Bone marrow transplants can reverse adult sickle cell disease
By Dr. Matthew Watson
This image provided by the National Institutes of Health shows red blood cells in a patient with sickle cell disease at the National Institutes of Health Clinical Center in Bethesda, Md.AP Photo/National Institutes of Health
This image provided by the National Institutes of Health shows red blood cells in a different sickle cell patient, after a bone marrow transplant at the National Institutes of Health Clinical Center in Bethesda, Md.AP Photo/National Institutes of Health
Bone marrow transplants can reverse severe sickle cell disease in adults, a small study by government scientists found, echoing results seen with a similar technique used in children.
The researchers and others say the findings show age need not be a barrier and that the technique may change practice for some adult patients when standard treatment fails.
The transplant worked in 26 of 30 adults, and 15 of them were even able to stop taking drugs that prevent rejection one year later.
"We're very pleased," said Dr. John Tisdale, the study's senior author and a senior investigator at the National Institutes of Health. "This is what we hoped for."
The treatment is a modified version of bone marrow transplants that have worked in kids. Donors are a brother or sister whose stem cell-rich bone marrow is a good match for the patient.
Tisdale said doctors have avoided trying standard transplants in adults with severe sickle cell disease because the treatment is so toxic. Children can often tolerate it because the disease typically hasn't taken as big a toll on their bodies, he said.
The disease is debilitating and often life-shortening; patients die on average in their 40s, Tisdale said. That's one reason why the researchers decided to try the transplants in adults, with hopes that the technique could extend their lives.
The treatment involves using chemotherapy and radiation to destroy bone marrow before replacing it with healthy donor marrow cells. In children, bone marrow is completely wiped out. In the adult study, the researchers only partially destroyed the bone marrow, requiring less donor marrow. That marrow's healthy blood cells outlast sickle cells and eventually replace them.
Here is the original post:
Bone marrow transplants can reverse adult sickle cell disease
Bone marrow transplantation shows potential for treating adults with sickle cell disease
By daniellenierenberg
PUBLIC RELEASE DATE:
1-Jul-2014
Contact: Krysten Carrera krysten.carrera@nih.gov 301-435-8112 The JAMA Network Journals
Use of a lower intensity bone marrow transplantation method showed promising results among 30 patients (16-65 years of age) with severe sickle cell disease, according to a study in the July 2 issue of JAMA.
Myeloablative (use of high-dose chemotherapy or radiation) allogeneic hematopoietic stem cell transplantation (HSCT; receipt of hematopoietic stem cells "bone marrow" from another individual) is curative for children with severe sickle cell disease, but associated toxicity has made the procedure prohibitive for adults. The development of nonmyeloablative conditioning regimens (use of lower doses of chemotherapy or radiation to prepare the bone marrow to receive new cells) may facilitate safer application of allogeneic HSCT to eligible adults, according to background information in the article.
Matthew M. Hsieh, M.D., of the National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Md., and colleagues explored a nonmyeloablative approach in a pilot group of 10 adults with severe sickle cell disease, using a simplified HSCT regimen (with stem cell donation from a immunologically matched sibling), that had few toxic effects, yet all patients continued taking immunosuppression medication. The researchers have since revised the protocol to include an option to stop immunosuppression after 1 year in selected patients (those with donor CD3 engraftment of greater than 50 percent and normalization of hemoglobin). In this report, the authors describe the outcomes for 20 additional patients with severe sickle cell disease, along with updated results from the first 10 patients. All 30 patients (ages 16-65 years) were enrolled in the study from July 2004 to October 2013.
As of October 25, 2013, 29 patients were alive with a median follow-up of 3.4 years, and 26 patients (87 percent) had long-term stable donor engraftment without acute or chronic graft-vs-host disease. Hemoglobin levels improved after HSCT; at 1 year, 25 patients (83 percent) had full donor-type hemoglobin. Fifteen engrafted patients discontinued immunosuppression medication and had no graft-vs-host disease.
The average annual hospitalization rate was 3.2 the year before HSCT, 0.63 the first year after, 0.19 the second year after, and 0.11 the third year after transplant. Eleven patients were taking narcotics long-term at the time of transplant. During the week they were hospitalized and received their HSCT, the average narcotics use per week was 639 mg of intravenous morphine-equivalent dose. The dosage decreased to 140 mg 6 months after the transplant.
There were 38 serious adverse events including pain, infections, abdominal events, and toxic effects from the medication sirolimus.
"In this article, we extend our previous results and show that this HSCT procedure can be applied to older adults, even those with severe comorbid conditions " the authors write. "These data reinforce the low toxicity of this regimen, especially among patients with significant end-organ dysfunction."
Read the original here:
Bone marrow transplantation shows potential for treating adults with sickle cell disease
Study finds new treatment for adult sickle cell disease
By Sykes24Tracey
Bone marrow transplants can reverse severe sickle cell disease in adults, a small study by government scientists found, echoing results from a similar technique used in children.
The researchers and others say the findings show that age need not be a barrier and that the technique could change practice for some adult patients when standard treatment fails.
The transplant worked in 26 of 30 adults, and 15 of them were able to stop taking drugs that prevent rejection one year later.
