Page 10«..9101112..2030..»

Energy drinks may damage the heart, researchers warnshould the FDA get involved? – Cardiovascular Business

By daniellenierenberg

Drinking certain energy drinks may cause significant damage to the heart, according to new findings published in Food and Chemical Toxicology.

Because the consumption of these beverages is not regulated and they are widely accessible over the counter to all age groups, the potential for adverse health effects of these products is a subject of concern and needed research, lead researcher Ivan Rusyn, MD, PhD, a professor at Texas A&M University in College Station, said in a prepared statement.

Rusyn et al. assessed a total of 17 popular energy drinks, studying their chemical profiles and looking for any associations with potential cardiac complications. Energy drinks sold by Adrenaline, Shoc, Bang Star, C4, CELSIUS, HEAT, EBOOST, Game Fuel, GURU, Kill Cliff, Kickstart, Monster Energy, Red Bull, Reign, Rockstar, RUNA, UPTIME, Venom Energy and Xyience Energy were all part of the teams analysis.

Overall, the authors found that stem cell-derived cardiomyocyteshuman heart cells grown in a laboratoryshowed signs of an increased beat rate after being exposed to some energy drinks. Also, theophylline, adenine and azelate were all ingredients the team associated with potentially contributing to QT prolongation in cardiomyocytes.

See the article here:
Energy drinks may damage the heart, researchers warnshould the FDA get involved? - Cardiovascular Business

To Read More: Energy drinks may damage the heart, researchers warnshould the FDA get involved? – Cardiovascular Business
categoriaCardiac Stem Cells commentoComments Off on Energy drinks may damage the heart, researchers warnshould the FDA get involved? – Cardiovascular Business | dataFebruary 14th, 2021
Read All

Outlook on the Cell Therapy Global Market to 2027 – Opportunity Analysis and Industry Forecasts – Yahoo Finance

By daniellenierenberg

Dublin, Feb. 09, 2021 (GLOBE NEWSWIRE) -- The "Cell Therapy Market by Cell Type, Therapy Type, Therapeutic Area, and End User: Global Opportunity Analysis and Industry Forecast, 2020-2027" report has been added to ResearchAndMarkets.com's offering.

The global cell therapy market accounted for $7,754. 89 million in 2019, and is expected to reach $48,115. 40 million by 2027, registering a CAGR of 25. 6% from 2020 to 2027.

Cell therapy involves administration of somatic cell preparations for treatment of diseases or traumatic damages. Cell therapy aims to introduce new, healthy cells into a patient's body to replace diseased or missing ones.

This is attributed to the fact that specialized cells, such as brain cells, are difficult to obtain from human body. In addition, specialized cells typically have a limited ability to multiply, making it difficult to produce sufficient number of cells required for certain cell therapies. Some of these issues can be overcome through the use of stem cells. In addition, cells such as blood and bone marrow cells, mature, immature & solid tissue cells, adult stem cells, and embryonic stem cells are widely used in cell therapy procedures.

Moreover, transplanted cells including induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), neural stem cells (NSCs), and mesenchymal stem cells (MSCs) are divided broadly into two main groups including autologous cells and non-autologous cells. Development of precision medicine and advancements in Advanced Therapies Medicinal Products (ATMPS) in context to their efficiency and manufacturing are expected to be the major drivers for the market. Furthermore, automation in adult stem cells and cord blood processing and storage are the key technological advancements that fuel growth of the market for cell therapy.

In addition, growth in aging patient population, The rise in cell therapy transplantations globally, and surge in disease awareness drive growth of the global cell therapy market. Furthermore, The rise in adoption of human cells over animal cells for cell therapeutics research, technological advancements in field of cell therapy, and increase in incidences of diseases such as cancer, cardiac abnormalities, and organ failure are the key factors that drive growth of the global market.

Moreover, implementation of stringent government regulations regarding the use of cell therapy is anticipated to restrict growth of the market. On the contrary, surge in number of regulations to promote stem cell therapy and increase in funds for research in developing countries are expected to offer lucrative opportunities to the market in the future.

The global cell therapy market is categorized on the basis of therapy type, therapeutic area, cell type, end user, and region. On the basis of therapy type, the market is segregated into autologous and allogenic. By therapeutics, it is classified into malignancies, musculoskeletal disorders, autoimmune disorders, dermatology, and others.

The global cell therapy market is categorized on the basis of therapy type, therapeutic, cell type, end user and region. On the basis of therapy type, the market is segregated into autologous and allogenic. By therapeutic area, it is classified into malignancies, musculoskeletal disorders, autoimmune disorders, dermatology, and others. On the basis of cell type, it is segregated into stem cell therapy and non-stem cell type. On the basis of end user, it is segregated into hospital & clinics and academic & research institutes. On the basis of region, the market is studied across North America, Europe, Asia-Pacific, and LAMEA.

Key Benefits

Story continues

The study provides an in-depth analysis of the global cell therapy market along with the current trends and future estimations to elucidate the imminent investment pockets.

Comprehensive analysis of factors that drive and restrict the market growth is provided in the report.

Comprehensive quantitative analysis of the industry from 2019 to 2027 is provided to enable the stakeholders to capitalize on the prevailing market opportunities.

Extensive analysis of the key segments of the industry helps in understanding the forms and types of cell therapy used across the globe.

Key market players and their strategies have been analyzed to understand the competitive outlook of the market.

Key Topics Covered:

Chapter 1: Introduction1.1. Report Description1.2. Key Benefits for Stakeholders1.3. Key Market Segments1.4. Research Methodology1.4.1. Secondary Research1.4.2. Primary Research1.4.3. Analyst Tools & Models

Chapter 2: Executive Summary2.1. Key Findings of the Study2.2. Cxo Perspective

Chapter 3: Market Overview3.1. Market Definition and Scope3.2. Key Findings3.2.1. Top Player Positioning3.2.2. Top Investment Pockets3.2.3. Top Winning Strategies3.3. Porter'S Five Forces Analysis3.4. Impact Analysis3.4.1. Drivers3.4.1.1. Technological Advancements in the Field of Cell Therapy3.4.1.2. The Rise in Number of Cell Therapy Clinical Studies3.4.1.3. The Rise in Adoption of Regenerative Medicine3.4.2. Restraint3.4.2.1. Developing Stage and Pricing3.4.3. Opportunity3.4.3.1. High Growth Potential in Emerging Markets3.5. Impact of Covid-19 on Cell Therapy Market

Chapter 4: Cell Therapy Market, by Cell Type4.1. Overview4.1.1. Market Size and Forecast4.2. Stem Cell4.2.1. Key Market Trends and Opportunities4.2.2. Market Size and Forecast, by Region4.2.3. Market Size and Forecast, by Type4.2.3.1. Bone Marrow, Market Size and Forecast4.2.3.2. Blood, Market Size and Forecast4.2.3.3. Umbilical Cord-Derived, Market Size and Forecast4.2.3.4. Adipose-Derived Stem Cell, Market Size and Forecast4.2.3.5. Others (Placenta, and Nonspecific Cells), Market Size and Forecast4.3. Non-Stem Cell4.3.1. Key Market Trends and Opportunities4.3.2. Market Size and Forecast, by Region

Chapter 5: Cell Therapy Market, by Therapy Type5.1. Overview5.1.1. Market Size and Forecast5.2. Autologous5.2.1. Key Market Trends and Opportunities5.2.2. Market Size and Forecast, by Region5.2.3. Market Analysis, by Country5.3. Allogeneic5.3.1. Key Market Trends and Opportunities5.3.2. Market Size and Forecast, by Region5.3.3. Market Analysis, by Country

Chapter 6: Cell Therapy Market, by Therapeutic Area6.1. Overview6.1.1. Market Size and Forecast6.2. Malignancies6.2.1. Market Size and Forecast, by Region6.2.2. Market Analysis, by Country6.3. Musculoskeletal Disorders6.3.1. Market Size and Forecast, by Region6.3.2. Market Analysis, by Country6.4. Autoimmune Disorders6.4.1. Market Size and Forecast, by Region6.4.2. Market Analysis, by Country6.5. Dermatology6.5.1. Market Size and Forecast, by Region6.5.2. Market Analysis, by Country6.6. Others6.6.1. Market Size and Forecast, by Region6.6.2. Market Analysis, by Country

Chapter 7: Cell Therapy Market, by End-user7.1. Overview7.1.1. Market Size and Forecast7.2. Hospitals & Clinics7.2.1. Key Market Trends and Opportunities7.2.2. Market Size and Forecast, by Region7.2.3. Market Analysis, by Country7.3. Academic & Research Institutes7.3.1. Key Market Trends and Opportunities7.3.2. Market Size and Forecast, by Region7.3.3. Market Analysis, by Country

Chapter 8: Cell Therapy Market, by Region8.1. Overview8.2. North America8.3. Europe8.4. Asia-Pacific8.5. LAMEA

Chapter 9: Company Profiles9.1. Allosource9.1.1. Company Overview9.1.2. Company Snapshot9.1.3. Operating Business Segments9.1.4. Product Portfolio9.1.5. Key Strategic Moves and Developments9.2. Cells for Cells9.2.1. Company Overview9.2.2. Company Snapshot9.2.3. Operating Business Segments9.2.4. Product Portfolio9.3. Holostem Terapie Avanzate Srl9.3.1. Company Overview9.3.2. Company Snapshot9.3.3. Operating Business Segments9.3.4. Product Portfolio9.4. Jcr Pharmaceuticals Co. Ltd.9.4.1. Company Overview9.4.2. Company Snapshot9.4.3. Operating Business Segments9.4.4. Product Portfolio9.4.5. Business Performance9.4.6. Key Strategic Moves and Developments9.5. Kolon Tissuegene, Inc.9.5.1. Company Overview9.5.2. Company Snapshot9.5.3. Operating Business Segments9.5.4. Product Portfolio9.5.5. Key Strategic Moves and Developments9.6. Medipost Co. Ltd.9.6.1. Company Overview9.6.2. Company Snapshot9.6.3. Operating Business Segments9.6.4. Product Portfolio9.6.5. Business Performance9.7. Mesoblast Ltd9.7.1. Company Overview9.7.2. Company Snapshot9.7.3. Operating Business Segments9.7.4. Product Portfolio9.7.5. Business Performance9.8. Nuvasive, Inc.9.8.1. Company Overview9.8.2. Company Snapshot9.8.3. Operating Business Segments9.8.4. Product Portfolio9.8.5. Business Performance9.9. Osiris Therapeutics, Inc.9.9.1. Company Overview9.9.2. Company Snapshot9.9.3. Operating Business Segments9.9.4. Product Portfolio9.10. Stemedica Cell Technologies, Inc.9.10.1. Company Overview9.10.2. Company Snapshot9.10.3. Operating Business Segments9.10.4. Product Portfolio

For more information about this report visit https://www.researchandmarkets.com/r/bja7iz

Go here to see the original:
Outlook on the Cell Therapy Global Market to 2027 - Opportunity Analysis and Industry Forecasts - Yahoo Finance

To Read More: Outlook on the Cell Therapy Global Market to 2027 – Opportunity Analysis and Industry Forecasts – Yahoo Finance
categoriaCardiac Stem Cells commentoComments Off on Outlook on the Cell Therapy Global Market to 2027 – Opportunity Analysis and Industry Forecasts – Yahoo Finance | dataFebruary 11th, 2021
Read All

Autologous Stem Cell Based Therapies Market Global Expansion by Key Segments and Industry Dynamics From 2021 to 2026 Atlantic Financial Management -…

By daniellenierenberg

According to the new market research report Autologous Stem Cell Based Therapies Market Strategic recommendations, Trends, Segmentation, Use Case Analysis, Competitive Intelligence, Global and Regional Forecast (to 2026), published by In4Research, acknowledges you about the market developments, technological advancements, supply & demand scenario, pricing factors, and emerging trends that are going to influence the growth of the Autologous Stem Cell Based Therapies market. This research report also provides details on the revenue drivers, product innovations, government regulations & policies that act as a game-changer in the market growth.

The report provides insights on the following pointers:

Request for a sample copy of the report to get premium insights of Autologous Stem Cell Based Therapies market at https://www.in4research.com/sample-request/46884

The report also contains brief information on the key players in the Autologous Stem Cell Based Therapies industry operating on the Market. The report provides in-depth information on the industry overview, the share of revenues, developments, mergers and acquisitions, and key strategies. The report also includes a full analysis of product innovation and consumer behavior. The Autologous Stem Cell Based Therapies market has been segmented by commodity type, end-users, technology, industry verticals, and regions. The in-depth research will allow readers to better understand well-established and emerging players in shaping their business strategies to achieve long-term and short-term goals. The report outlines a wide range of areas and locations where key participants could identify opportunities for the future.

The Major Players Covered in Autologous Stem Cell Based Therapies Market Report are:

Application Analysis: Global Autologous Stem Cell Based Therapies market also specifically underpins end-use application scope and their improvements based on technological developments and consumer preferences.

Product Type Analysis: Global Autologous Stem Cell Based Therapies market also specifically underpins type scope and their improvements based on technological developments and consumer preferences.

For more Customization, Connect with us at https://www.in4research.com/customization/46884

The report is a versatile reference guide to understand developments across multiple regions such as depicted as under:

In this study, the years considered to estimate the market size of Autologous Stem Cell Based Therapies Market:

In the report, the market outlook section mainly encompasses fundamental dynamics of the market which include drivers, restraints, opportunities, and challenges faced by the industry. Drivers and restraints are intrinsic factors whereas opportunities and challenges are extrinsic factors of the Autologous Stem Cell Based Therapies Market.

In4Research narrows down the available data using primary sources to validate the data and use it in compiling a full-fledged market research study. The report contains a quantitative and qualitative estimation of market elements that interest the client. The Global Autologous Stem Cell Based Therapies Market is mainly bifurcated into sub-segments which can provide classified data regarding the latest trends in the market.

Ask Your Queries to our Analyst regarding Autologous Stem Cell Based Therapies Report at https://www.in4research.com/speak-to-analyst/46884

Chapters Covered in Autologous Stem Cell Based Therapies Market Report are As Follow:

Buy Full Research Report at https://www.in4research.com/buy-now/46884

FOR ALL YOUR RESEARCH NEEDS, REACH OUT TO US AT:

Contact Name: Rohan

Email: [emailprotected]

Phone: +1 (407) 768-2028

See the original post:
Autologous Stem Cell Based Therapies Market Global Expansion by Key Segments and Industry Dynamics From 2021 to 2026 Atlantic Financial Management -...

To Read More: Autologous Stem Cell Based Therapies Market Global Expansion by Key Segments and Industry Dynamics From 2021 to 2026 Atlantic Financial Management -…
categoriaCardiac Stem Cells commentoComments Off on Autologous Stem Cell Based Therapies Market Global Expansion by Key Segments and Industry Dynamics From 2021 to 2026 Atlantic Financial Management -… | dataFebruary 11th, 2021
Read All

Engineered stem cells that evade immune detection could …

By daniellenierenberg

Sana Biotechnology was founded in 2018 with a mission of solving some of the most difficult challenges in gene and cell therapy. Toward that end, the company is engineering hypoimmune stem cells that can evade detection and destruction by the immune system.

Now, some of Sanas founders, who are scientists at the University of California, San Francisco (UCSF), are describing how these engineered stem cells are able to shut down the immune systems natural killer (NK) cells. They believe their findings could enhance the development of implantable cell therapies, as well as cancer immunotherapies, they reported in the Journal of Experimental Medicine.

The ability to evade NK cells could enhance a range of experimental treatments, including implants of insulin-producing cells for patients with diabetes and cardiac cells to repair heart damage. These cells are typically rejected by the immune systema problem hypoimmune stem cells were designed to circumvent.

How would you like to win free bench space at Lab Central for one scientist for an entire year? Enter the Agilent LabCentral Golden Ticket Winner Program

One innovative drug discovery or biotechnology company will be awarded a Golden Ticketone year of free individual bench space at LabCentrals shared facility, including all resident benefits! We will be accepting applications from now until February 17, 2021. Enter today!

The UCSF team used gene modification technology to design the cells so they avoid the immune responses that are either built into the bodys defense system or learned. The researchers achieved that feat by engineering the cells to express the protein CD47, which shuts down innate immune cells by activating signal regulatory protein alpha, or SIRP-alpha.

The researchers were surprised to discover that the hypoimmune stem cells were able to escape NK cells, even though NK cells were not previously known to express SIRP-alpha. Rather than studying lab-grown cell lines, they took cells directly from patients. Thats where they found SIRP-alpha.

Whats more, the UCSF team discovered that NK cells begin to express SIRP-alpha after they are activated by cytokines that are typically abundant in inflammatory states.

RELATED: Fierce Biotech's 2020 Fierce 15 | Sana Biotechnology

To further prove out the utility of engineered stem cells, the UCSF researchers implanted cells with rhesus macaque CD47 into monkeys. They documented the activation of SIRP-alpha in NK cells. Those NK cells did not kill the transplanted cells.

