Page 533«..1020..532533534535..540550..»

Adult stem cells suppress cancer while dormant

By Sykes24Tracey

Los Angeles, Dec 21 : Researchers at UCLA's (University of California, Los Angeles') Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have discovered a mechanism by which certain adult stem cells suppress their ability to initiate skin cancer during their dormant phase an understanding that could be exploited for better cancer-prevention strategies.

The study, which was led by UCLA postdoctoral fellow Andrew White and William Lowry, an associate professor of molecular, cell and developmental biology who holds the Maria Rowena Ross Term Chair in Cell Biology in the UCLA College of Letters and Science, was published online Dec. 15 in the journal Nature Cell Biology.

Hair follicle stem cells, the tissue-specific adult stem cells that generate the hair follicles, are also the cells of origin for cutaneous squamous cell carcinoma, a common skin cancer. These stem cells cycle between periods of activation (during which they can grow) and quiescence (when they remain dormant).

Using mouse models, White and Lowry applied known cancer-causing genes to hair follicle stem cells and found that during their dormant phase, the cells could not be made to initiate skin cancer. Once they were in their active period, however, they began growing cancer.

"We found that this tumor suppression via adult stem cell quiescence was mediated by PTEN, a gene important in regulating the cell's response to signaling pathways," White said.

"Therefore, stem cell quiescence is a novel form of tumor suppression in hair follicle stem cells, and PTEN must be present for the suppression to work."

Understanding cancer suppression through quiescence could better inform preventative strategies for certain patients, such as organ transplant recipients, who are particularly susceptible to squamous cell carcinoma, and for those taking the drug vemurafenib for melanoma, another type of skin cancer.

The study also may reveal parallels between squamous cell carcinoma and other cancers in which stem cells have a quiescent phase.

The research was supported by the California Institute of Regenerative Medicine, the University of California Cancer Research Coordinating Committee and the National Institutes of Health.

--IBNS (Posted on 21-12-2013)

See more here:
Adult stem cells suppress cancer while dormant

To Read More: Adult stem cells suppress cancer while dormant
categoriaUncategorized commentoComments Off on Adult stem cells suppress cancer while dormant | dataDecember 22nd, 2013
Read All

"Leading Edge" Set to Produce New Content Featuring Stem Cell Therapy, with Host Jimmy Johnson

By LizaAVILA

(PRWEB) December 21, 2013

Stem cell therapy has a tremendous potential to cure various illnesses and injuries. Recent news items have highlighted possibilities that it could treat damaged spinal cords or revitalize hip joints. Scientists are working on stem cell remedies for dementia, heart disease and diabetes. Doctors in some countries have begun using this therapy to grow replacement body tissue and treat leukemia.

However, stem cell treatments remain controversial. Some people object to them on ethical or religious grounds. Others express concern about the safety of these newfound cures. Animal testing has revealed that minor mistakes can result in impurities that cause cells to produce tumors and other ill effects. Some patients have died after receiving experimental therapies that weren't adequately tested.

The producers of the "Leading Edge" TV series plan to release a new segment that examines this fascinating yet contentious health topic. Presenter Jimmy Johnson will offer an update on important facts and recent developments in the world of stem cell research. Viewers can benefit from the program's concise and unbiased perspective on an issue that many people have yet to learn about.

"Leading Edge" is independently distributed to local public TV broadcasters across the U.S. The national Public Broadcasting Service does not act as its distributor. To learn more about this informational series, please browse http://www.leadingedgeseries.com or send an email message to the program's producers. They can be reached at info(at)leadingedgeseries(dot)com.

Link:
"Leading Edge" Set to Produce New Content Featuring Stem Cell Therapy, with Host Jimmy Johnson

To Read More: "Leading Edge" Set to Produce New Content Featuring Stem Cell Therapy, with Host Jimmy Johnson
categoriaUncategorized commentoComments Off on "Leading Edge" Set to Produce New Content Featuring Stem Cell Therapy, with Host Jimmy Johnson | dataDecember 22nd, 2013
Read All

Groundbreaking Stem Cell Clinical Trial

By Sykes24Tracey

Florida Hospital Pepin Heart Institute is First in West & Central Florida to Perform a Groundbreaking Stem Cell Clinical Trial for Heart Failure Patients

The first patient has been treated as part of The ATHENA Trial, which derives stem cells from the patientsown adipose (fat) tissue and injects extracted cells into damaged parts of the heart.

