Page 3«..2345..1020..»

Global Stem Cell Reconstructive Market- Industry Analysis and Forecast (2020-2027) – Good Night, Good Hockey

By daniellenierenberg

Global Stem Cell Reconstructive Marketwas valued US$ XX Mn in 2019 and is expected to reach US$ XX Mn by 2027, at a CAGR of 24.5% during a forecast period.

Market Dynamics

The Research Report gives an in-depth account of the drivers and restraints in the stem cell reconstructive market. Stem cell reconstructive surgery includes the treatment of injured or dented part of body. Stem cells are undifferentiated biological cells, which divide to produce more stem cells. Growing reconstructive surgeries led by the rising number of limbs elimination and implants and accidents are boosting the growth in the stem cell reconstructive market. Additionally, rising number of aged population, number of patients suffering from chronic diseases, and unceasing development in the technology, these are factors which promoting the growth of the stem cell reconstructive market. Stem cell reconstructive is a procedure containing the use of a patients own adipose tissue to rise the fat volume in the area of reconstruction and therefore helping 3Dimentional reconstruction in patients who have experienced a trauma or in a post-surgical event such as a mastectomy or lumpectomy, brain surgery, or reconstructive surgery as a result of an accident or injury. Stem cell reconstructive surgeries are also used in plastic or cosmetic surgeries as well. Stem cell and regenerative therapies gives many opportunities for development in the practice of medicine and the possibility of an array of novel treatment options for patients experiencing a variety of symptoms and conditions. Stem cell therapy, also recognised as regenerative medicine, promotes the repair response of diseased, dysfunctional or injured tissue using stem cells or their derivatives.

The common guarantee of all the undifferentiated embryonic stem cells (ESCs), foetal, amniotic, UCB, and adult stem cell types is their indefinite self-renewal capacity and high multilineage differentiation potential that confer them a primitive and dynamic role throughout the developmental process and the lifespan in adult mammal.However, the high expenditure of stem cell reconstructive surgeries and strict regulatory approvals are restraining the market growth.

The report study has analyzed revenue impact of covid-19 pandemic on the sales revenue of market leaders, market followers and disrupters in the report and same is reflected in our analysis.

Global Stem Cell Reconstructive Market Segment analysis

Based on Cell Type, the embryonic stem cells segment is expected to grow at a CAGR of XX% during the forecast period. Embryonic stem cells (ESCs), derived from the blastocyst stage of early mammalian embryos, are distinguished by their capability to distinguish into any embryonic cell type and by their ability to self-renew. Owing to their plasticity and potentially limitless capacity for self-renewal, embryonic stem cell therapies have been suggested for regenerative medicine and tissue replacement after injury or disease. Additionally, their potential in regenerative medicine, embryonic stem cells provide a possible another source of tissue/organs which serves as a possible solution to the donor shortage dilemma. Researchers have differentiated ESCs into dopamine-producing cells with the hope that these neurons could be used in the treatment of Parkinsons disease. Upsurge occurrence of cardiac and malignant diseases is promoting the segment growth. Rapid developments in this vertical contain protocols for directed differentiation, defined culture systems, demonstration of applications in drug screening, establishment of several disease models, and evaluation of therapeutic potential in treating incurable diseases.

Global Stem Cell Reconstructive Market Regional analysis

The North American region has dominated the market with US$ XX Mn. America accounts for the largest and fastest-growing market of stem cell reconstructive because of the huge patient population and well-built healthcare sector. Americas stem cell reconstructive market is segmented into two major regions such as North America and South America. More than 80% of the market is shared by North America due to the presence of the US and Canada.

Europe accounts for the second-largest market which is followed by the Asia Pacific. Germany and UK account for the major share in the European market due to government support for research and development, well-developed technology and high healthcare expenditure have fuelled the growth of the market. This growing occurrence of cancer and diabetes in America is the main boosting factor for the growth of this market.

The objective of the report is to present a comprehensive analysis of the Global Stem Cell Reconstructive Market including all the stakeholders of the industry. The past and current status of the industry with forecasted market size and trends are presented in the report with the analysis of complicated data in simple language. The report covers all the aspects of the industry with a dedicated study of key players that includes market leaders, followers and new entrants. PORTER, SVOR, PESTEL analysis with the potential impact of micro-economic factors of the market has been presented in the report. External as well as internal factors that are supposed to affect the business positively or negatively have been analysed, which will give a clear futuristic view of the industry to the decision-makers.

The report also helps in understanding Global Stem Cell Reconstructive Market dynamics, structure by analysing the market segments and projects the Global Stem Cell Reconstructive Market size. Clear representation of competitive analysis of key players by Application, price, financial position, Product portfolio, growth strategies, and regional presence in the Global Stem Cell Reconstructive Market make the report investors guide.Scope of the Global Stem Cell Reconstructive Market

Global Stem Cell Reconstructive Market, By Sources

Allogeneic Autologouso Bone Marrowo Adipose Tissueo Blood Syngeneic OtherGlobal Stem Cell Reconstructive Market, By Cell Type

Embryonic Stem Cell Adult Stem CellGlobal Stem Cell Reconstructive Market, By Application

Cancer Diabetes Traumatic Skin Defect Severe Burn OtherGlobal Stem Cell Reconstructive Market, By End-User

Hospitals Research Institute OthersGlobal Stem Cell Reconstructive Market, By Regions

North America Europe Asia-Pacific South America Middle East and Africa (MEA)Key Players operating the Global Stem Cell Reconstructive Market

Osiris Therapeutics NuVasives Cytori Therapeutics Takeda (TiGenix) Cynata Celyad Medi-post Anterogen Molmed Baxter Eleveflow Mesoblast Ltd. Micronit Microfluidics TAKARA BIO INC. Tigenix Capricor Therapeutics Astellas Pharma US, Inc. Pfizer Inc. STEMCELL Technologies Inc.

Global Stem Cell Reconstructive Market Request For View Sample Report Page : @

About Us:

Maximize Market Research provides B2B and B2C market research on 20,000 high growth emerging technologies & opportunities in Chemical, Healthcare, Pharmaceuticals, Electronics & Communications, Internet of Things, Food and Beverages, Aerospace and Defense and other manufacturing sectors.

Contact info:Name: Vikas GodageOrganization: MAXIMIZE MARKET RESEARCH PVT. LTD.Email:

Global Stem Cell Reconstructive Market- Industry Analysis and Forecast (2020-2027) - Good Night, Good Hockey

To Read More: Global Stem Cell Reconstructive Market- Industry Analysis and Forecast (2020-2027) – Good Night, Good Hockey
categoriaCardiac Stem Cells commentoComments Off on Global Stem Cell Reconstructive Market- Industry Analysis and Forecast (2020-2027) – Good Night, Good Hockey | dataAugust 16th, 2020
Read All

Using stem cells to find causes and treatments to prevent …

By daniellenierenberg

Mystified by the need for defibrillation to save a 10-year-old from drowning, Michael Ackerman, M.D., Ph.D., vowed to dig for answers. That pivotal case during a Mayo Clinic pediatric cardiology residency was the catalyst for Dr. Ackermans career in genetic sleuthing of inherited sudden cardiac death syndromes. With help from the Center for Regenerative Medicine Biotrust, Dr. Ackermans team reprograms cell lines to zero in on precise causes and possible treatments for genetic heart disorders that increase the risk of sudden cardiac death. His research and practice focus on inherited conditions like long QT syndrome (LQTS), catecholaminergic polymorphic ventricular tachycardia (CPVT) and Brugada syndrome (BrS) along with heart muscle diseases such as hypertrophic cardiomyopathy (HCM).

Working with the Center for Regenerative Medicine has opened up a whole new investigative arm to our lab. It is bench to bedside research. We take cells from a blood sample from my patients and then reprogram those cells to become cardiac cells. This research effort has been a powerful tool in gene discovery to prove beyond a shadow of a doubt when a monogenetic variant is indeed the cause of a sudden cardiac death syndrome, says Dr. Ackerman.

Reprogramming cells to identify disease-causing mutations

Reprogramming a patients cells is like a step back in time to when the cells were initially forming in the mothers womb. At that time, cells were dividing and could become any type of cell or tissue in the body. Reprogrammed cells, known as induced pluripotent stem cells, can be redirected to become new heart cells. Dr. Ackermans team uses these patient-specific cell lines to create a disease in a dish model and investigate whether genetic mutations are causing the patients genetic heart disease such as long QT syndrome.

Once we think weve found the root cause of disease, we then go to the patients cell line. We ask, does it show in the dish, in that patients re-engineered heart cells, a prolonged QT cellular phenotype? If it does, then we edit out and correct that variant of interest and at the cellular level test whether the abnormality disappears, says Dr. Ackerman.

Dr. Ackermans team then introduces that genetic variant into normal, healthy cells. If those cells produce a long QT phenotype, they have proof that exact genetic variant is the cause.

Using this disease in a dish model and other genetic sleuthing strategies, Dr. Ackermans team has discovered six of the 17 known genes that cause long QT syndrome. And, they have recently described two entirely new syndromes. One is triadin knockout syndrome, a heart arrhythmia that could lead to cardiac arrest in children during exercise. The second is an autosomal recessive genetic mechanism for calcium release channel deficiency syndrome, prevalent within Amish communities. That key discovery solved the mystery of why so many Amish children were dying suddenly during ordinary childhood play. The disease in a dish model is also useful for discovering new therapies. After creating the patients disease in a dish, Dr. Ackermans team tests potential new drug compounds to see if they could be effective.

We are developing a new gene therapy for the most common genetic subtype of long QT syndrome.With this model, the gene therapy vector is essentially curing the diseased long QT phenotype in the dish, says Dr. Ackerman.

Almost quit research

Dr. Ackerman began medical and graduate school at Mayo Clinic in 1988, where he worked in a research lab next to then fellow trainee, Andre Terzic, M.D., Ph.D., who now is director of Mayo Clinic Center for Regenerative Medicine. Initially not seeing the relevance to patient care, Dr. Ackerman finished his Ph.D. and left research vowing to never, ever return. True to his mentors predictions that youll be back, Mike, Dr. Ackerman felt the pull back to research to address unmet medical needs of his patients.He joined Mayo Clinics faculty in 2000 as one of the first genetic cardiologists with a goal of establishing a practice for patients at risk of sudden cardiac death from genetic heart diseases. Dr. Ackerman now directs the Mayo Clinic Windland Smith Rice Genetic Heart Rhythm Clinic and the Mayo Clinic Windland Smith Rice Sudden Death Genomics Laboratory.

Dr. Ackermans return to research has provided many answers for patients, with over 600 peer-reviewed publications that have occurred since that time 23 years ago when Dr. Ackerman and his team first solved that 10-year-old boys near fatal drowning. It was a mutation in the gene causing type 1 long QT syndrome.

Dr. Ackerman is one of the innovators the Center for Regenerative Medicine collaborates with as it seeks to be a global leader and trusted destination for regenerative care driven by research and education.


Tags: Brugada syndrome, Center for Regenerative Medicine Biotrust, hypertrophic cardiomyopathy, long Q T syndrome, Mayo Clinic Center for Regenerative Medicine, Michael Ackerman, People, Research, Stem cell research, sudden cardiac death

Read the rest here:
Using stem cells to find causes and treatments to prevent ...

To Read More: Using stem cells to find causes and treatments to prevent …
categoriaCardiac Stem Cells commentoComments Off on Using stem cells to find causes and treatments to prevent … | dataAugust 15th, 2020
Read All

Stem Cell Therapy Market Application Growth, Technology, Trends and Key Players Developments on Regional Industry Size Till 2023 – eRealty Express

By daniellenierenberg

Global Stem Cell Therapy Market is expected to reach an approximate CAGR of 10.3% during the forecast period. The use of stem cell for treating medical conditions is referred to as stem cell therapy. Stem cells are undifferentiated cells and differentiate into specialized cell types.

This ability of stem cells to differentiate into cells of interest is used to treat diseases like diabetes, heart disease, hematopoietic disorders (for example leukemia, thalassemia, and others), degenerative disorders (osteoarthritis, Alzheimers disease, Parkinsons disease, chronic renal failure, congestive cardiac failure,) and others.

Some of the key players are Osiris Therapeutics, Inc. (US), MEDIPOST Co., Ltd. (South Korea), Anterogen Co., Ltd. (South Korea), Pharmicell Co., Ltd. (South Korea), Holostem Terapie Avanzate S.r.l. (Italy), JCR Pharmaceuticals Co., Ltd. (Japan), NuVasive, Inc. (US), RTI Surgical, Inc. (US), and AlloSource (US), Thermo Fisher Scientific are some of the key players operating in the global stem cell therapy market.

Avail Sample copy For this Report at:

Global Stem Cell Therapy Market, by Technique,

Global Stem Cell Therapy Market, by Product Type

Global Stem Cell Therapy Market, by Application

Global Stem Cell Therapy Market, by End-User

Geographically, Americas is the largest in the market owing to the increasing prevalence of heart diseases and growing healthcare expenditure. According to the Centers for Disease Control and Prevention in November 2017, report every year 735,000 Americans have a heart problem. Such a high number of heart patients in the Americas drives the market growth in this region.

Brows Full Report at:

Europe (UK, Belgium, France, and Netherlands) is the second largest global stem cell therapy market during the forecast period. The increasing occurrence of stroke, cancer, and osteoarthritis drives the market in this region. According to Anthony Nolan organization 2017, annual review 1.4million people register for donating stem cell in 2017. Also, more than 2,200 searches for a lifesaving stem cell transplant were made in 2017 by UK people. Such a high demand for Stem cell transplantation in this region promotes the market.

Asia-Pacific was projected to be the fastest growing region for the global stem cell therapy market in 2017. The market is expected to witness growth owing to the rising prevalence of smoking in this region.

According to the American Cancer Society, Inc 2018, report China 48.9%, India 16.2%, Japan 11.2% accounts of cancer cases in this region. Such a high cancer rate in this region favors the stem cell therapy market in this region.

The Middle East and Africa accounts for the least share due to low per capita income and lack of availability of well-trained healthcare professionals. However, the rising oncology and technology both at the hospital level and in the community are expected to influence the market in a positive way.

Enquire Discount for this Report at:

Key factors responsible for the market growth are the rising awareness for therapeutic application of stem cells in disease management, rising research for stem cell therapy applications, development of advanced genetic analysis techniques, increasing public-private investments for stem cell research, growing research in identification of new stem cell lines, and new developments in stem cell banking infrastructure are driving the growth of the global stem cell therapy market. Stem cells are used in the treatment of Alzheimers by replacing the diseased cells with stem cells

About Market Research Future:

At Market Research Future (MRFR), we enable our customers to unravel the complexity of various industries through our Cooked Research Report (CRR), Half-Cooked Research Reports (HCRR), Raw Research Reports (3R), Continuous-Feed Research (CFR), and Market Research & Consulting Services.


Market Research Future

+1 646 845 9312


Continue reading here:
Stem Cell Therapy Market Application Growth, Technology, Trends and Key Players Developments on Regional Industry Size Till 2023 - eRealty Express

To Read More: Stem Cell Therapy Market Application Growth, Technology, Trends and Key Players Developments on Regional Industry Size Till 2023 – eRealty Express
categoriaCardiac Stem Cells commentoComments Off on Stem Cell Therapy Market Application Growth, Technology, Trends and Key Players Developments on Regional Industry Size Till 2023 – eRealty Express | dataAugust 15th, 2020
Read All

High-throughput 3D screening for differentiation of hPSC-derived cell therapy candidates – Science Advances

By daniellenierenberg


The emergence of several cell therapy candidates in the clinic is an encouraging sign for human diseases/disorders that currently have no effective treatment; however, scalable production of these cell therapies has become a bottleneck. To overcome this barrier, three-dimensional (3D) cell culture strategies have been considered for enhanced cell production. Here, we demonstrate a high-throughput 3D culture platform used to systematically screen 1200 culture conditions with varying doses, durations, dynamics, and combinations of signaling cues to derive oligodendrocyte progenitor cells and midbrain dopaminergic neurons from human pluripotent stem cells (hPSCs). Statistical models of the robust dataset reveal previously unidentified patterns about cell competence to Wnt, retinoic acid, and sonic hedgehog signals, and their interactions, which may offer insights into the combinatorial roles these signals play in human central nervous system development. These insights can be harnessed to optimize production of hPSC-derived cell replacement therapies for a range of neurological indications.

Stem cellsincluding adult and pluripotent subtypesoffer tremendous clinical promise for the treatment of a variety of degenerative diseases, as these cells have the capacity to self-renew indefinitely, mature into functional cell types, and thereby serve as a source of cell replacement therapies (CRTs). Human pluripotent stem cells (hPSCs) are of increasing interest for the development of CRTs due to their capacity to differentiate into all cell types in an adult, for which adult tissuespecific stem cells may, in some cases, not exist or may be difficult to isolate or propagate (1). For example, one potential CRT enabled by hPSCs is the treatment of spinal cord injury (SCI) with oligodendrocyte progenitor cells (OPCs). These hPSC-OPCs have recently advanced to a phase 2 clinical trial for the treatment of SCI (2) and are being considered for additional myelin-associated disorders in the central nervous system (CNS), including adrenoleukodystrophy, multiple sclerosis (3, 4), and radiation therapyinduced injury (5). In parallel, hPSC-derived midbrain dopaminergic (mDA) neurons are under consideration for Parkinsons disease therapy (6, 7).

The promise of hPSC-derived therapeutics such as hPSC-OPCs or mDA neurons motivates the development of manufacturing processes to accommodate the potential associated clinical need. For example, approximately 250,000 patients in the United States suffer from some form of SCI, with an estimated annual incidence of 15,000 new patients (8). Human clinical trials involving hPSC-OPCs have used dosages of 20 million cells per patient (9), such that the hypothetical demand would be over 1 trillion differentiated OPCs. It is therefore imperative to develop systems to enable discovery of efficient and scalable differentiation protocols for these therapies.

Differentiation protocols to direct hPSCs into functional OPCs (10, 11) have been developed to approximate the signaling environment at precise positions within the developing spinal cord. Positional identity of cells is guided patterning cues that form intersecting gradients along the dorsoventral axis, such as Sonic hedgehog (SHH), and rostrocaudal axis, such as retinoic acid (RA). In addition, certain cues are present along both axes, such as Wnts (1215). These signaling environments vary over time as the embryo develops (16, 17). However, translating this complex developmental biology to an in vitro culture requires optimization of a large combinatorial parameter space of signaling factor identities, doses, durations, dynamics, and combinations over many weeks to achieve efficient yield of the target cell type, and there remains open questions about the impact of cross-talk between patterning cues on the expression of cellular markers present in OPCs such as transcription factors Olig2 and Nkx2.2 (18). Strategies to derive OPCs and other potential CRTs from hPSCs have shown steady progress, especially with application of high-throughput screening technology (1921); however, current production systems for hPSC-derived CRTs involve two-dimensional (2D) culture formats that are challenging to scale (2228).