"We're very pleased," said Dr. John Tisdale, the study's senior author and a senior investigator at the National Institutes of Health. "This is what we hoped for."
Sickle cell disease is a genetic condition that damages oxygen-carrying hemoglobin in red blood cells that then form sickle shapes that can block blood flow through veins. It can cause anemia, pain and organ damage. The disease affects about 100,000 Americans and millions worldwide.
The treatment is a modified version of bone marrow transplants that have worked in kids. Donors are a brother or sister whose stem cell-rich bone marrow is a good match for the patient.
Tisdale said doctors have avoided trying standard transplants in adults with severe sickle cell disease because the treatment is so toxic. Children can often tolerate it because the disease typically hasn't taken as big a toll on their bodies, he said.
The disease is debilitating and often life-shortening. Patients die on average in their 40s, Tisdale said. That's one reason why the researchers decided to try the transplants in adults, hoping the technique could extend their lives.
The treatment involves using chemotherapy and radiation to destroy bone marrow before replacing it with healthy donor marrow cells. In children, bone marrow is completely wiped out. In the adult study, the researchers only partially destroyed the bone marrow, requiring less donor marrow. That marrow's healthy blood cells outlast sickle cells and eventually replace them.
Results from the adult study, involving patients aged 29 on average, were published Tuesday in the Journal of the American Medical Association.
View original post here:
Study finds new treatment for adult sickle cell disease
UVA Expands Cancer Treatment
By daniellenierenberg
UVA joins National Marrow Donor Program giving greater access to cancer treatments by Ishaan Sachdeva | Jun 25 2014 | 06/25/14 10:11pm | Updated 14 hours ago
The Emily Couric Cancer Center of the University of Virginia Health System has expanded its access to bone marrow and hematopoietic stem cell transplant donors. Now designated as a National Marrow Donor Program (NMDP), the Health System will have access to the Be The Match Registry, the worlds largest and most diverse bone marrow registry. Implications of this change are significant for patients afflicted with blood cancers like leukemia who obtain treatment through the Health System.
Bone marrow, the soft, spongy tissue within bones like the sternum or the ilium of the pelvis, forms hematopoietic or blood-forming stem cells. These cells, unlike embryonic stem cells, differentiate only into types of blood cells- red blood cells, white blood cells or clotting platelets. Leukemia causes bone marrow to produce abnormal, leukemic white blood cells that divide uncontrollably, forming tumors that deprive cells of oxygen and reduce infection defense. One treatment method is autologous bone marrow transplant, in which patients receive stem cells from their healthy, non cancerous bone marrow.
The idea [of autologous transplants] is that you extract healthier bone marrow from the patient to have a source of stored, non-cancerous bone marrow. You can then treat the patient with higher doses of treatment than you can normally give because the most common limitation to treatment is that treatment will kill off healthy bone marrow you might have, said Thomas P. Loughran Jr., MD, the Universitys Cancer Center director.
Essentially, a patients healthy bone marrow is safeguarded outside their body while aggressive treatment is administered to kill cancerous marrow. Another form of treatment is allogeneic treatment, in which bone marrow is transplanted from a sibling or an unrelated donor.
In an allogeneic transplant, you are also transplanting in a new immune system. The new immune system comes in and recognizes the body as a foreign tissue and starts attacking that tissue. This causes a beneficial graft vs. leukemia effect where this new immune system attacks any residual leukemia, but may also cause a harmful graft versus host disease where normal tissue is also attacked, Loughran said.
The donor and recipient tissue interaction underscores the genetic component of bone marrow transplants from external donors. Despite the curative potential of a bone marrow transplant, a strong genetic match between donor and recipient is crucial to the utility of a transplant.
The ability of any donor to be successful is based on genetics. Its called HLA [human leukocyte antigen] typing. The HLA system has four genes called A, B, C and D, and it turns out that A, B and D are influential. We have half of our genes each from both parents, so we have six of these: 2 A, 2 B and 2 D. The best case is a six out of six match from a brother or sister, but the chances are only 1 in 4, said Loughran. The consequence of low genetic probabilities is a large pool of unrelated donors, like the Be The Match Registry. Through such services, patients have a greater chance of finding an unrelated donor who may provide a successful genetic match.
The coordinating center would identify the place where the donor is living and tell them they are potentially able to donate. In the past, the donor would have bone marrow directly extracted. Now it is almost always from the PBSCT [peripheral blood stem cell transplantation] procedure. The donor takes a growth factor that stimulates growth of the needed hematopoietic stem cells within their peripheral blood circulation. A catheter collects this blood and the stem cells are separated from the blood by a machine, and the blood is returned back to the donor. The collected stem cells are sent to the lab where they are purified and frozen, Loughran said.
Meanwhile, the patient in preparation for the transplant is given the highest dose of chemotherapy that can be tolerated. The donated stem cells are administered to the patient in a way similar to IV fluid.
See the rest here:
UVA Expands Cancer Treatment
Autologous stem cell treatment could be the road ahead
By raymumme
The treatment could edge out joint replacement procedures to a large extent.