A similar technique could be used, but in reverse, to implant pig cardiac cells into people, the UCSF team argued. If human CD47 were engineered into pig heart cells, they could be implanted into people without risking rejection by NK cells, they suggested.

Sana made waves in 2018 when it raised a whopping $700 million in a single venture round from the likes of Arch Venture Partners, Flagship Pioneering and Bezos Expeditions. We believe that one of, if not the most, important thing happening in medicine over the next several decades is the ability to modulate genes, use cells as medicines, and engineer cells, said Steve Harr, president and CEO of Sana, at the time.

Sana did not provide materials or funding for the new study, but it is now developing the hypoimmune stem cell technology for clinical testing.

The UCSF team believes their findings could also boost cancer immunotherapy. The engineered cells could help combat checkpoints that allow tumors to evade immune detection, they said.

"Many tumors have low levels of self-identifying MHC-I protein and some compensate by overexpressing CD47 to keep immune cells at bay," said Lewis Lanier, Ph.D., director of the Parker Institute for Cancer Immunotherapy at the UCSF Helen Diller Family Comprehensive Cancer Center, in a statement. "This might be the sweet spot for antibody therapies that target CD47."

Link:
Engineered stem cells that evade immune detection could ...

To Read More: Engineered stem cells that evade immune detection could …
categoriaCardiac Stem Cells commentoComments Off on Engineered stem cells that evade immune detection could … | dataFebruary 10th, 2021
Read All

Worldwide Cell Therapy Industry to 2027 – Profiling Allosource, Medipost and Mesoblast Among Others – PRNewswire

By daniellenierenberg

DUBLIN, Feb. 9, 2021 /PRNewswire/ -- The "Cell Therapy Market by Cell Type, Therapy Type, Therapeutic Area, and End User: Global Opportunity Analysis and Industry Forecast, 2020-2027" report has been added to ResearchAndMarkets.com's offering.

The global cell therapy market accounted for $7,754. 89 million in 2019, and is expected to reach $48,115. 40 million by 2027, registering a CAGR of 25. 6% from 2020 to 2027.

Cell therapy involves administration of somatic cell preparations for treatment of diseases or traumatic damages. Cell therapy aims to introduce new, healthy cells into a patient's body to replace diseased or missing ones.

This is attributed to the fact that specialized cells, such as brain cells, are difficult to obtain from human body. In addition, specialized cells typically have a limited ability to multiply, making it difficult to produce sufficient number of cells required for certain cell therapies. Some of these issues can be overcome through the use of stem cells. In addition, cells such as blood and bone marrow cells, mature, immature & solid tissue cells, adult stem cells, and embryonic stem cells are widely used in cell therapy procedures.

Moreover, transplanted cells including induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), neural stem cells (NSCs), and mesenchymal stem cells (MSCs) are divided broadly into two main groups including autologous cells and non-autologous cells. Development of precision medicine and advancements in Advanced Therapies Medicinal Products (ATMPS) in context to their efficiency and manufacturing are expected to be the major drivers for the market. Furthermore, automation in adult stem cells and cord blood processing and storage are the key technological advancements that fuel growth of the market for cell therapy.

In addition, growth in aging patient population, The rise in cell therapy transplantations globally, and surge in disease awareness drive growth of the global cell therapy market. Furthermore, The rise in adoption of human cells over animal cells for cell therapeutics research, technological advancements in field of cell therapy, and increase in incidences of diseases such as cancer, cardiac abnormalities, and organ failure are the key factors that drive growth of the global market.

Moreover, implementation of stringent government regulations regarding the use of cell therapy is anticipated to restrict growth of the market. On the contrary, surge in number of regulations to promote stem cell therapy and increase in funds for research in developing countries are expected to offer lucrative opportunities to the market in the future.

The global cell therapy market is categorized on the basis of therapy type, therapeutic area, cell type, end user, and region. On the basis of therapy type, the market is segregated into autologous and allogenic. By therapeutics, it is classified into malignancies, musculoskeletal disorders, autoimmune disorders, dermatology, and others.

The global cell therapy market is categorized on the basis of therapy type, therapeutic, cell type, end user and region. On the basis of therapy type, the market is segregated into autologous and allogenic. By therapeutic area, it is classified into malignancies, musculoskeletal disorders, autoimmune disorders, dermatology, and others. On the basis of cell type, it is segregated into stem cell therapy and non-stem cell type. On the basis of end user, it is segregated into hospital & clinics and academic & research institutes. On the basis of region, the market is studied across North America, Europe, Asia-Pacific, and LAMEA.

Key Benefits

Key Topics Covered:

Chapter 1: Introduction1.1. Report Description1.2. Key Benefits for Stakeholders1.3. Key Market Segments1.4. Research Methodology1.4.1. Secondary Research1.4.2. Primary Research1.4.3. Analyst Tools & Models

Chapter 2: Executive Summary2.1. Key Findings of the Study2.2. Cxo Perspective

Chapter 3: Market Overview3.1. Market Definition and Scope3.2. Key Findings3.2.1. Top Player Positioning3.2.2. Top Investment Pockets3.2.3. Top Winning Strategies3.3. Porter's Five Forces Analysis3.4. Impact Analysis3.4.1. Drivers3.4.1.1. Technological Advancements in the Field of Cell Therapy3.4.1.2. The Rise in Number of Cell Therapy Clinical Studies3.4.1.3. The Rise in Adoption of Regenerative Medicine3.4.2. Restraint3.4.2.1. Developing Stage and Pricing3.4.3. Opportunity3.4.3.1. High Growth Potential in Emerging Markets3.5. Impact of Covid-19 on Cell Therapy Market

Chapter 4: Cell Therapy Market, by Cell Type4.1. Overview4.1.1. Market Size and Forecast4.2. Stem Cell4.2.1. Key Market Trends and Opportunities4.2.2. Market Size and Forecast, by Region4.2.3. Market Size and Forecast, by Type4.2.3.1. Bone Marrow, Market Size and Forecast4.2.3.2. Blood, Market Size and Forecast4.2.3.3. Umbilical Cord-Derived, Market Size and Forecast4.2.3.4. Adipose-Derived Stem Cell, Market Size and Forecast4.2.3.5. Others (Placenta, and Nonspecific Cells), Market Size and Forecast4.3. Non-Stem Cell4.3.1. Key Market Trends and Opportunities4.3.2. Market Size and Forecast, by Region

Chapter 5: Cell Therapy Market, by Therapy Type5.1. Overview5.1.1. Market Size and Forecast5.2. Autologous5.2.1. Key Market Trends and Opportunities5.2.2. Market Size and Forecast, by Region5.2.3. Market Analysis, by Country5.3. Allogeneic5.3.1. Key Market Trends and Opportunities5.3.2. Market Size and Forecast, by Region5.3.3. Market Analysis, by Country

Chapter 6: Cell Therapy Market, by Therapeutic Area6.1. Overview6.1.1. Market Size and Forecast6.2. Malignancies6.2.1. Market Size and Forecast, by Region6.2.2. Market Analysis, by Country6.3. Musculoskeletal Disorders6.3.1. Market Size and Forecast, by Region6.3.2. Market Analysis, by Country6.4. Autoimmune Disorders6.4.1. Market Size and Forecast, by Region6.4.2. Market Analysis, by Country6.5. Dermatology6.5.1. Market Size and Forecast, by Region6.5.2. Market Analysis, by Country6.6. Others6.6.1. Market Size and Forecast, by Region6.6.2. Market Analysis, by Country

Chapter 7: Cell Therapy Market, by End-user7.1. Overview7.1.1. Market Size and Forecast7.2. Hospitals & Clinics7.2.1. Key Market Trends and Opportunities7.2.2. Market Size and Forecast, by Region7.2.3. Market Analysis, by Country7.3. Academic & Research Institutes7.3.1. Key Market Trends and Opportunities7.3.2. Market Size and Forecast, by Region7.3.3. Market Analysis, by Country

Chapter 8: Cell Therapy Market, by Region8.1. Overview8.2. North America8.3. Europe8.4. Asia-Pacific8.5. LAMEA

Chapter 9: Company Profiles9.1. Allosource9.1.1. Company Overview9.1.2. Company Snapshot9.1.3. Operating Business Segments9.1.4. Product Portfolio9.1.5. Key Strategic Moves and Developments9.2. Cells for Cells9.2.1. Company Overview9.2.2. Company Snapshot9.2.3. Operating Business Segments9.2.4. Product Portfolio9.3. Holostem Terapie Avanzate Srl9.3.1. Company Overview9.3.2. Company Snapshot9.3.3. Operating Business Segments9.3.4. Product Portfolio9.4. Jcr Pharmaceuticals Co. Ltd.9.4.1. Company Overview9.4.2. Company Snapshot9.4.3. Operating Business Segments9.4.4. Product Portfolio9.4.5. Business Performance9.4.6. Key Strategic Moves and Developments9.5. Kolon Tissuegene, Inc.9.5.1. Company Overview9.5.2. Company Snapshot9.5.3. Operating Business Segments9.5.4. Product Portfolio9.5.5. Key Strategic Moves and Developments9.6. Medipost Co. Ltd.9.6.1. Company Overview9.6.2. Company Snapshot9.6.3. Operating Business Segments9.6.4. Product Portfolio9.6.5. Business Performance9.7. Mesoblast Ltd9.7.1. Company Overview9.7.2. Company Snapshot9.7.3. Operating Business Segments9.7.4. Product Portfolio9.7.5. Business Performance9.8. Nuvasive, Inc.9.8.1. Company Overview9.8.2. Company Snapshot9.8.3. Operating Business Segments9.8.4. Product Portfolio9.8.5. Business Performance9.9. Osiris Therapeutics, Inc.9.9.1. Company Overview9.9.2. Company Snapshot9.9.3. Operating Business Segments9.9.4. Product Portfolio9.10. Stemedica Cell Technologies, Inc.9.10.1. Company Overview9.10.2. Company Snapshot9.10.3. Operating Business Segments9.10.4. Product Portfolio

For more information about this report visit https://www.researchandmarkets.com/r/shw12n

Media Contact:

Research and Markets Laura Wood, Senior Manager [emailprotected]

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1904 Fax (outside U.S.): +353-1-481-1716

SOURCE Research and Markets

http://www.researchandmarkets.com

Read more:
Worldwide Cell Therapy Industry to 2027 - Profiling Allosource, Medipost and Mesoblast Among Others - PRNewswire

To Read More: Worldwide Cell Therapy Industry to 2027 – Profiling Allosource, Medipost and Mesoblast Among Others – PRNewswire
categoriaCardiac Stem Cells commentoComments Off on Worldwide Cell Therapy Industry to 2027 – Profiling Allosource, Medipost and Mesoblast Among Others – PRNewswire | dataFebruary 10th, 2021
Read All

Harnessing the Potential of Cell and Gene Therapy – OncLive

By daniellenierenberg

Excitement took wing in the scientific community in the early 1990s, when the first gene therapy trial showed significant success, only to crash at the end of the decade with a patients tragic death.

Twenty years later, the excitement is back and greater than before. Although safety remains a concern, investigators are breaking ground in cell and gene therapy, and many believe that ultimately, a string of cured cancers will follow.

In 2017, the excitement over these therapies returned in spades when the FDA signed off on a cell-therapy drug for the first time, approving the chimeric antigen receptor (CAR) T-cell treatment tisagenlecleucel (Kymriah; Novartis) for patients with B-cell precursor acute lymphoblastic leukemia. At last, scientists had devised a way to reprogram a persons own T cells to attack tumor cells.

Were entering a new frontier, said Scott Gottlieb, MD, then-FDA commissioner, in announcing the groundbreaking approval.

Gottlieb was not exaggerating. The growth in CAR T-cell research is exploding. Although only a handful of cell and gene therapies are on the market, the FDA predicted in 2019 that it will receive more than 200 investigational new drug applications per year for cell and gene therapies, and that by 2025, it expects to have accelerated to 10 to 20 cell and gene therapy approvals per year.

We can absolutely cut the number of cancer deaths down so that one day in our lifetimes it can be a rare thing for people to die of cancer, said Patrick Hwu, MD, president and CEO of Moffitt Cancer Center in Florida and among gene therapys pioneers. It still may happen here and there, but itll be kind of like people dying of pneumonia. Its like, He died of pneumonia? Thats kind of weird. I think cancer can be the same way.

Essentially, you can kill any cancer cell that has an antigen that is recognized by the immune cell, Hwu said. The key to curing every single cancer, which is our goal, is to have receptors that can recognize the tumor but dont recognize the normal cells.

Community oncologists will need to be increasingly familiar about the various products, including their immediate and longer-term risks, Bo Wang, MD, and Deepu Madduri, MD, recently wrote in OncologyLive.1 It is key to understand the optimal time for referring these patients to an academic institution, as well as how to manage the requisite post CAR T-cell therapy in the community setting. Madduri is an assistant professor of medicine, hematology and medical oncology, as well as associate director of cellular therapy service, and director of clinical operations with the Center of Excellence for Multiple Myeloma at The Tisch Cancer Institute and the Icahn School of Medicine at Mount Sinai in New York, New York. Wang is a third-year clinical fellow in hematology/oncology at Mount Sinai.

Early referral to academic centers and hospitals equipped to deliver therapies is crucial for patients eligible for therapy. However, as advances continue in the field, community practices may be called upon to administer therapies in their clinic.

The Community Oncology Alliance (COA) envisions a broader role for the settings in which CAR T-cell therapies can be administered. When the Centers for Medicare & Medicaid Services (CMS) was considering coverage for CAR T-cell therapies in 2019, COA officials argued against limiting approvals to hospitals.

It is important to understand that there are state-of-the-art community oncology practices that have significant experience and capabilities in administering highly complex treatments, COA officials wrote in a letter to CMS. For example, stem cell transplants, which are similar in complexity to CAR T therapy, are performed successfully in the community oncology practice setting.2

Broader use of gene therapies depends on several factors, including navigating the logistics of gene therapies, addressing the high costs, and managing toxicities.3

Autologous CAR T-cell therapies involve a manufacturing process that requires coordination between the treating facility and the processing facility. Following leukapheresis, patients may require maintenance therapy to control disease progression during the manufacturing time, which can take 3 to 5 weeks.

In terms of cost, gene and cell therapies can cost from $375,000 to $475,000 per dose and they may face coverage restrictions from payers. Approvals could take weeks to obtain.3,4

Because of cytokine release syndrome and neurotoxicities associated with CAR T-cell therapy, the FDA mandates risk evaluation and mitigation strategy training for centers.

Further, providers may find that real-world experiences with gene therapies are different from those seen in the clinical trial setting, according to Ankit J. Kansagra, MD.

In a presentation at the 2020 American Society of Clinical Oncology Virtual Education Program, Kansagra, an assistant professor of medicine and Eugene P. Frenkel, MD, Scholar in Clinical Medicine at Harold C. Simmons Comprehensive Cancer Center in Dallas, Texas, said that in practice patients may be older and have more aggressive disease, with double- and triple-hit lymphomas.4

Specifically, Kansagra noted that medications such as steroids and/or tocilizumab (Actemra) to prevent or treat cytokine release syndrome or other toxicities were more frequently used in the real-world setting than what had been seen in clinical trials.

As it stands now, only a fraction of eligible patients are receiving CAR T-cell therapies, Kansagra said. Potentially, 9750 patients a year may be eligible for CAR T-cell therapies in approved and upcoming hematologic indications. From 2016 to 2019, a total of 2058 patients received CAR T-cell infusion.4

Next steps for transplanting these novel therapies to clinical practice will require changes in key areas, Kansagra said, such as supply chain management, patient support, and financial systems (Figure).4

Figure. Next Steps for Effective Delivery of Gene and Cell Therapies4

Meanwhile, multiple myeloma experts advise providers to be ready for change. As commercially available myeloma CAR T-cell therapies are approved, it will be even more important for community oncologists to better understand these therapies so they can offer them to their patients, Wang and Madduri wrote.1

Cell therapy involves cultivating or modifying immune cells outside the body before injecting them into the patient. Cells may be autologous (self-provided) or allogeneic (donor-provided); they include hematopoietic stem cells and adult and embryonic stem cells. Gene therapy modifies or manipulates cell expression. There is considerable overlap between the 2 disciplines.

Juliette Hordeaux, PhD, senior director of translational research for the University of Pennsylvanias gene therapy program, is cautious about the FDAs predictions, saying shed be thrilled with 5 cell and/or gene therapy approvals annually.

For monogenic diseases, there are only a certain number of mutations, and then well plateau until we reach a stage where we can go after more common diseases, Hordeaux said.

Safety has been the main brake around adeno-associated virus vector [AAV] gene therapy, added Hordeaux, whose hospitals program has the institutional memory of both Jesse Gelsingers tragic death during a 1999 gene therapy trial as well as breakthroughs by 2015 Giants of Cancer Care winner in immuno-oncology Carl H. June, MD, and others in CAR T-cell therapy. Sometimes there are unexpected toxicity [events] in trials.I think figuring out ways to make gene therapy safer is going to be the next goal for the field before we can even envision many more drugs approved.