More recently, 3D culture systems have demonstrated strong potential for a larger scale and higher yield (29) of hPSC expansion and differentiation than 2D counterparts, as well as compatibility with good manufacturing practice (GMP) standards (3033). While high-throughput systems for screening 3D cell culture environments have been applied to basic biological studies of hPSC proliferation (34), we envision that this technology could additionally be applied toward systematically optimizing production strategies for CRTs to accelerate the pace of their discovery and development toward the clinic while simultaneously uncovering new interactions among signaling cues that affect cell fate. Here, we harness the powerful capabilities of a uniquely structured microculture platform (35, 36), to screen dosage, duration, dynamics, and combinations of several cellular signaling factors in 3D for hPSC differentiation (Fig. 1). The independent control of gel-encapsulated cells (on pillar chip) and media (in well chip) enables simultaneous media replenishment for more than 500 independent microcultures in a single chip. Furthermore, we use custom hPSC reporter cell lines (37) to enable live imaging of proliferation and differentiation of OPCs for over 80 days on the microculture chip. One thousand two hundred combinatorial culture conditions, amounting to 4800 independent samples, were screened while consuming less than 0.2% of the reagent volumes of a corresponding 96-well plate format. Furthermore, the robust dataset enabled statistical modeling to identify relative differentiation sensitivities to, and interactions between, various cell culture parameters in an unbiased manner. Last, we demonstrate the generalizability of the platform by applying it toward a screen for differentiation of tyrosine hydroxylaseexpressing dopaminergic neurons from hPSCs.

(A) A micropillar chip with cells suspended in a 3D hydrogel is stamped to a complementary microwell chip containing isolated media conditions to generate 532 independent microenvironments. One hundred nanoliters of hPSCs suspended in a hydrogel is automatically dispensed onto the micropillars, and 800 nl of media is automatically dispensed into the microwells by a robotic liquid handling robot programmed to dispense in custom patterns. The independent substrate for cells and media enables screens of combinations of soluble cues at various dosages and timings. Scale bar, 1 mm. (B) Timeline of exogenous signals for in vitro 3D OPC differentiation from hPSCs and anticipated cellular marker expression along various differentiation stages.

Initially, we assessed whether hPSCs could be dispensed in the microculture platform system uniformly and with high viability. Quantification of total, live, and dead cell counts across the microchip indicates uniform culture seeding and cell viability at the initiation of an experiment (fig. S1).

We then used a custom-made Nkx2.2-Cre H9 reporter line, which constitutively expresses DsRed protein but switches to green fluorescent protein (GFP) expression upon exposure to Cre recombinase, to longitudinally monitor proliferation and differentiation of hPSCs to Nkx2.2+ oligodendrocyte progenitors in 3D on the microchip platform. A small range of culture conditions from previously published protocols of OPC differentiation were selected for an initial, pilot differentiation experiment, and the GFP expression was quantified after 21 days of differentiation. Cell morphology changes accompanying neural lineage commitment and maturation were clearly observed at later stages in the 3D differentiation (movie S1 and fig. S2) as cultures were maintained and monitored for up to 80 days on the microchip. We then developed fluorescence image analysis pipelines for quantification of nuclear and cytoplasmic marker expression via immunocytochemistry for endpoint analyses at various times (fig. S3). Together, these results support the robust and long-term culture potential and cellular marker expression readout of this miniaturization methodology for hPSC differentiation screening.

hPSC seeding density. We first focused on parameters within the first week of 3D differentiation into OPCs (Fig. 2A). The importance of autocrine, paracrine, and juxtacrine signaling mechanisms among cells in many systems led us to anticipate that the density of cells at the start of differentiation could affect the early neural induction efficiency and, consequently, the efficiency of OPC differentiation. We therefore demonstrated the ability of this microculture platform to test a range of initial hPSC seeding densities on day 2 (fig. S1) and assessed the effect of seeding density on Olig2 expression. We observed notable differences in levels of cell-to-cell adhesion in hPSC cultures by day 0, 2 days after initial seeding (Fig. 2Bi). Then, after 15 days of differentiation, we observed a trend that lower hPSC seeding density, between 10 and 50 cells per pillar, increased OPC specification slightly (Fig. 2Bii).

(A) Timeline of key parameters in the early phase of OPC differentiation. (B) i. Bright-field images of 3D H9 microculture sites at day 0 seeded with varying cell densities and the immunocytochemistry images of Olig2 (red) expression at day 15. Scale bar, 100 microns. ii. Quantification of day 15 Olig2 expression with respect to seeding density and SAG dose. *P value < 0.05 using Tukeys Method for multiple comparisons. (C) i. Montage of 360 fluorescence confocal images representing 90 unique differentiation timelines on a single microchip stained for Hoechst (blue) and Olig2 (red) after 21 days of differentiation. ii. Trends in Olig2 expression at days 15 and 21 in various CHIR and RA concentrations and durations (short CHIR, days 0 to 1; long CHIR, days 0 to 3). Error bars represent 95% confidence intervals from four technical replicates.

Timing of SMAD inhibition relative to RA and Wnt signals. The formation of the neural tube in human development (12) results from cells in the epiblast being exposed to precisely timed developmental signals such as Wnt (38) and RA that then instruct neural subtype specification (39). This led us to hypothesize that the overall differentiation efficiency of hPSCs to OPCs in this 3D context in vitro would be sensitive to the timing at which RA and Wnt signals were introduced during neural induction. Therefore, we induced neuroectodermal differentiation of hPSCs via inhibition of bone morphogenetic protein (BMP) signaling using the dual SMAD inhibition approach (40), with LDN193189 (hereafter referred to as LDN) and SB431542 (hereafter referred to as SB), and tested a range of times (0, 2, and 4 days) at which RA and Wnt signals (by CHIR99021, hereafter referred to as CHIR) were introduced into the culture. We observed a strong correlation between early addition of RA/CHIR and OPC specification such that combined exposure of RA and CHIR signals with SMAD inhibition on day 0 resulted in up to sixfold higher Olig2 expression in some cases (fig. S4), potentially implicating an important role of synchronized exposure of RA and CHIR signals with SMAD inhibition for specifying Olig2+ progenitors. For subsequent experiments, we kept the timing of RA and CHIR addition at day 0 and evaluated how the dose and duration of these signals may affect Olig2+ specification.

Dose and duration of key signaling agonists. We examined the combinatorial and temporal effects of three signaling cues that form gradients across intersecting developmental axes in the neural tube to influence specification of oligodendrocyte progenitors: RA (present along the rostrocaudal axis of the CNS development), SHH (41) (a morphogen that patterns the dorsoventral axis of the developing CNS and is activated by smoothened agonist, hereafter referred to as SAG), and Wnt (present along both the rostrocaudal and dorsoventral axes). Because OPC specification is likely sensitive to the relative concentrations of these cues, for example, given the importance of morphogen gradients in oligodendrocyte differentiation in the developing neural tube (12), we assessed the Olig2 expression resulting from a full factorial combinatorial screen of these cues (fig. S5). Most notably, we observed positive correlations in Olig2 expression in response to increasing RA dose and increasing duration of CHIR exposure from days 0 to 4 of differentiation (Fig. 2C). Without CHIR, an increase in RA from 10 to 1000 nM resulted in a 10-fold increase of Olig2 expression by day 21. A similar 10-fold increase in Olig2 expression was observed at an RA concentration of 100 nM if CHIR was present for the first 3 days of differentiation (Fig. 2C). Analysis of variance (ANOVA) analysis revealed a strong effect size for RA when added early in the differentiation, as well as an interaction between RA dose and longer CHIR duration, in specifying Olig2+ cells in this 3D context (fig. S5), consistent with previous work conducted in 2D in vitro formats (19, 42).

In other developmental systems, the activity of the Wnt signaling pathway was observed to be biphasic (43), whereby activation of the pathway initially enhances cardiac development but later represses it. As this complex signaling profile has been applied to enhance cardiomyocyte differentiation protocols in vitro (44), we analogously investigated whether adding antagonists of key signaling pathways after pathway activation could further enhance the OPC differentiation efficiency by adjusting the dorsoventral and rostrocaudal positioning in vitro. Maintaining the 5 M CHIR for days 0 to 3 from the previous experiment, we used IWP-2 (an inhibitor of the Wnt pathway), GANTT61 (an antagonist of SHH signaling), and DAPT (a Notch pathway antagonist) (Fig. 3A) to inhibit endogenous autocrine/paracrine and/or basal signaling. We used a full factorial analysis of these cues to additionally probe for combinatorial interactions among the pathway inhibitors.

(A) Timing of addition for three inhibitory signaling cuesGANTT61, IWP-2, and DAPTin the OPC differentiation protocol. (B) i. Olig2+, Nkx2.2+, and the proportion of total Olig2+ that are Nkx2.2+/Olig2+ cells in at day 21 in response to full factorial combinations of selected novel signaling antagonists. ii. Immunocytochemistry images of costained Olig2 (red) and Nkx2.2 (green) cells. Scale bar, 100 m. Error bars represent 95% confidence intervals from four technical replicates.

To further refine the markers for OPC specification, we measured Nkx2.2 expression in addition to Olig2 and quantified the proportion of cells coexpressing both OPC markers. Most notably, a significant decrease in %Olig2 was observed in response to Notch inhibitor DAPT across all conditions tested (Fig. 3Bi). The same trend was not observed with respect to %Nkx2.2. This result could point to a role for Notch signaling in maintaining or promoting specification of Olig2+ progenitorsa hypothesis not previously examined to our knowledgeand serves as preliminary evidence to test Notch agonists such as DLL-4 in follow-up studies of OPC optimization. This effect may be mediated by an interaction with the SHH pathway (45).

A slight increase in %Olig2+ cells was detected with increasing Wnt inhibitor IWP-2 dose when no SHH inhibitor GANTT61 was present, as was a slight increase in %Nkx2.2+ cells as a function of increasing IWP-2 and GANTT61 dose, pointing to a potential interaction between these two cues in inducing Nkx2.2 expression. The highest proportion of Olig2+Nkx2.2+ cells was observed at the highest IWP-2 and GANTT61 doses and was not influenced by DAPT exposure (Fig. 3Bii). As CHIR was present between days 0 and 3 in the differentiation, it seems that the role of Wnt signaling changes during the 21-day differentiation window of hPSCs to OPCs in that initially (days 0 to 3) it promotes OPC differentiation but shifts to an inhibitory role at later stages (days 4 to 21). To examine the extent of reproducibility of these findings, we tested the effect of temporal modulation of Wnt signals in a human induced pluripotent stem cell (hiPSC) line, TCTF, and found that the general trend of activation followed by inactivation of Wnt signaling would increase the proportion of Olig2+ cells at day 21 (fig. S6).

Although the levels of key signaling cues may vary temporally within the natural developmental environment of certain target cell types, such as within the neural tube where a dynamic SHH gradient along the dorsoventral axis patterns pMN development (16, 17), the dosage of signaling cues in the media for in vitro stem cell differentiation protocols is often applied at a constant level throughout the culture period. On the basis of this discrepancy, we applied the micropillar/microwell chip to screen through numerous temporal profiles of SAG, as well as RA due to its analogous role along the rostrocaudal axis during spinal cord development, by dividing the signal window into early and late stages that were dosed independently to form constant, increasing, and decreasing dose profiles over time (Fig. 4A). To gain additional insights into OPC marker expression, we measured Tuj1 expression and calculated the proportion of Olig2+ cells that coexpressed Tuj1 to potentially identify any modulators of the balance between Olig2+ cells that proceed down a motor neuron fate (which are both Olig2+ and Tuj1+) versus an oligodendrocyte fate (Olig2+/Nkx2.2+).

(A) Timeline of early and late windows for RA and SAG exposure. (B) i. Hierarchical cluster analysis of standardized (z score) phenotypic responses to temporal changes in RA and SAG dose during OPC differentiation. ii. Representative immunocytochemistry images of each major category of endpoint population phenotype mix of Olig2 (red), Nkx2.2 (green), and Tuj1 (orange) expression. Scale bar, 100 m. iii. Olig2, Nkx2.2, and coexpression of Olig2+Nkx2.2+ and Olig2+Tuj1+ at day 15 in response to time-varying doses of SAG. Error bars represent 95% confidence intervals from four technical replicates. *P value < 0.05.

To consider all measured phenotypes simultaneously, we applied a hierarchical cluster analysis from which we were able to identify several patterns. A broad range of endpoint phenotype proportions of Olig2, Nkx2.2, and Tuj1 was found to result from varying the temporal dosing of only two signaling cues, RA and SAG, pointing to a very fine sensitivity to temporal changes in signal exposure in these populations. Four categories of the endpoint marker expression profiles were created to further interpret the cluster analysis. Categories 1 and 2 are composed of phenotypes ranking low on OPC progenitor fate (low Olig2 and/or Nkx2.2 expression), all of which shared the low dosing of RA at 0.1 M between days 2 and 21 of the differentiation, further emphasizing the strong impact of RA on OPC yield. In contrast, category 3composed of the highest Olig2 and Nkx2.2 expression as well as Olig2+Nkx2.2+ proportioncorrelated with the highest dose of early SAG but had negligible differences across doses of late SAG (Fig. 4Biii, and fig. S7). Last, category 4 points to a biphasic relationship of Nkx2.2 expression as a function of RA dosage, where a high dose of RA of 1 M in the late stage of differentiation resulted in lower Nkx2.2 expression (fig. S8) compared with a consistent RA of 0.5 M throughout the entire differentiation. It appears that Olig2 and Nkx2.2 undergo maxima under different RA dosage profiles (fig. S8), and therefore, the use of coexpressing Olig2+Nkx2.2+ cells as the main metric when optimizing OPC differentiation may be most suitable.

We sought a comprehensive, yet concise, analysis to describe individual and combinatorial effects of all 12 culture parameters (e.g., signal agonist and antagonist dosages and timings) on the results of the more than 1000 unique differentiation conditions involved in this study. To this end, we fit generalized linear models to correlate the expression and coexpression of Olig2, Nxk2.2, and Tuj1 to individual input parameters within the 12 culture parameters involved in this study, and the 132 pairwise interactions between them. First, we identified significant parameters of interest for each phenotype measured using a factorial ANOVA (fig. S9). After applying a Benjamini and Hochberg false discovery rate correction for multiple comparisons (46), we fit an ordinary least squares model of the statistically significant terms to the phenotype of interest. The parameter coefficients were analyzed as a measure of relative influence on the expression of a certain endpoint phenotype, such as Olig2+Nkx2.2+ cells, and could be interpreted as a sensitivity analysis of key parameters on the OPC specification process. The most significant parameters were then sorted by their effect magnitude (Fig. 5B).

(A) Identification of statistically significant culture parameters using a factorial ANOVA of all single and pairwise effects on Nkx2.2 expression subject to the Benjamini and Hochberg false discovery rate (B&H FDR) correction. (B) Effect magnitude of significant culture parameters for i. Nkx2.2 expression, ii. Olig2 expression, iii. and coexpression of Olig2 and Nkx2.2. (C) i. Diagram summarizing results and effect magnitude of significant culture parameters for Olig2 and Nkx2.2 coexpression within the Olig2+ population and ii. effect magnitude of significant culture parameters for Olig2 and Tuj1 coexpression within the Olig2+ population.

RA, a rostrocaudal patterning cue, was among the most impactful parameters in this study for Olig2 and Nkx2.2 expression (Fig. 5Bi and ii). In particular, a high RA dose (1 M) early in the differentiation (days 0 and 1) emerged as the most influential culture parameter in the acquisition of OPC fate (coexpression of Olig2 and Nkx2.2) (Fig. 5Bi to iii). In addition, the dose of SAG from days 4 to 10 of differentiation exerted a markedly more significant impact on OPC fate induction than from days 10 to 21 of differentiation, in line with the previous analysis (Fig. 4). IWP-2 and GANT were observed to correlate positively with coexpression of Olig2 and Nkx2.2 as well. Furthermore, this analysis identified two cases of culture parameters interacting in a synergistic manner to promote OPC differentiation. First, higher doses of RA during days 0 to 2 followed by SAG during days 4 to 10 were found to promote higher Nkx2.2 expression. In addition, longer CHIR duration (from days 0 to 4) along with higher GANT dose promoted coexpression of Nkx2.2 and Olig2.

We created a new differentiation protocol from the parameters isolated in this screen to have the most influence in specifying Olig2+Nkx2.2+ progenitors (Fig. 5Biii) and carried out the differentiation into the later stages of OPC maturation in a larger-scale format to assess the ability of this optimized protocol to create mature oligodendrocytes. The protocol was able to produce platelet-derived growth factor receptor (PDGFR)expressing cells by day 60 across multiple hPSC lines, as well as O4-expressing cells by day 75 and myelin basic protein (MBP) expressing cells and myelination ability at day 100 (fig. S10).

The OPC screening identified new conditions that affect cell differentiation, and we then sought to demonstrate the generalizability of this approach by conducting a different study. Specifically, we screened 90 unique hPSC differentiation protocols for tyrosine hydroxylase+ mDA neurons (Fig. 6). Exposure of CHIR was divided into three periods (early, middle, and late), and dosage for each period was varied independently. This screening strategy uncovered a key window of CHIR competence between days 3 and 7 (early), a negligible effect of CHIR between days 8 and 11 (middle), and an inhibitory effect of CHIR between days 12 and 25 (late) of mDA differentiation. These data further illustrate the existence of biphasic signaling activity during the differentiation process and underscore the need to improve the temporal dosing of several signaling agonists across a range of hPSC-derived CRTs.

(A) Timeline of small-molecule addition for differentiation of mDA neurons from hPSCs. (B) Montage of 90 unique differentiation timeline to test temporal profiles of CHIR dose stained for tyrosine hydroxylase (TH) and Tuj1. Scale bar, 1 mm. (C) Immunocytochemistry images of i. low, ii. medium, and ii. high proportions of TH+ (yellow) neurons (red) dependent on the temporal profile of CHIR exposure. Scale bar, 100 m.

The clinical emergence of several cell-based therapy candidates (47) is encouraging for human diseases/disorders that currently have no effective small molecule or biologic-based therapy. As research and development into CRT candidates continues to progress, cell production has emerged as a bottleneckas delivery vectors recently have in gene therapyand improved tools will be necessary to enable higher quality and yield in cell manufacturing. Although previous studies have reported ~90% hPSC differentiation efficiency into Olig2+ progenitors using 2D culture formats (19), the 2D culture format constrains the space in which cells can expand to the surface area of the culture plate that limits the overall cell yield that can be produced. The adoption of scalable 3D culture formats, which have demonstrated the ability to produce up to fivefold higher quantities of cells per culture volume, shows promise in surpassing limits of 2D cell expansion (2933) and could result in a higher overall production quantity of target cells even if differentiation efficiencies were lower than what has been reported in 2D. Therefore, the 3D screening and analysis strategy presented here is relevant for numerous emerging CRT candidates for which conversion of a stem or progenitor cell, such as a hPSCs (48), to a therapeutically relevant cell type requires searching through a large in vitro design space of doses, durations, dynamics, and combinations of signaling cues over several weeks of culture.