TAMPA, Florida (December 20, 2013) Florida Hospital Pepin Heart Institute and Dr. Kiran C. Patel Research Institute announced the first patient, a 59 year old Clearwater man, has been treated as part of the ATHENA clinical trial. The trial, sponsored by San Diego-based Cytori Therapeutics, derives stem cells from the patients own fat tissue and injects extracted cells into damaged parts of the heart. The ATHENA trial is a treatment for chronic heart failure due to coronary heart disease. Dr. Charles Lambert, Medical Director of Florida Hospital Pepin Heart Institute, is leading the way for the first U.S. FDA approved clinical trial using adipose-derived regenerative cells, known as ADRCs, in chronic heart failure patients. I am pleased to report that all procedures went well. The patient is doing well, he was released and is recovering at home. We look forward to following his progress over the coming months, said Dr. Charles Lambert. Heart failure (HF) can occur when the muscles of the heart become weakened and cannot pump blood sufficiently throughout the body. The injury is most often caused by inadequate blood flow to the heart resulting from chronic or acute cardiovascular disease, including heart attacks. The ATHENA clinical trial procedure is a three step process. First, the trial involves the collection of fat from the patients body by liposuction. Then the fat sample is filtered through a machine that extracts out the stem cells. Finally, the stem cells are injected into the damaged part of the patients heart. During this first case at Florida Hospital Pepin Heart Institute, Dr. Paul Smith performed the liposuction to obtain the fat sample, a team at the Dr. Kiran C. Patel Research Institute isolated stem cells from the fat sample and then Dr. Charles Lambert performed the cell therapy by direct injection into the patients heart. Pepin Heart and Dr. Kiran C. Patel Research Institute is exploring and conducting leading-edge research to develop break-through treatments long before they are even available in other facilities. Stem cells have the unique ability to develop into many different cell types, and in many tissues serve as an internal repair system, dividing essentially without limit to replenish other cells, said Dr. Lambert.

The Pepin Heart Institute has a history of cardiovascular stem cell research as part of the NIH sponsored Cardiac Cell Therapy Research Network (CCTRN) as well as other active cell therapy trials. The trial is a double blind, randomized, placebo controlled study designed to study the use of a patients own Adipose-Derived Regenerative Cells (ADRCs) to treat chronic heart failure from coronary heart disease in patients who are on maximal therapy and still have heart failure symptoms. All trial participants undergo a minor liposuction procedure to remove fat (adipose) tissue. Following the liposuction, trial participants may have their tissue processed with Cytoris proprietary Celution System to separate and concentrate cells, and prepare them for therapeutic use. Trial participants will then have either their own cells or a placebo injected back into their damaged heart tissue. To test whether ADRCs will improve heart function, several measurements will be made, including peak oxygen consumption (VO2max), which measures how much physical exercise (gentle walking on a treadmill) a patient can perform, blood flow to the heart (perfusion), the amount of blood in the left ventricle at the end of contraction and relaxation (end-systolic and end-diastolic volumes), and the fraction of blood that is pumped during each contraction (ejection fraction). After the injection procedure, patients are seen in the clinic for follow-up visits over the first 12 months; they are then contacted by phone once a year for up to five years after the procedure.

There are approximately 5.1 million Americans currently living with heart failure, according to the American Heart Association. Chronic heart failure due to coronary heart disease is a severe, debilitating condition caused by restriction of blood flow to the heart muscle, reducing the hearts oxygen supply and limiting its pumping function. Individuals interested in participating in the ATHENA clinical research trial or learning more can visit http://www.theathenatrial.com or call Brian Nordgren, Florida Hospital Pepin Heart Institute Physician Assistant & Stem Cell Program Lead at (813) 615-7527.

About Florida Hospital Tampa Florida Hospital Tampa is a not-for-profit 475-bed tertiary hospital specializing in cardiovascular medicine, neuroscience, orthopaedics, womens services, pediatrics, oncology, endocrinology, bariatrics, wound healing, sleep medicine and general surgery including minimally invasive and robotic-assisted procedures. Also located at Florida Hospital Tampa is the renowned Florida Hospital Pepin Heart Institute, a recognized leader in cardiovascular disease prevention, diagnosis, treatment and leading-edge research. Part of the Adventist Health System, Florida Hospital is a leading health network comprised of 22 hospitals throughout the state. For more information, visit http://www.FHTampa.org.

About Florida Hospital Pepin Heart Institute and Dr. Kiran C. Patel Research Institute Florida Hospital Pepin Heart Institute is a free-standing cardiovascular institute providing comprehensive cardiovascular care with over 76,000 angioplasty procedures and 11,000 open-heart surgeries in the Tampa Bay region. Leading the way with the first accredited chest pain emergency room in Tampa Bay, the institute is among an elite few in the state of Florida chosen to perform the ground breaking Transcatheter Aortic Valve Replacement (TAVR) procedure. It is also a HeartCaring designated provider and a Larry King Cardiac Foundation Hospital. Florida Hospital Pepin Heart Institute and the Dr. Kiran C. Patel Research Institute, affiliated with the University of South Florida (USF), are exploring and conducting leading-edge research to develop break-through treatments long before they are available in most other hospitals. To learn more, visit http://www.FHPepin.org.

ends

Scoop Media

More here:
Groundbreaking Stem Cell Clinical Trial

To Read More: Groundbreaking Stem Cell Clinical Trial
categoriaCardiac Stem Cells commentoComments Off on Groundbreaking Stem Cell Clinical Trial | dataDecember 21st, 2013
Read All