In total, 3 CAR T-cell therapies are now on the market, all targeting the CD19 antigen. Tisagenlecleucel was the first. Gilead Sciences received approval in October 2017 for axicabtagene ciloleucel (axi-cel; Yescarta), a CAR T-cell therapy for adults with large B-cell non-Hodgkin lymphoma. Kite Pharma, a subsidiary of Gilead, received an accelerated approval in July 2020 for brexucabtagene autoleucel (Tecartus) for adults with relapsed/ refractory mantle cell lymphoma.

Another CD19-directed therapy under FDA review for relapsed/refractory large B-cell lymphoma, is lisocabtagene maraleucel (liso-cel; JCAR017; Bristol Myers Squibb). Idecabtagene vicleucel (ide-cel; bb2121; Bristol Myers Squibb) is under priority FDA review, with a decision expected by March 31, 2021. The biologics license application for ide-cel seeks approval for the B-cell maturation antigendirected CAR therapy to treat adult patients with multiple myeloma who have received at least 3 prior therapies.5

The number of clinical trials evaluating CAR T-cell therapies has risen sharply since 2015, when investigators counted a total of 78 studies registered on the ClinicalTrials. gov website. In June 2020, the site listed 671 trials, including 357 registered in China, 256 in the United States, and 58 in other countries.6 Natural killer (NK) cells are the research focus of Dean A. Lee, MD, PhD, a physician in the Division of Hematology and Oncology at Nationwide Childrens Hospital in Columbus, Ohio. He developed a method for consistent, robust expansion of highly active clinical-grade NK cells that enables repeated delivery of large cell doses for improved efficacy. This finding led to several first-in-human clinical trials evaluating adoptive immunotherapy with expanded NK cells under an FDA investigational new drug application. Lee is developing both genetic and nongenetic methods to improve tumor targeting and tissue homing of NK cells. His efforts are geared toward pediatric sarcomas.

The biggest emphasis over the past 20 to 25 years has been cell therapy for cancer, talking about trying to transfer a specific part of the immune system for cells, said Lee, who is also director of the Cellular Therapy and Cancer Immunology Program at Nationwide Childrens Hospital, at The Ohio State University Comprehensive Cancer Center Arthur G. James Cancer Hospital, and at the Richard J. Solove Research Institute.

However, Lee said, NKs have wider potential. This is kind of a natural swing back. Now that we know we can grow them, we can reengineer them against infectious disease targets and use them in that [space], he said.

Lee is part of a coronavirus disease 2019 (COVID-19) clinical trial, partnering with Kiadis, for off-the-shelf K-NK cells using Kiadis proprietary platforms. Such treatment would be a postexposure preemptive therapy for treating COVID-19. Lee said the pivot toward treating COVID19 with cell therapy was because some of the very early reports on immune responses to coronavirus, both original [SARS-CoV-2] and the new [mutation], seem to implicate that those who did poorly [overall] had poorly functioning NK cells.

The revolutionary gene editing tool CRISPR is making its initial impact in clinical trials outside the cancer area. Its developers, Jennifer Doudna, PhD, and Emmanuelle Charpentier, PhD, won the Nobel Prize in Chemistry 2020.

For patients with sickle cell disease (SCD), CRISPR was used to reengineer bone marrow cells to produce fetal hemoglobin, with the hope that the protein would turn deformed red blood cells into healthy ones. National Public Radio (NPR) did a story on one patient who, so far, thanks to CRISPR, has been liberated from the attacks of SCD that typically have sent her to the hospital, as well from the need for blood transfusions.7

Its a miracle, you know? the patient, Victoria Gray of Forest, Mississippi, told NPR.

She was among 10 patients with SCD or transfusion-dependent beta-thalassemia treated with promising results, as reported by the New England Journal of Medicine.8

Stephen Gottschalk, MD, chair of the department of bone marrow transplantation and cellular therapy at St Jude Childrens Research Hospital, said, Theres a lot of activity to really explore these therapies with diseases that are much more common than cancer.

Animal models use T cells to reverse cardiac fibrosis, for instance, Gottschalk said. Using T cells to reverse pathologies associated with senescence, such as conditions associated with inflammatory clots, are also being studied.

CAR T, I think, will become part of the standard of care, Gottschalk said. The question is how to best get that accomplished. To address the tribulations of some autologous products, a lot of groups are working with off-the-shelf products to get around some of the manufacturing bottlenecks. I believe those issues will be solved in the long run.

Read this article:
Harnessing the Potential of Cell and Gene Therapy - OncLive

To Read More: Harnessing the Potential of Cell and Gene Therapy – OncLive
categoriaCardiac Stem Cells commentoComments Off on Harnessing the Potential of Cell and Gene Therapy – OncLive | dataFebruary 4th, 2021
Read All

Stem Cell Study Illuminates the Cause of a Devastating Inherited Heart Disorder – Newswise

By daniellenierenberg

Newswise PHILADELPHIAScientists in the Perelman School of Medicine at the University of Pennsylvania have uncovered the molecular causes of a congenital form of dilated cardiomyopathy (DCM), an often-fatal heart disorder.

This inherited form of DCM which affects at least several thousand people in the United States at any one time and often causes sudden death or progressive heart failure is one of multiple congenital disorders known to be caused by inherited mutations in a gene called LMNA. The LMNA gene is active in most cell types, and researchers have not understood why LMNA mutations affect particular organs such as the heart while sparing most other organs and tissues.

In the study, published this week in Cell Stem Cell, the Penn Medicine scientists used stem cell techniques to grow human heart muscle cells containing DCM-causing mutations in LMNA. They found that these mutations severely disrupt the structural organization of DNA in the nucleus of heart muscle cells but not two other cell types studied leading to the abnormal activation of non-heart muscle genes.

Were now beginning to understand why patients with LMNA mutations have tissue-restricted disorders such as DCM even though the gene is expressed in most cell types, said study co-senior author Rajan Jain, MD, an assistant professor of Cardiovascular Medicine and Cell and Developmental Biology at the Perelman School of Medicine.

Further work along these lines should enable us to predict how LMNA mutations will manifest in individual patients, and ultimately we may be able to intervene with drugs to correct the genome disorganization that these mutations cause, said study co-senior author Kiran Musunuru, MD, PhD, a professor of Cardiovascular Medicine and Genetics, and Director of the Genetic and Epigenetic Origins of Disease Program at Penn Medicine.

Inherited LMNA mutations have long puzzled researchers. The LMNA gene encodes proteins that form a lacy structure on the inner wall of the cell nucleus, where chromosomes full of coiled DNA are housed. This lacy structure, known as the nuclear lamina, touches some parts of the genome, and these lamina-genome interactions help regulate gene activity, for example in the process of cell division. The puzzle is that the nuclear lamina is found in most cell types, yet the disruption of this important and near-ubiquitous cellular component by LMNA mutations causes only a handful of relatively specific clinical disorders, including a form of DCM, two forms of muscular dystrophy, and a form of progeria a syndrome that resembles rapid aging.

To better understand how LMNA mutations can cause DCM, Jain, Musunuru, and their colleagues took cells from a healthy human donor, and used the CRISPR gene-editing technique to create known DCM-causing LMNA mutations in each cell. They then used stem cell methods to turn these cells into heart muscle cells cardiomyocytes and, for comparison, liver and fat cells. Their goal was to discover what was happening in the mutation-containing cardiomyocytes that wasnt happening in the other cell types.

The researchers found that in the LMNA-mutant cardiomyocytes but hardly at all in the other two cell types the nuclear lamina had an altered appearance and did not connect to the genome in the usual way. This disruption of lamina-genome interactions led to a failure of normal gene regulation: many genes that should be switched off in heart muscle cells were active. The researchers examined cells taken from DCM patients with LMNA mutations and found similar abnormalities in gene activity.

A distinctive pattern of gene activity essentially defines what biologists call the identity of a cell. Thus the DCM-causing LMNA mutations had begun to alter the identity of cardiomyocytes, giving them features of other cell types.

The LMNA-mutant cardiomyocytes also had another defect seen in patients with LMNA-linked DCM: the heart muscle cells had lost much of the mechanical elasticity that normally allows them to contract and stretch as needed. The same deficiency was not seen in the LMNA-mutant liver and fat cells.

Research is ongoing to understand whether changes in elasticity in the heart cells with LMNA mutations occurs prior to changes in genome organization, or whether the genome interactions at the lamina help ensure proper elasticity. Their experiments did suggest an explanation for the differences between the lamina-genome connections being badly disrupted in LMNA-mutant cardiomyocytes but not so much in LMNA-mutant liver and fat cells: Every cell type uses a distinct pattern of chemical marks on its genome, called epigenetic marks, to program its patterns of gene activity, and this pattern in cardiomyocytes apparently results in lamina-genome interactions that are especially vulnerable to disruption in the presence of certain LMNA mutations.

The findings reveal the likely importance of the nuclear lamina in regulating cell identity and the physical organization of the genome, Jain said. This also opens up new avenues of research that could one day lead to the successful treatment or prevention of LMNA-mutations and related disorders.

Other co-authors of the study were co-first authors Parisha Shah and Wenjian Lv; and Joshua Rhoades, Andrey Poleshko, Deepti Abbey, Matthew Caporizzo, Ricardo Linares-Saldana, Julie Heffler, Nazish Sayed, Dilip Thomas, Qiaohong Wang, Liam Stanton, Kenneth Bedi, Michael Morley, Thomas Cappola, Anjali Owens, Kenneth Margulies, David Frank, Joseph Wu, Daniel Rader, Wenli Yang, and Benjamin Prosser.

Funding was provided by the Burroughs Wellcome Career Award for Medical Scientists, Gilead Research Scholars Award, Pennsylvania Department of Health, American Heart Association/Allen Initiative, the National Institutes of Health (DP2 HL147123, R35 HL145203, R01 HL149891, F31 HL147416, NSF15-48571, R01 GM137425), the Penn Institute of Regenerative Medicine, and the Winkelman Family Fund for Cardiac Innovation.

###

Penn Medicineis one of the worlds leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of theRaymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nations first medical school) and theUniversity of Pennsylvania Health System, which together form a $8.6 billion enterprise.

The Perelman School of Medicine has been ranked among the top medical schools in the United States for more than 20 years, according toU.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $494 million awarded in the 2019 fiscal year.

The University of Pennsylvania Health Systems patient care facilities include: the Hospital of the University of Pennsylvania and Penn Presbyterian Medical Centerwhich are recognized as one of the nations top Honor Roll hospitals byU.S. News & World ReportChester County Hospital; Lancaster General Health; Penn Medicine Princeton Health; and Pennsylvania Hospital, the nations first hospital, founded in 1751. Additional facilities and enterprises include Good Shepherd Penn Partners, Penn Medicine at Home, Lancaster Behavioral Health Hospital, and Princeton House Behavioral Health, among others.

Penn Medicine is powered by a talented and dedicated workforce of more than 43,900 people. The organization also has alliances with top community health systems across both Southeastern Pennsylvania and Southern New Jersey, creating more options for patients no matter where they live.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2019, Penn Medicine provided more than $583 million to benefit our community.

See the original post here:
Stem Cell Study Illuminates the Cause of a Devastating Inherited Heart Disorder - Newswise

To Read More: Stem Cell Study Illuminates the Cause of a Devastating Inherited Heart Disorder – Newswise
categoriaCardiac Stem Cells commentoComments Off on Stem Cell Study Illuminates the Cause of a Devastating Inherited Heart Disorder – Newswise | dataFebruary 1st, 2021
Read All

Merck Receives Positive EU CHMP Opinion for Expanded Approval of KEYTRUDA (pembrolizumab) in Certain Patients With Relapsed or Refractory Classical…

By daniellenierenberg

KENILWORTH, N.J.--(BUSINESS WIRE)--Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced that the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) has adopted a positive opinion recommending approval of an expanded label for KEYTRUDA, Mercks anti-PD-1 therapy. The opinion is recommending KEYTRUDA as monotherapy for the treatment of adult and pediatric patients aged 3 years and older with relapsed or refractory classical Hodgkin lymphoma (cHL) who have failed autologous stem cell transplant (ASCT) or following at least two prior therapies when ASCT is not a treatment option.

This recommendation is based on results from the pivotal Phase 3 KEYNOTE-204 trial, in which KEYTRUDA monotherapy demonstrated a significant improvement in progression-free survival (PFS) compared with brentuximab vedotin (BV), a commonly used treatment. KEYTRUDA reduced the risk of disease progression or death by 35% (HR=0.65 [95% CI, 0.48-0.88]; p=0.00271) and showed a median PFS of 13.2 months versus 8.3 months for patients treated with BV. The recommendation is also based on supportive data from an updated analysis of the KEYNOTE-087 trial, which supported the European Commissions (EC) approval of KEYTRUDA for the treatment of adult patients with relapsed or refractory cHL who have failed ASCT and BV or who are transplant ineligible and have failed BV. The CHMPs recommendation will now be reviewed by the EC for marketing authorization in the European Union (EU), and a final decision is expected in the first quarter of 2021. If approved, this will be the first pediatric indication for KEYTRUDA in the EU.

This positive opinion reinforces the importance of KEYTRUDA for certain adult and pediatric patients with relapsed or refractory classical Hodgkin lymphoma in the European Union, said Dr. Vicki Goodman, vice president, clinical research, Merck Research Laboratories. We look forward to the decision by the European Commission and will continue to expand our clinical development program in blood cancers with KEYTRUDA and our recently acquired investigational therapies to help address the unmet needs of patients.

Merck is studying KEYTRUDA across hematologic malignancies through a broad clinical program, including multiple registrational trials in cHL and primary mediastinal large B-cell lymphoma and more than 60 investigator-initiated studies across 15 tumors. In addition to KEYTRUDA, Merck is evaluating two clinical-stage assets for the treatment of patients with hematologic malignancies: MK-1026 (formerly ARQ 531), a Brutons tyrosine kinase inhibitor, and VLS-101, an antibody-drug conjugate targeting ROR1.

About KEYNOTE-204

KEYNOTE-204 (ClinicalTrials.gov, NCT02684292) is a randomized, open-label, Phase 3 trial evaluating KEYTRUDA monotherapy compared with BV for the treatment of patients with relapsed or refractory cHL. The primary endpoints are PFS and overall survival (OS), and the secondary endpoints include objective response rate (ORR), complete remission rate (CRR) and safety. The study enrolled 304 patients, aged 18 years and older, who were randomized to receive either:

About Hodgkin Lymphoma

Hodgkin lymphoma is a type of lymphoma that develops in the white blood cells called lymphocytes, which are part of the immune system. Hodgkin lymphoma can start almost anywhere most often in lymph nodes in the upper part of the body, with the most common sites being in the chest, neck or under the arms. Worldwide, there were approximately 83,000 new cases of Hodgkin lymphoma diagnosed, and more than 23,000 people died from the disease in 2020. In the EU, there were nearly 20,000 new cases of Hodgkin lymphoma diagnosed, and nearly 4,000 people died from the disease in 2020. Classical Hodgkin lymphoma accounts for more than nine in 10 cases of Hodgkin lymphoma in developed countries.

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,300 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications in the U.S.

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Small Cell Lung Cancer

KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic HNSCC with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult patients with relapsed or refractory classical Hodgkin lymphoma (cHL).

KEYTRUDA is indicated for the treatment of pediatric patients with refractory cHL, or cHL that has relapsed after 2 or more lines of therapy.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 (CPS 10), as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High or Mismatch Repair Deficient Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer

KEYTRUDA is indicated for the first-line treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC).

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Tumor Mutational Burden-High

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [10 mutations/megabase] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

Cutaneous Squamous Cell Carcinoma

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) that is not curable by surgery or radiation.

Triple-Negative Breast Cancer

KEYTRUDA, in combination with chemotherapy, is indicated for the treatment of patients with locally recurrent unresectable or metastatic triple-negative breast cancer (TNBC) whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Selected Important Safety Information for KEYTRUDA

Severe and Fatal Immune-Mediated Adverse Reactions

KEYTRUDA is a monoclonal antibody that belongs to a class of drugs that bind to either the programmed death receptor-1 (PD-1) or the programmed death ligand 1 (PD-L1), blocking the PD-1/PD-L1 pathway, thereby removing inhibition of the immune response, potentially breaking peripheral tolerance and inducing immune-mediated adverse reactions. Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue, can affect more than one body system simultaneously, and can occur at any time after starting treatment or after discontinuation of treatment. Important immune-mediated adverse reactions listed here may not include all possible severe and fatal immune-mediated adverse reactions.

Monitor patients closely for symptoms and signs that may be clinical manifestations of underlying immune-mediated adverse reactions. Early identification and management are essential to ensure safe use of antiPD-1/PD-L1 treatments. Evaluate liver enzymes, creatinine, and thyroid function at baseline and periodically during treatment. In cases of suspected immune-mediated adverse reactions, initiate appropriate workup to exclude alternative etiologies, including infection. Institute medical management promptly, including specialty consultation as appropriate.