Notably, to emulate a ubiquitous and naturally occurring phenomenon in organismal development (16, 49), we dynamically varied key signaling cues in our screening strategy, tuning dosage over time. These analyses revealed new biological insights into the dynamic process by which cell competence to signals and fate are progressively specified (50). For example, by applying this platform to screen through several dynamic signaling levels simultaneously, we observed that the differentiation toward Nkx2.2+ progenitors is very sensitive to the dose of RA between days 0 and 1 and the dose of SAG between days 4 and 10. After these respective time windows, the effect of each respective signal in producing Nkx2.2+ progenitors is decreased, potentially pointing to a decrease in cellular competence to each of these signals over the course of OPC development. These cases of stage-specific responses to signaling cues, revealed by our screening platform, create a new dimension for future optimization of cell production.

To effectively navigate this enormous parameter space across doses, durations, dynamics, and combinations of signaling cues and resulting differentiation outcomes, we developed a robust sensitivity analysis strategy that can rank effect sizes to reveal which parameters should be the focus of optimization to modulate expression of target markers of interest (49) and, by contrast, which parameters exert minimal impact and can thus be neglected. For example, titration of RA dose will exert a significantly higher impact on differentiation efficiency than several other culture parameters combined. Furthermore, insights from this study could reduce the necessary quantity of SHH agonist by more than 50% to achieve similar levels of OPC differentiation. As these cell production processes translate from bench scale to industrial scale, awareness of key parameters that influence critical quality attributes (18) of the cell therapy product (such as expression of specific cellular markers) will be a necessary step in reliably producing these therapeutic cell types at scale for the clinic (51).

The wealth of combinatorial and temporal signaling patterns identified in this study can be analyzed in the context of CNS development as well. We observed a potential case of biphasic activity for the Wnt signaling pathway as both activation and inhibition appeared to increase expression of OPC markers Nkx2.2 and Olig2. In particular, this effect was seen with initial Wnt activation by CHIR during days 0 to 3 of OPC differentiation followed by inhibition by IWP-2 during days 4 to 21 of OPC differentiation. The Wnt pathway has shown stage-specific activity in cardiac and hematopoietic development (43, 44), which may thus be a conserved feature across several developmental systems. Wnt signals play an important role in the gastrulation of the embryo to form the primitive streak (38), yet in the subsequent stages of spinal cord development, Wnt signals induce a dorsalizing effect (52), whereas oligodendrocytes originate from the motor neuron domain on the ventral side. Therefore, suppressing endogenous Wnt signals in vitro after initial activation of Wnt may better recapitulate the natural developmental signaling environment of developing oligodendrocytes. Alternatively, as Wnt signals also play a role in rostrocaudal patterning of the CNS, these insights may further point toward a rostrocaudal region of the CNS during this developmental window that is optimal to recapitulate in vitro for OPC production. The oligodendrocytes created through this protocol, which expressed OTX2 at day 10 (fig. S2C), may resemble OPCs in the midbrain/hindbrain region. It is conceivable that exposure to the Wnt antagonist, IWP-2, induced a position rostral to the spinal cord during the differentiation window. This biphasic Wnt trend was seen again in our analysis of differentiation of mDA neurons, underscoring that stage-specific responses may be a conserved feature across several differentiation processes aiming to recapitulate a precise cellular position across several axes of patterning signals during natural development.

Furthermore, the statistical model identified an interaction between RA and SAG (an SHH agonist) in the early differentiation windows for specifying Nkx2.2+ progenitors (Fig. 5B), which has not been previously reported to our knowledge. In the developing CNS, RA signaling influences rostrocaudal positional identity, whereas SHH signaling specifies dorsoventral positional identity. Therefore, this statistical interaction found in the screen may represent intracellular cross-talk between the RA and SHH signaling pathways to integrate both patterning dimensions into Nkx2.2+ progenitor identity. This finding builds on what is known about RA and SHH signals for Olig2+ progenitor development in the spinal cord (53, 54).

Additionally, the 3D context of this screening platform enables high-throughput investigation into neurodevelopmental model systems that can offer unique perspectives beyond what is capable in 2D screening platforms, for example, by recapitulating cell-to-cell interactions, cytoskeletal arrangement, and multicellular patterning in 3D. The lumen structures that were observed during the neural induction period (fig. S2B and movie S1) in response to caudalizing conditions (high Wnt and RA) could be the basis of future organoid screening strategies to probe early multicellular arrangement and the effect of lumen size and shape on cell fate determination at various positions along the rostrocaudal and dorsoventral axes.

In conclusion, we demonstrate the versatile capabilities of a unique microculture platform for 3D differentiation screening and optimization of hPSC-derived cell therapies, whereby 1200 unique OPC differentiation timelines, and a total of over 4800 independent samples, were investigated using 0.2% of the reagent volumes required in a standard 96-well plate format. The dense dataset enabled subsequent statistical modeling for empirical optimization of the differentiation process and identified differential sensitivities to various culture parameters across time. These insights are important in developing strong process knowledge for manufacturing stem cell therapeutics as they continue to emerge in the clinic, and therefore, such screening strategies may accelerate the pace of discovery and development. Simultaneously, this combinatorial 3D hPSC differentiation screens may provide new insights on the basic biology of human development.

Human embryonic stem cells (H9s: National Institutes of Health Stem Cell Registry no. 0062) and hiPSCs (TCTFs: 8FLVY6C2, a gift from S. Li) were subcultured in monolayer format on a layer of 1% Matrigel and maintained in Essential 8 medium during expansion. At 80% confluency, H9s were passaged using Versene solution and replated at a 1:8 split.

H9s were dissociated into single cells using Accutase solution and resuspended in Essential 8 medium containing 10 M Y-27632 (ROCK Inhibitor). H9s were counted and resuspended at defined densities in 50% Matrigel solution on ice. While chilled, 100 nl of H9s in 50% Matrigel solution was deposited onto the micropillars at a density of 100 cells per pillar, unless otherwise noted, using a custom robotic liquid handling program and then incubated at 37C for 20 min to promote gelation of 3D cultures. The micropillar chip was then inverted and placed into a fresh microwell chip containing cell culture media (table S1). All liquid dispensing into the microculture platform was performed with a DIGILAB OmniGrid Micro liquid handler with customized programs for deposition patterns. Between days 2 and 0, cells were kept in E8 media supplemented with 10 M ROCK Inhibitor. Between days 0 and 10, cells were kept in differentiation media made of a base of 50% Dulbeccos Modified Eagles MediumF12, 50% Neurobasal, 0.5% penicillin/streptomycin (pen/strep), 1:100 GlutaMAX supplement, 1:50 B27 supplement, and 1:50 N2 supplement. Between days 10 and 21, cells were kept in differentiation media made of a base of 100% Neurobasal, 0.5% pen/strep, 1:100 GlutaMAX supplement, 1:50 B27 supplement, and 1:50 N2 supplement. After day 21, OPCs were transitioned to maturation media consisting of 100% Neurobasal, 0.5% pen/strep, 1:100 GlutaMAX supplement, 1:50 B27 supplement, 1:50 N2 supplement, insulin-like growth factor 1 (10 ng/ml), platelet-derived growth factor (PDGF)AA (10 ng/ml), NT-3 (10 ng/ml), and insulin (25 g/ml). Media were changed daily by transferring the micropillar chip into a microwell chip containing fresh media every other day using a custom-made mechanical Chip Swapper for consistent transfer. Technical replicates included two different dispensing patterns to average out positional effects across the microchip.

At the endpoint of the experiment, the micropillar chip was carefully removed from the microwell chip and placed in new microwell chip containing calcein AM, ethidium homodimer, and Hoechst diluted in sterile phosphate-buffered saline (PBS) (dilution details in table S1). The micropillar chip was incubated for 20 min and then transferred to a new microwell chip containing PBS, and individual microenvironments were imaged using fluorescence microscopy.

At the endpoint of the experiment, the micropillar chip was carefully removed from the wellchip and placed into a bath of 4% paraformaldehyde for 15 min to fix cell cultures. Then, the micropillar chip was washed twice in PBS for 5 min each and placed into a bath of 0.25% Triton X-100 + 5% donkey serum in PBS for 10 min to permeabilize cells. After permeabilization, the micropillar chip was washed five times in 5% donkey serum for 5 min each, transferred to a wellchip containing primary antibodies of interest diluted in PBS + donkey serum (dilution details in table S1), and stored overnight at 4C. After primary staining, the micropillar chip was washed twice in PBS for 5 min each, placed into a microwell chip containing the corresponding secondary antibodies (dilution details in table S1), and incubated at 37C for 2 hours. After secondary staining, the micropillar chip was washed twice in PBS for 5 min each and placed into a wellchip containing PBS; individual microenvironments were imaged using fluorescence confocal microscopy.

Stained micropillar chips were sealed with a polypropylene film (GeneMate T-2452-1) and imaged with a 20 objective using a Perkin Elmer Opera Phenix automated confocal fluorescence microscope available in the High-Throughput Screening Facility at University of California, Berkeley. Laser exposure time and power were kept constant for a fluorescence channel within an imaging set. Images were scored for marker expression depending on nuclear or cytoplasmic localization (fig. S3).

Fixed cultures on micropillars at day 15 were stained with 4,6-diamidino-2-phenylindole (DAPI) and imaged using an upright Olympus BX51WI microscope (Olympus Corporation) equipped with swept field confocal technology (Bruker) and a Ti:sapphire two-photon Chameleon Ultra II laser (Coherent) was used. The two-photon laser was set to 405 nm, and images were captured using an electron multiplying charge-coupled device camera (Photometrics). Prairie View Software (v. 5.3 U3, Bruker) was used to acquire images, and ImageJ software was used to create a video of the z-series.

Quantified image data were then imported into Python for statistical data analysis (55) and visualization. For comparisons between datasets acquired across different experimental sessions, raw data were scaled and centered by z score, and descriptive statistics were calculated from four technical replicates. Error bars represent 95% confidence intervals, unless otherwise specified. For the hierarchical cluster model, the Euclidean distance was used to measure pairwise distance between each observation, and the unweighted pair group method with arithmetic mean (UPGMA) algorithm was used to calculate the linkage pattern. A Benjamini and Hochberg false discovery rate correction was applied as needed to correct for multiple comparisons. Code is available upon request.

Acknowledgments: We thank M. West of the High-Throughput Screening Facility (HTSF) at UC Berkeley and E. Granlund of the College of Chemistry machine shop for machining custom parts. In addition, we are grateful to G. Rodrigues, M. Adil, and J. Zimmermann for participating in the discussions on the work. Funding: This research was supported by the California Institute for Regenerative Medicine (DISC-08982) and the NIH (R01-ES020903) and Instrumentation Grant (S10OD021828) that provided the Perkin Elmer Opera Phenix microscope. R.M. was supported in part by an NSF Graduate Research Fellowship. Author contributions: R.M., D.S.C., and D.V.S. conceived various parts of the project and supervised the study. R.M. designed the experiments and managed the project workflows. X.B. created Nkx2.2-Cre H9 reporter lines. R.M., E.T., and E.C. performed the experiments. R.M. conducted statistical modeling, and A.M. aided in statistical testing. R.M., D.S.C., and D.V.S. analyzed and interpreted the data. R.M. wrote the manuscript with revisions from J.S.D., D.S.C., and D.V.S. Competing interests: R.M., D.S.C., and D.V.S. are inventors on a U.S. patent pending related to this work filed by the University of California, Berkeley (PCT/US2020/029553, filed on 23 April 2020). D.V.S. is the inventor on two U.S. patent pendings related to this work filed by the University of California, Berkeley (PCT/US2016/055362, filed on 4 October 2016; no. PCT/US2016/055361, filed on 5 October 2015). All other authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Go here to read the rest:
High-throughput 3D screening for differentiation of hPSC-derived cell therapy candidates - Science Advances

To Read More: High-throughput 3D screening for differentiation of hPSC-derived cell therapy candidates – Science Advances
categoriaCardiac Stem Cells commentoComments Off on High-throughput 3D screening for differentiation of hPSC-derived cell therapy candidates – Science Advances | dataAugust 10th, 2020
Read All

Vida Ventures co-leads Dyne’s $115M megaround for next-gen oligo therapies aimed squarely at muscles – Endpoints News

By daniellenierenberg

Dyne Therapeutics started out last April with a modest $50 million to mine targeted muscle disease therapies from its in-house conjugate technology. The biotech has now convinced more investors that its got gems on its hands, closing $115 million in fresh financing to push its next-gen oligonucleotide drugs into the clinic.

Vida Ventures and Surveyor Capital led the round, joined by a group of other new backers including Wellington Management Company, Logos Capital and Franklin Templeton.

Atlas where Dyne was incubated also returned alongside Forbion and MPM.

Stefan Vitorovic, who co-founded Vida with Arie Belldegrun and others, took the lead on this one. Dynes FORCE platform matches exactly their appetite for bold visions in the future of medicine, with the potential to deliver life-changing outcomes for patients with muscle diseases, he said.

This is how the biotech plans to do it: By linking an antibody to an oligonucleotide, Dynes therapies are engineered to hone in on muscle cells and degrade only disease-causing RNA, thereby avoiding systemic toxicity issues.

Romesh Subramanian, a co-founder of what is now Translate Bio, helped launch the operations as an entrepreneur-in-residence at Atlas. Hes since handed the CEO baton to Joshua Brumm and moved to the CSO post.

When you deliver a naked oligo, very little gets to the muscle, he told C&EN back in 2019.

That means a lack of specificity and potential safety problems for drugs like Sareptas controversial Exondys 51. While Dyne is aiming directly at that market with its Duchenne muscular dystrophy program, its initial focus is on myotonic dystrophy.

Trailing closely is a third therapy for facioscapulohumeral muscular dystrophy, followed by discovery work in the cardiac and metabolic arenas.

How would the approach compare to gene therapies, which are cropping up at Sarepta and other newer players focused on muscle diseases? We didnt get a chance to ask Dyne, which is shying away from interviews this morning perhaps a sign of upcoming plans in a booming biotech IPO market.

Under Braum, Dyne has been on a bit of a hiring spree recently, poaching Susanna High from bluebird to be COO, appointing ex-Celgene exec Daniel Wilson as VP of intellectual property, and scooping Debra Feldman from Sage Therapeutics as head of regulatory.

Go here to read the rest:
Vida Ventures co-leads Dyne's $115M megaround for next-gen oligo therapies aimed squarely at muscles - Endpoints News

To Read More: Vida Ventures co-leads Dyne’s $115M megaround for next-gen oligo therapies aimed squarely at muscles – Endpoints News
categoriaCardiac Stem Cells commentoComments Off on Vida Ventures co-leads Dyne’s $115M megaround for next-gen oligo therapies aimed squarely at muscles – Endpoints News | dataAugust 10th, 2020
Read All

How Adam Smith Might Have Valued Amazon, Netflix, Tesla, And Tiny Biotechs – Seeking Alpha

By daniellenierenberg

Adam Smith (1723-1790) was not who you think he was. I'm talking about the original Adam Smith who wrote The Wealth of Nations (1776) and spent most of his life in Edinburgh, Scotland. The more recent "Adam Smith" - nom de plume of the late George Goodman who wrote The Money Game (1967) - bears much more resemblance to the Adam Smith you think you know.

The first Adam Smith would have had little interest in stock market wisdom because he regarded himself as a moral philosopher rather than an analyst of markets. In fact, he was not even a capitalist. His works do not include the words "capitalist" or "capitalism" because neither came into use in his lifetime. The first mention of "capitalism" in print was in the 1854 novel The Newcomes by William Makepeace Thackeray, whose father had been involved with the East India Company. Karl Marx, oddly enough, helped popularize the term in his classic Das Kapital (1867). The irony is that if Marx did not quite invent the concept of capitalism, he certainly made the term popular in the process of opposing and bashing it.

No one can know what Adam Smith would have thought about free market capitalism as presently practiced, nor can we guess what he would have thought about the aftermarket in shares which we call "the stock market." The first stock exchanges came into being a couple of years after his death and shares were traded in only a small handful of companies including the still extant Bank of New York (NYSE:BK). Security trading over Smith's lifetime was concerned primarily with credit instruments, the exceptions being one-off exchanges organized by and for the British and Dutch East India Companies. So no capitalism, no market opinions from Adam Smith. Sorry to have to tell you.

The primary interest of Adam Smith was the goal which gave his book its full title - an inquiry into the nature and causes of the wealth of nations, in short, the well-being of the general populace. Counterintuitively paired with this was the self-interest which led tradesmen and the early industrialists to seek profit. He used the term "invisible hand" only three times in his writing and just once in The Wealth of Nations, to wit:

The rich consume little more than the poor, and in spite of their natural selfishness and rapacity, though they mean only their own conveniency, though the sole end which they propose from the labours of all the thousands whom they employ be the gratification of their own vain and insatiable desires, they divide with the poor the produce of all their improvements. They are led by an invisible hand to make nearly the same distribution of the necessaries of life which would have been made, had the earth been divided into equal portions among all its inhabitants, and thus without intending it, without knowing it, advance the interest of the society, and afford means to the multiplication of the species...the beggar, who suns himself by the side of the highway, possesses that security which kings are fighting for."

This is the central core of Adam Smith's thinking. It has always interested me that the ultimate goals of Adam Smith and Karl Marx did not differ greatly. The important difference is that Smith believed in freedom of the market while Marx believed that the solution was the top-down mandate of a command economy. We are familiar at this point with the general course of events in top down economies. The 20th Century resolved that question definitively in favor of Smith's view, which we now call capitalism.

Smith, however, never imagined a world with an after-market of securities measured by such things as price earnings ratios and discounted free cash flow. He would have been astonished at the use of these and other forms of analysis central to modern markets including shares of corporations with thousands of shareholders and many millions of shares. The few larger businesses in his day - a few early industrialists and the enormous East India Companies - did not lend themselves to that kind of analysis.

Does that mean that the thinking of Adam Smith is useless in trying to understand value in the modern financial markets? Not at all. Smith's model of the invisible hand contains a clue as to the way he might have valued companies and their shares. In fact, the view of Adam Smith may take us back to the primary purpose of capital markets which focus on start-ups, IPOs, unicorns, perhaps even SPACs, and all companies in their early stages. Such companies seek capital with which they aspire to bring innovations. They hope to profit by serving the unmet and often unrecognized needs of a body of potential customers.