Florida Hospital Pepin Heart Institute is First in West & Central Florida to Perform a Groundbreaking Stem Cell …

By raymumme

(PRWEB) December 20, 2013

Florida Hospital Pepin Heart Institute and Dr. Kiran C. Patel Research Institute announced the first patient, a 59 year old Clearwater man, has been treated as part of the ATHENA clinical trial. The trial, sponsored by San Diego-based Cytori Therapeutics, derives stem cells from the patients own fat tissue and injects extracted cells into damaged parts of the heart. The ATHENA trial is a treatment for chronic heart failure due to coronary heart disease. Dr. Charles Lambert, Medical Director of Florida Hospital Pepin Heart Institute, is leading the way for the first U.S. FDA approved clinical trial using adipose-derived regenerative cells, known as ADRCs, in chronic heart failure patients. I am pleased to report that all procedures went well. The patient is doing well, he was released and is recovering at home. We look forward to following his progress over the coming months, said Dr. Charles Lambert.

Heart failure (HF) can occur when the muscles of the heart become weakened and cannot pump blood sufficiently throughout the body. The injury is most often caused by inadequate blood flow to the heart resulting from chronic or acute cardiovascular disease, including heart attacks. The ATHENA clinical trial procedure is a three step process. First, the trial involves the collection of fat from the patients body by liposuction. Then the fat sample is filtered through a machine that extracts out the stem cells. Finally, the stem cells are injected into the damaged part of the patients heart. During this first case at Florida Hospital Pepin Heart Institute, Dr. Paul Smith performed the liposuction to obtain the fat sample, a team at the Dr. Kiran C. Patel Research Institute isolated stem cells from the fat sample and then Dr. Charles Lambert performed the cell therapy by direct injection into the patients heart. Pepin Heart and Dr. Kiran C. Patel Research Institute is exploring and conducting leading-edge research to develop break-through treatments long before they are even available in other facilities. Stem cells have the unique ability to develop into many different cell types, and in many tissues serve as an internal repair system, dividing essentially without limit to replenish other cells, said Dr. Lambert. The Pepin Heart Institute has a history of cardiovascular stem cell research as part of the NIH sponsored Cardiac Cell Therapy Research Network (CCTRN) as well as other active cell therapy trials. The trial is a double blind, randomized, placebo controlled study designed to study the use of a patients own Adipose-Derived Regenerative Cells (ADRCs) to treat chronic heart failure from coronary heart disease in patients who are on maximal therapy and still have heart failure symptoms. All trial participants undergo a minor liposuction procedure to remove fat (adipose) tissue. Following the liposuction, trial participants may have their tissue processed with Cytoris proprietary Celution System to separate and concentrate cells, and prepare them for therapeutic use. Trial participants will then have either their own cells or a placebo injected back into their damaged heart tissue. To test whether ADRCs will improve heart function, several measurements will be made, including peak oxygen consumption (VO2max), which measures how much physical exercise (gentle walking on a treadmill) a patient can perform, blood flow to the heart (perfusion), the amount of blood in the left ventricle at the end of contraction and relaxation (end-systolic and end-diastolic volumes), and the fraction of blood that is pumped during each contraction (ejection fraction). After the injection procedure, patients are seen in the clinic for follow-up visits over the first 12 months; they are then contacted by phone once a year for up to five years after the procedure. There are approximately 5.1 million Americans currently living with heart failure, according to the American Heart Association. Chronic heart failure due to coronary heart disease is a severe, debilitating condition caused by restriction of blood flow to the heart muscle, reducing the hearts oxygen supply and limiting its pumping function. Individuals interested in participating in the ATHENA clinical research trial or learning more can visit http://www.theathenatrial.com or call Brian Nordgren, Florida Hospital Pepin Heart Institute Physician Assistant & Stem Cell Program Lead at (813) 615-7527.

About Florida Hospital Pepin Heart Institute and Dr. Kiran C. Patel Research Institute Florida Hospital Pepin Heart Institute, located at Florida Hospital Tampa, is a free-standing cardiovascular institute providing comprehensive cardiovascular care with over 76,000 angioplasty procedures and 11,000 open-heart surgeries in the Tampa Bay region. Leading the way with the first accredited chest pain emergency room in Tampa Bay, the institute is among an elite few in the state of Florida chosen to perform the ground breaking Transcatheter Aortic Valve Replacement (TAVR) procedure. It is also a HeartCaring designated provider and a Larry King Cardiac Foundation Hospital. Florida Hospital Pepin Heart Institute and the Dr. Kiran C. Patel Research Institute, affiliated with the University of South Florida (USF), are exploring and conducting leading-edge research to develop break-through treatments long before they are available in most other hospitals. To learn more, visit http://www.FHPepin.org

About Cytori Therapeutics Cytori Therapeutics, Inc. is developing cell therapies based on autologous adipose-derived regenerative cells (ADRCs) to treat cardiovascular disease and repair soft tissue defects. Our scientific data suggest ADRCs improve blood flow, moderate the immune response and keep tissue at risk of dying alive. As a result, we believe these cells can be applied across multiple "ischemic" conditions. These therapies are made available to the physician and patient at the point-of-care by Cytori's proprietary technologies and products, including the Celution system product family. http://www.cytori.com

Original post:
Florida Hospital Pepin Heart Institute is First in West & Central Florida to Perform a Groundbreaking Stem Cell ...