Withhold or permanently discontinue KEYTRUDA depending on severity of the immune-mediated adverse reaction. In general, if KEYTRUDA requires interruption or discontinuation, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Consider administration of other systemic immunosuppressants in patients whose adverse reactions are not controlled with corticosteroid therapy.

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis. The incidence is higher in patients who have received prior thoracic radiation. Immune-mediated pneumonitis occurred in 3.4% (94/2799) of patients receiving KEYTRUDA, including fatal (0.1%), Grade 4 (0.3%), Grade 3 (0.9%), and Grade 2 (1.3%) reactions. Systemic corticosteroids were required in 67% (63/94) of patients. Pneumonitis led to permanent discontinuation of KEYTRUDA in 1.3% (36) and withholding in 0.9% (26) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Pneumonitis resolved in 59% of the 94 patients.

Pneumonitis occurred in 8% (31/389) of adult patients with cHL receiving KEYTRUDA as a single agent, including Grades 3-4 in 2.3% of patients. Patients received high-dose corticosteroids for a median duration of 10 days (range: 2 days to 53 months). Pneumonitis rates were similar in patients with and without prior thoracic radiation. Pneumonitis led to discontinuation of KEYTRUDA in 5.4% (21) of patients. Of the patients who developed pneumonitis, 42% of these patients interrupted KEYTRUDA, 68% discontinued KEYTRUDA, and 77% had resolution.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis, which may present with diarrhea. Cytomegalovirus infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. Immune-mediated colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (1.1%), and Grade 2 (0.4%) reactions. Systemic corticosteroids were required in 69% (33/48); additional immunosuppressant therapy was required in 4.2% of patients. Colitis led to permanent discontinuation of KEYTRUDA in 0.5% (15) and withholding in 0.5% (13) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Colitis resolved in 85% of the 48 patients.

Hepatotoxicity and Immune-Mediated Hepatitis

KEYTRUDA as a Single Agent

KEYTRUDA can cause immune-mediated hepatitis. Immune-mediated hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.4%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 68% (13/19) of patients; additional immunosuppressant therapy was required in 11% of patients. Hepatitis led to permanent discontinuation of KEYTRUDA in 0.2% (6) and withholding in 0.3% (9) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Hepatitis resolved in 79% of the 19 patients.

KEYTRUDA with Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider monitoring more frequently as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased alanine aminotransferase (ALT) (20%) and increased aspartate aminotransferase (AST) (13%) were seen, which was at a higher frequency compared to KEYTRUDA alone. Fifty-nine percent of the patients with increased ALT received systemic corticosteroids. In patients with ALT 3 times upper limit of normal (ULN) (Grades 2-4, n=116), ALT resolved to Grades 0-1 in 94%. Among the 92 patients who were rechallenged with either KEYTRUDA (n=3) or axitinib (n=34) administered as a single agent or with both (n=55), recurrence of ALT 3 times ULN was observed in 1 patient receiving KEYTRUDA, 16 patients receiving axitinib, and 24 patients receiving both. All patients with a recurrence of ALT 3 ULN subsequently recovered from the event.

Immune-Mediated Endocrinopathies

Adrenal Insufficiency

KEYTRUDA can cause primary or secondary adrenal insufficiency. For Grade 2 or higher, initiate symptomatic treatment, including hormone replacement as clinically indicated. Withhold KEYTRUDA depending on severity. Adrenal insufficiency occurred in 0.8% (22/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.3%) reactions. Systemic corticosteroids were required in 77% (17/22) of patients; of these, the majority remained on systemic corticosteroids. Adrenal insufficiency led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.3% (8) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Hypophysitis

KEYTRUDA can cause immune-mediated hypophysitis. Hypophysitis can present with acute symptoms associated with mass effect such as headache, photophobia, or visual field defects. Hypophysitis can cause hypopituitarism. Initiate hormone replacement as indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Hypophysitis occurred in 0.6% (17/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.2%) reactions. Systemic corticosteroids were required in 94% (16/17) of patients; of these, the majority remained on systemic corticosteroids. Hypophysitis led to permanent discontinuation of KEYTRUDA in 0.1% (4) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Thyroid Disorders

KEYTRUDA can cause immune-mediated thyroid disorders. Thyroiditis can present with or without endocrinopathy. Hypothyroidism can follow hyperthyroidism. Initiate hormone replacement for hypothyroidism or institute medical management of hyperthyroidism as clinically indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Thyroiditis occurred in 0.6% (16/2799) of patients receiving KEYTRUDA, including Grade 2 (0.3%). None discontinued, but KEYTRUDA was withheld in <0.1% (1) of patients.

Hyperthyroidism occurred in 3.4% (96/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (0.8%). It led to permanent discontinuation of KEYTRUDA in <0.1% (2) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. Hypothyroidism occurred in 8% (237/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (6.2%). It led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.5% (14) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. The majority of patients with hypothyroidism required long-term thyroid hormone replacement. The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC, occurring in 16% of patients receiving KEYTRUDA as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. The incidence of new or worsening hypothyroidism was higher in 389 adult patients with cHL (17%) receiving KEYTRUDA as a single agent, including Grade 1 (6.2%) and Grade 2 (10.8%) hypothyroidism.

Type 1 Diabetes Mellitus (DM), Which Can Present With Diabetic Ketoacidosis

Monitor patients for hyperglycemia or other signs and symptoms of diabetes. Initiate treatment with insulin as clinically indicated. Withhold KEYTRUDA depending on severity. Type 1 DM occurred in 0.2% (6/2799) of patients receiving KEYTRUDA. It led to permanent discontinuation in <0.1% (1) and withholding of KEYTRUDA in <0.1% (1). All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Immune-Mediated Nephritis With Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Immune-mediated nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.1%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 89% (8/9) of patients. Nephritis led to permanent discontinuation of KEYTRUDA in 0.1% (3) and withholding in 0.1% (3) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Nephritis resolved in 56% of the 9 patients.

Immune-Mediated Dermatologic Adverse Reactions

KEYTRUDA can cause immune-mediated rash or dermatitis. Exfoliative dermatitis, including Stevens-Johnson syndrome, drug rash with eosinophilia and systemic symptoms, and toxic epidermal necrolysis, has occurred with antiPD-1/PD-L1 treatments. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate nonexfoliative rashes. Withhold or permanently discontinue KEYTRUDA depending on severity. Immune-mediated dermatologic adverse reactions occurred in 1.4% (38/2799) of patients receiving KEYTRUDA, including Grade 3 (1%) and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 40% (15/38) of patients. These reactions led to permanent discontinuation in 0.1% (2) and withholding of KEYTRUDA in 0.6% (16) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 6% had recurrence. The reactions resolved in 79% of the 38 patients.

Other Immune-Mediated Adverse Reactions

The following clinically significant immune-mediated adverse reactions occurred at an incidence of <1% (unless otherwise noted) in patients who received KEYTRUDA or were reported with the use of other antiPD-1/PD-L1 treatments. Severe or fatal cases have been reported for some of these adverse reactions. Cardiac/Vascular: Myocarditis, pericarditis, vasculitis; Nervous System: Meningitis, encephalitis, myelitis and demyelination, myasthenic syndrome/myasthenia gravis (including exacerbation), Guillain-Barr syndrome, nerve paresis, autoimmune neuropathy; Ocular: Uveitis, iritis and other ocular inflammatory toxicities can occur. Some cases can be associated with retinal detachment. Various grades of visual impairment, including blindness, can occur. If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada-like syndrome, as this may require treatment with systemic steroids to reduce the risk of permanent vision loss; Gastrointestinal: Pancreatitis, to include increases in serum amylase and lipase levels, gastritis, duodenitis; Musculoskeletal and Connective Tissue: Myositis/polymyositis rhabdomyolysis (and associated sequelae, including renal failure), arthritis (1.5%), polymyalgia rheumatica; Endocrine: Hypoparathyroidism; Hematologic/Immune: Hemolytic anemia, aplastic anemia, hemophagocytic lymphohistiocytosis, systemic inflammatory response syndrome, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), sarcoidosis, immune thrombocytopenic purpura, solid organ transplant rejection.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% of 2799 patients receiving KEYTRUDA. Monitor for signs and symptoms of infusion-related reactions. Interrupt or slow the rate of infusion for Grade 1 or Grade 2 reactions. For Grade 3 or Grade 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Fatal and other serious complications can occur in patients who receive allogeneic HSCT before or after antiPD-1/PD-L1 treatment. Transplant-related complications include hyperacute graft-versus-host disease (GVHD), acute and chronic GVHD, hepatic veno-occlusive disease after reduced intensity conditioning, and steroid-requiring febrile syndrome (without an identified infectious cause). These complications may occur despite intervening therapy between antiPD-1/PD-L1 treatment and allogeneic HSCT. Follow patients closely for evidence of these complications and intervene promptly. Consider the benefit vs risks of using antiPD-1/PD-L1 treatments prior to or after an allogeneic HSCT.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with an antiPD-1/PD-L1 treatment in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (20%) with KEYTRUDA was diarrhea (28%).

View post:
Merck Receives Positive EU CHMP Opinion for Expanded Approval of KEYTRUDA (pembrolizumab) in Certain Patients With Relapsed or Refractory Classical...

To Read More: Merck Receives Positive EU CHMP Opinion for Expanded Approval of KEYTRUDA (pembrolizumab) in Certain Patients With Relapsed or Refractory Classical…
categoriaCardiac Stem Cells commentoComments Off on Merck Receives Positive EU CHMP Opinion for Expanded Approval of KEYTRUDA (pembrolizumab) in Certain Patients With Relapsed or Refractory Classical… | dataFebruary 1st, 2021
Read All

Merck Presents Results From Head-to-Head Phase 3 KEYNOTE-598 Trial Evaluating KEYTRUDA (pembrolizumab) in Combination With Ipilimumab Versus KEYTRUDA…

By daniellenierenberg

In KEYNOTE-598, the addition of ipilimumab to KEYTRUDA did not improve overall survival or progression-free survival, and patients who received the combination were more likely to experience serious side effects than those who received KEYTRUDA monotherapy, said Dr. Michael Boyer, chief clinical officer and conjoint chair of thoracic oncology, Chris OBrien Lifehouse, Camperdown, NSW, Australia. KEYTRUDA monotherapy remains a standard of care for the first-line treatment of certain patients with metastatic non-small cell lung cancer whose tumors express PD-L1.

As a leader in lung cancer, we are pursuing a broad clinical program to better understand the potential of KEYTRUDA-based combinations to improve survival outcomes for patients with this devastating disease, said Dr. Roy Baynes, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories. KEYNOTE-598 is the first head-to-head study designed to answer the question of whether combining KEYTRUDA with ipilimumab provided additional clinical benefits beyond treatment with KEYTRUDA alone in certain patients with metastatic non-small cell lung cancer. The results are clear the combination did not add clinical benefit but did add toxicity.

These results were presented in the Presidential Symposium at the IASLC 2020 World Conference on Lung Cancer hosted by the International Association for the Study of Lung Cancer on Friday, Jan. 29 and published in the Journal of Clinical Oncology. As previously announced in Nov. 2020, the study was discontinued due to futility based on the recommendation of an independent Data Monitoring Committee (DMC), which determined the benefit/risk profile of KEYTRUDA in combination with ipilimumab did not support continuing the trial. The DMC also advised that patients in the study discontinue treatment with ipilimumab/placebo.

KEYNOTE-598 Study Design and Additional Data (Late-Breaking Abstract #PS01.09)

KEYNOTE-598 (ClinicalTrials.gov, NCT03302234) is a randomized, double-blind, Phase 3 trial designed to evaluate KEYTRUDA in combination with ipilimumab compared to KEYTRUDA monotherapy as first-line treatment for patients with metastatic NSCLC without EGFR or ALK genomic tumor aberrations and whose tumors express PD-L1 (TPS 50%). The dual primary endpoints are OS and PFS. Secondary endpoints include objective response rate (ORR), duration of response (DOR) and safety.

The study enrolled 568 patients who were randomized 1:1 to receive KEYTRUDA (200 mg intravenously [IV] on Day 1 of each three-week cycle for up to 35 cycles) in combination with ipilimumab (1 mg/kg IV on Day 1 of each six-week cycle for up to 18 cycles); or KEYTRUDA (200 mg IV on Day 1 of each three-week cycle for up to 35 cycles) as monotherapy. Non-binding futility criteria for the study were based on restricted mean survival time (RMST), an alternative outcome measure estimated as the area under the survival curve through a fixed timepoint. The pre-specified criteria were differences in RMST for KEYTRUDA in combination with ipilimumab and KEYTRUDA monotherapy of 0.2 at the maximum observation time and 0.1 at 24 months of follow-up.

As of data cut-off, the median study follow-up was 20.6 months. Findings showed the median OS was 21.4 months for patients randomized to KEYTRUDA in combination with ipilimumab (n=284) versus 21.9 months for those randomized to KEYTRUDA monotherapy (n=284) (HR=1.08 [95% CI, 0.85-1.37]; p=0.74). The differences in RMST for KEYTRUDA in combination with ipilimumab and KEYTRUDA monotherapy were -0.56 at the maximum observation time and -0.52 at 24 months, meeting the futility criteria for the trial and confirming the benefit/risk profile of the combination did not support continuing the study. Additionally, the median PFS was 8.2 months for patients randomized to KEYTRUDA in combination with ipilimumab versus 8.4 months for those randomized to KEYTRUDA monotherapy (HR=1.06 [95% CI, 0.86-1.30]; p=0.72). In both arms of the study, ORR was 45.4%; the median DOR was 16.1 months for patients randomized to KEYTRUDA in combination with ipilimumab versus 17.3 months for those randomized to KEYTRUDA monotherapy.

No new safety signals for KEYTRUDA monotherapy were observed. Treatment-related adverse events (TRAEs) occurred in 76.2% of patients treated with KEYTRUDA in combination with ipilimumab versus 68.3% of patients treated with KEYTRUDA monotherapy. Of these TRAEs, 35.1% vs. 19.6% were Grade 3-5, 27.7% vs. 13.9% were serious, 6.0% vs. 3.2% led to discontinuation of ipilimumab or placebo, 19.1% vs. 7.5% led to discontinuation of both drugs and 2.5% vs. 0.0% (no patients) led to death. Additionally, immune-mediated adverse events (AEs) and infusion reactions occurred in 44.7% of patients treated with KEYTRUDA in combination with ipilimumab versus 32.4% of patients treated with KEYTRUDA monotherapy. Of these immune-mediated AEs, 20.2% vs. 7.8% were Grade 3-5, 19.1% vs. 7.1% were serious, 1.8% vs. 1.1% led to discontinuation of ipilimumab or placebo, 12.1% vs. 4.3% led to discontinuation of both drugs and 2.1% vs. 0.0% (no patients) led to death.

About Lung Cancer

Lung cancer, which forms in the tissues of the lungs, usually within cells lining the air passages, is the leading cause of cancer death worldwide. Each year, more people die of lung cancer than die of colon and breast cancers combined. The two main types of lung cancer are non-small cell and small cell. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for about 85% of all cases. Small cell lung cancer (SCLC) accounts for about 10% to 15% of all lung cancers. Before 2014, the five-year survival rate for patients diagnosed in the U.S. with NSCLC and SCLC was estimated to be 5% and 6%, respectively.

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,300 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications in the U.S.

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Small Cell Lung Cancer

KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic HNSCC with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult patients with relapsed or refractory classical Hodgkin lymphoma (cHL).

KEYTRUDA is indicated for the treatment of pediatric patients with refractory cHL, or cHL that has relapsed after 2 or more lines of therapy.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 (CPS 10), as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High or Mismatch Repair Deficient Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer

KEYTRUDA is indicated for the first-line treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC).

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Tumor Mutational Burden-High

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [10 mutations/megabase] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

Cutaneous Squamous Cell Carcinoma

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) that is not curable by surgery or radiation.

Triple-Negative Breast Cancer

KEYTRUDA, in combination with chemotherapy, is indicated for the treatment of patients with locally recurrent unresectable or metastatic triple-negative breast cancer (TNBC) whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test.

This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Selected Important Safety Information for KEYTRUDA

Severe and Fatal Immune-Mediated Adverse Reactions

KEYTRUDA is a monoclonal antibody that belongs to a class of drugs that bind to either the programmed death receptor-1 (PD-1) or the programmed death ligand 1 (PD-L1), blocking the PD-1/PD-L1 pathway, thereby removing inhibition of the immune response, potentially breaking peripheral tolerance and inducing immune-mediated adverse reactions. Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue, can affect more than one body system simultaneously, and can occur at any time after starting treatment or after discontinuation of treatment. Important immune-mediated adverse reactions listed here may not include all possible severe and fatal immune-mediated adverse reactions.

Monitor patients closely for symptoms and signs that may be clinical manifestations of underlying immune-mediated adverse reactions. Early identification and management are essential to ensure safe use of antiPD-1/PD-L1 treatments. Evaluate liver enzymes, creatinine, and thyroid function at baseline and periodically during treatment. In cases of suspected immune-mediated adverse reactions, initiate appropriate workup to exclude alternative etiologies, including infection. Institute medical management promptly, including specialty consultation as appropriate.