What Smith saw was the intricate interplay between the needs and desires of customers and the self-interest of a risk-taking capitalist. That is the core transaction of the capitalist system. Without so much as a glance at discounted future cash flow, Smith implicitly understood that for a business the important thing was the population for which a business might add value. The issues for the entrepreneur involve the accuracy of their estimate of that market, the share of that market they might expect to win, the revenues they might expect to receive, and the profit margin they might expect to realize on those revenues.

In short, Adam Smith's thinking may not ordinarily be very helpful in the after-market we call "the stock market" but is central to the universe of young and innovative companies. It is directly connected with the way businesses and customers are conjoined. What a business does for its customers, he implies, provides an outline of its ultimate value. For this reason, I see the conjunction of businesses and customers as potentially useful in thinking about leading companies in the current market, especially for those companies which cannot be analyzed usefully by the standard market metrics of sales, margins, earnings, PE, and discounted cash flow.

In Adam Smith terms, a company should be worth a reasonable return for what it contributes to the greater good of the general populace. This single sentence is at the heart of what I am calling the "Adam Smith Model" of valuation. Does it actually work when trying to value innovative companies? Can one make decisions based on this model? To a large degree I think it is the only really helpful approach in valuing companies driven by new products and concepts.

To show how this sort of analysis might work, I will start with my daughter's portfolio of innovative biotech companies, which she put together in the early days of the pandemic. It is a pretty good model of the kind of thing I have always kept a careful distance from. Her surprising success with this portfolio prompted my own internal debate.

My daughter is a bright young woman who will soon turn 50. She has a doctorate in art history from Penn but retrained as a nurse in order to live in the woods in western Massachusetts and raise her children as a single mom close to nature and away from urban centers. Her life is modeled more on Thoreau's Walden than on Ben Graham's The Intelligent Investor. Despite sitting at my dinner table for seventeen years she remained almost entirely ignorant about financial markets until recently. The after-market in stocks seemed to her insufficiently serious to deserve her attention, which might well have been Adam Smith's view had he lived to see it. I confess to having had similar thoughts myself at times but have suppressed them.

In recent years, however, prompted by the realization that she may one day retire and need an income, she has begun to take an interest in markets. Around the beginning of the COVID-19 crisis (on which she had early insight and much sound advice), she put together without telling me a portfolio of biotech companies. She did this on a very small scale. Over four or five months she is up well over 200%, an amount I have never made in anything like that period. Here's an excerpt from an email she sent me on her portfolio:

Yes, that's why I like leronlimab - CytoDyn (OTCQB:CYDY). It has many uses, a high safety profile (I don't give a second glance to drugs with a low safety profile-anyone could have seen that with hydroxychloroquine, and now dexamethasone-which is a broad-target immunosuppressant, hence will never be a commonly used drug for Covid). Leronlimab has a great safety profile and works with a known mechanism vs. the cytokine storm. Anything good for Covid (or the other viruses that are still around: SARS, MERS and Ebola) must not suppress the immune system as a whole (as do all steroids such as dexamethasone). Leronlimab is targeted at the CCR5 receptor-which makes it effective for coronaviruses as well as cancers and autoimmune disease. Amazing for metastatic cancer, including prostate (though the recent studies are on a hard to treat breast cancer), and probably other untreatable but common cancers. It's going to be great for HIV. It's going to work for host vs graft disease (post-transplants, when we go back to doing them). It also appears to work for NASH (non-alchoholic fatty liver disease, which has increased dramatically in numbers, but is silent in most people until it is at a late stage.) It is the next diabetes.

Mesoblast (MESO):

The next wave of medical advances are going to come through better understanding of immunomodulation. Most if not all diseases-including cardiac disease and diabetes--will come to be understood as inflammatory diseases to be manipulated at the cellular level. We will see more and more of these diseases due to our inflammatory (sedentary, antioxidant-deprived) lifestyle and toxic environment. In any case, I'm interested in the companies who are leading the way in specialized research in immunomodulation. Mesoblast is using stem cell technologies to repair the immune system, and applying that technology to many untreatable diseases.

Avalon GloboCare (AVCO):

Same argument as Mesoblast: multiple technologies, targeted immunotherapy. I'm not so interested in any single technology, but they are partnering on several important technologies (stem cells, diagnostic technologies), with broad implications and clinical uses. They are partnering to develop a nasal vaccine for Covid, but again, I'm not as interested in that particular product, but the broader technology. Nasal vaccines are going to be a winner for many reasons-ease of use, global application, and the fact that we will run short on syringes for other vaccines).

Altimmune (ALT):

Same as above: leader in NASH (non-alcoholic fatty liver disease), nasal vaccine technology

Okay, those are my four picks. Amazing for metastatic cancer, including prostate (though the recent studies are on a hard to treat breast cancer). The others, JNJ, Becton Dickinson, and DaVita, you know."

I love the fact that my daughter comes at investing from an angle so different from mine and with a skill set that does not overlap mine at all. I also love that its method combines brains and a good heart - the assumption that a company is worth the sum of what it contributes to human well being. What I find most intriguing is that her natural way of coming at things aligns so closely with the Adam Smith view. Can growth investing possibly have such a simple foundation?

You will probably have guessed that I have never bought anything like these biotech companies nor used anything resembling this kind of analysis. I do not, and could not possibly, recommend any or all of them. They are well outside my areas of knowledge and expertise. The only counsel I was able to give my daughter included the fact that when buying companies like this you should probably buy a basket of them - something which she had already done, intuitively.

By early July she had tripled her money and was beginning to be worried about what felt to her like an overhyped sector of an overpriced market. This was where she thought my advice might be useful. I laughed and said that she should be giving me financial advice instead of vice versa, but if she was nervous she should probably sell down to her comfort level (she's in a low tax bracket so cap gains aren't a problem). Perhaps she should at least sell down to the point at which she was investing with house money. I added that it was okay to leave a few chips on the table and let her long term bet ride. She agreed and did something close to that.

Her insight had been pretty simple. The value of a company should correspond to the amount of value added via the "invisible hand" to the health, happiness, and well-being of its customers - perhaps even to the general populace. You would start by estimating the size of the market for which it provided a product or service. You would then adjust to take into account the competition for that market and finally the probability of your particular company capturing a major part of that market. Then, and only then, you might begin to make rough estimates as to potential revenues and profit margin. The key correlation is not revenue and profit margin, which are well out in the future, but the value the company is likely to add to society. The payoff in small biotechs like these, if it comes at all, is likely to come in a rush when a large pharma company sees the potential and buys them out, fulfilling the Adam Smith projection of appropriate reward for a large service.

When I started to formulate it this way, I realized that I have missed quite a lot in never owning stocks which might be best measured in this way. This includes not just small biotechs and niche technology startups but also giant current market leaders such as Amazon (AMZN), Netflix (NFLX), and Tesla (TSLA). At every point in the lives of these three companies, I have found that the methods by which I have always valued stocks - things like discounted earnings, dividends, and cash flow - made me unable to put together any reasonable argument for owning them.

Had I finally stumbled upon a valuation model that might provide a rationale for buying them? Up to this point, I have not seen a persuasive methodology for thinking about the value of these companies. Could this simple approach account for their unusually high valuations?

Adam Smith implied that the relationship between a business and the population it served was the invisible force behind what we call capitalism. It takes only a small further step to propose that the population served by a business can also be described as an "asset" owned by that business. In some cases, especially young or innovative companies, it is customers acquired that is the central asset. The idea of a business "owning" its customers is not new. I first read about it in a novel at least fifty years ago when a literary agent retires by essentially selling his customers to a rival - a practice that was apparently commonplace even then.

This customer-based approach seems to be the way the founders of these three market leaders looked at the opportunity. Customers weren't just part of the picture. They were the whole thing. Acquiring customers is what these companies set out to do. Everything else could come later. They were determined to do everything it takes to own the largest number of customers, including running their businesses with negative earnings and free cash flow for a long time. The market caught on to their goals and their prices shot up to the stratosphere.

Amazon, Netflix, and Tesla have always sold at ridiculous multiples of earnings and cash flow, if any, and are ridiculously expensive by pretty much every other traditional measure. When you look at them the way my daughter looks at biotechs, however, the picture changes. You set the standard ratios aside and instead ask: what is the value of these companies if measured by the sum of value they provide in service to their actual and potential customers? The transmission of that value to shareholders is initially as invisible as the invisible hand by which value is distributed to the populace. It is nevertheless reflected in the stock price.

Here's how one might do a broad estimate of value for the three companies:

Today, online commerce saves customers money and precious time," writes Bezos. "Tomorrow, through personalization, online commerce will accelerate the very process of discovery. uses the internet to create real value for its customers and, by doing so, hopes to create an enduring franchise, even in established and large markets.

We believe that a fundamental measure of our success will be the shareholder value we create over the long-term. This value will be a direct result of our ability to extend and solidify our current market leadership position. The stronger our market leadership, the more powerful our economic model.

Because of our emphasis on the long-term, we may make decisions and weigh tradeoffs differently than some companies... We will continue to make investment decisions in light of long-term market leadership considerations rather than short-term profitability considerations or short-term Wall Street reactions...We aren't so bold as to claim that the above is the 'right' investment philosophy, but it's ours, and we would be remiss if we weren't clear in the approach we have taken and will continue to take.

From the beginning, our focus has been on offering our customers compelling value," explained Bezos. "We brought [customers] much more selection than was possible in a physical store (our store would now occupy six football fields), and presented it in a useful, easy-to-search, and easy-to-browse format in a store open 365 days a year, 24 hours a day."

That's Amazon's mission statement summed up in a few paragraphs. The guiding purpose to this business model is positioning yourself to "own" more and more customers. This customer-obsession of Bezos amounts to is a manifesto for innovative companies. The second paragraph flows directly from the core principle of Adam Smith. Get first things first, Bezos is saying, meaning understanding the potential market and seizing it. Profitability and measurements commonly used by Wall Street come later.

Amazon is no longer a young company in chronological age, but the vision embedded in its mission statement is to remain a young company forever. A Day 1 company, as Bezos calls it, is always visionary and entrepreneurial in its thinking. What Bezos is saying to investors is: disregard the numbers used by Wall Street analysts. They are important measures only for Day 2 companies (slow-moving, mature companies in stasis, for which the next stage is death). Keep your eyes on the main thing - the growth of your customer base and a high level of customer satisfaction. Facebook (FB) and Alphabet (GOOG)(GOOGL) were like that in early stages but moved fairly quickly to address the question of how to monetize their users, eventually succeeding and becoming measurable by ordinary metrics. They are now ordinary growth companies with moderately high PEs, at least in context of the current market. Bezos rejected early monetization. Have faith, he said. We will monetize our customer base when we get around to it.

The greatest single risk for Amazon is its increasing size, which makes it difficult to remain nimble and full of energy. At some point, it will face the horror which confronts history's great empires - running out of worlds to conquer. Political constraints may have something to do with that, but pure size is the major burden. Summing it up, I would buy Amazon at something like 50-60% of its present price if nothing had gone wrong in the business in the meantime.

2. Elon Musk somehow manages to top Bezos. His manifesto, much of which comes out in random statements and tweets, is that Tesla will one day produce pretty much every car sold in the US, maybe even the world. At the very least it will be the driving force in a new industry. His business has a powerful technological core, but the rational for it is the prospect of capturing much of the total customer base for vehicles. It currently appears to be priced on the assumption that Musk will succeed in this ambition to a large degree.

Musk is confident that Tesla's technology will become the universal standard and squeeze most of the current auto industry into terminal decline. Its panache stems from great aesthetics and the promise of enlisting his customers in the project of slowing climate change and helping save the world. Tesla, he implies, will almost incidentally become highly profitable, an outcome to which Musk himself seems to be personally indifferent but in which his investors might have some interest. If he is right, Tesla will probably look cheap if bought today or tomorrow at 160 times its current (and first annual) positive earnings.

Like Bezos, Musk would have us remember: we don't care about all that. That's the old valuation model. What we care about is a market of 17 million vehicles sold annually in the US and a number around five times that in the world. That's the scale of customers Elon wants to own. Once that happens, he will bite the bullet and monetize.

To own Tesla at anything like the current price you have to make a few audacious assumptions. You have to believe that vehicles will continue to be bought on very large scale and that the overwhelming number of vehicles sold will become electric within a short period of time. You then have to believe that Tesla will become the company that owns most of the customers and sells most of the vehicles. It's not impossible, but there are obstacles to overcome.

If Ford, GM, Toyota, Honda and others launch a modestly successful counterattack, or the whole market shrinks, you will see the earnings and cash flow multiples of Tesla shares contract in the general direction of the valuations of those "Day 2" companies. In other words, if you are an investor, you don't want Tesla to become just another car company, nor do you want it to be the last giant in an industry that is contracting and possibly dying. If one of those things happens, Tesla, as measured by the Adam Smith premise, is likely to be a disappointing investment. This is very broad brush analysis, but that's the only way to really deal with Tesla, a company quite similar to my daughter's biotechs. The risks for Tesla seem high and hard to calculate. These are the problems routinely faced by innovative companies in their early stages, and you must also pay attention to the risk that Tesla could run out of time to overthrow the industry while the industry still exists in its present form.

3. Netflix is a company I have looked at only recently. Until a few months ago I had never used their product - not once. Entertainment is OK - I'm being entertained by writing this, and I dare to hope that you readers are both entertained and stimulated to further thought by it - but I didn't experience Netflix until a millennial step child and her husband spent some time with us and promptly realized that they couldn't live without it. They put it on a couple of our TVs so that they would have some kiddie movies to bribe their 3-year-old to eat dinner plus an hour of decompressing entertainment for themselves before sleep.

A few months ago my wife and discovered that we still had it, linked somehow to their home two thousand miles away, and it turns out that the shows are pretty good. They turned out to be especially valuable during the lockdown. We had run out of old movies, so we started over with Netflix. I started paying attention to articles on Netflix and ultimately took a look at their numbers.

Egads! They have been unprofitable from day one and their negative cash flow has done nothing but increase. Their costs for content are going up and their competition is mounting. On the other hand, Stranger Things is the kind of nitwit escapism that I found that I like after a long hot day teaching tennis (my wife not so much).

How do I put the two views of Netflix together. In this case, the risks and uncertainties make the stock uninvestable for me. For one thing, I am used to having entertainment piped into me for free (I automatically tune out all ads.) The numbers needed are just too daunting for Netflix, the rising costs for content are worrisome, and ultimate limits in a market now sliced several ways implies limits to growth. I am doubtful that Netflix will ever morph into a company I can measure more conventionally. I'm pretty sure I wouldn't renew if our faraway relatives stopped providing it for free. That's the core of it: I'm a customer of sorts, but they don't really own me. I don't own them either, and am not likely to any time soon.

The outperformance of high growth companies over the last decade and most spectacularly over recent months has naturally invited vigorous debate. The catastrophic crackup exactly two decades ago has receded sufficiently that alt explanations of market behavior are once again beginning to be proposed in earnest. This article is perhaps one of them but exists within the frame of traditional methods.

The era which reached its peak in 2000 crashed amidst assertions that eyeballs and clicks were better measures of value than earnings or cash flow. I lived through it as a bystander, listening to fellow fitness enthusiasts in the workout room at my tennis club boast about their portfolios, then noticing their absences one by one as the crisis unfolded. I didn't feel schadenfreude, far from it, only relief that I myself had not been ruined.

Valuations are once again at a point which calls ordinary prudence into question. Are the traditional models of valuation no longer worth using? This was suggested recently by BlackRock quant Jeff Shen who argued here that traditional efforts to solve the "mystery" of value are worthless. The Shen view, by the way, derives from this article by another BlackRock analyst, Gerald T Garvey, published in the prestigious Journal of Portfolio Management. The Garvey article comes down firmly on the growth side of the growth/value debate arguing that "elevated percentage value spreads predict higher risk, not higher returns."

In more down to earth terms, Shen and Garvey are saying that companies whose shares haven't been able to grow in this environment are losing ground and possibly dying, and should be avoided. If a stock goes up a lot it is probably safe because the wisdom of crowds is behind its rise. This is the kind of statement that is true until it isn't. Shen goes on to argue that contemporary investors should look for alt indicators and models such as the happiness of a company's employees. That particular idea didn't exactly blow me away, and neither Bezos nor Musk seem to be proponents of using that principle to focus or drive their businesses.

On the other hand, an effort to measure a company's success in terms of the overall value it provides to its customers does seem to me an interesting way to think about growth companies. Most companies trading in the aftermarket for stocks - by now you know that when I use this awkward but accurate phrase I am referring to the "stock market" - are not high growth companies and are probably best analyzed by traditional measures. Ultimately some form of traditional value measurement must appear within the life-cycle of a successful company.

To Jeff Bezos, the moment when traditional cash measures become important to a company is the day that it wakes up as a Day 2 company, a company that does not attempt to reinvent the world afresh every morning. While such a company may still turn out to be a decent investment, it's important for value investors to pay careful attention to their risk of having their business disrupted by new technologies and methods. This is a fairly straightforward way of thinking about the world we now live in, and I have learned to ask the hard questions about everything I own - even companies with seemingly strong moats.

Disruption is a major theme of the contemporary world, and every thoughtful person would do well to put the world together afresh every morning. Even with an open mind, it's hard to anticipate what hidden risks might cause a company's current defenses to collapse. Because of the incredible speed of change and the prevalence of unsuspected collateral effects, this questioning is important in a way that it has never been in the past. That was the important lesson number two from the event. Buying the disruptors rarely made fortunes, but not being sufficiently cautious about potential disruptees was a good way to lose a fortune.

For these businesses the Adam Smith Model needs to be turned upside down so that it becomes a story about loss of customers. One of the great anecdotal examples was Bill Gates stunning a 1990s gathering of Buffett's value investor pals by using his knowledge of the digital world to inform them that Eastman Kodak (KODK), then a market stalwart, was "toast." The customer criterion proves its importance when inverted. I was unable to estimate the outcome for Amazon - haven't made a nickel directly by buying it - but it was obvious to me instantly that it was going to be the end of the road for many other retailers, as well as many malls and REITs. The history of Sears Roebuck and Walmart were powerful precedents. The only thing not entirely clear was the time frame, which is proving to be much faster than most people expected.

The astonishing thing was how eagerly investors jumped on the Amazon bandwagon, which has many uncertainties, and how slowly the investor mind adjusted to the knock-on effects, which were far more certain. The key to grasping this quickly, is to focus on customers "owned" but sure to slip away, as in the case of Kodak.

The Adam Smith Model is simply one of the ways of making an estimate concerning what the cumulative value should be somewhere down the road at whatever time the company decides to monetize the cash value of owning its customer base. At that point, it will begin to report profits and cash flow, pay dividends, and buy back shares. Apple (AAPL) may be the best current example of this model. It started paying dividends and buying back shares about a year before its growth began to level off. As the dream of perpetual growth disappeared, investors were rewarded by the cold cash that abundantly flowed.