Hyderabad, June 30:
A team of doctors from a city hospital have harvested stem cells of a person using bone marrow from the pelvis area to replace some dead tissues in the hip. By doing this, they saved the patient from undergoing a hip replacement.
The Apollo Health City team, headed by orthopaedic specialist Paripati Sharat Kumar, diagnosed a 39-year-old women suffering from Avascular Necrosis. Her condition would require undergoing a replacement of hips.
After assessing her condition, the team has decided to go for the autologous stem cell procedure (where donor and the receiver is the same person) to save both the hip joints.
The minimally invasive procedure involved taking bone marrow aspirate from the patients pelvis. Stem cells were harvested from the aspirate through a process that takes about 15 minutes. Stems cells were planted in the area of damage under fluoroscopy control following core decompression, Kumar said in a statement on Monday.
He feels that the autologous stem cell treatment could edge out joint replacement procedures to a large extent in the days to come. The scope of this procedure in orthopaedics and sports medicine is enormous. This could be extended to indications including osteoarthritis of knee, shoulder, hip, elbows, ankle and spine, he said.
(This article was published on June 30, 2014)
The rest is here:
Autologous stem cell treatment could be the road ahead
Misconceptions Keep Bone Marrow Registry from Attracting Diverse Donor Pool
By daniellenierenberg
In the second part of our series on the need for bone marrow donors, NY1's Erin Billups takes a look at what goes into donating bone marrow and some of the lingering misconceptions.
Following the death of their colleague, Marlon Layne, members of the marketing firm Ogilvy & Mather started a campaign to get the word out about the prevalence of blood cancers and the need for more diversity within the donor pool.
Over the past three years they've raised nearly $42,000 for the cause and signed up around 160 new donors to the Be the Match Registry.
"I cant change the past but I can ensure that in the future nobody else like Marlon has to be waiting for a marrow registrant from somebody whos of their same race," says Ogilvy & Mather Marketing Analytics Associate Director Omari Jinaki.
Omari Jinaki says he has noticed a level of hesitancy to participate within the black community, though.
"That is rooted, clearly, in hundreds of years of history of being misguided and misrepresented and underrepresented by the systems that are supposed to protect us," Jinaki says.
There's also a lack of awareness of the need within the Latino and Asian communities, and lingering misconceptions the donation process.
Many believe it's painful, with significant recovery time.
"The process has changed in the way one donates bone marrow. Seventy-five percent of the time, it's just like a blood donation," says Icla Da Silva Foundation President Airam Da Silva.
Depending on the recipient's need, most can now donate via a peripheral blood stem cell, or PBSC.
The rest is here:
Misconceptions Keep Bone Marrow Registry from Attracting Diverse Donor Pool
Using geometry, researchers coax human embryonic stem cells to organize themselves
By Sykes24Tracey
20 hours ago Forty-two hours after they began to differentiate, embryonic cells are clearly segregating into endoderm (red), mesoderm (blue) and ectoderm (black). Researchers say the key to achieving this patterning in culture is confining the colonies geometrically. Credit: Brivanlou Lab, The Rockefeller University
About seven days after conception, something remarkable occurs in the clump of cells that will eventually become a new human being. They start to specialize. They take on characteristics that begin to hint at their ultimate fate as part of the skin, brain, muscle or any of the roughly 200 cell types that exist in people, and they start to form distinct layers.
Although scientists have studied this process in animals, and have tried to coax human embryonic stem cells into taking shape by flooding them with chemical signals, until now the process has not been successfully replicated in the lab. But researchers led by Ali Brivanlou, Robert and Harriet Heilbrunn Professor and head of the Laboratory of Stem Cell Biology and Molecular Embryology at The Rockefeller University, have done it, and it turns out that the missing ingredient is geometrical, not chemical.
"Understanding what happens in this moment, when individual members of this mass of embryonic stem cells begin to specialize for the very first time and organize themselves into layers, will be a key to harnessing the promise of regenerative medicine," Brivanlou says. "It brings us closer to the possibility of replacement organs grown in petri dishes and wounds that can be swiftly healed."
In the uterus, human embryonic stem cells receive chemical cues from the surrounding tissue that signal them to begin forming layersa process called gastrulation. Cells in the center begin to form ectoderm, the brain and skin of the embryo, while those migrating to the outside become mesoderm and endoderm, destined to become muscle and blood and many of the major organs, respectively.
Brivanlou and his colleagues, including postdocs Aryeh Warmflash and Benoit Sorre as well as Eric Siggia, Viola Ward Brinning and Elbert Calhoun Brinning Professor and head of the Laboratory of Theoretical Condensed Matter Physics, confined human embryonic stem cells originally derived at Rockefeller to tiny circular patterns on glass plates that had been chemically treated to form "micropatterns" that prevent the colonies from expanding outside a specific radius. When the researchers introduced chemical signals spurring the cells to begin gastrulation, they found the colonies that were geometrically confined in this way proceeded to form endoderm, mesoderm and ectoderm and began to organize themselves just as they would have under natural conditions. Cells that were not confined did not.
By monitoring specific molecular pathways the human cells use to communicate with one another to form patterns during gastrulationsomething that was not previously possible because of the lack of a suitable laboratory modelthe researchers also learned how specific inhibitory signals generated in response to the initial chemical cues function to prevent the cells within a colony from all following the same developmental path.
