentoComments Off on Drug Treats Inflammation Related to Genetic Heart Disease – Technology Networks | dataOctober 18th, 2019
Read All

Sphingosine 1-phosphate: Lipid signaling in pathology and therapy – Science Magazine

By daniellenierenberg

Mediating systemic health

Sphingosine 1-phosphate (S1P) is an important circulating lipid mediator that is derived from the metabolism of cell membranes. Its diverse homeostatic roles, particularly in immunology and vascular biology, can go awry in numerous diseases, including multiple sclerosis, cardiovascular diseases, and fibrosis. The centrality of S1P signaling has led to the development of several drugs, including two approved for treatment of multiple sclerosis. In a Review, Cartier and Hla discuss the current understanding of how one mediator can carry out so many signaling roles in different tissues, how these become dysregulated in disease, and efforts in drug development to target S1P signaling.

Science, this issue p. eaar5551

Sphingosine 1-phosphate (S1P), a product of membrane sphingolipid metabolism, is secreted and acts through G proteincoupled S1P receptors (S1PRs) in vertebrates. S1PR isoforms mediate complex cellular actions either alone or in combination in most organ systems. This stable lysolipid circulates as a complex with protein chaperones that not only enables aqueous solubility but also helps facilitate specific modes of receptor signaling. However, differential concentration gradients of S1P are normally present in various compartments and are perturbed under disease conditions. The abundance of circulatory S1P and the high expression of S1PRs in exposed cellsthat is, vascular and hematopoietic cellsposes a key question of how this signaling axis is regulated. This question is of clinical relevance because the first S1PR-targeted drug, fingolimod, has been approved for the treatment of multiple sclerosis since 2010. Recent findings from basic research as well as insights gleaned from clinical and translational studies have enriched our understanding of how this simple lysolipid evolved as a complex regulator of multiple physiological systems and, when dysregulated, contributes to numerous diseases.

Extracellular spatial gradients of S1P, demonstrated by using S1P reporters, are tightly regulated and control fundamental processes such as hematopoietic cell trafficking, immune cell fate, and vascular integrity. The gradients are formed through location-specific function of metabolic enzymes, S1P transporters, and chaperones. Such physiological S1P gradients are altered in diseases, thus contributing to conditions such as inflammation, autoimmunity, and vascular dysfunction. S1P complexed to chaperone proteinsfor example, high-density lipoproteinbound apolipoprotein Mmediate distinct modes of receptor activation, resulting in biased receptor signaling and specific biological outcomes. S1PRs are also regulated tightly through endocytic mechanisms and receptor modulators that enhance or inhibit signal strength and duration. Various signaling mechanisms of this simple lysolipid mediator has helped reveal its multiple actions in the immune system, which include adaptive immune cell localization in various compartments (egress versus retention), fate switching, survival, and activation that influences both cell-mediated and humoral immunity. In the cardiovascular system, high expression of multiple S1PR isoforms in various cell types regulate development, homeostasis, and physiology. Current S1PR-targeted drugs that aim to tame autoimmunity exhibit considerable cardiovascular-adverse events. In the central nervous system (CNS), widespread application of S1PR-targeted drugs in autoimmune neuroinflammatory diseases has stimulated research that revealed the broad but poorly understood effects of S1P signaling in neurodevelopment, the neurovascular unit, neurons, and glia. Furthermore, in addition to the involvement of pathological S1P signaling in acute ischemic conditions of various organs, chronic dysregulated S1P signaling has been implicated in fibrotic diseases of lung, heart, liver, and kidney.

Considerable challenges remain to fully harness the new knowledge in S1P pathobiology to translational utility in clinical medicine. Approaches that mimic S1P chaperones, S1P neutralizing agents, modulation of transporters, biased agonists and antagonists of S1PR isotypes, and sphingolipid metabolic enzyme modulators provide viable pathways to therapy. Focusing on the immune system, such approaches may widen the autoimmunity therapeutic landscape and provide new directions in cancer and chronic inflammatory diseases. For cardiovascular diseases, ischemic conditions as well as chronic heart failure are likely candidates for future translational efforts. Although further work is needed, S1P-targeted approaches may also be useful in regenerative therapies for the aging and diseased myocardium. The CNS-targeted efforts may cross into neurodegenerative diseases, given the success with S1PR-targeted drugs in reducing brain atrophy in multiple sclerosis. Other potential applications include approaches in pain management and neurodevelopmental disorders. Such strategies, although challenging, are greatly helped by findings from basic research on S1P pathobiology as well as pharmacological and clinical insights derived from the application of S1P-targeted therapeutics.

Extracellular S1P gradients created by transporters, chaperones (ApoM+HDL), and metabolic enzymes (LPP3) interact with S1PRs on the cell surface. Receptor activity, transmitted by means of G proteins, is regulated by multiple mechanisms, including -arrestin coupling, endocytosis, and receptor modulators. The resultant cellular changes influence multiple organ systems in physiology and disease.

Sphingosine 1-phosphate (S1P), a metabolic product of cell membrane sphingolipids, is bound to extracellular chaperones, is enriched in circulatory fluids, and binds to G proteincoupled S1P receptors (S1PRs) to regulate embryonic development, postnatal organ function, and disease. S1PRs regulate essential processes such as adaptive immune cell trafficking, vascular development, and homeostasis. Moreover, S1PR signaling is a driver of multiple diseases. The past decade has witnessed an exponential growth in this field, in part because of multidisciplinary research focused on this lipid mediator and the application of S1PR-targeted drugs in clinical medicine. This has revealed fundamental principles of lysophospholipid mediator signaling that not only clarify the complex and wide ranging actions of S1P but also guide the development of therapeutics and translational directions in immunological, cardiovascular, neurological, inflammatory, and fibrotic diseases.