This is the distant event that Bezos' mission statement grudgingly projects. For Bezos, earnings, dividends, and buybacks are Day 2 concerns, and you get the feeling that he would just as soon not live to see them. Being a Day 2 company, is like living a comfortable and happy life: the great second-best award for those who have given up their aspirations to greatness. So Apple was once an innovative company priced on the basis of the Adam Smith Model and has now normalized into a Day 2 company which can be valued by the traditional tools. Who knows, maybe it has a few positive tricks up its sleeve but relentless regular growth is a thing of the past.

Amazon seems to be on the same general course as Apple, but with ordinary shareholder gratification deferred into a less well defined and more distant future. You just have to wait for it, and at an incredibly low discount rate such as the current Treasury rates you are willing to pay up for the ultimate awards now and wait a long time. This is part of the current market infatuation with rapid and persistent growth. If you project very far into the future, the value may approach infinity, or since that concept no longer exists even in physics, you could approximate it by the difficulty Amazon would have if Amazon's business became the major part of the gross product of the planet.

High valuations in the current market can be partially explained by a number of factors including historically low interest rates and the appeal of the tech leaders during a broad public lockdown. It also true, however, that the most optimistic thinking stems from a gambling mentality which is supported by the famous Petersburg Paradox which has come to bear in their valuations. There are a number of recent articles with varied approaches to this subject, and you can sample them by googling Petersburg Paradox.

The Petersburg Paradox is generally credited to Daniel Bernoulli, who published an article on it in 1738, but is sometimes credited to his cousin Nicolaus Bernoulli who talked about it in a letter written in 1713. It is a simple gambling game that doubles your winnings with each successive throw of tails. Its expected return generates an infinite series of events the probability of which decline by the exponential 1/2 to the N power exactly offsetting the exponential increase in winnings (2 to the N power).

Each successive term is exactly 1. The mathematically expected return is the sum of that infinite number of ones. I suppose that this means you max out when the number in dollars is equal to the number of bits (or Planck units) in the universe.

This series, therefore, produces quite large expectation of winnings despite the fact that the probability of large winnings at any particular future point obviously diminishes enormously and becomes very slight after a few coin tosses. It is famous for the contradiction of the expected total return and the relatively small amount that any reasonable person would be willing to wager on that return. A number of mathematicians have attempted to resolve this contradiction - economist and quant Paul Samuelson having been one of them - but their efforts at refutation have been unsatisfying.

Recent articles have related the Petersburg Paradox to investor expectations for stocks with high and persistent earnings growth. An extremely smart and interesting article was published way back in 1957 by David Durand (The Journal of Finance, Vol 12, No 3, Sep 1957, pp 348-363). Durand explored the problem of valuation for growth stocks including the then relatively new approach of using multiple discount rates at various break points in time. The growth numbers are quaint - annual growth at numbers like 5 and 6.5% - chickenfeed compared to growth rates of modern high tech companies.

Durand related the question of pricing long growth periods to the Petersburg Paradox, addressing the infinity problem and the need to truncate the infinite series at some point. This has a parallel to the problem of valuing current growth companies where it is necessary to consider not only forecasts for future earnings growth rates but also the length of waiting time before cash flows and dividends appear. There's also the question of the interest rate used for discounting, which is now virtually nil but has been very significant at times in the past.

The Adam Smith Model happens to dovetail nicely with the distant outcomes of the Petersburg Paradox coin flip game. The further away the payout is from the present the larger the rewards become when you finally throw heads. It's just that in the case of fast growing but not yet profitable companies, you more or less defer the chance of hitting heads early in order to let the reward build exponentially and have the promise of hitting a very large summative outcome in the future. That's where the thinking of investors in Amazon, Tesla, and Netflix must come from, and it's more or less rational if their estimate of the payoff and the time necessary to achieve it are reasonably accurate. It has been pretty accurate in the case of Apple.

There's just one more thing, of course. What if the estimate of Adam Smith value proves to be outright wrong? What if a tough new competitor with a better technology or improved business model appears? What if competition already in place proves to be more formidable than assumed? Even with Amazon these risks must be taken into account, but with Tesla they should be major concerns, and with Netflix they should be very major concerns.

There could also be exogenous risks such as a major rise in interest rates which would wreck the denominator and greatly reduce the value of a distant payoff. That high denominator, by the way, was what drove price earnings ratios in the 1970s down to the single digits. Returns even a few out years were so heavily discounted that no one wanted to look that far into the future. This sort of thinking served to greatly diminish the appeal of growth stocks.

Innovative companies don't always work out. I thought about that a lot around the year 2000, when I attached a 95% probability to my belief that the investing world had lost its collective mind but reserved a 5% probability I was the one who just didn't get it. The odd thing is that some of the new model dot.coms did, in fact, contribute quite a bit to the general welfare. They made all sorts of businesses more efficient, and at the same time made basic communication for everyone cheaper, faster, and better. This is presumably a good thing. In the end, however, it didn't work out well for shareholders who held on long term.

But there's another question. Did their temporarily outrageous valuations represent a magical mechanism for pulling forward a proper reward for founders and the most nimble shareholders despite the fact that the companies themselves were destined to never ultimately earn any money? In a just version of Adam Smith's invisible handsome reward was certainly owed to the founders and early owners who contributed so much to human well being but the mechanism by which they received it is somewhat murky,

So what if that deferred payoff never comes?

Schopenhauer asked a similar question in his Studies in Pessimism, except that he asked it about death, not a sudden gush of cash flow. Calm down, Schopenhauer argued. Why fear death? If you knew it wasn't the end of things, that you would wake up tomorrow morning feeling fine, you wouldn't worry about it much. What about waking up next week? What about next year? What about five or ten years out? What about a thousand years before you wake up? Ten thousand? What about... never? Would it make a difference?

Schopenhauer's courage in the face of non-being is reflected in the large number of investors who seem unworried about the possible absence of cash returns many years into the future. Once you take the Schopenhauer premise, it doesn't matter if the payoff never arrives. The stock is going up today in anticipation of it. That's all that really matters. Shareholders are happy. You can always cash out at your convenience. What is the future anyway but a dwindling infinite series?

It's really more like heaven than death. Both of my grandmothers believed strongly in its existence, although I can't imagine what they really thought it would be like. It probably didn't matter. In both cases, it sustained them over the course of long and productive lives which they lived with great confidence of a wonderful if not precisely defined eternity. Ignorance was bliss.

A business is its customers. Is it as simple as that? The value of a business is the value of the services provided to its present and prospective customers discounted for the distance in time to monetization of those customers but discounted to reflect the possibility of various things that could happen to reduce or wipe out that future payoff. Both new and rapid growth businesses generally defer that payout further into the future than most businesses, especially if the discounting factor is relatively low.

This model produces huge winners and abject losers. We marvel at the winners when we see them without considering survivor bias. We discard the losers even if they have played a major part in the evolution of the economic world and traded at high prices in optimistic moments along the way. In retrospect we wonder why they once traded at such high prices.

In very young industries such as biotechs, the outcome often leaves losers by the way side and rewards just one or two competitors. One way of thinking about this is that at the outset many such companies own a similar probability of surviving but one or two end up "owning" most of the customers and the cash flow bonanza that will eventually come with them. The probability of winning gradually shrinks for most but rises for the winners. For that reason, my daughter's approach of buying a basket of these companies is probably the best way for investors to participate.

This approach may also be very helpful in evaluating growth companies which are not new but remain at some distance from giving investors serious cash rewards. Here the method for selecting a basket of winners draws upon the kind of broad-brush estimates and calculations used in selecting a basket of small biotechs. If looking closely at Amazon, Tesla, and Netflix doesn't help much, it's important to make and constantly update estimates bearing upon the scale and strength of their "ownership" of customers as well as rough estimates of risks. This broad and approximate approach is how Adam Smith would probably have looked at valuation of companies if he was as interested in profits as we sometimes assume him to have been.

Disclosure: I am/we are long JNJ, BDX. I wrote this article myself, and it expresses my own opinions. I am not receiving compensation for it (other than from Seeking Alpha). I have no business relationship with any company whose stock is mentioned in this article.

Read the rest here:
How Adam Smith Might Have Valued Amazon, Netflix, Tesla, And Tiny Biotechs - Seeking Alpha

To Read More: How Adam Smith Might Have Valued Amazon, Netflix, Tesla, And Tiny Biotechs – Seeking Alpha
categoriaCardiac Stem Cells commentoComments Off on How Adam Smith Might Have Valued Amazon, Netflix, Tesla, And Tiny Biotechs – Seeking Alpha | dataAugust 10th, 2020
Read All

Three Years After Stem Cell Trial for Heart Failure was Abandoned New Evidence Shows it Works – Diagnostic and Interventional Cardiology

By daniellenierenberg

August 4, 2020 - More than three years after a clinical trial was prematurely ended for failing to show progress in healing heart attack scars, the European Heart Journal publishing some surprising results showing that the heart cell treatment does benefit patients.[1]

Data from the ALLSTAR study published Tuesday by the European Heart Journal showed that although infusions of allogeneic cardiac cells (called cardiosphere-derived cells or CDCs) did not appear to shrink the infarct scar after a heart attack, other data from the study show a clear benefit.

Compared with patients who received placebo treatment, patients randomized to receive CDC infusions showed a decrease in the volume of blood in the heart before and after it beats, indicating that the heart had not dilated, as it does progressively in heart failure.

"As it develops heart failure, the heart gets bigger and bigger, like a swelling balloon," said the study's lead author, Raj Makkar, M.D., vice president of cardiovascular innovation and intervention for Cedars-Sinai and the Stephen R. Corday, M.D., chair in interventional cardiology. "One way we can measure the health of a heart is to measure the volume of blood it can hold. The bigger the volume, the more damaged the heart."

The newly analyzed data from the ALLSTAR study, which was sponsored by Capricor Therapeutics, showed that patients given a placebo had hearts that continued to swell, holding larger volumes of blood, while the patients who received CDC infusions had smaller hearts with lower volumes.

The new data results include:

The volume of blood held by the heart was essentially unchanged six months after CDC infusion, but increased by more than a teaspoonful in placebo patients.

A blood protein that measures heart failure severity was reduced in patients who had received CDCs, but not in placebo patients.

The chance that these findings were statistical flukes was only 2 percent.

"To me, these data are very reassuring that there really is therapeutic benefit," said Eduardo Marbn, M.D., Ph.D., executive director of the Smidt Heart Institute. "There is a growing body of evidence that this cell treatment does work."

Results from the earlier CADUCEUS trial, published in The Lancet in 2014, showed that injecting CDCs into the hearts of heart attack survivors significantly reduced infarct size. In 2017, however, the multicenter ALLSTAR study was prematurely halted after six months of data showed no decrease in heart attack scar size, but later analyses revealed the beneficial findings reported here.

"We think we may have chosen the wrong endpoint," said Marbn, the Mark S. Siegel Family Foundation Distinguished Professor, whose discoveries and technologies resulted in CDCs. "This happens in science because you have to design the trial a year or more before you begin, and sometimes you bet on the wrong hors... but that doesnt necessarily mean the therapy is ineffective."

The cells used in the study were CAP-1002, Capricor Therapeutics off-the-shelf, cardiosphere-derived cell (CDC) product candidate. Other clinical trials and case series, in which CDCs were used to treat advanced heart failure, Duchenne Muscular Dystrophy, and COVID-19, also demonstrated positive results. And new studies using CDCs are in the planning stages.

"California is known as the stem cell state, but few technologies being tested in California actually were developed here," said Shlomo Melmed, MB, ChB, executive vice president of Academic Affairs, dean of the Medical Faculty and professor of Medicine. "Increasing evidence-including the results of the large multicenter ALLSTAR trial-validates the potential utility of a cell product which was conceived by a faculty member at Cedars-Sinai, and first tested clinically here."

Read the complete study published by the European Heart Journal.

Disclosures: Except for the cells used in CADUCEUS, the cardiosphere-derived cells used in these studies were derived from donor hearts and provided by Capricor Therapeutics. Marbn developed the process to grow CDCs when he was on the faculty of Johns Hopkins University; the process was further developed at Cedars-Sinai. Capricor has licensed the process from Johns Hopkins and from Cedars-Sinai for clinical and commercial development. Capricor has licensed additional intellectual property from Cedars-Sinai and the University of Rome. Cedars-Sinai and Marbn have financial interests in Capricor.


1. Raj R Makkar, Dean J Kereiakes, Frank Aguirre, et al. Intracoronary ALLogeneic heart STem cells to Achieve myocardial Regeneration (ALLSTAR): a randomized, placebo-controlled, double-blinded trial. European Heart Journal, ehaa541,

Three Years After Stem Cell Trial for Heart Failure was Abandoned New Evidence Shows it Works - Diagnostic and Interventional Cardiology

To Read More: Three Years After Stem Cell Trial for Heart Failure was Abandoned New Evidence Shows it Works – Diagnostic and Interventional Cardiology
categoriaCardiac Stem Cells commentoComments Off on Three Years After Stem Cell Trial for Heart Failure was Abandoned New Evidence Shows it Works – Diagnostic and Interventional Cardiology | dataAugust 10th, 2020
Read All

New technology May Raise the quality of stem cells Found in regenerative medicine – Microbioz India

By daniellenierenberg

Stem cells have been holding great promise for regenerative medicine for ages. In the last decade, many studies have revealed this form of cell, which in Spanish is calledmother cell due to its ability to contribute to various different cell types, may be applied in regenerative medicine to diseases such as muscle and nervous system disorders, among others.

Scientists and stem cell leaders Sir John B. Gurdon and Shinya Yamanaka received the Nobel Prize in Physiology and Medicine in 2012 for this idea.

However, one of the key constraints in the application of these herbal remedies is the caliber of the stem cells that may be made in the lab, which impedes their use for curative purposes.

Currently, a team in the Cell Division and Cancer Group of the Spanish National Cancer Research Centre (CNIO), headed by researcher Marcos Malumbres, has recently developed a fresh, easy and fast technology that enhances in vitro and in vivo the possibility of stem cells to differentiate into adult cells. The study results will be released this week in The EMBO Journal.

In recent years, several protocols have been proposed to obtain reprogrammed stem cells in the laboratory from adult cells, but very few to improve the cells we already have.The method we developed is able to significantly increase the quality of stem cells obtained by any other protocol, thus favouring the efficiency of the production of specialised cell types.Mara Salazar-Roa, Study First Author and Researcher, Centro Nacional de Investigaciones Oncolgicas

Roa is likewise the co-corresponding author of this analysis.

Within this study, the researchers identified an RNA sequence, called microRNA 203, that can be found at the earliest embryonic stages before the embryo implants in the uterus and when stem cells have their highest ability to generate all the different cells.When they added this molecule to stem cells from the laboratory, they discovered that the cells ability to convert into other cell types improved appreciably.

To corroborate them, they used stem cells of both human and murine origin, and of genetically altered mice. The results were so spectacular, both in mouse cells and in human cells

Application of the microRNA for just 5 days boosts the potential of stem cells in most situations we tested and improves their ability to become other specialised cells, even months after being connected with the microRNA. Says Salazar-Roa.

According to the research, cells modified by this new protocol are more efficient in generating functional cardiac cells, opening the doorway to a better generation of different cell types essential for the cure of degenerative disorders.

Malumbres, mind of the CNIO Cell and Cancer Division Group, states:To deliver this asset to the clinic, cooperation with labs or companies that are looking to exploit that technology is now essential in each particular case.

In this circumstance, Salazar-Roa recently participated, in close collaboration with all the CNIOs Innovation group, in prestigious creation programs like IDEA2 International of the Massachusetts Institute of Technology (MIT) and also CaixaImpulse of thisLa Caixa Foundation, where they also obtained funding to start the maturation of the technology.

See more here:
New technology May Raise the quality of stem cells Found in regenerative medicine - Microbioz India

To Read More: New technology May Raise the quality of stem cells Found in regenerative medicine – Microbioz India
categoriaCardiac Stem Cells commentoComments Off on New technology May Raise the quality of stem cells Found in regenerative medicine – Microbioz India | dataJuly 8th, 2020
Read All

Medicinal Fungi Market Growth By Manufacturers, Type And Application, Forecast To 2026 – 3rd Watch News

By daniellenierenberg

New Jersey, United States,- Market Research Intellect sheds light on the market scope, potential, and performance perspective of the Global Medicinal Fungi Market by carrying out an extensive market analysis. Pivotal market aspects like market trends, the shift in customer preferences, fluctuating consumption, cost volatility, the product range available in the market, growth rate, drivers and constraints, financial standing, and challenges existing in the market are comprehensively evaluated to deduce their impact on the growth of the market in the coming years. The report also gives an industry-wide competitive analysis, highlighting the different market segments, individual market share of leading players, and the contemporary market scenario and the most vital elements to study while assessing the global Medicinal Fungi market.

The research study includes the latest updates about the COVID-19 impact on the Medicinal Fungi sector. The outbreak has broadly influenced the global economic landscape. The report contains a complete breakdown of the current situation in the ever-evolving business sector and estimates the aftereffects of the outbreak on the overall economy.

Leading Medicinal Fungi manufacturers/companies operating at both regional and global levels:

To get Incredible Discounts on this Premium Report, Click Here @

The Medicinal Fungi market report provides successfully marked contemplated policy changes, favorable circumstances, industry news, developments, and trends. This information can help readers fortify their market position. It packs various parts of information gathered from secondary sources, including press releases, web, magazines, and journals as numbers, tables, pie-charts, and graphs. The information is verified and validated through primary interviews and questionnaires. The data on growth and trends focuses on new technologies, market capacities, raw materials, CAPEX cycle, and the dynamic structure of the Medicinal Fungi market.

This study analyzes the growth of Medicinal Fungi based on the present, past and futuristic data and will render complete information about the Medicinal Fungi industry to the market-leading industry players that will guide the direction of the Medicinal Fungi market through the forecast period. All of these players are analyzed in detail so as to get details concerning their recent announcements and partnerships, product/services, and investment strategies, among others.

Sales Forecast:

The report contains historical revenue and volume that backing information about the market capacity, and it helps to evaluate conjecture numbers for key areas in the Medicinal Fungi market. Additionally, it includes a share of each segment of the Medicinal Fungi market, giving methodical information about types and applications of the market.

Reasons for Buying Medicinal Fungi Market Report

This report gives a forward-looking prospect of various factors driving or restraining market growth.

It renders an in-depth analysis for changing competitive dynamics.

It presents a detailed analysis of changing competition dynamics and puts you ahead of competitors.

It gives a six-year forecast evaluated on the basis of how the market is predicted to grow.

It assists in making informed business decisions by performing a pin-point analysis of market segments and by having complete insights of the Medicinal Fungi market.

This report helps the readers understand key product segments and their future.

Have Any Query? Ask Our Expert @

In the end, the Medicinal Fungi market is analyzed for revenue, sales, price, and gross margin. These points are examined for companies, types, applications, and regions.