The research was published June 29 in Nature Methods.
"At the fundamental level, what we have developed is a new model to explore how human embryonic stem cells first differentiate into separate populations with a very reproducible spatial order just as in an embryo," says Warmflash. "We can now follow individual cells in real time in order to find out what makes them specialize, and we can begin to ask questions about the underlying genetics of this process."
The research also has direct implications for biologists working to create "pure" populations of specific cells, or engineered tissues consisting of multiple cell types, for use in medical treatments. "These cells have a powerful intrinsic tendency to form patterns as they develop," Warmflash says. "Varying the geometry of the colonies may turn out to be an important tool that can be used to guide stem cells to form specific cell types or tissues."
See the rest here:
Using geometry, researchers coax human embryonic stem cells to organize themselves
Global Stem Cells Group Subsidiary Regenestem Announces Grand Opening of State-of-the-Art Regenestem Asia Stem Cell …
By daniellenierenberg
Miami (PRWEB) July 01, 2014
Global Stem Cells Group announced the grand opening of Regenestem Asia in Manila, Philippines, adding a new state-of-the-art clinic to the international stem cell medicine company's growing worldwide presence. With clinics in Miami, New York, Los Angeles and Dubai, Regenestem Asia now offers the same comprehensive stem cell treatments and experienced medical staff that have fueled the company's worldwide growth.
The launch of Regenestem Asia is a collaborative effort between Global Stem Cells Group and Eric Yalung, M.D. of the Cosmetic Surgery Institute-Manila, Inc., a prominent plastic surgeon committed to taking stem cell medicine, research and practice in the Philippines to a world-class level. The first Regenestem brand clinic in the Philippines, Regenestem Asia is a 22,000 square foot facility with a focus on offering the most advanced protocols in cosmetic cellular medicine to patients from around the world.
Under Yalung's leadership as Regenestem Medical Director, patients will receive the latest and least-invasive techniques in Stem Cell medicine available. Yalung is joined by a team of talented stem cell specialists to provide world-class patient treatment and follow-up care under the Regenestem brand.
In addition to cosmetic treatments, Regenestem offers stem cell treatments for arthritis, autism, chronic obstructive pulmonary disease (COPD), diabetes and multiple sclerosis among many other medical conditions at various facilities worldwide.
As part of its commitment to maintaining the highest standards in service and technology, Regenestem Asia provides an international staff experienced in administering the leading cellular therapies available.
Like all Regenestem facilities, Regenestem Asia is certified for the medical tourism market, and staff physicians are board-certified or board-eligible. Regenestem clinics provide services in more than 10 specialties, attracting patients from the United States and around the world.
For more information, visit the Regenestem website, email bnovas(at)regenestem(dot)com or call 305-224-1858.
About Regenestem:
Regenestem is a division of the Global Stem Cells Group, Inc., is an international medical practice association committed to researching and producing comprehensive stem cell treatments for patients worldwide. Having assembled a highly qualified staff of medical specialists-professionals trained in the latest cutting-edge techniques in cellular medicine-Regenestem continues to be a leader in delivering the latest protocols in the adult stem cell arena.
See more here:
Global Stem Cells Group Subsidiary Regenestem Announces Grand Opening of State-of-the-Art Regenestem Asia Stem Cell ...
Research team pursues techniques to improve elusive stem cell therapy
By raymumme
Stem cell scientists had what first appeared to be an easy win for regenerative medicine when they discovered mesenchymal stem cells several decades ago. These cells, found in the bone marrow, can give rise to bone, fat, and muscle tissue, and have been used in hundreds of clinical trials for tissue repair. Unfortunately, the results of these trials have been underwhelming. One problem is that these stem cells don't stick around in the body long enough to benefit the patient.
But Harvard Stem Cell Institute (HSCI) scientists at Boston Children's Hospital aren't ready to give up. A research team led by Juan Melero-Martin, PhD, recently found that transplanting mesenchymal stem cells along with blood vessel-forming cells naturally found in circulation improves results. This co-transplantation keeps the mesenchymal stem cells alive longer in mice after engraftment, up to a few weeks compared to hours without co-transplantation. This improved survival gives the mesenchymal stem cells sufficient time to display their full regenerative potential, generating new bone or fat tissue in the recipient mouse body. The finding was published in the Proceedings of the National Academy of Sciences (PNAS).
"We are losing mesenchymal stem cells very rapidly when we transplant them into the body, in part, because we are not giving them what they need," said Melero-Martin, an HSCI affiliated faculty member and an assistant professor of surgery at Boston Children's Hospital, Harvard Medical School.
"In the body, these cells sit very close to the capillaries, constantly receiving signals from them, and even though this communication is broken when we isolate mesenchymal stem cells in a laboratory dish, they seem to be ok because we have learned how to feed them," he said. "But when you put the mesenchymal stem cells back into the body, there is a period of time when they will not have this proximity to capillary cells and they start to die; so including these blood vessel-forming cells from the very beginning of a transplantation made a major difference."