Withhold or permanently discontinue KEYTRUDA depending on severity of the immune-mediated adverse reaction. In general, if KEYTRUDA requires interruption or discontinuation, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Consider administration of other systemic immunosuppressants in patients whose adverse reactions are not controlled with corticosteroid therapy.

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis. The incidence is higher in patients who have received prior thoracic radiation. Immune-mediated pneumonitis occurred in 3.4% (94/2799) of patients receiving KEYTRUDA, including fatal (0.1%), Grade 4 (0.3%), Grade 3 (0.9%), and Grade 2 (1.3%) reactions. Systemic corticosteroids were required in 67% (63/94) of patients. Pneumonitis led to permanent discontinuation of KEYTRUDA in 1.3% (36) and withholding in 0.9% (26) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Pneumonitis resolved in 59% of the 94 patients.

Pneumonitis occurred in 8% (31/389) of adult patients with cHL receiving KEYTRUDA as a single agent, including Grades 3-4 in 2.3% of patients. Patients received high-dose corticosteroids for a median duration of 10 days (range: 2 days to 53 months). Pneumonitis rates were similar in patients with and without prior thoracic radiation. Pneumonitis led to discontinuation of KEYTRUDA in 5.4% (21) of patients. Of the patients who developed pneumonitis, 42% interrupted KEYTRUDA, 68% discontinued KEYTRUDA, and 77% had resolution.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis, which may present with diarrhea. Cytomegalovirus infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. Immune-mediated colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (1.1%), and Grade 2 (0.4%) reactions. Systemic corticosteroids were required in 69% (33/48); additional immunosuppressant therapy was required in 4.2% of patients. Colitis led to permanent discontinuation of KEYTRUDA in 0.5% (15) and withholding in 0.5% (13) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Colitis resolved in 85% of the 48 patients.

Hepatotoxicity and Immune-Mediated Hepatitis

KEYTRUDA as a Single Agent

KEYTRUDA can cause immune-mediated hepatitis. Immune-mediated hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.4%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 68% (13/19) of patients; additional immunosuppressant therapy was required in 11% of patients. Hepatitis led to permanent discontinuation of KEYTRUDA in 0.2% (6) and withholding in 0.3% (9) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Hepatitis resolved in 79% of the 19 patients.

KEYTRUDA with Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider monitoring more frequently as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased alanine aminotransferase (ALT) (20%) and increased aspartate aminotransferase (AST) (13%) were seen at a higher frequency compared to KEYTRUDA alone. Fifty-nine percent of the patients with increased ALT received systemic corticosteroids. In patients with ALT 3 times upper limit of normal (ULN) (Grades 2-4, n=116), ALT resolved to Grades 0-1 in 94%. Among the 92 patients who were rechallenged with either KEYTRUDA (n=3) or axitinib (n=34) administered as a single agent or with both (n=55), recurrence of ALT 3 times ULN was observed in 1 patient receiving KEYTRUDA, 16 patients receiving axitinib, and 24 patients receiving both. All patients with a recurrence of ALT 3 ULN subsequently recovered from the event.

Immune-Mediated Endocrinopathies

Adrenal Insufficiency

KEYTRUDA can cause primary or secondary adrenal insufficiency. For Grade 2 or higher, initiate symptomatic treatment, including hormone replacement as clinically indicated. Withhold KEYTRUDA depending on severity. Adrenal insufficiency occurred in 0.8% (22/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.3%) reactions. Systemic corticosteroids were required in 77% (17/22) of patients; of these, the majority remained on systemic corticosteroids. Adrenal insufficiency led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.3% (8) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Hypophysitis

KEYTRUDA can cause immune-mediated hypophysitis. Hypophysitis can present with acute symptoms associated with mass effect such as headache, photophobia, or visual field defects. Hypophysitis can cause hypopituitarism. Initiate hormone replacement as indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Hypophysitis occurred in 0.6% (17/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.2%) reactions. Systemic corticosteroids were required in 94% (16/17) of patients; of these, the majority remained on systemic corticosteroids. Hypophysitis led to permanent discontinuation of KEYTRUDA in 0.1% (4) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Thyroid Disorders

KEYTRUDA can cause immune-mediated thyroid disorders. Thyroiditis can present with or without endocrinopathy. Hypothyroidism can follow hyperthyroidism. Initiate hormone replacement for hypothyroidism or institute medical management of hyperthyroidism as clinically indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Thyroiditis occurred in 0.6% (16/2799) of patients receiving KEYTRUDA, including Grade 2 (0.3%). None discontinued, but KEYTRUDA was withheld in <0.1% (1) of patients.

Hyperthyroidism occurred in 3.4% (96/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (0.8%). It led to permanent discontinuation of KEYTRUDA in <0.1% (2) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. Hypothyroidism occurred in 8% (237/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (6.2%). It led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.5% (14) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. The majority of patients with hypothyroidism required long-term thyroid hormone replacement. The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC, occurring in 16% of patients receiving KEYTRUDA as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. The incidence of new or worsening hypothyroidism was higher in 389 adult patients with cHL (17%) receiving KEYTRUDA as a single agent, including Grade 1 (6.2%) and Grade 2 (10.8%) hypothyroidism.

Type 1 Diabetes Mellitus (DM), Which Can Present With Diabetic Ketoacidosis

Monitor patients for hyperglycemia or other signs and symptoms of diabetes. Initiate treatment with insulin as clinically indicated. Withhold KEYTRUDA depending on severity. Type 1 DM occurred in 0.2% (6/2799) of patients receiving KEYTRUDA. It led to permanent discontinuation in <0.1% (1) and withholding of KEYTRUDA in <0.1% (1). All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Immune-Mediated Nephritis With Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Immune-mediated nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.1%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 89% (8/9) of patients. Nephritis led to permanent discontinuation of KEYTRUDA in 0.1% (3) and withholding in 0.1% (3) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Nephritis resolved in 56% of the 9 patients.

Immune-Mediated Dermatologic Adverse Reactions

KEYTRUDA can cause immune-mediated rash or dermatitis. Exfoliative dermatitis, including Stevens-Johnson syndrome, drug rash with eosinophilia and systemic symptoms, and toxic epidermal necrolysis, has occurred with antiPD-1/PD-L1 treatments. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate nonexfoliative rashes. Withhold or permanently discontinue KEYTRUDA depending on severity. Immune-mediated dermatologic adverse reactions occurred in 1.4% (38/2799) of patients receiving KEYTRUDA, including Grade 3 (1%) and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 40% (15/38) of patients. These reactions led to permanent discontinuation in 0.1% (2) and withholding of KEYTRUDA in 0.6% (16) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 6% had recurrence. The reactions resolved in 79% of the 38 patients.

Other Immune-Mediated Adverse Reactions

The following clinically significant immune-mediated adverse reactions occurred at an incidence of <1% (unless otherwise noted) in patients who received KEYTRUDA or were reported with the use of other antiPD-1/PD-L1 treatments. Severe or fatal cases have been reported for some of these adverse reactions. Cardiac/Vascular: Myocarditis, pericarditis, vasculitis; Nervous System: Meningitis, encephalitis, myelitis and demyelination, myasthenic syndrome/myasthenia gravis (including exacerbation), Guillain-Barr syndrome, nerve paresis, autoimmune neuropathy; Ocular: Uveitis, iritis and other ocular inflammatory toxicities can occur. Some cases can be associated with retinal detachment. Various grades of visual impairment, including blindness, can occur. If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada-like syndrome, as this may require treatment with systemic steroids to reduce the risk of permanent vision loss; Gastrointestinal: Pancreatitis, to include increases in serum amylase and lipase levels, gastritis, duodenitis; Musculoskeletal and Connective Tissue: Myositis/polymyositis rhabdomyolysis (and associated sequelae, including renal failure), arthritis (1.5%), polymyalgia rheumatica; Endocrine: Hypoparathyroidism; Hematologic/Immune: Hemolytic anemia, aplastic anemia, hemophagocytic lymphohistiocytosis, systemic inflammatory response syndrome, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), sarcoidosis, immune thrombocytopenic purpura, solid organ transplant rejection.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% of 2799 patients receiving KEYTRUDA. Monitor for signs and symptoms of infusion-related reactions. Interrupt or slow the rate of infusion for Grade 1 or Grade 2 reactions. For Grade 3 or Grade 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Fatal and other serious complications can occur in patients who receive allogeneic HSCT before or after antiPD-1/PD-L1 treatments. Transplant-related complications include hyperacute graft-versus-host disease (GVHD), acute and chronic GVHD, hepatic veno-occlusive disease after reduced intensity conditioning, and steroid-requiring febrile syndrome (without an identified infectious cause). These complications may occur despite intervening therapy between antiPD-1/PD-L1 treatments and allogeneic HSCT. Follow patients closely for evidence of these complications and intervene promptly. Consider the benefit vs risks of using antiPD-1/PD-L1 treatments prior to or after an allogeneic HSCT.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with an antiPD-1/PD-L1 treatment in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Original post:
Merck Presents Results From Head-to-Head Phase 3 KEYNOTE-598 Trial Evaluating KEYTRUDA (pembrolizumab) in Combination With Ipilimumab Versus KEYTRUDA...

To Read More: Merck Presents Results From Head-to-Head Phase 3 KEYNOTE-598 Trial Evaluating KEYTRUDA (pembrolizumab) in Combination With Ipilimumab Versus KEYTRUDA…
categoriaCardiac Stem Cells commentoComments Off on Merck Presents Results From Head-to-Head Phase 3 KEYNOTE-598 Trial Evaluating KEYTRUDA (pembrolizumab) in Combination With Ipilimumab Versus KEYTRUDA… | dataJanuary 31st, 2021
Read All

Elevian Targets Aging to Solve Humanity’s Toughest Diseases – BioSpace

By daniellenierenberg

Mark Allen, CEO of Elevian, pictured above. Photo courtesy of Elevian.

Once the domain of mythical fountains of youth and movies like The Curious Case of Benjamin Button, the science of aging prevention and reversal is beginning to enter the mainstream with reputable academic institutions launching companies to accomplish this once improbable feat.

One such company, Elevian, founded by a team of Harvard scientists and physician-turned entrepreneurDr. Mark Allen, is working to restore regenerative capacity with the aim of preventing and treating age-related diseases. A critical factor, they say, is a single protein called Growth differentiation factor 11 (GDF11).

Allen, Elevians chief executive officer, first became interested in the science of aging after taking a course focused on exponential thinking.

All of a sudden, problems that were heretofore unsolvable become solvable, Allen said of the theory that is the opposite of incremental and encourages one to think outside of the box. They talked about examples of problems that weve always thought to be unsolvable, one of them being aging and longevity. So that was it for me. I was like thats perfect for me. Thats what I want to work on.

Searching for clues into the diseases associated with aging, Elevians founders, including Harvard professor of Stem Cell and Regenerative BiologyDr. Amy Wagers, mined the proteome, looking into how proteins change with age. They uncovered several, including one with potentially groundbreaking regenerative capabilities, GDF11.

Elevian believes that this single protein, a key player in the circulatory system, could be a game-changer in regenerative medicine.

GDF11 is one of those proteins that change with age, Allen said. They [the founders] really dug into GDF11 because so little was known about it at the time of their discoveries. They did side-by-side studies with the parabiosis model, injecting just GDF11, to see if it could reproduce some of the effects of parabiosis in the aged animal. And they found, much to everybodys surprise, that replenishing just this one circulating factor was able to reproduce the beneficial effects of parabiosis.

Parabiosis, which means living beside, is performed by joining two living organisms surgically to develop a single, shared physiology. It has been used to study conjoined twins, and more recently, in a 1972 lifespan study attaching old and young rats, scientists Frederic C. Ludwig and Robert M. Elashoff showed evidence of an extended lifespan for the older animals.

As a post-doc at Harvard, Dr. Wagers expanded upon this research using modern histology techniques. When Wagers and her colleagues attached the circulatory systems of young mice to old ones, they found strong evidence of a biological reversal of cardiac hypertrophy, which occurs with aging. They attributed this to GDF11 in a paper published in Science in 2014 and recognized as a runner-up to the publications Breakthrough of the Year.

What they found is that the old animals exposed to young blood experienced a biological reversal of aging by many different measures. Their brains grow younger, their hearts grow younger, their lungs, their bones all over their body. And interestingly, the young animals exposed to old blood have accelerated aging. So this is just really strong proof that circulating factors regulate aging, said Allen.

The mechanism of action appears to be that GDF11 binds directly to the endothelial projectors, the cells that line our blood vessels and improve both the quality and quantity of the vasculature. It does not cross the blood-brain barrier, so we think its mechanism is primarily by improving vasculature, he explained.

Elevian, the recent beneficiary of an initial round of seed financing, is actioning this potent protein to develop a potential regenerative treatment for stroke patients.

English biomedical gerontologist Aubrey de Grey, whom Allen credits with doing a lot to start the medical field of aging reversal, outlined several hallmarks of aging in his 2007 book, Ending Aging. These include stem cell exhaustion, protein aggregate buildup, failed intercellular communicationand senescent cells.

One of the barriers to developing therapeutics based on these factors is the inherent incongruence with the usual regulatory approval systems. Following customary protocol, proving that a drug prevents aging or age-related diseases would quite literally take a lifetime.

Theres no regulatory path for treating aging. Even doing a prevention trial would take years and years and years, because you have to take people and wait until they get disease to see effects. So instead, to get a drug to market, we take the opposite extreme. We look at what is the most devastating possible disease, unmet need, where we could treat for the shortest possible duration and see clinically meaningful effects, Allen explained.

Elevian decided on stroke, which is the number two cause of death worldwide and the third leading cause of disability.

The only existing treatments for a stroke are limited to the acute phase, where an IV injection of a drug such as recombinant tissue plasminogen activator (tPA) (Activase)restores blood flow by dissolving the clot causing the event.

In an ischemic stroke, which makes up 87% of cases, a blood clot forms and prevents blood and oxygen from reaching an area of the brain, impacting breathing and heart function and often leading to paralysis. This is where Elevian believes a drug utilizing GDF11, which acts on the circulatory system, holds such promise for rehabilitation.

Allen revealed that his team has already demonstrated GDF11s impact on stroke-stricken animals.

When we give GDF11 to animals that have had strokes and are paralyzed or have severe motor function debilitation, it returns them almost to normal function. It significantly improves motor function recovery, he said.

On the strength of these preclinical results, Elevian is gearing up to enter human clinical trials with GDF11 for the treatment of stroke.

We really got the green light to go into humans based upon the animal data that we got there, Allen said, adding that there is still a lot of work to be done before they reach this phase. We still have to scale up production of the drug and we have to do extensive safety and toxicology tests IND-enabling studies. The longest pole in the tent is figuring out how to make manufacturing costs effective. The cost of goods is going to be really, really high. So were doing a lot of work in process development right now, and then were going to hand it off to a manufacturing partner to scale up. Were about two years from initiating our human clinical trial in stroke.

Another unmet need where Elevian believes GDF11 can have an impact is Type 2 diabetes, a disorder whose pathology is also intricately connected to the circulatory system and often to aging.

Along with blood clotting factors, glucose resides within the inside lining of blood vessels. In Type 2 diabetics, the lining of an individuals blood vessels begins to become glycosylated, which causes them to narrow, impeding blood flow. Glucose tolerance is known to decrease with age.

In a study published in March 2020, Wagers and her colleagues stated that GDF11 was shown to significantly improve glucose tolerance in aged mice and increase glucose homeostasis, under a variety of dietary conditions.

Allen believes that addressing the aging process is the ultimate exponential strategy to solving a whole host of humanitys biggest killers:

This idea that we could, by targeting the aging progress, potentially promote healthy aging, promote a healthy longevity, and reduce the burden of age-related diseases, and that the same treatment could be used to treat and prevent multiple age-related diseases. That concept was like, why arent we working on that? Why are we spending billions of dollars on Alzheimers and billions of dollars on cancer, billions of dollars on heart disease? We could instead target the aging process and potentially treat them all.

Most Read Today

Read the rest here:
Elevian Targets Aging to Solve Humanity's Toughest Diseases - BioSpace

To Read More: Elevian Targets Aging to Solve Humanity’s Toughest Diseases – BioSpace
categoriaCardiac Stem Cells commentoComments Off on Elevian Targets Aging to Solve Humanity’s Toughest Diseases – BioSpace | dataJanuary 29th, 2021
Read All

The Cardiac Rhythm Management Market to undergo an exponential transformation between 2015 and 2021 NeighborWebSJ – NeighborWebSJ

By daniellenierenberg

Cardiac rhythm management refers to a process of monitoring functioning of the heart through devices. Cardiac rhythm management devices are used to provide therapeutic solutions to patients suffering from cardiac disorders such as cardiac arrhythmias, heart failure, and cardiac arrests. Cardiac disorders lead to irregular heartbeat. Technological advancements and rise in the number of deaths due to increasing incidences of heart diseases and increasing aging population are some of the major factors driving the cardiac rhythm management market. Heart disease is one of the primary causes of death in the U. S. Excess of alcohol consumption; smoking, high cholesterol levels, and obesity are some of the major causes of heart diseases. Cardiac rhythm management is conducted through two major devices: implantable cardiac rhythm devices and pacemakers. Implantable cardiac rhythm devices treat patients with an improper heartbeat. Based on the device, the cardiac rhythm management market can be segmented into defibrillators, pacemakers, cardiac resynchronization therapy devices, implantable defibrillators, and external defibrillators. Pacemakers are used to treat patients with a slow heartbeat. Based on the end user, the cardiac rhythm management market can be segmented into hospitals, home/ambulatory, and others.