To summarize, the global Medicinal Fungi market report studies the contemporary market to forecast the growth prospects, challenges, opportunities, risks, threats, and the trends observed in the market that can either propel or curtail the growth rate of the industry. The market factors impacting the global sector also include provincial trade policies, international trade disputes, entry barriers, and other regulatory restrictions.

About Us:

Market Research Intellect provides syndicated and customized research reports to clients from various industries and organizations with the aim of delivering functional expertise. We provide reports for all industries including Energy, Technology, Manufacturing and Construction, Chemicals and Materials, Food and Beverage, and more. These reports deliver an in-depth study of the market with industry analysis, the market value for regions and countries, and trends that are pertinent to the industry.

Contact Us:

Mr. Steven Fernandes

Market Research Intellect

New Jersey ( USA )

Tel: +1-650-781-4080

Our Trending Reports

Yohimbine Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Zeaxanthine Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Zeolite Powder Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Zeolites Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Zinc Acetylacetonate Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Visit link:
Medicinal Fungi Market Growth By Manufacturers, Type And Application, Forecast To 2026 - 3rd Watch News

To Read More: Medicinal Fungi Market Growth By Manufacturers, Type And Application, Forecast To 2026 – 3rd Watch News
categoriaCardiac Stem Cells commentoComments Off on Medicinal Fungi Market Growth By Manufacturers, Type And Application, Forecast To 2026 – 3rd Watch News | dataJuly 8th, 2020
Read All

Death in Cellectis off-the-shelf CAR-T trial triggers FDA hold – FierceBiotech

By daniellenierenberg

The FDA has put a phase 1 trial of Cellectis off-the-shelf CAR-T therapy UCARTCS1A on clinical hold after learning of a death in the study. Cellectis said the multiple myeloma patient suffered a cardiac arrest after receiving the highest dose of the anti-CS1 allogeneic CAR-T.

Before joining the Cellectis trial, the patient underwent multiple prior lines of treatment, including with autologous CAR-T cells, without success. In the Cellectis trial, the patient was the first person to receive the higher, 3 million cells per kilogram dose of UCARTCS1A. The patient experienced cytokine release syndrome of undisclosed severity and died of a cardiac arrest 25 days after treatment.

The FDA has placed the trial on clinical hold while Cellectis evaluates the case. According to Cellectis, plans were already afoot to expand the lower, 1 million cells per kilogram dose cohort before the patient death. Preliminary data suggest 1 million cells per kilogram may be the phase 2 dose.

Fierce Innovation Awards: Life Sciences Edition 2020

Submit your entry to demonstrate innovative technologies and services that have the potential to make the greatest impact for biotech and pharma companies.

There are signs the lower dose also has some safety issues. Analysts at Jefferies think investigators gave one or more of the three low-dose patients rituximab to activate the CAR-T safety switch. Work is underway to update the phase 1 protocol to mitigate the potential risks posed by UCARTCS1A.

The modifications may include increased monitoring of parameters related to cytokines. The Jefferies analysts think Cellectis should exclude patients previously treated with anti-BCMA CAR-Ts, such as Johnson & Johnsons JNJ-4528, due to risks related to back-to-back rounds of lymphodepletion, but note that management at the biotech think it is important to enroll that pre-treated population.

In a follow-up note, the analysts identified the use of cyclophosphamide, a chemotherapy drug, in the lymphodepletion regimen as a potential cause of the cardiac arrest. The argument is based on a 2017 paper that describes the case of a patient who died of acute heart failure after receiving a high dose of cyclophosphamide as part of an autologous stem cell transplantation treatment.

Many patients receive cyclophosphamide without suffering cardiac complications, but the analysts see reasons to think the subject enrolled in the Cellectis trial may have been at higher risk. Notably, prior exposure may increase risk, according to the analysts, suggesting the patients previous round of lymphodepletion may have been a factor.

Even if cyclophosphamide is at the heart of the problem, the analysts still think the UCARTCS1A dose is a contributing factor. With patients in the low-dose cohort also experiencing adverse events, the analysts see dosing at below 1 million cells per kilogram as one possible outcome of the situation.

Shares in Cellectis fell 13% in after-hours trading following news of the clinical hold. The value of Allogene Therapeutics, which licensed CAR-T assets that originated at Cellectis, held steady, likely reflecting a belief that the safety issue is limited to UCARTCS1A.

The Jefferies analysts see little or no read-through to other allogeneic programs, noting that the UCARTCS1A trial started at a higher dose than Cellectis two other clinical programs and that Allogene is testing several lymphodepletion regimens. The FDA placed a clinical trial of another Cellectis CAR-T, UCART123, on hold in 2017 after a patient died, but cleared it to resume months later.

Read this article:
Death in Cellectis off-the-shelf CAR-T trial triggers FDA hold - FierceBiotech

To Read More: Death in Cellectis off-the-shelf CAR-T trial triggers FDA hold – FierceBiotech
categoriaCardiac Stem Cells commentoComments Off on Death in Cellectis off-the-shelf CAR-T trial triggers FDA hold – FierceBiotech | dataJuly 7th, 2020
Read All

Expanded Access Protocol Initiated for Compassionate Use of Remestemcel-L in Children With Multisystem Inflammatory Syndrome Associated With COVID-19…

By daniellenierenberg

NEW YORK, July 06, 2020 (GLOBE NEWSWIRE) -- Mesoblast Limited (Nasdaq:MESO; ASX:MSB) today announced that an expanded access protocol (EAP) has been initiated in the United States for compassionate use of its allogeneic mesenchymal stem cell (MSC) product candidate remestemcel-L in the treatment of COVID-19 infected children with cardiovascular and other complications of multisystem inflammatory syndrome (MIS-C). Patients aged between two months and 17 years may receive one or two doses of remestemcel-L within five days of referral under the EAP.

The protocol was filed with the United States Food and Drug Administration (FDA) and provides physicians with access to remestemcel-L for an intermediate-size patient population1 under Mesoblasts existing Investigational New Drug (IND) application. According to the FDA, expanded access is a potential pathway for a patient with an immediately life-threatening condition or serious disease or condition to gain access to an investigational medical product for treatment outside of clinical trials when no comparable or satisfactory alternative therapy options are available.

MIS-C is a life-threatening complication of COVID-19 in otherwise healthy children and adolescents that includes massive simultaneous inflammation of multiple critical organs and their vasculature. In approximately 50% of cases this inflammation is associated with significant cardiovascular complications that directly involve heart muscle and may result in decreased cardiac function. In addition, the virus can result in dilation of coronary arteries with unknown future consequences. Recent articles from Europe and the United States have described this disease in detail.2-5

Mesoblast Chief Medical Officer Dr Fred Grossman said: The extensive body of safety and efficacy data generated to date using remestemcel-L in children with graft versus host disease suggest that our cellular therapy could provide a clinically important therapeutic benefit in MIS-C patients, especially if the heart is involved as a target organ for inflammation. Use of remestemcel-L in children with COVID-19 builds on and extends the potential application of this cell therapy in COVID-19 cytokine storm beyond the most severe adults with acute respiratory distress syndrome.

Remestemcel-L Remestemcel-L is an investigational therapy comprising culture-expanded mesenchymal stem cells derived from the bone marrow of an unrelated donor and is administered in a series of intravenous infusions. Remestemcel-L is believed to have immunomodulatory properties to counteract the inflammatory processes that are implicated in several diseases by down-regulating the production of pro-inflammatory cytokines, increasing production of anti-inflammatory cytokines, and enabling recruitment of naturally occurring anti-inflammatory cells to involved tissues.; NCT044564392.Lancet2020; May 7. DOI: 2020; (May 13)

About MesoblastMesoblast Limited (Nasdaq:MESO; ASX:MSB) is a world leader in developing allogeneic (off-the-shelf) cellular medicines. The Company has leveraged its proprietary mesenchymal lineage cell therapy technology platform to establish a broad portfolio of commercial products and late-stage product candidates. Mesoblast has a strong and extensive global intellectual property (IP) portfolio with protection extending through to at least 2040 in all major markets. The Companys proprietary manufacturing processes yield industrial-scale, cryopreserved, off-the-shelf, cellular medicines. These cell therapies, with defined pharmaceutical release criteria, are planned to be readily available to patients worldwide.

Mesoblasts Biologics License Application to seek approval of its product candidate RYONCIL (remestemcel-L) for pediatric steroid-refractory acute graft versus host disease (acute GVHD) has been accepted for priority review by the United States Food and Drug Administration (FDA), and if approved, product launch in the United States is expected in 2020. Remestemcel-L is also being developed for other inflammatory diseases in children and adults including moderate to severe acute respiratory distress syndrome. Mesoblast is completing Phase 3 trials for its product candidates for advanced heart failure and chronic low back pain. Two products have been commercialized in Japan and Europe by Mesoblasts licensees, and the Company has established commercial partnerships in Europe and China for certain Phase 3 assets.

Mesoblast has locations in Australia, the United States and Singapore and is listed on the Australian Securities Exchange (MSB) and on the Nasdaq (MESO). For more information, please see, LinkedIn: Mesoblast Limited and Twitter: @Mesoblast

Forward-Looking StatementsThis announcement includes forward-looking statements that relate to future events or our future financial performance and involve known and unknown risks, uncertainties and other factors that may cause our actual results, levels of activity, performance or achievements to differ materially from any future results, levels of activity, performance or achievements expressed or implied by these forward-looking statements. We make such forward-looking statements pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995 and other federal securities laws. Forward-looking statements should not be read as a guarantee of future performance or results, and actual results may differ from the results anticipated in these forward-looking statements, and the differences may be material and adverse. Forward- looking statements include, but are not limited to, statements about: the timing, progress and results of Mesoblasts preclinical and clinical studies; Mesoblasts ability to advance product candidates into, enroll and successfully complete, clinical studies; the timing or likelihood of regulatory filings and approvals; and the pricing and reimbursement of Mesoblasts product candidates, if approved; Mesoblasts ability to establish and maintain intellectual property on its product candidates and Mesoblasts ability to successfully defend these in cases of alleged infringement. You should read this press release together with our risk factors, in our most recently filed reports with the SEC or on our website. Uncertainties and risks that may cause Mesoblasts actual results, performance or achievements to be materially different from those which may be expressed or implied by such statements, and accordingly, you should not place undue reliance on these forward-looking statements. We do not undertake any obligations to publicly update or revise any forward-looking statements, whether as a result of new information, future developments or otherwise.

Release authorized by the Chief Executive.

For further information, please contact:

Here is the original post:
Expanded Access Protocol Initiated for Compassionate Use of Remestemcel-L in Children With Multisystem Inflammatory Syndrome Associated With COVID-19...

To Read More: Expanded Access Protocol Initiated for Compassionate Use of Remestemcel-L in Children With Multisystem Inflammatory Syndrome Associated With COVID-19…
categoriaCardiac Stem Cells commentoComments Off on Expanded Access Protocol Initiated for Compassionate Use of Remestemcel-L in Children With Multisystem Inflammatory Syndrome Associated With COVID-19… | dataJuly 6th, 2020
Read All

Quick and Simple Technology Enhances the Potential of Stem Cells To Differentiate Into Adult Cells – Technology Networks

By daniellenierenberg

Stem cells have been holding great promise for regenerative medicine for years. In the last decade, several studies have shown that this type of cell, which in Spanish is called mother cell because of its ability to give rise to a variety of different cell types, can be applied in regenerative medicine for diseases such as muscular and nervous system disorders, among others. Researchers and stem cell pioneers Sir John B. Gurdon and Shinya Yamanaka received the Nobel Prize in Physiology and Medicine in 2012 for this idea. However, one of the main limitations in the application of these cell therapies is the quality of the stem cells that can be generated in the laboratory, which impedes their use for therapeutic purposes.Now, a team from the Cell Division and Cancer Group of the Spanish National Cancer Research Centre (CNIO), led by researcher Marcos Malumbres, has developed a new, simple and fast technology that enhances in vitro and in vivo the potential of stem cells to differentiate into adult cells. The research results are published in The EMBO Journal.

In recent years, several protocols have been proposed to obtain reprogrammed stem cells in the laboratory from adult cells, but very few to improve the cells we already have. The method we developed is able to significantly increase the quality of stem cells obtained by any other protocol, thus favouring the efficiency of the production of specialised cell types, says Mara Salazar-Roa, researcher at the CNIO, first author of the article and co-corresponding author.

In this study, the researchers identified an RNA sequence, called microRNA 203, which is found in the earliest embryonic stages before the embryo implants in the womb and when stem cells still have their maximum capacity to generate all the different tissues. When they added this molecule to stem cells in the laboratory, they discovered that the cells ability to convert to other cell types improved significantly.

To corroborate this, they used stem cells of human and murine origin, and of genetically modified mice. The results were spectacular, both in mouse cells and in human cells. Application of this microRNA for just 5 days boosts the potential of stem cells in all scenarios we tested and improves their ability to become other specialised cells, even months after having been in contact with the microRNA, says Salazar-Roa.

According to the study, cells modified by this new protocol are more efficient in generating functional cardiac cells, opening the door to an improved generation of different cell types necessary for the treatment of degenerative diseases.

Malumbres, head of the CNIO Cell and Cancer Division Group, says: To bring this asset to the clinic, collaboration with laboratories or companies that want to exploit this technology is now necessary in each specific case. In this context, Salazar-Roa recently participated, in close collaboration with the CNIOs Innovation team, in prestigious innovation programs such as IDEA2 Global of the Massachusetts Institute of Technology (MIT) and CaixaImpulse of the la Caixa Foundation, from which they also obtained funding to start the development of this technology.

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Read more here:
Quick and Simple Technology Enhances the Potential of Stem Cells To Differentiate Into Adult Cells - Technology Networks

To Read More: Quick and Simple Technology Enhances the Potential of Stem Cells To Differentiate Into Adult Cells – Technology Networks
categoriaCardiac Stem Cells commentoComments Off on Quick and Simple Technology Enhances the Potential of Stem Cells To Differentiate Into Adult Cells – Technology Networks | dataJuly 6th, 2020
Read All

Canine Stem Cell Therapy Market-Segmentation And Analysis By Recent Trends, Top 4 Manufactures -VETSTEM BIOPHARMA, Cell Therapy Sciences, Regeneus,…

By daniellenierenberg

Canine Stem Cell Therapy Marketreport provides in-depth COVID19 impact analysis ofMarket Overview, Product Scope, Market Drivers, Trends, Opportunities,Market Driving Force and Market Risks. It also profile the topmost prime manufacturers (VETSTEM BIOPHARMA, Cell Therapy Sciences, Regeneus, Aratana Therapeutics, Medivet Biologics, Okyanos, Vetbiologics, VetMatrix, Magellan Stem Cells, ANIMAL CELL THERAPIES, Stemcellvet) are analyzed emphatically by competitive landscape contrast, with respect toPrice, Sales,Capacity, Import, Export, Consumption, Gross, Gross Margin, Revenue and Market Share. Canine Stem Cell Therapy industry breakdown data are shown at the regional level, to show the sales, revenue and growth by regions.Canine Stem Cell Therapy Market describe Canine Stem Cell Therapy Sales Channel,Distributors, Customers, Research Findings and Conclusion, Appendix and Data Source.

Key Target Audience of Canine Stem Cell Therapy Market:Manufacturers of Canine Stem Cell Therapy, Raw material suppliers, Market research and consulting firms, Government bodies such as regulating authorities and policy makers, Organizations, forums and alliances related to Canine Stem Cell Therapy market.

Get Free Sample PDF (including full TOC, Tables and Figures)of Canine Stem Cell Therapy[emailprotected]

In-Depth Qualitative Analyses Include Identification and Investigation Of The Following Aspects:Canine Stem Cell Therapy Market Structure, Growth Drivers, Restraints and Challenges, Emerging Product Trends & Market Opportunities, Porters Fiver Forces.

Summary of Canine Stem Cell Therapy Market:The non-invasive stem cell obtaining procedure, augmented possibility of accomplishing high quality cells, and lower price of therapy coupled with high success rate of positive outcomes have collectively made allogeneic stem cell therapy a preference for veterinary physicians. Moreover, allogeneic stem cell therapy is 100% safe, which further supports its demand on a global level. Pet owners are identified to prefer allogeneic stem cell therapy over autologous therapy, attributed to its relatively lower costs and comparative ease of the entire procedure.

A rapidly multiplying geriatric population; increasing prevalence of chronic ailments such as cancer and cardiac disease; growing awareness among patients; and heavy investments in clinical innovation are just some of the factors that are impacting the performance of the global healthcare industry.

On the basis on the end users/applications,this report focuses on the status and outlook for major applications/end users, sales volume, market share and growth rate of Canine Stem Cell Therapy market foreach application, including-

Veterinary Hospitals Veterinary Clinics Veterinary Research Institutes

On the basis of product,this report displays the sales volume, revenue (Million USD), product price, market share and growth rate ofeach type, primarily split into-

Allogeneic Stem Cells Autologous Stem cells

Do You Have Any Query Or Specific Requirement? Ask to Our Industry[emailprotected]

Important Canine Stem Cell Therapy Market Data Available In This Report:


ResearchMozMr. Rohit Bhisey,Tel: +1-518-621-2074USA-Canada Toll Free: 866-997-4948Email:[emailprotected]

Browse More Reports Visit @

Read this article:
Canine Stem Cell Therapy Market-Segmentation And Analysis By Recent Trends, Top 4 Manufactures -VETSTEM BIOPHARMA, Cell Therapy Sciences, Regeneus,...

To Read More: Canine Stem Cell Therapy Market-Segmentation And Analysis By Recent Trends, Top 4 Manufactures -VETSTEM BIOPHARMA, Cell Therapy Sciences, Regeneus,…
categoriaCardiac Stem Cells commentoComments Off on Canine Stem Cell Therapy Market-Segmentation And Analysis By Recent Trends, Top 4 Manufactures -VETSTEM BIOPHARMA, Cell Therapy Sciences, Regeneus,… | dataJuly 6th, 2020
Read All

Rice Researchers 3D Print with Lasers and Sugar to Build Complex Vascular Networks –

By daniellenierenberg

A team of researchers from Rice University has uncovered a promising strategy to generate vascular networks, one of the most daunting structures in the human body. Using powdered sugar and selective laser sintering, the researchers were able to build large structures from complex, branching, and intricate sugar networks that dissolve to create pathways for blood in lab-grown tissue.

This is the teams latest effort to build complex vascular networks for engineered tissues to show that they could keep densely packed cells alive for two weeks. The findings of their studypublished in the Nature Biomedical Engineering journalprove that developing new technologies and materials to mimic and recapitulate the complex hierarchical networks of vessels gets them closer to providing oxygen and nutrients to a sufficient number of cells to get a meaningful long-term therapeutic function.