To Read More: Florida Hospital Pepin Heart Institute is First in West & Central Florida to Perform a Groundbreaking Stem Cell …
categoriaCardiac Stem Cells commentoComments Off on Florida Hospital Pepin Heart Institute is First in West & Central Florida to Perform a Groundbreaking Stem Cell … | dataDecember 21st, 2013
Read All

Best Christmas ever as Gaurav gets the gift of life

By daniellenierenberg

It's the Christmas gift one little boys family thought they would never receive a life-saving transplant after a worldwide search for a donor.

But miraculously, two-year-old Gaurav Bains has finally had the operation he desperately needed.

His family have endured a torturous ordeal as the months counted down to a Christmas deadline to find a bone marrow donor with a 100 per cent match.

The young lad had always been ill after being born premature, but earlier this year, after a series of chest infections, he was diagnosed with Monosomy 7 Syndrome, a rare blood condition.

Then in the summer, his family was told his best chance of a healthy life would be if a donor was found before Christmas

Had a match not been found, Gauravs condition meant he would have been likely to develop an aggressive form of childhood leukaemia, which he may not have survived.

But thanks to a huge campaign, and the determination of his family, thousands of people signed up to the donation register from around the country and the world.

And this week the youngster finally had the operation that could save his life.

The whole procedure, which saw donated stem cells passed into his body, only took 90 minutes, and now his family, from Alexandra Road in Tipton, are optimistic.

Dad Sunny Bains, aged 31 and a shopkeeper, said: Everything went alright and he didnt have any side effects.

Go here to read the rest:
Best Christmas ever as Gaurav gets the gift of life

To Read More: Best Christmas ever as Gaurav gets the gift of life
categoriaBone Marrow Stem Cells commentoComments Off on Best Christmas ever as Gaurav gets the gift of life | dataDecember 21st, 2013
Read All

Stem Cell Research Could Lead To A Cure For Baldness, And More

By JoanneRUSSELL25

December 20, 2013

redOrbit Staff & Wire Reports Your Universe Online

Regenerative medicine research conducted throughout this year at the University of Southern California (USC) could lead to new ways to counter baldness and receding hairlines using stem cells.

USC Assistant Professor of Pathology Dr. Krzysztof Kobielak and his colleagues have published a trio of papers in the journals Stem Cells and the Proceedings of the National Academy of Sciences (PNAS) describing some of the biological factors responsible for when hair starts growing, when it stops, and when it falls out.

According to USC, the three studies focused on stem cells that are located in adult hair follicles. Those cells, known as hfSCs, can regenerate both hair follicles and skin, and are governed by bone morphogenetic proteins (BMPs) and the Wnt signaling pathways groups of molecules that work together in order to control the cycles of hair growth and other cellular functions.

The most recent paper, published in the journal Stem Cells in November 2013, focuses on how the gene Wnt7b activates hair growth. Without Wnt7b, hair is much shorter, the team said. Kobielaks team originally proposed Wnt7bs role in a study published this January in PNAS. That paper identified a complex network of genes, including the Wnt and BMP signaling pathways, which controls the cycles of hair growth.

Reduced BMP signaling and increased Wnt signaling activate hair growth, while increased BMP signaling and decreased Wnt signaling keeps the hfSCs in a resting state, the researchers explained. The third paper, published in Stem Cells in September, sheds new light on the BMP signaling pathway. It looked at the function of the proteins Smad1 and Smad 5, which send and receive signals that regulate hair-related stem cells during growth periods.

Collectively, these new discoveries advance basic science and, more importantly, might translate into novel therapeutics for various human diseases, Kobielak explained. Since BMP signaling has a key regulatory role in maintaining the stability of different types of adult stem cell populations, the implication for future therapies might be potentially much broader than baldness and could include skin regeneration for burn patients and skin cancer.

Other USC researchers involved in the studies include postdoctoral fellow Eve Kandyba, Yvonne Leung, Yi-Bu Chen, Randall Widelitz, Cheng-Ming Chuong, Virginia M. Hazen, Agnieszka Kobielak, and Samantha J. Butler. Funding for the research was provided by the Donald E. and Delia B. Baxter Foundation Award and National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (NIH).