Melero-Martin's research has immediate translational implications, as current mesenchymal clinical trials don't follow a co-transplantation procedure. He is already collaborating with surgical colleagues at Boston Children's Hospital to see if his discovery can help improve fat and bone grafts. However, giving patients two different types of cells, as opposed to just one, would require more time and experiments to determine safety and efficacy. Melero-Martin is seeking to identify the specific signals mesenchymal stem cells receive from the blood vessel-forming cells in order to be able to mimic the signals without the cells themselves.
"Even though mesenchymal stem cells have been around for a while, I think there is still a lack of fundamental knowledge about communication between them and other cells in the body," he said. "My lab is interested in going even beyond what we found to try to understand whether these cell-cell signals are different in each tissue of the body, and to learn how to educate both blood vessel-forming and mesenchymal stem cells to co-ordinate tissue specific regenerative responses."
Other Harvard Stem Cell Institute researchers are studying mesenchymal stem cells as bioengineering tools to deliver therapeutics, which is possible because of the cell type's unique ability to not trigger an immune response. Jeffrey Karp, PhD, at Brigham and Women's Hospital has developed several methods to turn these cells into drug-delivery vehicles, so that after transplantation they can, for example, hone in on swollen tissue and secrete anti-inflammatory compounds. And Khalid Shah, PhD, at Massachusetts General Hospital has designed a gel that holds mesenchymal stem cells in place so that they can expose brain tumors to cancer-killing herpes viruses.
"A lot of these applications have no real direct link with mesenchymal stem cells' supposed progenitor cell function," Melero-Martin said. "In our study, we went back to the collective ambition to use these cells as a way to regenerate tissues and we are not in a position to say how that affects other uses that people are proposing."
Story Source:
The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.
Read more:
Research team pursues techniques to improve elusive stem cell therapy
Her own stem cells saved her from hip replacement
By Dr. Matthew Watson
Apollo Health City team did autologous stem cell procedure to save both the hip joints
Hyderabad, June 30:
A team of doctors from a city hospital have harvested stem cells of a person using bone morrow from the pelvis area to replace some dead tissues in the hip. In this process, they saved the patient from undergoing a hip replacement.
The Apollo Health City team, headed by orthopaedic specialist Paripati Sharat Kumar, diagnosed a 39-year-old woman to be suffering from Avascular Necrosis, making her writhe with pain in her two hip joints. Her condition would require undergoing a replacement of hips.
After assessing her condition, the team has decided to go for autologous stem cell procedure (where donor and the receiver is the same person) to save both the hip joints.
The minimally invasive procedure involved taking bone marrow aspirate from the patients pelvis. Stem cells were harvested from the aspirate, through a process that takes about 15 minutes. Stems cells were planted in the area of damage under fluoroscopy control following core decompression, Sharat Kumar said here in a statementon Monday.
He felt that autologous stem cell treatments could edge out joint replacement procedures to a large extent in days to come. The scope of this procedure in orthopaedics and sports medicine is enormous. This could be extended to indications include osteoarthritis of knee, shoulder, hip, elbows, ankle and spine, he said.
(This article was published on June 30, 2014)
See the original post here:
Her own stem cells saved her from hip replacement
Charlotte Crosby helps young boy in need of bone marrow transplant
By LizaAVILA
Geordie Shore star Charlotte Crosby has become the latest person to sign up to the Anthony Nolan bone marrow register
Geordie Shore star Charlotte Crosby has spat out her support for a baby in need of a life-saving operation.
Charlotte has signed up with the Anthony Nolan Trust after reading about the plight of nine-month-old Joey Ziadi, who is suffering from a rare blood disorder that affects one in nine million people.
The tot from Northampton needs a lifesaving transplant but has not yet found a matching donor so Charlotte has enlisted her 1.89m twitter followers to join the cause.
After hearing about Joeys plight, Charlotte tweeted a selfie with her Anthony Nolan spit kit - the simple piece of equipment which allows people to leave a DNA sample and go on the bone marrow donor register.
She said: I saw the gorgeous Joey Ziadi in the news and I couldnt believe it when I heard how ill he was and that only one in nine million people have his condition I felt like crying. I knew I had to do something, but I didnt know how to help.
When I found out how simple it was to sign up to the Anthony Nolan register, I didnt have to think about it. I just thought Its so easy, why doesnt everyone do this?
Anthony Nolan saves lives by matching people willing to donate their bone marrow or blood stem cells to patients in need of a transplant.
The charity also needs more young men to sign up, as they are most likely to be chosen to donate but make up just 14% of the register. Charlotte said: I was quite shocked that young lads are so underrepresented on the register though. Come on lads, just sign up online and spit into a tube! Im doing it, and I just hope one day I have the chance to save a life.
Joey was diagnosed with an extremely rare blood disorder Diamond Blackfan Anaemia in February. His family have been campaigning to recruit more potential donors to the Anthony Nolan donor register after being told that his best hope of a cure is a bone marrow transplant from a stranger.