One of the biggest hurdles to engineering clinically relevant tissues is packing a large tissue structure with hundreds of millions of living cells, said study lead author Ian Kinstlinger, a bioengineering graduate student at Rices Brown School of Engineering. Delivering enough oxygen and nutrients to all the cells across that large volume of tissue becomes a monumental challenge. Nature solved this problem through the evolution of complex vascular networks, which weave through our tissues and organs in patterns reminiscent of tree limbs. The vessels simultaneously become smaller in thickness but greater in number as they branch away from a central trunk, allowing oxygen and nutrients to be efficiently delivered to cells throughout the body.

Overcoming the complications of 3D printing vascularization has remained a critical challenge in tissue engineering for decades, as only a handful of 3D printing processes have come close to mimic the in vivo conditions needed to generate blood vessels. Without them, the future of bioprinted organs and tissues for transplantation will remain elusive. Many organs have uniquely intricate vessels, like the kidney, which is highly vascularized and normally receives a fifth of the cardiac output, or the liver, in charge of receiving over 30% of the blood flow from the heart. By far, kidney transplantation is the most common type of organ transplantation worldwide, followed by transplants of the liver, making it crucial for regenerative medicine experts to tackle vascularization.

Ian Kinstlinger with a blood vessel template he 3D printed from powdered sugar (Credit: Jeff Fitlow/Rice University)

In the last few years, extrusion-based 3D printing techniques have been developed for vascular tissue engineering, however, the authors of this study considered that the method presented certain challenges, which led them to use a customizedopen-source, modified laser cutter to 3D print the sugar templates in the lab of study co-authorJordan Miller, an assistant professor ofbioengineering at Rice.

Miller began work on the laser-sintering approach shortly after joining Rice in 2013. The 3D printing process fuses minute grains of powder into solid 3D objects, making possible some complex and detailed structures. In contrast to more common extrusion 3D printing, where melted strands of material are deposited through a nozzle, laser sintering works by gently melting and fusing small regions in a packed bed of dry powder. According to Miller, both extrusion and laser sintering build 3D shapes one 2D layer at a time, but the laser method enables the generation of structures that would otherwise be prone to collapse if extruded.

There are certain architecturessuch as overhanging structures, branched networks and multivascular networkswhich you really cant do well with extrusion printing, said Miller, who demonstrated the concept of sugar templating with a 3D extrusion printer during his postdoctoral studies at the University of Pennsylvania. Selective laser sintering gives us far more control in all three dimensions, allowing us to easily access complex topologies while still preserving the utility of the sugar material.

Assistant professor ofbioengineering at Rice University, Jordan Miller (Credit: Jeff Fitlow/Rice University)

Generating new 3D printing processes and biomaterials for vascularization is among the top priorities for the researchers at Millers Bioengineering Lab at Rice. The lab has a rich history of using sugar to construct vascular network templates. Miller has described in the past how sugar is biocompatible with the human body, structurally strong, and overall, a great material that could be 3D printed in the shape of blood vessel networks. His original inspiration for the project was an intricate dessert, even going as far as suggesting that the 3D printing process we developed here is like making a very precise creme brulee.

To make tissues, Kinstlinger chose a special blend of sugars to print the templates and then filled the volume around the printed sugar network with a mixture of cells in a liquid gel. Within minutes, the gel became semisolid and the sugar dissolved and flushed away to leave an open passageway for nutrients and oxygen. Clearly, sugar was a great choice for the team, providing an opportunity to create blood vessel templates because it is durable when dry, and it rapidly dissolves in water without damaging nearby cells.

A sample of blood vessel templates that Rice University bioengineers 3D printed using a special blend of powdered sugars. (Credit: B. Martin/Rice University)

In order to create the treelike vascular architectures in the study, the researchers developed a computational algorithm in collaboration with Nervous System, a design studio that uses computer simulation to make unique art, jewelry, and housewares that are inspired by patterns found in nature. After creating tissues patterned with these computationally generated vascular architectures, the team demonstrated the seeding of endothelial cells inside the channels and focused on studying the survival and function of cells grown in the surrounding tissue, which included rodent liver cells called hepatocytes.

The hepatocyte experiments were conducted in collaboration with the University of Washington (UW)s bioengineer and study co-author Kelly Stevens, whose research group specializes in studying these delicate cells, which are notoriously difficult to maintain outside the body.

This method could be used with a much wider range of material cocktails than many other bioprinting technologies. This makes it incredibly versatile, explained Stevens,an assistant professor of bioengineering in the UW College of Engineering, assistant professor of pathology in the UW School of Medicine and an investigator at the UW Medicine Institute for Stem Cell and Regenerative Medicine.

The results from the study allowed the team to continue their work towards creating translationally relevant engineered tissue. Using sugar as a special ingredient and selective laser sintering techniques could help advance the field towards mimicking the function of vascular networks in the body, to finally deliver enough oxygen and nutrients to all the cells across a large volume of tissue.

Miller considered that along with the team they were able to prove that perfusion through 3D vascular networks allows us to sustain these large liverlike tissues. While there are still long-standing challenges associated with maintaining hepatocyte function, the ability to both generate large volumes of tissue and sustain the cells in those volumes for sufficient time to assess their function is an exciting step forward.

See the rest here:
Rice Researchers 3D Print with Lasers and Sugar to Build Complex Vascular Networks -

To Read More: Rice Researchers 3D Print with Lasers and Sugar to Build Complex Vascular Networks –
categoriaCardiac Stem Cells commentoComments Off on Rice Researchers 3D Print with Lasers and Sugar to Build Complex Vascular Networks – | dataJuly 6th, 2020
Read All

Scientific Race for New Medicines and Vaccines for COVID-19 – Express Healthcare

By daniellenierenberg

There has been a large push to the development of a coronavirus vaccine and antiviral medicines. Having observed promising premises for an effective vaccine, researchers are cautiously optimistic about its clinical launch. A widespread vaccine deployment within 1-2 years would effectively end the COVID-19 pandemic, as per the emerging scientific advances from the US and other countries. Dr D Samba Reddy, Professor, College of Medicine Texas A&M University Health Science Center, USA, explains how developments for a new vaccine and repurposed antiviral medicines can help combat the coronavirus crisis

The coronavirus pandemic has created huge challenges in our daily lives and great uncertainty worldwide. Our working environments, education, family lives, business and financial prosperity, and daily routines have been reshaped significantly, perhaps even permanently. The coronavirus disease 2019 (COVID-19) outbreak urgently requires new medicines for prevention and treatment. The 3-15 per cent mortality rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the strain of the virus that causes COVID-19, ranks as one of the deadliest respiratory viruses, especially in aged and vulnerable people with health risk conditions. To date, this virus has infected more than 11 million people and killed over 525,000 worldwide. Currently, there are no effective, US FDA-approved agents for the prevention and treatment of COVID-19.

Given the steady emergence of positive cases even under social distancing and extended lockdowns, many are desperately awaiting a vaccine or silver bullet treatment for COVID-19. Despite great mitigation efforts and huge economic sacrifices, the virus is asynchronously circulating in many countries including India, which is currently experiencing a rapid surge. Now, the US is experiencing a coronavirus resurgence; the number of daily new COVID-19 cases is hitting levels not seen since the early part of the pandemic. This virus is spreading in large part from asymptomatic persons who have been unknowing carriers. Two questions that frequently appear in many peoples minds are how long they should practise social distancing measures and when this pandemic situation will return to normalcy. For both questions, a vaccine would be our most concrete answer for preventing future infection and ultimately totally eradicating the coronavirus outbreak.

To fight this battle of a lifetime, scientists around the world are making rapid progress in the discovery of two types of medicines for coronavirus: vaccines to prevent the infection and antivirals to treat the infection. It normally takes 5 to 10 years to develop a vaccine or new drug, but due to the urgency of the COVID-19 pandemic, normal development activity and testing have been accelerated with some caveats.

A vaccine would be our most concrete answer

Vaccines are biological agents with a potential for immunological reactions or efficacy issues. They require extensive testing and safety trials the bottleneck in development time along with tedious production and scale-up for producing millions of doses of a formulated injectable product with optimal stability. Many top experts predict a COVID-19 vaccine could take 6-18 months to reach the market.

Currently, there are approximately 160 corona vaccines in development. These vaccines are being tested in ongoing clinical trials to prove their safety and effectiveness. Constantly-updated knowledge about virus strains and the science underlying neutralizing antibodies has provided a number of potential vaccine platforms or antigen components, such as the purified spike protein, envelope protein, recombinant viral vectors expressing the spike or other viral protein, RNA packaged within a vector such as lipid nanoparticles, and killed or inactivated virus particles. Immunization with these injectable components can produce high levels of neutralizing antibodies and protect against detrimental infection after exposure to the virus.

A realistic timeline for development and widespread vaccination

Currently, three vaccines have reached Phase 2 and would enter pivotal Phase 3 trials this summer. This timetable indicates rapid progress in advancing vaccines through clinical testing. The main hurdle for these solutions is proof-of-efficacy: the trials must demonstrate with certainty whether people who receive the vaccines develop COVID-19 after viral exposure at lower rates than those who get placebo or dummy injections. Successful clinical trials would eventually lead to the FDA approval of a vaccine. FDA approval represents the final phase of a bench-to-bedside journey for any new vaccine a long journey that begins within vitro or test tube studies to animal testing and clinical phase 13 trials. When its data demonstrates proof of safety and efficacy, the vaccine can earn FDA approval for marketing. Yet, there remain some uneasy questions regarding this process, particularly the possibility that a coronavirus vaccine is delayed or hits a roadblock. However, some solid research theory provides hope in light of such concerns.

As noted by NIH Director Dr Francis Collins in his blog, research has shown that patients who recover from COVID-19 produce small levels of antibodies to the virus, some of which are strongly neutralising, which indicates that some patients may be able to ward off reinfection. This premise suggests that the immune systems of people who survive COVID-19 may be primed to recognise SARS-CoV-2 and possibly thwart a second infection, which supports the potential feasibility of antibody-based vaccination. Regarding the durability of such a vaccine, the neutralising antibodies against SARS-CoV-2 are projected to last 15-18 months, based on the duration of antibody responses against other human coronaviruses. The lessons learned from SARS and MERS underscores the current vaccine approaches to the prevention of COVID-19.

Despite the potential viability of a vaccine for COVID-19, researchers remain cautiously optimistic about its efficacy and timeline, considering the hurdles yet to be overcome. Currently, in a global search for a COVID-19 vaccine, no clear winner has emerged yet. When a safe and effective corona vaccine is approved, a widespread vaccine deployment within 1-2 years will effectively end the COVID-19 crisis, as per the emerging scientific advances from the US. An international consortium is needed to coordinate such large-scale production and distribution around the globe. Thus, current projections indicate that the coronavirus pandemic will continue for 1-2 years, a critical timeline for development, deployment, and widespread vaccination.

Besides vaccines, there have been dedicated efforts to develop other pharmaceutical options for coronavirus, namely antivirals and immune modulators, some of which are now in clinical trials or have been approved for COVID-19.

The current race for repurposed antiviral medicines

Antivirals are medicines that act directly on coronavirus. The main advantage of an antiviral agent is that it can be given to treat asymptomatic person already infected with the coronavirus. Most antivirals are made of small molecules that can be synthesised in the lab and tested much faster than vaccines. In contrast to a vaccine that prevents infection, antivirals act more like bandages: they can alleviate the recovery and reduce the severity or risk of morbidity, but cannot prevent an infection from happening.

There are many antivirals under experimental and clinical trials for coronavirus infection. According to the University of Pennsylvanias CORONA database, 115 repurposed drugs have been used to treat COVID19 patients, with around a dozen which seem most promising. Like vaccines, FDA approval of antivirals represents the final phase of a big development journey from preclinical to clinical phase 1, 2 and 3 trials. When the data demonstrate compelling proof of safety and efficacy or favourable risk-benefit ratio, such new medicines can receive FDA approval for marketing. To address urgent needs, the FDA has granted emergency use authorization (EUA) for clinical testing and compassionate use of certain medicines for COVID-19, bypassing typical time- and sample-related roadblocks. This is helping scientists more quickly test existing drugs, and such repurposing is offering great hope in our COVID-19 fight. Some of the more notable explored treatments are detailed below.

Chloroquine and hydroxychloroquine (HCQ) have been proposed as new treatments for COVID-19. They have broad-spectrum effects against coronaviruses via multimodal mechanisms. Additionally, millions of people have safely used these medicines for malaria worldwide; however, they are not indicated in certain people with cardiac risk factors. Based on early positive indications of its benefits from pilot trials in China, chloroquine has been used for the treatment of COVID-19 in clinical trials or emergency use programs. HCQ, a safer version of chloroquine, is on the WHOs list of essential medicines a designation given for the safest and most effective medicines needed in a healthcare system. Based on reports of its antiviral effect against the coronavirus, HCQ was granted EUA status for use against COVID-19 by the FDA on April 7. It was tested as a specific treatment in the hospital setting and in clinical trials. Later, the Indian ICMR recommended HCQ as a prophylactic for healthcare personnel.

However, the safety of HCQ in COVID-19 patients is a topic of controversy, stemming from a scandal regarding the retraction of two papers about the negative safety of HCQ published in the top-ranked medical journals Lancet and NEJM. The retractions occurred on account of a lack of data integrity, making safety claims of HCQ still inconclusive. Additionally, the results of recent clinical trials show limited efficacy of HCQ therapy in COVID-19 patients. Therefore, the WHO and NIH have pulled out of HCQ trials due to questionable efficacy that has greatly diminished further interest in this drug. Effective June 22, the sponsoring company made the decision to stop and discontinue its sponsored HCQ clinical trial for COVID-19. They did not cite safety reasons. On June 15, the FDA revoked the EUA for emergency use of chloroquine and HCQ for COVID-19. As of June 25, the NIH treatment guidelines recommend against the use of chloroquineorHCQfor the treatment of COVID-19, except in a clinical trial.

Remdesivir is another repurposed antiviral drug with promising effects on coronavirus. It inhibits a viral protein called RNA-dependent RNA polymerase, which is vital for virus production. It has potent in vitro inhibitory activity against SARS-CoV-2. In real-world practice, however, it has shown mixed results. In early trials published in Lancet, remdesivir was not associated with clinical benefits in patients with severe COVID-19. On March 1, the FDA granted an EUA for emergency treatment of hospitalized patients with severe COVID-19. On April 29, in results from a pilot trial sponsored by the NIH, remdesivir was found to shorten the duration of illness by about 31% compared to placebo in hospitalised patients with severe COVID19. The data, now published in the New England Journal of Medicine, show that the drug shortened the course of illness from an average of 15 days to about 11 days. However, mortality rates were not significantly different (7 per cent drug vs 12 per cent placebo), indicating that remdesivir alone is not likely to be sufficient.

Currently, remdesivir is being tested in Phase 3 trials for severe infection, but it is not FDA-approved yet. It is given by intravenous infusion for up to a 10-day total course. On June 1, some early Phase 3 trial results became available, which indicated it has only small benefit in large samples. In this large trial, a group of moderately ill, hospitalized patients with 5-days therapy showed a modest improvement (76 per cent) compared to standard-of-care control (66 per cent). The other group on 10-days therapy did not show any significant improvement. There were no new safety risks identified in either group. Remdesivir is also only available intravenously, meaning it is only able to be administered in a clinical setting, which could limit its impact for ambulatory patients and persons staying at home with mild symptoms. So, the results of ongoing pivotal trials will determine its capacity for use against COVID-19.

The NIH treatment guidelines recommend the investigational new drug remdesivir for hospitalised patients with severe COVID-19. Those who are not intubated are to receive 5 days of remdesivir, while for mechanically ventilated patients or patients who have not shown improvement after 5 days of therapy, thetreatment can be extended to up to 10 days. Remdesivir is not recommended for the treatment of patients with mild or moderate COVID-19.

Other promising antivirals for COVID-19 include protease inhibitors (Lopinavir, Ritonavir), RNA polymerase inhibitors (Ribavirin, Favipiravir), viral fusion inhibitors (Arbidol), viral receptor entry inhibitors (Camostat), and anti-parasitic agents (Ivermectin). However, most of them are still in clinical trials. To accelerate trials and identify an effective drug, the WHO is coordinating an international Solidarity trial of the most promising antivirals for COVID-19, including Remdesivir, Lopinavir, Ritonavir and others.

On June 20, the Drugs Controller General of India (DCGI), the national drug regulation authority, approved the antiviral drug Favipiravir for the treatment of mild to moderate COVID-19. In a landmark development, an Indian generic pharma company received the approval for manufacturing and marketing of Favipiravir. Now, Favipiravir has become the first approved oral medication for the treatment of COVID-19 in India. Favipiravir, known for treating influenza in Japan, has a unique mechanism of action against the coronavirus. First, it is converted into an active phosphoribosylated form in host cells and serves as a substrate for viral RNA polymerase. Then, it inhibits the viral RNA polymerase, a key protein for viral replication in the body. In India, Favipiravir is available as prescription tablets for a 14-day therapy for mild to moderate infection. It offers broad coverage, including children, adults, the elderly, and people with health conditions. It is claimed to significantly improve symptoms in mild to moderate COVID-19 patients. Presently, it is still undertrials in the USA and other countries and not yet approved by the FDA for the treatment of COVID-19.

The hype about new antivirals needs to be verified by large, randomized trials or future meta-analysis. Some caution should be exercised on the boon of new antivirals, as we have learned harsh lessons from previous antivirals. The launching of generic versions of remdesivir and favipiravir is a highly positive development for supportive treatment. Yet, the results of ongoing or pivotal trials will decide the potential of these and other antivirals for COVID-19.

Immunity boosters as critical adjunct medicines for survival

Another class of treatment known as Immunity modulators have been proposed as adjunct therapies for symptomatic management of COVID-19, especially for at-risk populations (elderly, immunocompromised, very young, people with certain health conditions). Currently, there are no FDA-approved immunity boosters. Some experimental agents include interferons, cytokine inhibitors or monoclonal antibodies (Tacosilizumab, Sarilumab), and immunoglobulins. They are targeted to control the heightened immune response in COVID-19, principally to check the cytokine storm, a state of uncontrolled inflammation that can damage vital organs. Hence, anticytokines are considered as an alternative for combination therapy with antivirals. Tocilizumab, an injectable monoclonal antibody for use in autoimmune diseases such as rheumatoid arthritis, has shown in early trials to dampen the cytokine response in COVID-19 patients.

The WHO advisory says that corticosteroids, which suppress the immune response and cytokine storm, should not be used as they could delay recovery or increase morbidity. However, a recent study shows some benefits of dexamethasone in severely ill patients. Dexamethasone is the first drug to be shown to improve survival in severe COVID-19 patients. However, it did not appear to help mild or moderately infected patients. Consequently, the NIH guidelines panel recommends using dexamethasone (6 mg daily for up to 10 days) in patients with COVID-19 who are mechanically ventilated and in patients who require supplemental oxygen. Similar to the WHO, they recommend against using dexamethasone in patients with COVID-19 who do not require supplemental oxygen. There are insufficient data for the NIH panel to recommend either for or against any other immunomodulatory therapy in patients with severe COVID-19 disease. In patients with COVID-19 and severe or critical illness, there are insufficient data to recommend empiric broad-spectrum antimicrobial therapy in the absence of another indication.