Source: redOrbit Staff & Wire Reports - Your Universe Online

Follow this link:
Stem Cell Research Could Lead To A Cure For Baldness, And More

To Read More: Stem Cell Research Could Lead To A Cure For Baldness, And More
categoriaSkin Stem Cells commentoComments Off on Stem Cell Research Could Lead To A Cure For Baldness, And More | dataDecember 21st, 2013
Read All

Induced stem cells – Wikipedia, the free encyclopedia

By LizaAVILA

Induced stem cells (iSC) are stem cells artificially derived from some other (somatic, reproductive, pluripotent etc.) cell types by induced (i.e. initiated, forced) epigenetic reprogramming. In accordance to the developmental potentiality and the degree of cell dedifferentiation caused by induced reprogramming they are distinguished and subdivided as: induced totipotent, induced pluripotent stem cells (iPSc) and, obtained by so-called direct reprogramming or directed forced differentiation, induced progenitor (multipotent or unipotent) stem cells, also called induced somatic stem cells. Currently, there are three ways to reprogram somatic cells into stem cells[1] These are:

The reversible transformation of one differentiated cell type to another type of mature differentiated cells is called metaplasia.[22] This transition from one cell type to another can be a part of the normal maturation process, or caused by some of its inducing stimulus. For example: transformation of cells of the iris to the lens in the process of maturation and transformation of the retinal pigment epithelium cells into the neural retina during regeneration in adult newt eyes. This process allows the body to replace the original cells not suitable to new conditions, into new cells which are more suited to new conditions. In experiments on cells in Drosophila imaginal discs, it was found that there are a limited number of standard discrete states of differentiation and the cells have to choose one of them. The fact that transdetermination (change of the path of differentiation) often take place not in one, but in a group of cells shows that it is not caused by a mutation but is induced.[23][24]

Some types of mature, specialized adult cells can naturally revert to stem cells. For example, differentiated cells, which are called chief cells and express the stem cell marker Troy, normally produce digestive fluids for the stomach, yet they can change back into stem cells to make temporary repairs in significant stomach injuries, such as a cut or damage from infection. Moreover theyre making this transition even in the absence of noticeable injuries and are capable of replenishing entire gastric units, essentially serving as quiescent reserve stem cells.[25] Differentiated airway epithelial cells can revert into stable and functional stem cells in vivo.[26] After injury, mature terminally differentiated kidney cells dedifferentiate into more primordial versions of themselves, and then differentiate into the cell types needing replacement in the damaged tissue[27] Macrophages can self-renew by local proliferation of mature differentiated cells.[28] In Newts, muscle tissue is regenerated from specialized muscle cells that dedifferentiate and forget what type of cell they've been. This capacity to regenerate tissue does not decline with age, which may be linked to their ability to make new stem cells from muscle cells on demand.[29]

It should be noted that there are also a variety of nontumorigenic stem cells with the ability to generate the multiple cell types. For instance, multilineage-differentiating stress-enduring (Muse) cells are the stress-tolerant adult human stem cells that can self-renew; form characteristic cell clusters in suspension culture that express a set of genes associated with pluripotency; and can differentiate into endodermal, ectodermal, and mesodermal cells both in vitro and in vivo.[30][31][32][33]

Detailed description of some other well-documented examples of transdifferentiation, and their significance in development and regeneration are reviewed in.[34]

Induced totipotent cells usually can be obtained by reprogramming somatic cells by somatic-cell nuclear transfer (SCNT) to the recipient eggs or oocytes.[3][5][35][36][37] Sometimes may be used the oocytes of other species, such as sheep.[38] New possibilities for creating genetically modified animals opens method of induced androgenetic haploid embryonic stem cells, which can be used instead of sperm. These cells, synchronized in M phase and injected into the oocyte allow to get viable offspring.[39] These developments, together with data on the possibility to obtain unlimited number of oocytes from mitotically active reproductive stem cells[40] offer the possibility of industrial production of transgenic farm animals. Repeated recloning of viable mice through a somatic cell nuclear transfer method that includes a histone deacetylase inhibitor trichostatin, added to the cell culture medium,[41] show that it may be possible to reclone animals indefinitely without any visible accumulation of reprogramming or genomic errors [42] However, research into technologies to develop sperm and egg cells from stem cells bring up bioethical issues.

Such technologies may also have far-reaching clinical applications for overcoming cytoplasmic defects in human oocytes.[43][44][45] For example, the technology have been developed that could prevent inherited mitochondrial disease being passed on to the next generation. Mitochondria, often described as the powerhouse of the cell, contain genetic material, which is passed from mother to child. Mutations on mitochondrial DNA can cause diabetes, deafness, eye disorders, gastrointestinal disorders, heart disease, dementia and several other neurological diseases. The nucleus from one human egg cell have been transferred to another egg, effectively swapping the cell cytoplasm, which includes the mitochondria (and their DNA), creating a cell that could be regarded as having two mothers. The eggs were then fertilised, and the resulting embryonic stem cells carried the swapped mitochondrial DNA.[46]

Read more about the latest achievements of the cloning techniques and the generation of totipotent cells, in:[47]

See also main article: induced pluripotent stem cells (iPSc)