North America has the largest market for cardiac rhythm management due to improved healthcare infrastructure, government initiatives, rise in incidences of cardiac disorders, growing number of deaths due to cardiovascular diseases,and increasing healthcare expenditure in the region. The North America market for cardiac rhythm management is followed by Europe. Asia is expected to witness high growth rate in the cardiac rhythm management market in the next few years due to increasing incidences of cardiovascular diseases, growing disposable income, rise in awareness regarding heart disorders and relevant treatments, and improving healthcare infrastructure in the region.

For detailed insights on enhancing your product footprint, request for a Sample here @https://www.persistencemarketresearch.com/samples/3868

Increasing the prevalence of cardiovascular diseases, technological advancements, rise in life expectancy, increasing awareness regarding cardiac disorders, and government initiatives are some of the major factors that are expected to drive the market for cardiac rhythm management. In addition, factors such as a rise in disposable income, increasing aging population, and high cost associated with heart disease treatment are expected to drive the market for cardiac rhythm management. However, economic downturn, reimbursement issues, the importance of biologics and stem cells, and inappropriate use of the devices are some of the factors restraining the growth of the global cardiac rhythm management market.

Growing population and economies in the developing countries such as India and China are expected to drive the growth of the cardiac rhythm management market in Asia. In addition,factors such as innovations along with technological advancements such as miniaturization, introduction of MRI pacemakers, biocompatible materials and durable batteries, and continuous rise in aging population and increasing cardiovascular diseases such as arrhythmias, stroke, and high blood pressure are expected to create new opportunities for the global cardiac rhythm management market. An increasing number of mergers and acquisitions, rise in the number of collaborations and partnerships, and new product launches are some of the latest trends in the global cardiac rhythm management market.

To receive extensive list of important regions, ask for TOC here @https://www.persistencemarketresearch.com/toc/3868

Some of the major companies operating in the global cardiac rhythm management market areMedtronic, Abbott Laboratories, Boston Scientific, St. Jude Medical, Altera, and Sorin.Other companies with significant presence in the global cardiac rhythm management market include

Explore Extensive Coverage of PMR`s

Life Sciences & Transformational HealthLandscape

About us:

Persistence Market Research (PMR) is a third-platform research firm. Our research model is a unique collaboration of data analytics andmarket research methodologyto help businesses achieve optimal performance.

To support companies in overcoming complex business challenges, we follow a multi-disciplinary approach. At PMR, we unite various data streams from multi-dimensional sources. By deploying real-time data collection, big data, and customer experience analytics, we deliver business intelligence for organizations of all sizes.

Our client success stories feature a range of clients from Fortune 500 companies to fast-growing startups. PMRs collaborative environment is committed to building industry-specific solutions by transforming data from multiple streams into a strategic asset.

Contact us:

Naved BegPersistence Market ResearchAddress 305 Broadway, 7th Floor, New York City,NY 10007 United StatesU.S. Ph. +1-646-568-7751USA-Canada Toll-free +1 800-961-0353Sales[emailprotected]Websitehttps://www.persistencemarketresearch.com

https://neighborwebsj.com/

Excerpt from:
The Cardiac Rhythm Management Market to undergo an exponential transformation between 2015 and 2021 NeighborWebSJ - NeighborWebSJ

To Read More: The Cardiac Rhythm Management Market to undergo an exponential transformation between 2015 and 2021 NeighborWebSJ – NeighborWebSJ
categoriaCardiac Stem Cells commentoComments Off on The Cardiac Rhythm Management Market to undergo an exponential transformation between 2015 and 2021 NeighborWebSJ – NeighborWebSJ | dataJanuary 29th, 2021
Read All

Stem Cells- Definition, Properties, Types, Uses, Challenges

By daniellenierenberg

Biology Educational Videos

Last Updated on October 12, 2020 by Sagar Aryal

Stem cells are unique cells present in the body that have the potential to differentiate into various cell types or divide indefinitely to produce other stem cells.

Figure: Stem Cell Renewal and Differentiation. Image Source: Maharaj Institute of Immune Regenerative Medicine.

All the stem cells found throughout all living systems have three important properties. These properties can be visualized in vitro by a process called clonogenic assays, where a single cell is assessed for its ability to differentiate.

The following are some properties of stem cells:

Figure: Techniques for generating embryonic stem cell cultures. Image Source: John Wiley & Sons, Inc. (Nico Heins et al.)

Depending on the source of the stem cells or where they are present, stem cells are divided into various types;

Figure: Human Embryonic Stem Cells Differentiation. Image created with biorender.com

Figure: Preliminary Evidence of Plasticity Among Nonhuman Adult Stem Cells. Image Source: NIH Stem Cell Information.

Figure: Progress in therapies based on iPSCs. Image Source: Nature Reviews Genetics (R. Grant Rowe & George Q. Daley).

Figure: Mesenchymal stem cells (MSCs). Image Source: PromoCell GmbH.

Some of the common and well-known examples of stem cell research are:

Stem cell research has been used in various areas because of their properties. Some of the common applications of stem cells research include;

Because of different ethical and other issues related to stem cell research, there are some limitations or challenges of stem cell research. Some of these are:

Read more:
Stem Cells- Definition, Properties, Types, Uses, Challenges

To Read More: Stem Cells- Definition, Properties, Types, Uses, Challenges
categoriaCardiac Stem Cells commentoComments Off on Stem Cells- Definition, Properties, Types, Uses, Challenges | dataJanuary 27th, 2021
Read All

Tevogen Bio Secures Funding from Team of Doctors to Support Clinical Trials of Its Investigational Curative T Cell Therapy for COVID-19 – PRNewswire

By daniellenierenberg

METUCHEN, N.J., Jan. 25, 2021 /PRNewswire/ -- Tevogen Bio today announced it has secured necessary funding from HMP Partners of New Jersey, an investment firm managed by medical doctors, which will allow Tevogen to support all clinical trials of its investigational, potentially curative COVID-19 treatment. Tevogen's Investigational New Drug (IND) application for its proprietary antigen-specific T cell therapy is under review by the U.S. Food and Drug Administration (FDA).

All COVID-19 therapeutics utilized to date have sought to slow the progression of the infection and/or moderate its symptoms. These approaches buy time for the patient's own T cells to activate and respond to the infection, which is the mechanism that the body employs to rid itself of viruses such as the SARS-CoV-2.

In the upcoming trials, Tevogen will study its investigational treatment, TVGN-489, allogeneic T cells that have been programmed and grown in the laboratory, for its safety and capability to recognize and destroy COVID-19 infected cells. Lead investigator Dr. Neal Flomenberg, Chair of the Department of Medical Oncology at Thomas Jefferson University, stated his optimism, "We're excited by the purity and potency of the cells we've been able to generate in the lab. Based on prior experience with these sorts of cells in other settings, we're very hopeful that they will be both safe and effective when the clinical trials are launched."

HMP Partners is supporting Tevogen's efforts to develop a curative treatment due to concerns over recent COVID-19 mutations and the current lack of curative options for this deadly infection. HMP CEO Dr. Manmohan Patel, a prominent pulmonary and critical care specialist, said, "We believe it's imperative to create a curative treatment that is not expected to be compromised by mutations." He added, "Unmodified virus specific T cells are well established as being effective and safe at treating viral infections, which is why we are supporting Tevogen's efforts to develop a much-needed COVID-19 cure."

While Tevogen has raised private investment from HMP Partners to launch its clinical trials, the company is seeking government funding to expedite capacity to manufacture at the scale necessary to develop pandemic-level product supply, just as have a number of vaccine and antibody manufacturers.

Tevogen's proprietary solution is designed to enable a single donation from a donor to generate more than a thousand doses of COVID-19 specific cytotoxic T cells.Yale-trained infectious disease epidemiologist Dr. Ryan Saadi is leading Tevogen's efforts and is among those who are financing the trials. Dr. Saadi stated, "We halted our pursuit for an oncology cure in order to focus solely on COVID-19, and our manufacturing efficiencyand agile business model will allow us to deliver a cure that will be affordable and accessible to all."

About Tevogen Bio

Tevogen Bio was formed after decades of research by its contributors to concentrate and leverage their expertise, spanning multiple sectors of the healthcare industry, to help address some of the most common and deadly illnesses known today. The company's mission is to provide curative and preventative treatments that are affordable and scalable, in order to positively impact global public health.

About HMP Partners

HMP Partners of New Jersey is a consortium of medical doctors who are dedicated to supporting the advancement of potentially life-saving technologies. HMP CEO Dr. Manmohan Patel, a prominent pulmonary and critical care specialist, has nearly 50 years of medical expertise in a diverse field of specialties, including pulmonary, internal, geriatric and emergency medicine as well as critical care. Dr. Patel's commitment to community and medical management is demonstrated by his distinguished appointments, including serving as the Director of Post Cardiac Surgery at Saint Michael's Medical Center in Newark, NJ and as Chairman of the Department of Medicine at Meadowlands Hospital Medical Center in Secaucus, NJ. In 2000, he was appointed by the Governor of New Jersey to the Board of Medical Examiners Executive Committee for the state and served on various other committees, including reviewing malpractice actions, in that capacity.

About Dr. Neal Flomenberg

Dr. Neal Flomenberg is the Chairman of the Department of Medical Oncology and Deputy Director of the Sidney Kimmel Cancer Center at Jefferson University in Philadelphia.Dr. Flomenberg launched Jefferson's Blood and Marrow Transplantation (BMT) Program in 1995. Throughout his four decades of practice, he has maintained a longstanding interest in the immunogenetics and immunology of stem cell transplantation, with the goal of making transplantation safer and more widely available. He is board certified in the fields of internal medicine, hematology, and medical oncology.

Media Contacts:

Mark Irion

[emailprotected]

Katelyn Petroka[emailprotected]

SOURCE Tevogen Bio

Read this article:
Tevogen Bio Secures Funding from Team of Doctors to Support Clinical Trials of Its Investigational Curative T Cell Therapy for COVID-19 - PRNewswire

To Read More: Tevogen Bio Secures Funding from Team of Doctors to Support Clinical Trials of Its Investigational Curative T Cell Therapy for COVID-19 – PRNewswire
categoriaCardiac Stem Cells commentoComments Off on Tevogen Bio Secures Funding from Team of Doctors to Support Clinical Trials of Its Investigational Curative T Cell Therapy for COVID-19 – PRNewswire | dataJanuary 27th, 2021
Read All

Regenerative medicine is advancing health care in diverse ways – Hometown Focus

By daniellenierenberg

Regenerative medicine contributed to patient care in 2020 more than ever before, bolstered by synergies in research, practice and education. Mayo Clinics Center for Regenerative Medicine is at the forefront of a biotherapy revolution in which health care advances from treating disease to restoring health.

The centrality of the body to regenerate itself is paving the way for new horizons in regenerative care. The triad of protecting against disease, preventing disease progression and promoting healing is at the core of the regenerative vision, says Andre Terzic, M.D., Ph.D., director of Mayo Clinics Center for Regenerative Medicine. To this end, the regenerative toolkit has grown more robust over the past year with new technologies now available to boost the bodys ability to repair and restore health of an organ and importantly of the patient as a whole.

The convergence of research, practice and education, empowered by strong innovation and advanced biomanufacturing, is creating an increased level of readiness for applying validated regenerative science to new areas of health care, Dr. Terzic says.

Practice advancement

A deeper understanding of the biology of health and disease is driving the ongoing regenerative medicine evolution.

The remarkable progress in science that is advancing our fundamental comprehension of both health and disease has guided the informed and responsible development of patient-ready curative strategies, says Dr. Terzic.

New discoveries at Mayo Clinic that may shape future practice include:

Validating safety and efficacy of

stem cell therapy for heart failure. The largest regenerative medicine clinical trial to date for heart failure, spanning 39 medical centers and 315 patients from 10 countries, validated the long-term safety of stem cell therapy. The late-stage research found stem cell therapy shows particular benefit for patients with advanced left ventricular enlargement. This Mayo Clinic-led study offers guidance on which patients are most likely

to respond to stem cell therapy for heart failure.

Uncovering stem cell activation of healing. Mayo Clinic researchers uncovered stem cell-activated molecular mechanisms of healing after a heart attack. Stem cells restored the makeup of failing cardiac muscle back to its condition before the heart attack, providing an intimate blueprint of how they may work to heal diseased tissue. This research offers utility to delineate and interpret complex regenerative outcomes.

Discovering a molecular light switch. Mayo Clinic research discovered a molecular switch that turns on a substance that repairs neurological damage. This early research could bolster a therapy approved by the Food and Drug Administration, and that could lead to new strategies for treating diseases of the central nervous system such as multiple sclerosis.

The federal regulatory environment is making it possible to more seamlessly integrate new discoveries into the practice. The 21st Century Cures Act, for example, seeks to create an accelerated path to market for safe, validated procedures that could provide new therapies for patients with serious conditions.

To read the rest of this article on the Center for Regenerative Medicine blog, visit http://www.regenerativemedicineblog.mayoclinic.org.

Original post:
Regenerative medicine is advancing health care in diverse ways - Hometown Focus

To Read More: Regenerative medicine is advancing health care in diverse ways – Hometown Focus
categoriaCardiac Stem Cells commentoComments Off on Regenerative medicine is advancing health care in diverse ways – Hometown Focus | dataJanuary 22nd, 2021
Read All

Controlling the immune system with ‘invisible stem’ cells – BioNews

By daniellenierenberg

18 January 2021

A new way of controlling the immune system's 'natural killer' cells has been identified, which could help prevent rejection of transplanted cells.

Natural killer cells act as a front-line defence against foreign cells in the body. Overcoming this defence has represented a major challenge to transplant, cancer immunotherapy and regenerative medicine. The new research provides a possibility to disguise transplanted cells so that they are 'invisible' to this immune defence.

'As a cardiac surgeon, I would love to put myself out of business by being able to implant healthy cardiac cells to repair heart disease', said the study's lead author Professor Tobias Deuse, from the Department of Surgery at University of California, San Francisco. 'And there are tremendous hopes to one day have the ability to implant insulin-producing cells in patients with diabetes or to inject cancer patients with immune cells engineered to seek and destroy tumours. The major obstacle is how to do this in a way that avoids immediate rejection by the immune system'.

Professor Deuse and his colleagues genetically engineered cells to express the protein CD47 and found that these were not attacked by natural killer cells. They discovered that this was because the CD47 protein activates another protein found in the natural killer cells called SIRP.

SIRP was known to be important in other immune cell responses, but scientists had not previously been able to identify it in natural killer cells. 'All the literature said that natural killer cells don't have this checkpoint, but when we looked at cells from human patients in the lab we found SIRP there, clear as day', said corresponding author Professor Sonja Schrepfer.

The team investigated whether this finding could be used to help transplanted stem cells to avoid immune rejection. To do this, they genetically engineered human cells to express rhesus monkey CD47 and transplanted these cells into monkeys. They found that the engineered cells activated the SIRP on natural killer cells, which prevented them from being attacked.

In the future the same procedure could be performed in reverse, expressing human CD47 in pig cardiac cells, for instance, to prevent them from activating natural killer cells when transplanted into human patients.

The research team aims to create a 'hypoimmune' cell line for use in regenerative medicine that will be able to avoid immune rejection.

'Currently engineered cell therapies for cancer and fledgling forms of regenerative medicine all rely on being able to extract cells from the patient, modify them in the lab, and then put them back in the patient. This avoids rejection of foreign cells, but is extremely laborious and expensive', said Professor Schrepfer. 'Our goal in establishing a hypoimmune cell platform is to create off-the shelf products that can be used to treat disease in all patients everywhere'.

The research was recently published in the Journal of Experimental Medicine.

Read more:
Controlling the immune system with 'invisible stem' cells - BioNews

To Read More: Controlling the immune system with ‘invisible stem’ cells – BioNews
categoriaCardiac Stem Cells commentoComments Off on Controlling the immune system with ‘invisible stem’ cells – BioNews | dataJanuary 19th, 2021
Read All

DiNAQOR Acquires EHT Technologies GmbH to Advance Engineered Heart Tissue R&D Capabilities – PRNewswire

By daniellenierenberg

PFFFIKON, Switzerland, Jan. 19, 2021 /PRNewswire/ -- DiNAQOR, a gene therapy platform company,today announcedthat it has acquired EHT Technologies GmbH, a Germany-based engineered heart tissue (EHT) technology platform company. Financial terms of the transaction were not disclosed.