Link:
Charlotte Crosby helps young boy in need of bone marrow transplant
NYSCF and eagle-i Network co-develop iPS cell database
By Sykes24Tracey
PUBLIC RELEASE DATE:
19-Jun-2014
Contact: David McKeon DMcKeon@nyscf.org 212-365-7440 New York Stem Cell Foundation
NEW YORK, NY (June 18, 2014) Induced Pluripotent Stem Cells (iPS) hold enormous potential to unravel the mechanisms of human illness and to develop new therapeutics. Until now, there has been no easily searchable database for investigators to find and share these important resources. This has been a major obstacle to the implementation of iPS technology.
Recognizing the research potential of shared iPS cell lines, the New York Stem Cell Foundation (NYSCF) Research Institute and the eagle-i Network will make NYSCF iPS cell lines and related information available to the public on a user-friendly, web-based, searchable database. The database (called the Induced Pluripotent Stem Cell database) will help scientists find valuable resources, enabling collaboration, preventing duplicative work, and ultimately accelerating research.
NYSCF and eagle-i will establish an open access repository of information on large numbers of iPS cell lines. eagle-i will display information as linked open data, enabling discovery by any third party search engine. NYSCF derives hundreds of iPS cell lines from skin samples of patients with a wide variety of diseases using the NYSCF Global Stem Cell ArrayTM technology, an automated platform for high-throughput iPS cell production and differentiation. Scientists will be able to search for NYSCF iPS cell lines under several categories including disease, how the cells were reprogrammed, and patient age at the time the sample was collected.
"This important tool should have significant impact on the science community," said Lee Nadler, principal investigator of Harvard Catalyst and eagle-i. "I'm thrilled that we will contribute to this partnership by creating a user-friendly, searchable database for the iPS cell lines that NYSCF has produced, enabling researchers to search for available lines on an open access platform. The opportunities this will create are tremendous."
"We were very excited to develop this resource for stem cell scientists," said Susan L. Solomon, NYSCF Chief Executive Officer. "It is important to have open access to available resources and this collaboration with eagle-i is a prime example of interdisciplinary teams working together to provide this for the scientific community."
The alpha version of the website will be presented during the International Society for Stem Cell Research (ISSCR) Annual Conference in Vancouver, Canada in June 2014. Future versions of the database will include genomic and other clinical and cellular phenotype information, including a mechanism that will allow scientists to order lines directly from the website. Soon, NYSCF and eagle-i will invite other institutions from around the world to join this collaboration and contribute their iPS cell lines to the Induced Pluripotent Stem Cell database, creating an even more robust research tool.
At the ISSCR Conference this week, Richard V. Pearse, PhD, from eagle-i will be at poster F-2245 during poster session III and NYSCF will be at booth 918 with information pertaining to this new initiative.
View post:
NYSCF and eagle-i Network co-develop iPS cell database
Scientists develop designer T cells to guard against infection after bone marrow transplants
By Sykes24Tracey
Published on June 25, 2014
Scientists develop designer T cells to guard against infection after bone marrow transplants
WASHINGTON - Bone marrow transplants save thousands of lives but patients are vulnerable to severe viral infections in the months afterward, until their new immune system kicks in. Now scientists are developing protection for that risky period injections of cells specially designed to fend off up to five different viruses at once.
"These viruses are a huge problem, and there's a huge need for these products," said Dr. Ann Leen, who leads a team at Baylor College of Medicine and Texas Children's Hospital that found an easier way to produce these long-desired designer T cells.
Healthy people have an army of T cells that roams the body, primed to recognize and fight viruses. People with suppressed immune systems such as those undergoing a bone marrow transplant to treat leukemia or other diseases lack that protection. It can take anywhere from four months to more than a year for marrow stem cells from a healthy donor to take root and start producing new immune cells for the recipient. When patients get sick before then, today's antiviral medications don't always work and cause lots of side effects.
The proposed solution: Take certain virus-fighting T cells from that same bone marrow donor, and freeze them to use if the recipient gets sick. Years of experiments show it can work. But turning the idea into an easy-to-use treatment has been difficult. A dose had to be customized to each donor-recipient pair and protected against only one or two viruses. And it took as long as three months to make.
Wednesday, Leen reported a novel technique to rapidly manufacture so-called virus-specific T cells that can target up to five of the viruses that cause the most trouble for transplant patients: Epstein-Barr virus, adenovirus, cytomegalovirus, BK virus, and human herpesvirus 6.
Essentially, Leen came up with a recipe to stimulate donated T cells in the laboratory so that they better recognize those particular viruses, and then grow large quantities of the cells. It took just 10 days to create and freeze the designer T cells.
To see if they worked, Leen's team treated 11 transplant recipients. Eight had active infections, most with multiple viruses. The cell therapy proved more than 90 per cent effective, nearly eliminating all the viruses from the blood of all the patients, Leen reported in the journal Science Translational Medicine.
The other three patients weren't sick but were deemed at high risk. They were given early doses of the T cells protectively and remained infection-free, Leen said.
Read the original here:
Scientists develop designer T cells to guard against infection after bone marrow transplants
Dr. Lox, 8 WFLA News, Stem Cell Therapy – Video
By raymumme
Dr. Lox, 8 WFLA News, Stem Cell Therapy
Dr. Lox | http://www.drlox.com | 727-462-5582 "It was like a miracle" - Watch as Judy Loar describes her experience with Dr. Dennis Lox to WFLA #39;s Gayle Guyardo.