First iPSc were obtained in the form of transplantable teratocarcinoma induced by the graft taken from mouse embryos.[48] It was shown that teratocarcinoma formed from somatic cells.[49] The fact that normal genetically mosaic mice can be obtained from malignant teratocarcinoma cells confirmed their pluripotency.[50][51][52] It turned out that teratocarcinoma cells are able to maintain a culture of pluripotent embryonic stem cells in an undifferentiated state, by supplying the culture medium with various factors.[53] Thus, as early as in the 1980s, it became clear that the transplantation of pluripotent or embryonic stem cells into the body of adult mammals, usually leads to the formation of teratomas, which can then turn into a malignant tumor teratocarcinoma.[54] If, however, to put the teratocarcinoma cells into the early mammal embryo (at the blastocyst stage), they became incorporated in the cell mass of blastocysts and from such a chimeric (i.e. composed of cells from different organisms) blastocyst often develops normal chimeric animal.[55][56][57] This indicated that the cause of the teratoma is a dissonance - mutual misunderstanding of "speech" of young donor cells and surrounding adult cells (so-called niche) of the recipient.

Here is the original post:
Induced stem cells - Wikipedia, the free encyclopedia

To Read More: Induced stem cells – Wikipedia, the free encyclopedia
categoriaCardiac Stem Cells commentoComments Off on Induced stem cells – Wikipedia, the free encyclopedia | dataDecember 19th, 2013
Read All

Ex-Mounties serve as couriers for life-saving bone marrow stem cells

By NEVAGiles23

Keith Leishman, a retired RCMP staff sergeant and former CSIS officer, was sent on a critical international mission this year but not the kind youd think.

It had nothing to so with detective work or espionage: Leishman completed a high-stakes medical mission as a volunteer bone marrow stem cell courier.

The 72-year-old South Surrey resident is one of a dozen retired Mounties recruited and trained by the Bruce Denniston Bone Marrow Society to make crucial deliveries of human tissue to B.C. patients awaiting life-saving treatments.

The Bone Marrow Courier Program was set up by the Society and Vancouver Coastal Health in 2012. Formerly, Vancouver General Hospital staff served as couriers, but as more treatments were performed, some staff were away 50 per cent of the year. And, it was costly.

Because of the delicate nature of human tissue transport, not just any volunteer would do. Yet retired Mounties have experience with stressful operations, understand the importance of securing evidence and confidentiality, and are accustomed to dealing calmly and authoritatively with security.

One of the advantages they see with RCMP officers is the experience they have with continuity of possession, Leishman explained. Just like you take a piece of evidence, once we take possession of those stem cells they cant leave our sight until we turn them over at the lab at VGH. There is a very strict protocol in place.

Deliveries must be made within 72 hours of removal from a donor, as the tissue starts to degrade. Samples must be kept at a precise temperature and in sight at all times even while navigating customs and airport security.

Leishman went on his first mission in mid-September, flying to Berlin to collect a sample. He secured it as his carry-on luggage, got it safely through customs but never through X-rays, which damage the material and completed his mission without incident. Others have faced flight delays, airline strikes and bad weather.

Volunteers often spend just 24 hours on the ground.

Its not a holiday, he said. You are focused on getting that package back to someone who is very ill. It could be someones last chance.

More:
Ex-Mounties serve as couriers for life-saving bone marrow stem cells

To Read More: Ex-Mounties serve as couriers for life-saving bone marrow stem cells
categoriaBone Marrow Stem Cells commentoComments Off on Ex-Mounties serve as couriers for life-saving bone marrow stem cells | dataDecember 19th, 2013
Read All

Stem cells offer clues to reversing receding hairlines

By Dr. Matthew Watson

Dec. 18, 2013 Regenerative medicine may offer ways to banish baldness that don't involve toupees. The lab of USC scientist Krzysztof Kobielak, MD, PhD has published a trio of papers in the journals Stem Cells and The Proceedings of the National Academy of Sciences (PNAS) that describe some of the factors that determine when hair grows, when it stops growing and when it falls out.

Authored by Kobielak, postdoctoral fellow Eve Kandyba, PhD, and their colleagues, the three publications focus on stem cells located in hair follicles (hfSCs), which can regenerate hair follicles as well as skin. These hfSCs are governed by the signaling pathways BMP and Wnt -- which are groups of molecules that work together to control cell functions, including the cycles of hair growth.

The most recent paper, published in the journal Stem Cells in November 2013, focuses on how the gene Wnt7b activates hair growth. Without Wnt7b, hair is much shorter.

The Kobielak lab first proposed Wnt7b's role in a January 2013 PNAS publication. The paper identified a complex network of genes -- including the Wnt and BMP signaling pathways -- controlling the cycles of hair growth. Reduced BMP signaling and increased Wnt signaling activate hair growth. The inverse -- increased BMP signaling and decreased Wnt signaling -- keeps the hfSCs in a resting state.

Both papers earned the recommendation of the Faculty of 1000, which rates top articles by leading experts in biology and medicine.

A third paper published in Stem Cells in September 2013 further clarified the workings of the BMP signaling pathway by examining the function of two key proteins, called Smad1 and Smad5. These proteins transmit the signals necessary for regulating hair stem cells during new growth.