Plasma therapy works

Plasma therapy or convalescent plasma has proven effective in reducing the severity or mortality of corona infection. In such immunoglobulin therapy, the liquid portion of the blood that has antibodies from recovered patients is given to patients with severe COVID-19. Although plasma therapy may help accelerate recovery, limited donor availability may limit the widespread use of the convalescent plasma.

A BCG vaccine is touted to reduce the impact of COVID-19 because it has beneficial nonspecific (off-target) effects strengthening the immune system and thereby reducing viremia after coronavirus exposure. A trial is underway to study if BCG vaccine can strengthen immune response, with consequent less severe infection or rapid recovery.

Some vitamins and nutraceuticals have been claimed to help against coronavirus infection. Currently, there is a lack of systematic studies evaluating these supplements in COVID-19 patients.

Stem cells are also touted as promising immune boosters to combat COVID-19, especially for critically ill patients. Stem cells are thought to slow down the immune response and prevent the body from damaging itself from cytokine storm. Such therapy is not yet proven effective or safe, so has not been approved for the treatment of COVID-19.

Herd immunity is a natural catastrophe

Herd immunity, while not touted as a solution for COVID-19 by any agency, is a natural process relevant when there are a massive surge and widespread hotspots in a town or city. Herd immunity is reached when the majority of a given population 70 to 90% becomes immune to the virus, either by recovery from infection or through vaccination. In that scenario, the virus does not spread to people who are not immune due to a lack of carriers. At its worst, catastrophic hotspots may have to rely on herd immunity if a vaccine is still not available in a timely fashion. However, how long immunity lasts varies depending on the coronavirus, and it is not yet known how long COVID-19 survivors might have that protection.

In the US, India, Brazil, and many other countries, there has been a rapid surge or resurgence of cases. About 40% of cases are asymptomatic, which may be driving the community spread. Besides social distance measures, widespread testing and isolation are critical steps in containing the virus. Pool testing could find asymptomatic persons quickly by strategically testing groups of people together. It could test more people with fewer tests in a much broader net and positive cases could be quickly isolated. Meanwhile, scientific experts are advising for the traditional mitigation toolsidentify, isolate and contact trace for curbing the spread and flattening the infection curve.

We will ultimately prevail

Lets follow the scientific guidelines for surviving the coronavirus pandemic. The primary mode of transmission is the airborne route. Infected persons, both asymptomatic and symptomatic, have the great potential to generate aerosol (from a sneeze, cough, breathing or talking) in the size range that can remain suspended in air and reach others when a healthy person inhales such contaminated air. Confining aerosols as close as possible to their point of generation is the first critical steps in the standard healthcare protocols. Aerosols represent a risk of both inhalation and contamination of surfaces, personal clothing and objects. Hence, confining aerosols reduces the extent of contamination and minimises potential exposure opportunities.

The ultimate goal of public health advisories and mitigation strategies (eg, social distancing, mask-wearing, good hygiene) is to reduce the risk of acquiring an infection and of spreading the virus onto others. Its a personal responsibility to adhere to safe practises at home, workplace and outside. A deeper awareness is critical to accomplish the two basic principles of biosafety from coronavirus: risk assessment and containment. To put this complex science into common practice, strive to follow two essential practices: (a) stay away from the bug, a vital precaution to avoid being exposed to the virus, and (b) stay healthy, a preemptive step to combat the corona disease. In essence, in the COVID-19 disease triangle, lets enforce an unfavourable environment for interaction between the host (human) and the bug (virus) a personal step to end the pandemic.

In summary, the US FDA to date has approved no therapies for coronavirus. COVID-19 pandemic is an unprecedented challenge for millions of people worldwide. Thus, aside from new diagnostic tests such as pool testing, development of novel antivirals and vaccines will remain highest-priority scientific research for the next few years. There is cautious optimism about the coronavirus vaccine, but it is too early to make concrete judgments. In the meantime, the two best ways to prevent coronavirus infection are to limit potential exposure and strengthen our health and immunity. It may even take a couple of years, but we will ultimately prevail.

Read the original:
Scientific Race for New Medicines and Vaccines for COVID-19 - Express Healthcare

To Read More: Scientific Race for New Medicines and Vaccines for COVID-19 – Express Healthcare
categoriaCardiac Stem Cells commentoComments Off on Scientific Race for New Medicines and Vaccines for COVID-19 – Express Healthcare | dataJuly 6th, 2020
Read All

Study shows COVID-19 can infect heart cellsand do serious damage in the process – Cardiovascular Business

By daniellenierenberg

A new study suggests COVID-19 has the potential to infect cardiaccells, causing changes in their ability to function after just 72 hours.

The researchers found that SARS-CoV-2, the virus behind COVID-19, was capable of infecting heart muscle cells created with stem cell technology and stored in a lab dish. They shared their findings in Cell Reports Medicine.

We not only uncovered that these stem cell-derived heart cells are susceptible to infection by novel coronavirus, but that the virus can also quickly divide within the heart muscle cells, first author Arun Sharma, PhD, a research fellow at the Cedars-Sinai Board of Governors Regenerative Medicine Institute in Los Angeles, said in a statement.

The infected heart cells changed their gene expression profile, the authors added, providing additional context about how the body attempts to combat the infection. And the stem cell-derived heart cells show potential as an effective way to identify and test new methods for treating COVID-19-related heart infections.

Excerpt from:
Study shows COVID-19 can infect heart cellsand do serious damage in the process - Cardiovascular Business

To Read More: Study shows COVID-19 can infect heart cellsand do serious damage in the process – Cardiovascular Business
categoriaCardiac Stem Cells commentoComments Off on Study shows COVID-19 can infect heart cellsand do serious damage in the process – Cardiovascular Business | dataJuly 2nd, 2020
Read All

Its not just the lungs: COVID-19 can affect the brain and heart of those infected, researchers say – WITI FOX 6 Milwaukee

By daniellenierenberg

LOS ANGELES As medical experts learn about the novel coronavirus, which continues to exhibit an array of ever-evolving symptoms and long-term effects, researchers have found that the deadly illness can have deleterious impacts on the heart and brain.

A recent study published on June 25 in the journalCell Reports Medicine, found that while COVID-19 is commonly known as a respiratory illness, the disease has also been known to instigate inflammatory responses in the body which can negatively affect the function of ones heart and brain.

According to the study, researchers observed SARS-CoV-2 infecting human heart cells that were grown from stem cells in a lab. Within 72 hours of infection, the virus managed to spread and replicate, killing the heart cells.

The researchers brought up the particularly alarming possibility that if COVID-19 can infect the heart cells in a laboratory setting, it could possibly infect those specific organs, prompting the need for a cardiac-specific antiviral drug screen program.

And those concerns are not unwarranted, according to doctors and other researchers who have been observing and studying the wide range of health problems and negative outcomes that appear to come with the not-yet-fully-known territory of the novel virus.

The most common coronavirus symptoms are fever, a dry cough and shortness of breath and some people are contagious despite never experiencing symptoms. But as the virus continues to spread, less common symptoms are being reported, including loss of smell, vomiting and diarrhea, along with a variety of skin problems and harmful neurological effects.

A recentreportfromDr. Robert Stevens, M.D., the associate director of the Johns Hopkins Precision Medicine Center of Excellence for Neurocritical Care, said that coronavirus patients are continuously experiencing a wide range of disconcerting effects on the brain.

Some of the neural symptoms, according to Johns Hopkins, include:

Patients are also having peripheral nerve issues, such as Guillain-Barr syndrome, which can lead to paralysis and respiratory failure, wrote Stevens. I estimate that at least half of the patients Im seeing in the COVID-19 units have neurological symptoms.

While medical experts have continuously repeated that more is still being discovered about the virus, Stevens listed some possibilities on how COVID-19, a respiratory illness, is making its way to the brain.

The first possible way is that the virus may have the capacity to enter the brain and cause a severe and sudden infection. Cases reported in China and Japan found the viruss genetic material in spinal fluid, and a case in Florida found viral particles in brain cells, Stevens wrote.

He added that viral particles in the brain and spine may occur when the virus enters the body through a patients bloodstream or nerve endings.

The second possibility is that the bodys immune system has an overreaction to the virus, causing severe inflammatory responses that cause organ and tissue damage.

The third theory is the erratic physiological changes the disease causes in the body, which involve extremely high fever and low oxygen levels in the blood, result in harmful effects to the brain.

Stevens added that there has been an abnormal observance of blood clotting that has caused some coronavirus patients to suffer strokes. A stroke could occur if a blood clot were to block or narrow arteries leading to the brain, he said.

Another illness that has been known to impact the brain in patients with COVID-19 is currently being studied by Dr. Mady Hornig, an immunologist and professor of epidemiology at Columbia University.

Hornig said that Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is an illness that has been found in patients who have recovered from coronaviruses such as SARS.

TheCenters for Disease Control and Preventioncites a 2015 report from the nations top medical advisory body, the Institute of Medicine, which says that an estimated 836,000 to 2.5 million Americans suffer from ME/CFS.

The CDC says that people with ME/CFS experience severe fatigue, sleep problems, as well as difficulty with thinking and concentrating while experiencing pain and dizziness.

Hornig said SARS-CoV-1 and MERS have been associated with longer-term difficulties, in which many people appeared to have symptoms of ME/CFS.

Hornig is currently researching the long-term effects of COVID-19, and has been confronted with an array of concerning symptoms that have persisted in patients, as well as herself.

She can personally attest to the variety of symptoms that have been reported in coronavirus patients, ever since she began to experience her own COVID-19 symptoms in April that have continued to impact her daily life for the past few months.

She has also experienced cardiac complications while dealing with the illness.

Since getting sick, Hornig said shes had to carry a pulse oximeter with her, a device which registers her pulse since she began to have tachycardia episodes when her fever began to decline. Tachycardia is a condition that can make a persons heart beat abnormally fast, reducing blood flow to the rest of the body,according to the Mayo Clinic.

Hornigs most recent episode was on June 22. Her pulse registered at 135 beats per minute, which she said occurred just from her sitting at her computer. She said a normal pulse for someone her age would be around 60-70 beats per minute.

The findings on the novel virus potential effects on the heart and brain come as the CDC continues to update itslistof coronavirus symptoms and high-risk conditions for COVID-19 complications.

Notably, the CDC also removed the specific age threshold from the older adult classification. CDC now warns that among adults, risk increases steadily as you age, and its not just those over the age of 65 who are at increased risk for severe illness, the agency wrote.

Johns Hopkins has noted that younger patients in their 30s and 40s are reportedly having strokes as a result of COVID-19.

It may have something to do with the hyperactive blood-clotting system in these patients, Stevens said. Another system that is hyper-activated in patients with COVID-19 is the endothelial system, which consists of the cells that form the barrier between blood vessels and body tissue. This system is more biologically active in younger patients, and the combination of hyperactive endothelial and blood-clotting systems puts these patients at a major risk for developing blood clots.

But Stevens cautioned that more conclusive data is needed before the medical community can say with assurance that younger people are particularly susceptible to strokes caused by the novel coronavirus.

It is also plausible that theres an increase in stroke in COVID-19 patients of all ages, Stevens said.


Read more from the original source:
Its not just the lungs: COVID-19 can affect the brain and heart of those infected, researchers say - WITI FOX 6 Milwaukee

To Read More: Its not just the lungs: COVID-19 can affect the brain and heart of those infected, researchers say – WITI FOX 6 Milwaukee
categoriaCardiac Stem Cells commentoComments Off on Its not just the lungs: COVID-19 can affect the brain and heart of those infected, researchers say – WITI FOX 6 Milwaukee | dataJuly 2nd, 2020
Read All

WHO says living with COVID-19 to be new normal as global cases top 10 mln – WeForNews

By daniellenierenberg

Washington, July 2 : The overall number of global COVID-19 cases has increased to over 10.6 million, while the deaths have soared to more than 515,000, according to the Johns Hopkins University.

As of Thursday morning, the total number of cases increased to 10,667,217, while the fatalities stood at to 515,542, the Universitys Center for Systems Science and Engineering (CSSE) revealed in its latest update.

The US accounted for the worlds highest number of infections and fatalities with 2,685,806 and 128,061, respectively, according to the CSSE.

Brazil came in the second place with 1,448,753 infections and 60,632 deaths.

In terms of cases, Russia ranks third (653,479), and is followed by India (585,493), the UK (314,992), Peru (288,477), Chile (282,043), Spain (249,659), Italy (240,760), Mexico (231,770), Iran (230,211), Pakistan (213,470), France (202,981), Turkey (201,098), Germany (195,893), Saudi Arabia (194,225), South Africa (159,333), Bangladesh (149,258) and Canada (106,288), the CSSE figures showed.

The other countries with over 10,000 deaths are the UK (43,991), Italy (34,788), France (29,864), Mexico (28,510), Spain (28,364), India (17,400) and Iran (10,958).

Continued here:
WHO says living with COVID-19 to be new normal as global cases top 10 mln - WeForNews

To Read More: WHO says living with COVID-19 to be new normal as global cases top 10 mln – WeForNews
categoriaCardiac Stem Cells commentoComments Off on WHO says living with COVID-19 to be new normal as global cases top 10 mln – WeForNews | dataJuly 2nd, 2020
Read All

Rahul Gandhi to interact with nurses on July 1 – WeForNews

By daniellenierenberg

New York, July 1 : A team of US scientists, led by an Indian-origin researcher revealed that SARS-CoV-2 (coronavirus), the virus behind Covid-19, can infect heart cells in a lab dish.

This suggests it may be possible for heart cells in Covid-19 patients to be directly infected by the virus.

The discovery, published today in the journal Cell Reports Medicine, was made using heart muscle cells that were produced by stem cell technology.

We not only uncovered that these stem cell-derived heart cells are susceptible to infection by a novel coronavirus, but that the virus can also quickly divide within the heart muscle cells, said study researcher Arun Sharma from the Cedars-Sinai Board of Governors Regenerative Medicine Institute in the US.

Even more significant, the infected heart cells showed changes in their ability to beat after 72 hours of infection, Sharma added.Although many COVID-19 patients experience heart problems, the reasons remain unclear. Pre-existing cardiac conditions or inflammation and oxygen deprivation resulting from the infection have all been implicated.

But there has until now been only limited evidence the SARS-CoV-2 virus directly infects the individual muscle cells of the heart.The study also demonstrated human stem cell-derived heart cells infected by SARS-CoV-2 change their gene expression profile.This offers further confirmation the cells can be actively infected by the virus and activate innate cellular defence mechanisms in an effort to help clear-out the virus.

This viral pandemic is predominately defined by respiratory symptoms, but there are also cardiac complications, including arrhythmia, heart failure and viral myocarditis, said study co-author Clive Svendsen.

While this could be the result of massive inflammation in response to the virus, our data suggest that the heart could also be directly affected by the virus in Covid-19, Svendsen added.

Researchers also found that treatment with an ACE2 antibody was able to blunt viral replication on stem cell-derived heart cells, suggesting that the ACE2 receptor could be used by SARS-CoV-2 to enter human heart muscle cells.

By blocking the ACE2 protein with an antibody, the virus is not as easily able to bind to the ACE2 protein, and thus cannot easily enter the cell, said Sharma. This not only helps us understand the mechanisms of how this virus functions, but also suggests therapeutic approaches that could be used as a potential treatment for SARS-CoV-2 infection, he explained.

The study used human induced pluripotent stem cells (iPSCs), a type of stem cell that is created in the lab from a persons blood or skin cells. IPSCs can make any cell type found in the body, each one carrying the DNA of the individual. This work illustrates the power of being able to study human tissue in a dish, the authors wrote.

Continue reading here:
Rahul Gandhi to interact with nurses on July 1 - WeForNews

To Read More: Rahul Gandhi to interact with nurses on July 1 – WeForNews
categoriaCardiac Stem Cells commentoComments Off on Rahul Gandhi to interact with nurses on July 1 – WeForNews | dataJuly 1st, 2020
Read All

Coronavirus: WHO warns the worst is yet to come – WeForNews

By daniellenierenberg

New York, July 1 : A team of US scientists, led by an Indian-origin researcher revealed that SARS-CoV-2 (coronavirus), the virus behind Covid-19, can infect heart cells in a lab dish.

This suggests it may be possible for heart cells in Covid-19 patients to be directly infected by the virus.

The discovery, published today in the journal Cell Reports Medicine, was made using heart muscle cells that were produced by stem cell technology.

We not only uncovered that these stem cell-derived heart cells are susceptible to infection by a novel coronavirus, but that the virus can also quickly divide within the heart muscle cells, said study researcher Arun Sharma from the Cedars-Sinai Board of Governors Regenerative Medicine Institute in the US.

Even more significant, the infected heart cells showed changes in their ability to beat after 72 hours of infection, Sharma added.Although many COVID-19 patients experience heart problems, the reasons remain unclear. Pre-existing cardiac conditions or inflammation and oxygen deprivation resulting from the infection have all been implicated.

But there has until now been only limited evidence the SARS-CoV-2 virus directly infects the individual muscle cells of the heart.The study also demonstrated human stem cell-derived heart cells infected by SARS-CoV-2 change their gene expression profile.This offers further confirmation the cells can be actively infected by the virus and activate innate cellular defence mechanisms in an effort to help clear-out the virus.

This viral pandemic is predominately defined by respiratory symptoms, but there are also cardiac complications, including arrhythmia, heart failure and viral myocarditis, said study co-author Clive Svendsen.

While this could be the result of massive inflammation in response to the virus, our data suggest that the heart could also be directly affected by the virus in Covid-19, Svendsen added.

Researchers also found that treatment with an ACE2 antibody was able to blunt viral replication on stem cell-derived heart cells, suggesting that the ACE2 receptor could be used by SARS-CoV-2 to enter human heart muscle cells.

By blocking the ACE2 protein with an antibody, the virus is not as easily able to bind to the ACE2 protein, and thus cannot easily enter the cell, said Sharma. This not only helps us understand the mechanisms of how this virus functions, but also suggests therapeutic approaches that could be used as a potential treatment for SARS-CoV-2 infection, he explained.

The study used human induced pluripotent stem cells (iPSCs), a type of stem cell that is created in the lab from a persons blood or skin cells. IPSCs can make any cell type found in the body, each one carrying the DNA of the individual. This work illustrates the power of being able to study human tissue in a dish, the authors wrote.

Read the original here:
Coronavirus: WHO warns the worst is yet to come - WeForNews

To Read More: Coronavirus: WHO warns the worst is yet to come – WeForNews
categoriaCardiac Stem Cells commentoComments Off on Coronavirus: WHO warns the worst is yet to come – WeForNews | dataJuly 1st, 2020
Read All

Page 3«..2345..1020..»