By: Dr. Lox
Go here to see the original:
Dr. Lox, 8 WFLA News, Stem Cell Therapy - Video
Dr Lox Stem Cell Therapy WFLA News 8 – Video
By daniellenierenberg
Dr Lox Stem Cell Therapy WFLA News 8
Dr. Lox | http://www.drlox.com | 727-462-5582 (WFLA) When Judy Loar, 68, could not bear to walk any longer due to excruciating pain in both of her knees from degenerative joint disease, she did what...
By: Dr. Lox
Visit link:
Dr Lox Stem Cell Therapy WFLA News 8 - Video
New Stem Cell Production Method Could Clear Way for Anticancer Gene Therapy
By Dr. Matthew Watson
Durham, NC (PRWEB) June 27, 2014
A new study released today in STEM CELLS Translational Medicine suggests a new way to produce endothelial progenitor cells in quantities large enough to be feasible for use in developing new cancer treatments.
Endothelial progenitor cells (EPCs) are rare stem cells that circulate in the blood with the ability to differentiate into the cells that make up the lining of blood vessels. With an intrinsic ability to home to tumors, researchers have focused on them as a way to deliver gene therapy straight to the cancer. However, the challenge has been to collect enough EPCs for this use.
This new study, by researchers at the Institute of Bioengineering and Nanotechnology, National University of Singapore and Zhejiang University led by Shu Wang, Ph.D., explored whether human induced pluripotent stem cells (iPSCs) could provide the answer. iPSCs, generated from adult cells, can propagate indefinitely and give rise to every other cell type in the body, much like human embryonic stem cells, which are considered the gold standard for stem cell therapy.
However, human iPS cells can be generated relatively easily through reprogramming, a procedure that circumvents the bioethical controversies associated with deriving embryonic stem cells from human embryos, Dr. Wang said.
After inducing human iPS cells to differentiate into the EPCs, the research team compared the stability and reliability of the induced EPCs with regular EPCs by injecting them into mice with breast cancer that had metastasized (traveled) to the lungs. The results showed that their induced EPCs retained the intrinsic ability to home to tumors, just as regular EPCs do. They also did not promote tumor growth or metastasis.
We next tested the induced EPCs therapeutic potential by infusing them with an anticancer gene and injecting them into the mice, Dr. Wang said. The results indicated that the tumors were reduced and the animals survival rates increased.
Since this approach may use patient's own cells to prepare cellular therapeutics and is based on non-toxic immunotherapy, it holds potential for translation to clinical application and may be particularly valuable as a new type of anti-metastatic cancer therapy.
With the increasing potential of using EPCs as cancer therapeutics, it is important to have a reliable and stable supply of human EPCs, said Anthony Atala, M.D., editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. This study demonstrates the feasibility of generating EPs from early-passage human iPS cells.
###
Read the original post:
New Stem Cell Production Method Could Clear Way for Anticancer Gene Therapy
Cell scientists slow degeneration in motor neuron mice
By Dr. Matthew Watson
TOKYO: Japanese stem cell scientists have succeeded in slowing the deterioration of mice with motor neuron disease, possibly paving the way for eventual human treatment, according to a new paper.
A team of researchers from the Kyoto University and Keio University transplanted specially created cells into mice with amyotrophic lateral sclerosis (ALS), also called Lou Gehrig's, or motor neuron disease.
The progress of the creatures' neurological degeneration was slowed by almost eight per cent, according to the paper, which was published on Thursday in the scholarly journal Stem Cell Reports.
ALS is a disorder of motor neurons -- nerves that control movement -- leading to the loss of the ability to control muscles and their eventual atrophy.
While it frequently has no effect on cognitive function, it progresses to affect most of the muscles in the body, including those used to eat and breathe.
British theoretical physicist Stephen Hawking has been almost completely paralysed by the condition.
In their study, the Japanese team used human "iPS" -- induced pluripotent stem cells, building-block cells akin to those found in embryos, which have the potential to turn into any cell in the body.
From the iPS cells they created special progenitor cells and transplanted them into the lumbar spinal cord of ALS mice.
Animals that had been implanted lived 7.8 per cent longer than the control group without the procedure, the paper said.
"The results demonstrated the efficacy of cell therapy for ALS by the use of human iPSCs (human induced pluripotent stem cells) as cell source," the team said in the paper.
View original post here:
Cell scientists slow degeneration in motor neuron mice
Scientists slow degeneration in motor neurone mice
By daniellenierenberg
Friday 27 June 2014 22.31
Japanese stem cell scientists have succeeded in slowing the deterioration of mice with motor neurone disease, possibly paving the way for eventual human treatment.
A team of researchers from the Kyoto University and Keio University transplanted specially created cells into mice with amyotrophic lateral sclerosis (ALS), also called Lou Gehrig's, or motor neurone disease.
The progress of the creatures' neurological degeneration was slowed by almost eight percent, according to the paper, which was published Thursday in the scholarly journal Stem Cell Reports.
ALS is a disorder of motor neurones -- nerves that control movement -- leading to the loss of the ability to control muscles and their eventual atrophy.