"Collectively, these new discoveries advance basic science and, more importantly, might translate into novel therapeutics for various human diseases," said Kobielak. "Since BMP signaling has a key regulatory role in maintaining the stability of different types of adult stem cell populations, the implication for future therapies might be potentially much broader than baldness -- and could include skin regeneration for burn patients and skin cancer."

Originally posted here:
Stem cells offer clues to reversing receding hairlines

To Read More: Stem cells offer clues to reversing receding hairlines
categoriaSkin Stem Cells commentoComments Off on Stem cells offer clues to reversing receding hairlines | dataDecember 19th, 2013
Read All

Researchers Generate Kidney Tubular Cells From Stem Cells

By raymumme

Contact Information

Available for logged-in reporters only

Highlights Investigators have discovered a cocktail of chemicals which, when added to stem cells in a precise order, turns on genes found in kidney cells in the same order that they turn on during embryonic kidney development. The kidney cells continued to behave like kidney cells when transplanted into adult or embryonic mouse kidneys.

Newswise Washington, DC (December 19, 2013) Researchers have successfully coaxed stem cells to become kidney tubular cells, a significant advance toward one day using regenerative medicine, rather than dialysis and transplantation, to treat kidney failure. The findings are published in the Journal of the American Society of Nephrology (JASN).

Chronic kidney disease is a major global public health problem, and when patients progress to kidney failure, their treatment options are limited to dialysis and kidney transplantation. Regenerative medicinewhich involves rebuilding or repairing tissues and organsmay offer a promising alternative.

Albert Lam, MD, Benjamin Freedman, PhD, Ryuji Morizane, MD, PhD (Brigham and Womens Hospital), and their colleagues have been working for the past five years to develop strategies to coax human pluripotent stem cellsparticularly human embryonic stem (ES) cells and human induced pluripotent stem (iPS) cellinto kidney cells for the purposes of kidney regeneration.

Our goal was to develop a simple, efficient, and reproducible method of differentiating human pluripotent stem cells into cells of the intermediate mesoderm, the earliest tissue in the developing embryo that is fated to give rise to the kidneys, said Dr. Lam. He noted that these cells would be the starting blocks for deriving more specific kidney cells.

The researchers discovered a cocktail of chemicals which, when added to stem cells in a precise order, causes them to turn off genes found in ES cells and turn on genes found in kidney cells, in the same order that they turn on during embryonic kidney development. The investigators were able to differentiate both human ES cells and human iPS cells into cells expressing PAX2 and LHX1, two key markers of the intermediate mesoderm. The iPS cells were derived by transforming fibroblasts obtained from adult skin biopsies to pluripotent cells, making the techniques applicable to personalized approaches where the starting cells can be derived from skin cells of a patient. The differentiated cells expressed multiple genes expressed in intermediate mesoderm and could spontaneously give rise to tubular structures that expressed markers of mature kidney tubules. The researchers could then differentiate them further into cells expressing SIX2, SALL1, and WT1, important markers of the metanephric cap mesenchyme, a critical stage of kidney differentiation. In kidney development, the metanephric cap mesenchyme contains a population of progenitor cells that give rise to nearly all of the epithelial cells of the kidney.

The cells also continued to behave like kidney cells when transplanted into adult or embryonic mouse kidneys, giving hope that investigators might one day be able to create kidney tissues that could function in a patient and would be 100% immunocompatible.

We believe that the successful derivation of kidney progenitor cells or functional kidney cells from human pluripotent stem cells will have an enormous impact on a variety of clinical and translational applications, including kidney tissue bioengineering, renal assist devices to treat acute and chronic kidney injury, drug toxicity screening, screening for novel therapeutics, and human kidney disease modeling, said Dr. Lam.

Go here to read the rest:
Researchers Generate Kidney Tubular Cells From Stem Cells

To Read More: Researchers Generate Kidney Tubular Cells From Stem Cells
categoriaSkin Stem Cells commentoComments Off on Researchers Generate Kidney Tubular Cells From Stem Cells | dataDecember 19th, 2013
Read All

Mayo cell therapy researcher plans to grow stem cells in space, where he thinks they will grow faster than on Earth

By daniellenierenberg

Abba Zubair, medical and scientific director of the Cell Therapy Laboratory at the Mayo Clinic in Jacksonville, wants to test the feasibility of growing stem cells in outer space, cells that could be used to generate new tissue and even new organs in human beings.

There are reasons to believe that stem cells, which are hard to grow in the great quantity they are needed on Earth, will grow much more rapidly in the microgravity environment in space, Zubair thinks. Now the Center for the Advancement in Science in Space has given Zubair a $300,000 grant to test that by placing stem cells in a specialized cell bioreactor in the International Space Station.

It now takes a month to generate enough cells for a few patients, Zubair said. A clinical laboratory in space could provide the answer we all have been seeking for regenerative medicine. ... If you have a ready supply of these cells, you can treat almost any condition and can theoretically regenerate entire organs using a scaffold. Additionally, they dont need to come from individual patients. Anyone can use them without rejection.