EHT Technologies was founded in 2015 based upon research on human induced pluripotent stem cells (hiPSC) at the University Medical Center Hamburg-Eppendorf. Cardiomyocytes derived from hiPSC are an innovative research technology for cardiac drug development programs. Engineered heart tissues are three-dimensional, hydrogel-based muscle constructs that can be generated from isolated heart cells of chicken, rat, mouse, human embryonic stem cells and hiPSC. Proof-of-concept studies have shown that EHT can be transduced efficiently with adeno-associated virus (AAV) vectors, including AAV9, validating the use of this platform for gene therapy applications.

"EHT Technologies' proprietary hiPSC platform for disease modeling is a perfect complement to DiNAQOR's research and development efforts and leaps forward our ability to develop creative approaches for treating heart diseases in the future. EHT's intellectual property and know-how is industry-leading and we are excited to be able to harness its platform at DiNAQOR," commented Johannes Holzmeister, M.D., Chairman and CEO at DiNAQOR.

"After more than 25 years of development, I'm very excited that our engineered heart tissue technology is making the transition from an academic research model to a drug development tool. The combined application of human cardiomyocytes and a versatile, 3D in vitro assay will facilitate development and reduce reliance on animal studies. The hiPSC-derived EHT assay has great potential for the development of innovative cardiovascular therapeutics and DiNAQOR is the perfect fit for this enterprise," commented Professor Thomas Eschenhagen, M.D., co-founder of EHT Technologies. Professor Eschenhagen serves on DiNAQOR's Scientific Advisory Board.

"The EHT technology will accelerate the advancement of our discovery pipeline and bridge the translational gap between the animal model and human disease. We are proud that DiNAQOR is on the forefront of implementing this innovative technology to expedite new therapies into the clinic," said Valeria Ricotti, M.D., Chief Medical Officer at DiNAQOR.

About DiNAQORFounded in 2019,DiNAQOR is a global gene therapy platform company focused on advancing novel solutions for patients suffering from heart disease.The company is headquartered in Pfffikon, Switzerland, with additional presence in London, England and Hamburg, Germany. For more information visitwww.dinaqor.com.

ContactKWM CommunicationsKellie Walsh[emailprotected] or Stephanie Marks[emailprotected]

SOURCE DiNAQOR

DiNAQOR: A global gene therapy platform company

See the article here:
DiNAQOR Acquires EHT Technologies GmbH to Advance Engineered Heart Tissue R&D Capabilities - PRNewswire

To Read More: DiNAQOR Acquires EHT Technologies GmbH to Advance Engineered Heart Tissue R&D Capabilities – PRNewswire
categoriaCardiac Stem Cells commentoComments Off on DiNAQOR Acquires EHT Technologies GmbH to Advance Engineered Heart Tissue R&D Capabilities – PRNewswire | dataJanuary 19th, 2021
Read All

Genmab Announces that Janssen has been Granted U.S. FDA Approval for DARZALEX FASPRO (daratumumab and hyaluronidase-fihj) for Patients with Newly Dia…

By daniellenierenberg

Genmab Announces that Janssen has been Granted U.S. FDA Approval for DARZALEX FASPRO (daratumumab and hyaluronidase-fihj) for Patients with Newly Diagnosed Light-chain (AL) Amyloidosis

Company Announcement

Copenhagen, Denmark; January 15, 2021 Genmab A/S (Nasdaq: GMAB) announced today that the U.S. Food and Drug Administration (U.S. FDA) has approved the use of DARZALEX FASPRO (daratumumab and hyaluronidase-fihj), a subcutaneous formulation of daratumumab, in combination with bortezomib, cyclophosphamide, and dexamethasone (VCd) for the treatment of adult patients with newly diagnosed light-chain (AL) amyloidosis. A supplemental Biologics License Application (sBLA) for this indication was submitted by Janssen Biotech, Inc. (Janssen), in September 2020. The U.S. FDA reviewed the submission of data for approval in this indication under their Real-Time Oncology Review (RTOR)1 pilot program and Project Orbis2. Continued approval for this indication may be contingent upon verification and description of clinical benefit in a confirmatory trial(s). DARZALEX FASPRO is not indicated and is not recommended for the treatment of patients with light-chain (AL) amyloidosis who have NYHA Class IIIB or Class IV cardiac disease or Mayo Stage IIIB outside of controlled clinical trials. In August 2012, Genmab granted Janssen an exclusive worldwide license to develop, manufacture and commercialize daratumumab.

AL amyloidosis is a devastating and potentially fatal blood disorder that, until now, did not have any U.S. FDA-approved therapies. This makes todays approval of DARZALEX FASPRO a critical step forward for patients in the U.S. in dire need of treatment options, said Jan van de Winkel, Ph.D., Chief Executive Officer of Genmab.

The approval was based on data from the Phase 3 ANDROMEDA (AMY3001) study of daratumumab and hyaluronidase-fihj in combination with VCd as treatment for patients with newly diagnosed AL amyloidosis.

The most common adverse reactions (20%) were upper respiratory tract infection, diarrhea, peripheral edema, constipation, fatigue, peripheral sensory neuropathy, nausea, insomnia, dyspnea and cough. Serious adverse reactions occurred in 43% of patients who received DARZALEX FASPRO in combination with VCd. Serious adverse reactions that occurred in at least 5% of patients in the D-VCd arm were pneumonia (9%), cardiac failure (8%) and sepsis (5%). Fatal adverse reactions occurred in 11% of patients. Fatal adverse reactions that occurred in more than one patient included cardiac arrest (4%), sudden death (3%), cardiac failure (3%) and sepsis (1%).3

Among patients who received DARZALEX FASPRO in combination with VCd, 72% of patients had baseline cardiac involvement with Mayo Cardiac Stage I (3%), Stage II (46%) and Stage III (51%). Serious cardiac disorders occurred in 16% of patients (8% of patients with Mayo Cardiac Stage I and II and 28% of patients with Stage III). Serious cardiac disorders in more than 2% of patients included cardiac failure (8%), cardiac arrest (4%) and arrhythmia (4%). Fatal cardiac disorders occurred in 10% of patients (5% of patients with Mayo Cardiac Stage I and II and 19% of patients with Stage III) who received DARZALEX FASPRO in combination with VCd. Fatal cardiac disorders that occurred in more than one patient in the D-VCd arm included cardiac arrest (4%), sudden death (3%) and cardiac failure (3%).3

Full prescribing information will be available at http://www.DARZALEX.com.

Genmab will receive a milestone payment of USD 30 million in connection with the first commercial sale of DARZALEX FASPRO in this indication, which is expected to occur quickly after approval. The milestone will be reflected in Genmabs 2021 guidance, which will be published on February 23, 2021.

About the ANDROMEDA (AMY3001) studyThe Phase 3 study (NCT03201965) included 388 patients newly diagnosed with AL amyloidosis. Patients were randomized to receive treatment with either daratumumab and hyaluronidase-fihj in combination with bortezomib (a proteasome inhibitor), cyclophosphamide (a chemotherapy), and dexamethasone (a corticosteroid) or treatment with VCd alone. The primary endpoint of the study was the percentage of patients who achieve hematologic complete response.

About Light-chain (AL) AmyloidosisAmyloidosis is a disease that occurs when amyloid proteins, which are abnormal proteins, accumulate in tissues and organs. When the amyloid proteins cluster together, they form deposits that damage the tissues and organs. AL amyloidosis most frequently affects the heart, kidneys, liver, nervous system and digestive tract. Until now there were no approved therapies for AL amyloidosis in the U.S., though it is currently being treated with chemotherapy, dexamethasone, stem cell transplants and supportive therapies.4 It is estimated that there are approximately 3,000 to 4,000 new cases of AL amyloidosis diagnosed annually in the U.S.5

About DARZALEX (daratumumab)DARZALEX (daratumumab) has become a backbone therapy in the treatment of multiple myeloma. DARZALEX intravenous infusion is indicated for the treatment of adult patients in the United States: in combination with carfilzomib and dexamethasone for the treatment of patients with relapsed/refractory multiple myeloma who have received one to three previous lines of therapy; in combination with bortezomib, thalidomide and dexamethasone as treatment for patients newly diagnosed with multiple myeloma who are eligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with bortezomib, melphalan and prednisone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone, for the treatment of patients with multiple myeloma who have received at least one prior therapy; in combination with pomalidomide and dexamethasone for the treatment of patients with multiple myeloma who have received at least two prior therapies, including lenalidomide and a proteasome inhibitor (PI); and as a monotherapy for the treatment of patients with multiple myeloma who have received at least three prior lines of therapy, including a PI and an immunomodulatory agent, or who are double-refractory to a PI and an immunomodulatory agent.6 DARZALEX is the first monoclonal antibody (mAb) to receive U.S. Food and Drug Administration (U.S. FDA) approval to treat multiple myeloma.

DARZALEX is indicated for the treatment of adult patients in Europe via intravenous infusion or subcutaneous administration: in combination with bortezomib, thalidomide and dexamethasone as treatment for patients newly diagnosed with multiple myeloma who are eligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with bortezomib, melphalan and prednisone for the treatment of adult patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; for use in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone, for the treatment of adult patients with multiple myeloma who have received at least one prior therapy; and as monotherapy for the treatment of adult patients with relapsed and refractory multiple myeloma, whose prior therapy included a PI and an immunomodulatory agent and who have demonstrated disease progression on the last therapy7. Daratumumab is the first subcutaneous CD38 antibody approved in Europe for the treatment of multiple myeloma. The option to split the first infusion of DARZALEX over two consecutive days has been approved in both Europe and the U.S.

In Japan, DARZALEX intravenous infusion is approved for the treatment of adult patients: in combination with lenalidomide and dexamethasone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with bortezomib, melphalan and prednisone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone for the treatment of relapsed or refractory multiple myeloma. DARZALEX is the first human CD38 monoclonal antibody to reach the market in the United States, Europe and Japan. For more information, visit http://www.DARZALEX.com.

DARZALEX FASPRO (daratumumab and hyaluronidase-fihj), a subcutaneous formulation of daratumumab, is approved in the United States for the treatment of adult patients with newly diagnosed light-chain (AL) amyloidosis in combination with bortezomib, cyclophosphamide, and dexamethasone. It is also approved in the U.S. for the treatment of adult patients with multiple myeloma: in combination with bortezomib, thalidomide, and dexamethasone in newly diagnosed patients who are eligible for ASCT; in combination with bortezomib, melphalan and prednisone in newly diagnosed patients who are ineligible for ASCT; in combination with lenalidomide and dexamethasone in newly diagnosed patients who are ineligible for ASCT and in patients with relapsed or refractory multiple myeloma who have received at least one prior therapy; in combination with bortezomib and dexamethasone in patients who have received at least one prior therapy; and as monotherapy, in patients who have received at least three prior lines of therapy including a PI and an immunomodulatory agent or who are double-refractory to a PI and an immunomodulatory agent.8 DARZALEX FASPRO is co-formulated with recombinant human hyaluronidase PH20 (rHuPH20), Halozyme's ENHANZE drug delivery technology. .DARZALEX FASPRO is the first subcutaneous CD38 antibody approved in the U.S. for the treatment of multiple myeloma and the first and only approved treatment for patients with AL amyloidosis in the U.S.

Daratumumab is a human IgG1k monoclonal antibody (mAb) that binds with high affinity to the CD38 molecule, which is highly expressed on the surface of multiple myeloma cells. Daratumumab triggers a persons own immune system to attack the cancer cells, resulting in rapid tumor cell death through multiple immune-mediated mechanisms of action and through immunomodulatory effects, in addition to direct tumor cell death, via apoptosis (programmed cell death).6,9,10,11,12

Daratumumab is being developed by Janssen Biotech, Inc. under an exclusive worldwide license to develop, manufacture and commercialize daratumumab from Genmab. A comprehensive clinical development program for daratumumab is ongoing, including multiple Phase III studies in smoldering, relapsed and refractory and frontline multiple myeloma settings. Additional studies are ongoing or planned to assess the potential of daratumumab in other malignant and pre-malignant diseases in which CD38 is expressed, such as amyloidosis and T-cell acute lymphocytic leukemia (ALL). Daratumumab has received two Breakthrough Therapy Designations from the U.S. FDA for certain indications of multiple myeloma, including as a monotherapy for heavily pretreated multiple myeloma and in combination with certain other therapies for second-line treatment of multiple myeloma.

About Genmab Genmab is an international biotechnology company with a core purpose to improve the lives of patients with cancer. Founded in 1999, Genmab is the creator of multiple approved antibody therapeutics that are marketed by its partners. The company aims to create, develop and commercialize differentiated therapies by leveraging next-generation antibody technologies, expertise in antibody biology, translational research and data sciences and strategic partnerships. To create novel therapies, Genmab utilizes its next-generation antibody technologies, which are the result of its collaborative company culture and a deep passion for innovation. Genmabs proprietary pipeline consists of modified antibody candidates, including bispecific T-cell engagers and next-generation immune checkpoint modulators, effector function enhanced antibodies and antibody-drug conjugates. The company is headquartered in Copenhagen, Denmark with locations in Utrecht, the Netherlands, Princeton, New Jersey, U.S. and Tokyo, Japan. For more information, please visit Genmab.com.

Contact: Marisol Peron, Corporate Vice President, Communications & Investor Relations T: +1 609 524 0065; E: mmp@genmab.com

For Investor Relations: Andrew Carlsen, Senior Director, Investor RelationsT: +45 3377 9558; E: acn@genmab.com

This Company Announcement contains forward looking statements. The words believe, expect, anticipate, intend and plan and similar expressions identify forward looking statements. Actual results or performance may differ materially from any future results or performance expressed or implied by such statements. The important factors that could cause our actual results or performance to differ materially include, among others, risks associated with pre-clinical and clinical development of products, uncertainties related to the outcome and conduct of clinical trials including unforeseen safety issues, uncertainties related to product manufacturing, the lack of market acceptance of our products, our inability to manage growth, the competitive environment in relation to our business area and markets, our inability to attract and retain suitably qualified personnel, the unenforceability or lack of protection of our patents and proprietary rights, our relationships with affiliated entities, changes and developments in technology which may render our products or technologies obsolete, and other factors. For a further discussion of these risks, please refer to the risk management sections in Genmabs most recent financial reports, which are available on http://www.genmab.com and the risk factors included in Genmabs most recent Annual Report on Form 20-F and other filings with the U.S. Securities and Exchange Commission (SEC), which are available at http://www.sec.gov. Genmab does not undertake any obligation to update or revise forward looking statements in this Company Announcement nor to confirm such statements to reflect subsequent events or circumstances after the date made or in relation to actual results, unless required by law.

Genmab A/S and/or its subsidiaries own the following trademarks: Genmab; the Y-shaped Genmab logo; Genmab in combination with the Y-shaped Genmab logo; HuMax; DuoBody; DuoBody in combination with the DuoBody logo; HexaBody; HexaBody in combination with the HexaBody logo; DuoHexaBody; HexElect; and UniBody. DARZALEX and DARZALEX FASPRO are trademarks of Janssen Pharmaceutica NV.

1 Real-Time Oncology Review Pilot Program. https://www.fda.gov/about-fda/oncology-center-excellence/real-time-oncology-review-pilot-program Accessed September 20202 Project Orbis. U.S. Food and Drug Administration. https://www.fda.gov/about-fda/oncology-center-excellence/project-orbis. Accessed September 2020.3DARZALEX FASPRO Prescribing Information. Horsham, PA: Janssen Biotech, Inc.4 Mayo Clinic website: http://www.mayoclinic.com/health/amyloidosis/DS004315 Research and Markets, Amyloidosis Treatment Market Size, Share & Trends Analysis Report by Treatment (Stem Cell Transplant, Chemotherapy, Supportive Care, Surgery, Targeted Therapy), By Country, And Segment Forecasts, 2018 - 20256 DARZALEX Prescribing information, August 2020 https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761036s029lbl.pdf Last accessed August 20207 DARZALEX Summary of Product Characteristics, available at https://www.ema.europa.eu/en/medicines/human/EPAR/darzalex Last accessed June 20208 DARZALEX FASPRO Prescribing information, May 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761145s000lbl.pdf Last accessed May 20209 De Weers, M et al. Daratumumab, a Novel Therapeutic Human CD38 Monoclonal Antibody, Induces Killing of Multiple Myeloma and Other Hematological Tumors. The Journal of Immunology. 2011; 186: 1840-1848.10 Overdijk, MB, et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs. 2015; 7: 311-21.11 Krejcik, MD et al. Daratumumab Depletes CD38+ Immune-regulatory Cells, Promotes T-cell Expansion, and Skews T-cell Repertoire in Multiple Myeloma. Blood. 2016; 128: 384-94.12 Jansen, JH et al. Daratumumab, a human CD38 antibody induces apoptosis of myeloma tumor cells via Fc receptor-mediated crosslinking. Blood. 2012; 120(21): abstract 2974

Read more:
Genmab Announces that Janssen has been Granted U.S. FDA Approval for DARZALEX FASPRO (daratumumab and hyaluronidase-fihj) for Patients with Newly Dia...