Link:
Sphingosine 1-phosphate: Lipid signaling in pathology and therapy - Science Magazine

To Read More: Sphingosine 1-phosphate: Lipid signaling in pathology and therapy – Science Magazine
categoriaCardiac Stem Cells commentoComments Off on Sphingosine 1-phosphate: Lipid signaling in pathology and therapy – Science Magazine | dataOctober 18th, 2019
Read All

Research Roundup: Genomic Dark Matter Mutation and More – BioSpace

By daniellenierenberg

Every week there are numerous scientific studies published. Heres a look at some of the more interesting ones.

Mutation Found in Dark Matter of the Genome New Target for Cancer

The so-called dark matter of the genome is the non-coding regions that make up about 98% of the genome. Researchers at the Ontario Institute for Cancer Research (OICR) recently identified a novel cancer-driven mutation in this region that is linked to brain, liver and blood cancer. They published the two studies in the journal Nature.

Non-coding DNA, which makes up 98% of the genome, is notoriously difficult to study and is often overlooked since it does not code for proteins, said Lincoln Stein, co-lead of the two research studies and Head of Adaptive Oncology at OICR. By carefully analyzing these regions, we have discovered a change in one letter of the DNA code that can drive multiple types of cancer. In turn, weve found a new cancer mechanism that we can target to tackle the disease.

The mutation is dubbed U1-snRNA, and it appears to disrupt normal RNA splicing, which changes the transcription of genes that drive cancer. The mutation was identified in tumors of patients with specific subtypes of brain cancer and was found in almost all of the samples. The cancer was sonic hedgehog medulloblastoma. It was also found in samples of chronic lymphocytic leukemia (CLL) and hepatocellular carcinoma.

Our unexpected discovery uncovered an entirely new way to target these cancers that are tremendously difficult to treat and have high mortality rates, said Michael Taylor, pediatric neurosurgeon and senior scientist in Development and Stem Cell Biology and Garron Family Chair in in Childhood Cancer Research at The Hospital for Sick Children and co-lead of the studies. Weve found that with one typo in the DNA code, the resultant cancers have hundreds of mutant proteins that we might be able to target using currently available immunotherapies.

Diagnosing Lyme Disease in 15 Minutes

About 300,000 people are diagnosed with Lyme disease each year. Borrelia burgdorferi is transmitted by the bite of infected Ixodes ticks, and if untreated, can cause neurologic, cardiac, and rheumatologic complications. Current testing involves two complex tests, ELISA and western blot. Researchers have developed a rapid microfluidic test that can provide comparable results in as little as 15 minutes. It will require more refinement and testing before widespread use.

Gene Therapy for Wet Age-Related Macular Degeneration Shows Promise

Research was recently presented on six patients who received a gene therapy for wet age-related macular degeneration (AMD). The patients have gone at least six months without continued injections for the disease that were previously required every four to six weeks. The therapy, which is injected into the eye, generates a molecule much like aflibercept, a broadly used anti-VEGF drug.

How Dementia Spreads Throughout Brain Networks

Frontotemporal dementia (FDT) is similar to Alzheimers disease, but tends to hit patients earlier and affects different parts of the brain. Researchers studied how well neural network maps made from brain scans in healthy people could predict the spread of brain atrophy in FTD patients over several years. They recruited 42 patients at the UCSF Memory and Aging Center with a form of FTD and 30 with another form. They received MRI scans and then follow-up scans a year later to determine how the disease had progressed. They found that the standardized connectivity maps were able to predict the spread of the disease.

Mucus and Microbes: A Therapeutic Gold Mine.

A specific type of molecule called glycans that are found in mucus prevent bacteria from communicating with each other. Mucus also prevents the bacteria from forming infectious biofilms. It is also pointed out that more than 200 square meters of our bodies are lined with mucus. There are hundreds of different types of glycans found in mucus, and most of them are responsible for suppressing bacteria. Katharina Ribbeck, a professor at the Massachusetts Institute of Technology, says, What we have in mucus is a therapeutic gold mine.

Mechanisms that Regulate Brain Inflammation

The role of brain inflammation in diseases like Alzheimers and Parkinsons is becoming better understood. Researchers recently identified mechanisms that regulate brain inflammation, which has the potential to open new avenues for treating and preventing these diseases. The scientists found that a protein called TET2 modulates the immune response in microglia, immune cells in the brain, during inflammation. In mice engineered not to have TET2 in the microglia, neuroinflammation is reduced. Normally, TET2 with other proteins regulates the activity of genes by removing specific chemical markers from DNA, but TET2 appears to behave differently in microglia.

Pilot Study: Even Short-Term Vaping Causes Lung Inflammation

Research out of The Ohio State University Comprehensive Cancer Center found cellular inflammation was caused by e-cigarette, i.e., vaping, use in both long-term smokers and people who did not smoke. They used bronchoscopy to evaluate for inflammation and smoking-related effects and found a measurable increase in inflammation after only four weeks of vaping without nicotine or flavors. The amount of inflammation was small compared to the control group, but the data suggests that even short-term use can result in inflammatory changes at a cellular level. Inflammation in smoking is a driver of lung cancer and other respiratory diseases.

Read the original:
Research Roundup: Genomic Dark Matter Mutation and More - BioSpace

To Read More: Research Roundup: Genomic Dark Matter Mutation and More – BioSpace
categoriaCardiac Stem Cells commentoComments Off on Research Roundup: Genomic Dark Matter Mutation and More – BioSpace | dataOctober 18th, 2019
Read All

Page 10«..9101112..2030..»