While it frequently has no effect on cognitive function, it progresses to affect most of the muscles in the body, including those used to eat and breathe.
British theoretical physicist Stephen Hawking has been almost completely paralysed by the condition.
In their study, the Japanese team used human "iPS" -- induced pluripotent stem cells, building-block cells akin to those found in embryos, which have the potential to turn into any cell in the body.
From the iPS cells they created special progenitor cells and transplanted them into the lumbar spinal cord of ALS mice.
Animals that had been implanted lived 7.8% longer than the control group without the procedure, the paper said.
See the rest here:
Scientists slow degeneration in motor neurone mice
South Reno Veterinary Hospital is Prolonging Pet Quality of Life with Stem Cell Therapy and the Ability to Bank Cells …
By LizaAVILA
Poway, CA (PRWEB) June 27, 2014
South Reno Veterinary Hospital and Mathew Schmitt, VMD have recently discovered the secret to prolonging a pets quality of life with the use of stem cell therapy, and the ability to bank stem cells for the future care of a pet. Dr. Schmitt and South Reno Veterinary Hospital offer stem cell therapy and stem cell banking through Vet-Stem, Inc. for small animal osteoarthritis and partial ligament tears.
As many as 65% of dogs between the ages of 7 and 11 years old will be inflicted with some degree of arthritis. For certain specific breeds the percentage is as high as 70, such as Labrador Retrievers. Barley, a Labrador mix, was treated using cells from a sample of his own fat, and some stem cells are also stored (or banked) with Vet-Stem just in case he needs future treatment with Dr. Schmitt. Those banked stem cells do not have to be used for the same use as they were originally used for either. For example, if a pet has stem cell therapy initially for osteoarthritis pain and inflammation, the banked stem cells can be used years later for an acute injury.
After rupturing the canine cruciate ligaments in both of his stifles, or hind knees, Barleys pain was managed by medication but then medication was finally not enough and he was facing the possibility of surgery. Dr. Schmitt reported shifting lameness in Barleys hind end, which was a sign of severe discomfort. Barleys owner did not want to put him through surgery on both knees. Instead, Barleys owner elected for stem cell therapy.
I fully believe stem cell therapy has significantly prolonged Barleys quality of life and I am so glad I found out about the therapy when he was injured at six years old. He just turned 13 and his legs are still doing well. It truly is a miracle of science and I tell all my friends about it, said Barleys mom.
Vet-Stem, along with countless research and academic institutions, is working to support additional uses for stem cells which may include treatment for liver disease, kidney disease, auto-immune disorders, and inflammatory bowel disease in animals. These uses for stem cells are in the early stages of development and may provide additional value to the ability to bank stem cells to ensure a pets quality of life into the future.
About Vet-Stem, Inc. Vet-Stem, Inc. was formed in 2002 to bring regenerative medicine to the veterinary profession. The privately held company is working to develop therapies in veterinary medicine that apply regenerative technologies while utilizing the natural healing properties inherent in all animals. As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem, Inc. pioneered the use of regenerative stem cells in veterinary medicine. The company holds exclusive licenses to over 50 patents including world-wide veterinary rights for use of adipose derived stem cells. In the last decade over 10,000 animals have been treated using Vet-Stem, Inc.s services, and Vet-Stem is actively investigating stem cell therapy for immune-mediated and inflammatory disease, as well as organ disease and failure. For more on Vet-Stem, Inc. and Veterinary Regenerative Medicine, visit http://www.vet-stem.com/ or call 858-748-2004.
Read this article:
South Reno Veterinary Hospital is Prolonging Pet Quality of Life with Stem Cell Therapy and the Ability to Bank Cells ...
Adult Stem Cells for Spinal Cord Injuries | Innovations …
By NEVAGiles23
Introduction
Despite advances in early recognition and treatment, spinal cord injuries continue to produce devastating and long lasting disabilities. Patients suffer paralysis that can vary from a partial leg to almost the entire body. In addition, the medical cost of a spinal cord injury patient over a lifetime ranges from $500,000-2,000,000.
The purpose of this paper is to help readers gain a greater understanding of the use of adult stem cells for spinal cord injuries. We also want to offer a framework for evaluating if stem cell treatment should be considered an option for you or your loved one. The paper covers the following:
Feel free to skip to sections that provide information that is helpful to you. For more information including definitions and descriptions of spinal cord injuries visit:
Skip to next section
Spinal cord injuries occur at a rate of 40 persons per million per year in the United States. That translates to over 12,000 new cases a year. Motor vehicle accidents account for almost half of the cases. Falls, violence such as gunshot wounds and sports injuries make up most of the rest. Up to 80% of victims are male. This is a disorder that affects the young; the average age of victims in the US is 38.
The most obvious symptom of spinal cord injury is the paralysis in affected areas. The amount and severity of paralysis depends on several factors including the location and type of injury. Patients can experience anything from a weakness in one extremity to complete paralysis of everything below the neck.
Red areas indicate loss of sensation and motion for injuries at that level
Spinal cord injury patients also experience a number of other complications that include:
See the article here:
Adult Stem Cells for Spinal Cord Injuries | Innovations ...