To Read More: Genmab Announces that Janssen has been Granted U.S. FDA Approval for DARZALEX FASPRO (daratumumab and hyaluronidase-fihj) for Patients with Newly Dia…
categoriaCardiac Stem Cells commentoComments Off on Genmab Announces that Janssen has been Granted U.S. FDA Approval for DARZALEX FASPRO (daratumumab and hyaluronidase-fihj) for Patients with Newly Dia… | dataJanuary 19th, 2021
Read All

Global Autologous Stem Cell Based Therapies Market 2020 Key Drivers and Restraints, Regional Outlook, End-User Applicants by 2025 – The Pinstripe…

By daniellenierenberg

Global Autologous Stem Cell Based Therapies Market 2020 by Company, Type and Application, Forecast to 2025 has been updated by MarketsandResearch.biz replete with a precise analysis of the market, specifically that approach market size, trends, share, outlook, production, and futuristic development trends and present and future market status from 2020 to 2025. The report comprises of a comprehensive investigation into the geographical landscape, industry size along with the revenue estimation of the business. The report supplies a point by point analysis dependent on the exhaustive research of the global Autologous Stem Cell Based Therapies market elements like development situation, potential opportunities, and operation landscape and trend analysis. The study recognizes the factors behind the growth of certain segments and focuses on business models expected to create new revenue for market players. The report also offers insight into emerging trends and restraints.

About Manufacturers And Growing Competition:

The report highlights crucial details on specific areas comprising a detailed analytical review of the competition spectrum. Each of the leading players is thoroughly identified and profiled in the global Autologous Stem Cell Based Therapies report with their product portfolio as well as company status and portfolio. The report is a complete representation of all the major initiatives initiated by various market players across diverse geographical areas. After studying key companies, the report focuses on the new entrants contributing to the growth of the market.

NOTE: Our report highlights the major issues and hazards that companies might come across due to the unprecedented outbreak of COVID-19.

DOWNLOAD FREE SAMPLE REPORT: https://www.marketsandresearch.biz/sample-request/67562

Some players from complete research coverage: Regeneus, US STEM CELL, INC., Mesoblast, Med cell Europe, Pluristem Therapeutics Inc, Tigenix, Brainstorm Cell Therapeutics

This report segments on the basis of types are: Embryonic Stem Cell, Resident Cardiac Stem Cells, Umbilical Cord Blood Stem Cells

This report segments on the basis of application are: Neurodegenerative Disorders, Autoimmune Diseases, Cardiovascular Diseases

For a comprehensive understanding of market dynamics, the global Autologous Stem Cell Based Therapies market analyzed across key geographies namely: North America (United States, Canada and Mexico), Europe (Germany, France, United Kingdom, Russia and Italy), Asia-Pacific (China, Japan, Korea, India, Southeast Asia and Australia), South America (Brazil, Argentina), Middle East & Africa (Saudi Arabia, UAE, Egypt and South Africa)

The study then investigates the important achievements of the market, Research & Development, new product launch, product responses, and regional growth of the most important competitors operating in the global Autologous Stem Cell Based Therapies market. The analysis also takes into account the existing and upcoming technological aspects of the market. Finally, the report describes the sales channel, distributors, traders, dealers, research findings and Conclusion, appendix, and data source. The data about producing base distribution, sales area, product kind, market competitive scenario, and trends, market concentration rate has been given further.

ACCESS FULL REPORT: https://www.marketsandresearch.biz/report/67562/global-autologous-stem-cell-based-therapies-market-2020-by-company-type-and-application-forecast-to-2025

This Comprehensive Report Will Provide:

Customization of the Report:

This report can be customized to meet the clients requirements. Please connect with our sales team ([emailprotected]), who will ensure that you get a report that suits your needs. You can also get in touch with our executives on +1-201-465-4211 to share your research requirements.

About Us

Marketsandresearch.biz is a leading global Market Research agency providing expert research solutions, trusted by the best. We understand the importance of knowing what global consumers watch and buy, further using the same to document our distinguished research reports. Marketsandresearch.biz has worldwide presence to facilitate real market intelligence using latest methodology, best-in-class research techniques and cost-effective measures for worlds leading research professionals and agencies. We study consumers in more than 100 countries to give you the most complete view of trends and habits worldwide. Marketsandresearch.biz is a leading provider of Full-Service Research, Global Project Management, Market Research Operations and Online Panel Services.

Contact UsMark StoneHead of Business DevelopmentPhone: +1-201-465-4211Email: [emailprotected]Web: http://www.marketsandresearch.biz

Follow this link:
Global Autologous Stem Cell Based Therapies Market 2020 Key Drivers and Restraints, Regional Outlook, End-User Applicants by 2025 - The Pinstripe...

To Read More: Global Autologous Stem Cell Based Therapies Market 2020 Key Drivers and Restraints, Regional Outlook, End-User Applicants by 2025 – The Pinstripe…
categoriaCardiac Stem Cells commentoComments Off on Global Autologous Stem Cell Based Therapies Market 2020 Key Drivers and Restraints, Regional Outlook, End-User Applicants by 2025 – The Pinstripe… | dataJanuary 14th, 2021
Read All

Coronavirus Impact Editon of Autologous Stem Cell Based Therapies Market Report Future Development, Top Manufacturers, Technological Advancement,…

By daniellenierenberg

Global Coronavirus pandemic has impacted all industries across the globe, Autologous Stem Cell Based Therapies market being no exception. As Global economy heads towards major recession post 2009 crisis, Cognitive Market Research has published a recent study which meticulously studies impact of this crisis on Global Autologous Stem Cell Based Therapies market and suggests possible measures to curtail them. This press release is a snapshot of research study and further information can be gathered by accessing complete report.

Checkout Inquiry for Buying or Customization of Report: https://www.cognitivemarketresearch.com/autologous-stem-cell-based-therapies-market-report#download_report

The number of coronavirus cases is increasing rapidly which has not only taken a number of lives but has also affected the global economic structure. The Coronavirus Disease Pandemic (COVID-19) has affected all parts of the world. This virus has changed all the market conditions and hampers the growth of the various sectors of the global Autologous Stem Cell Based Therapies market. The report covers rapidly altering market scenario due to COVID-19 and market fluctuation during the forecast period. Cognitive Market Research has published Autologous Stem Cell Based Therapies market report accordingly.To Get Detailed Analysis Mail us @ [emailprotected] or call us on +1-312-376-8303.

The Autologous Stem Cell Based Therapies market report is an in-depth analysis of Autologous Stem Cell Based Therapies market which provides wide array of parameters, such as industry segments size & trends, inhibitors, dynamics, drivers, opportunities & challenges, environment & policy, cost overview, porters five force analysis, and key companies profiles including business overview and recent development. The research and analysis of complete report is done by our research expertise in order to provide holistic view on Autologous Stem Cell Based Therapies market.

Any query? Enquire Here For Discount (COVID-19 Impact Analysis Updated Sample): Click Here>https://www.cognitivemarketresearch.com/autologous-stem-cell-based-therapies-market-report

The Autologous Stem Cell Based Therapies Market is Classified into:Based on Product Types:Embryonic Stem Cell, Resident Cardiac Stem Cells, Umbilical Cord Blood Stem Cells

Based on End-User/Application:{application)

Compitative Analysis

some of the key players are focusing on strategies such as new product development and acquisitions & mergers to increase their market presence. Key players operating in the market are Regeneus, Mesoblast, Pluristem Therapeutics Inc, U.S. STEM CELL INC., Brainstorm Cell Therapeutics, Tigenix, Med cell Europe. The report additionally delivers detailed information of the key players (company profile, business overview, business strategy, product description, company revenue, SWOT analysis & other relevant information).

Autologous Stem Cell Based Therapies market report provides complete SWOT analysis of each and every company involved in Autologous Stem Cell Based Therapies market report. The market is further fragmented into geographical regions providing Autologous Stem Cell Based Therapies market share in various regions. It shows highest share of Autologous Stem Cell Based Therapies product in a particular region. The report has also included impact of COVID-19 on Autologous Stem Cell Based Therapies market and its further impact on market in coming years. Geographically, this report studies the top producers and consumers, focuses on product capacity, production, value, consumption, market share and growth opportunity.

Request Free Sample Copy @https://www.cognitivemarketresearch.com/autologous-stem-cell-based-therapies-market-report

The research report categorically identifies product type and end-use applications to highlight the core developments simultaneously dominant across all regional areas and their subsequent implications on the holistic growth trajectory of Autologous Stem Cell Based Therapies Market. Additionally, report involves additional segments if required by our readers. Furthermore, Autologous Stem Cell Based Therapies market report delivers competitive analysis based on major players involved in the market. It includes prominent players with business overview, their basic information, product description as well as their recent key developments and moves. We also provide company's revenue for two consecutive years along with their research and development investment and geographical presence. The company profiling of top players includes their strategy that help new entrants to take decision more efficiently.

Important Points that are covered in the Global Autologous Stem Cell Based Therapies Market: Deep analysis of the investment scenario of the global Autologous Stem Cell Based Therapies market Information related to the ongoing research and development projects and pipeline research and development projects Business overview and business strategies of key players Impact of COVID-19 pandemic on the growth of the Autologous Stem Cell Based Therapies market Growth map on technology improvement and with an impact on market analysisCustomization of the Report: This report can be customized to meet the clients requirements. Please connect with our sales team so that we can meet your requirements.

Get A Free Sample of Autologous Stem Cell Based Therapies Market Report: https://www.cognitivemarketresearch.com/autologous-stem-cell-based-therapies-market-report#download_report

Additional pointers from the global Autologous Stem Cell Based Therapies market report: The valuation and assessment of the industry chain for the global Autologous Stem Cell Based Therapies market report is performed, which is based on distribution channels and upstream raw materials & equipment suppliers. Moreover, the market research report study also offers an overview for investigating the viability of a new project with reference to specifics concerning the project schedules, project production solutions, investment budget, and project name.

Key Questions Answered by the Report

Impact of the Covid-19 on the global Autologous Stem Cell Based Therapies market growth and sizing The top players of the global Autologous Stem Cell Based Therapies market The performance of the global Autologous Stem Cell Based Therapies market in the coming years with the current status of the market. The key factors that are driving the growth of the global Autologous Stem Cell Based Therapies market The opportunities that will drive the growth of the global Autologous Stem Cell Based Therapies market in the forecast period The structure of the global Autologous Stem Cell Based Therapies marketFor better and effective understanding of Autologous Stem Cell Based Therapies market, report has been depicted by various graphs, tables, stat charts and pie charts.

For purchasing the entire report mail us @:https://www.cognitivemarketresearch.com/autologous-stem-cell-based-therapies-market-report#download_report

About Us:Cognitive Market Research is one of the finest and most efficient Market Research and Consulting firm. The company strives to provide research studies which include syndicate research, customized research, round the clock assistance service, monthly subscription services, and consulting services to our clients. We focus on making sure that based on our reports, our clients are enabled to make most vital business decisions in easiest and yet effective way. Hence, we are committed to delivering them outcomes from market intelligence studies which are based on relevant and fact-based research across the global market.Contact Us: +1-312-376-8303Email: [emailprotected]Web: https://www.cognitivemarketresearch.com/

https://murphyshockeylaw.net/

Go here to read the rest:
Coronavirus Impact Editon of Autologous Stem Cell Based Therapies Market Report Future Development, Top Manufacturers, Technological Advancement,...

To Read More: Coronavirus Impact Editon of Autologous Stem Cell Based Therapies Market Report Future Development, Top Manufacturers, Technological Advancement,…
categoriaCardiac Stem Cells commentoComments Off on Coronavirus Impact Editon of Autologous Stem Cell Based Therapies Market Report Future Development, Top Manufacturers, Technological Advancement,… | dataJanuary 12th, 2021
Read All

Global Cardiovascular Drug Delivery Technologies, Companies & Markets to 2028: Focus on Cell Therapy, Gene Therapy, Drug-Eluting Stents – WFMZ…

By daniellenierenberg

DUBLIN, Jan. 11, 2021 /PRNewswire/ --

The "Cardiovascular Drug Delivery - Technologies, Markets & Companies" report from Jain PharmaBiotech has been added to ResearchAndMarkets.com's offering.

The cardiovascular drug delivery markets are estimated for the years 2018 to 2028 on the basis of epidemiology and total markets for cardiovascular therapeutics. The estimates take into consideration the anticipated advances and availability of various technologies, particularly drug delivery devices in the future. Markets for drug-eluting stents are calculated separately. The role of drug delivery in developing cardiovascular markets is defined and unmet needs in cardiovascular drug delivery technologies are identified.

Drug delivery to the cardiovascular system is different from delivery to other systems because of the anatomy and physiology of the vascular system; it supplies blood and nutrients to all organs of the body. Drugs can be introduced into the vascular system for systemic effects or targeted to an organ via the regional blood supply. In addition to the usual formulations of drugs such as controlled release, devices are used as well. This report starts with an introduction to molecular cardiology and discusses its relationship to biotechnology and drug delivery systems.

Drug delivery to the cardiovascular system is approached at three levels: (1) routes of drug delivery; (2) formulations; and finally (3) applications to various diseases. Formulations for drug delivery to the cardiovascular system range from controlled release preparations to delivery of proteins and peptides. Cell and gene therapies, including antisense and RNA interference, are described in full chapters as they are the most innovative methods of delivery of therapeutics. Various methods of improving the systemic administration of drugs for cardiovascular disorders are described including the use of nanotechnology.

Cell-selective targeted drug delivery has emerged as one of the most significant areas of biomedical engineering research, to optimize the therapeutic efficacy of a drug by strictly localizing its pharmacological activity to a pathophysiologically relevant tissue system. These concepts have been applied to targeted drug delivery to the cardiovascular system. Devices for drug delivery to the cardiovascular system are also described.

The role of drug delivery in various cardiovascular disorders such as myocardial ischemia, hypertension, and hypercholesterolemia is discussed. Cardioprotection is also discussed. Some of the preparations and technologies are also applicable to peripheral arterial diseases. Controlled release systems are based on chronopharmacology, which deals with the effects of circadian biological rhythms on drug actions. A full chapter is devoted to drug-eluting stents as treatment for restenosis following stenting of coronary arteries.Fifteen companies are involved in drug-eluting stents.

New cell-based therapeutic strategies are being developed in response to the shortcomings of available treatments for heart disease. Potential repair by cell grafting or mobilizing endogenous cells holds particular attraction in heart disease, where the meager capacity for cardiomyocyte proliferation likely contributes to the irreversibility of heart failure. Cell therapy approaches include attempts to reinitiate cardiomyocyte proliferation in the adult, conversion of fibroblasts to contractile myocytes, conversion of bone marrow stem cells into cardiomyocytes, and transplantation of myocytes or other cells into injured myocardium.

Advances in the molecular pathophysiology of cardiovascular diseases have brought gene therapy within the realm of possibility as a novel approach to the treatment of these diseases. It is hoped that gene therapy will be less expensive and affordable because the techniques involved are simpler than those involved in cardiac bypass surgery, heart transplantation and stent implantation. Gene therapy would be a more physiologic approach to deliver vasoprotective molecules to the site of vascular lesions. Gene therapy is not only a sophisticated method of drug delivery; it may at times need drug delivery devices such as catheters for transfer of genes to various parts of the cardiovascular system.

Selected 80+ companies that either develop technologies for drug delivery to the cardiovascular system or products using these technologies are profiled and 80 collaborations between companies are tabulated. The bibliography includes 200 selected references from recent literature on this topic. The report is supplemented with 31 tables and 9 figures.

Key Topics Covered:

Executive Summary

1. Cardiovascular Diseases

2. Methods for Drug Delivery to the Cardiovascular System

3. Cell Therapy for Cardiovascular Disorders

4. Gene Therapy for Cardiovascular Disorders

5. Drug-Eluting Stents

6. Markets for Cardiovascular Drug Delivery

7. Companies involved in Cardiovascular Drug Delivery

8. References

For more information about this report visit https://www.researchandmarkets.com/r/eizl23

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

Media Contact:

Research and MarketsLaura Wood, Senior Managerpress@researchandmarkets.com

For E.S.T Office Hours Call +1-917-300-0470For U.S./CAN Toll Free Call +1-800-526-8630For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907Fax (outside U.S.): +353-1-481-1716

Link:
Global Cardiovascular Drug Delivery Technologies, Companies & Markets to 2028: Focus on Cell Therapy, Gene Therapy, Drug-Eluting Stents - WFMZ...

To Read More: Global Cardiovascular Drug Delivery Technologies, Companies & Markets to 2028: Focus on Cell Therapy, Gene Therapy, Drug-Eluting Stents – WFMZ…
categoriaCardiac Stem Cells commentoComments Off on Global Cardiovascular Drug Delivery Technologies, Companies & Markets to 2028: Focus on Cell Therapy, Gene Therapy, Drug-Eluting Stents – WFMZ… | dataJanuary 12th, 2021
Read All

Page 10«..9101112..2030..»


Copyright :: 2024