The stem cells he plans to grow in space will be stem cells that can induce regeneration of neurons and blood vessels in patients who have suffered hemorrhagic strokes caused by blood clots.

I have a special personal interest in stroke, Zubair said. Thats what killed my mom years ago. I really would like to conquer and treat stroke.

The first step in growing stem cells in space is happening at the University of Colorado where engineers are building the cell bioreactor Zubair will use on the space station. Within a year, Zubair hopes to transport the bioreactor and stem cells to the space station, perhaps aboard a flight by SpaceX, a company expected to begin commercial flights to the space station soon.

Once the bioreactor and stem cells are aboard the space station, it will take about a month to grow them, Zubair said. The results will then be analyzed by the astronauts on the space station and by researches back in Zubairs Jacksonville laboratories.

We will be trying to determine if our notion that stem cells grow faster in microgravity is true, Zubair said. We also want to know how feasible it is to produce clinical grade cells in space that can be used in humans.

Hes optimistic his study will show that growing stem cells in space is a viable way to create stem cells in quantity.

Were quite excited, he said. I really think the future is full of promise. We just have to take the opportunity to make that a reality.

Visit link:
Mayo cell therapy researcher plans to grow stem cells in space, where he thinks they will grow faster than on Earth

To Read More: Mayo cell therapy researcher plans to grow stem cells in space, where he thinks they will grow faster than on Earth
categoriaUncategorized commentoComments Off on Mayo cell therapy researcher plans to grow stem cells in space, where he thinks they will grow faster than on Earth | dataDecember 19th, 2013
Read All

Stem Cell Therapy – Facet Syndrome Patients Relieve Back and Neck Pain Dr Robert Wagner – NSPC – Video

By Sykes24Tracey


Stem Cell Therapy - Facet Syndrome Patients Relieve Back and Neck Pain Dr Robert Wagner - NSPC
How to know if the cause of your back or neck pain is Facet Syndrome. Discover how biologic regenerative treatments are able to pick up where traditional tre...

By: StemCell Arts

Excerpt from:
Stem Cell Therapy - Facet Syndrome Patients Relieve Back and Neck Pain Dr Robert Wagner - NSPC - Video

To Read More: Stem Cell Therapy – Facet Syndrome Patients Relieve Back and Neck Pain Dr Robert Wagner – NSPC – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy – Facet Syndrome Patients Relieve Back and Neck Pain Dr Robert Wagner – NSPC – Video | dataDecember 19th, 2013
Read All

Stem Cell Therapy by Vet-Stem, a Surprising Alternative to Hip Surgery for a New Jersey Chocolate Labrador Retriever

By NEVAGiles23

Poway, CA (PRWEB) December 19, 2013

Amazing Grace Hamiltons banked stem cells from Vet-Stem, Inc. have recently helped her avoid hip surgery for the second time. Gracie is now nearly 12 years old and her owners noticed her activities had dramatically slowed in the last year. They turned to banked stem cells that Gracie had stored with Vet-Stem, Inc. in Poway, California to help with the discomfort and pain of arthritis that was slowing her down.

When Gracies owners brought her to Garden State Veterinary Specialists in Tinton Falls, New Jersey in October of this year the x-rays showed a severely deteriorated right hip. Dr. Thomas Scavelli and Dr. Michael Hoelzler were very concerned and recommended hip replacement. Gracies owners wanted to try stem cell therapy first, since it had given them such positive results five years before.

We needed to give the stem cells a try before going to the more invasive surgical approach, Mrs. Hamilton said. At the time of the procedure Dr. Hoelzler told me that Gracies hips were the worst he had seen, but in just a couple of days after the stem cell therapy we began to see a difference. Just shy of two weeks after the procedure I took her back to Dr. Hoelzler and he was very impressed. She was walking comfortably.

At three years Gracie had been diagnosed with hip dysplasia. By six years of age she had slowed to the point of great concern as her owners described it. The pain caused by arthritis from the hip dysplasia was beginning to interfere with her life.

Gracie was no longer running and jumping, and certain activities had become difficult (like climbing onto my husbands sailboat). She also had a noticeable limp, Mrs. Hamilton remembered the signs of pain and discomfort that prompted Gracies first stem cell therapy five years before.

Gracie was brought to Dr. Scavelli in 2008 with painful symptoms, and stem cell therapy for pets was the latest, cutting edge treatment. Gracies owners understood that without stem cell therapy Gracie would have faced hip surgery at the time.

We are grateful for stem cell therapy which has restored Gracies ability to enjoy her morning walks again, Mrs. Hamilton shared, She enjoys wrestling with us and playing with her toys. She looks forward to visiting her friends, and prances around like a puppy. Gracie is a happy dog and we are happy owners because she does not appear to be in pain anymore!

About Vet-Stem, Inc.

Vet-Stem, Inc. was formed in 2002 to bring regenerative medicine to the veterinary profession. The privately held company is working to develop therapies in veterinary medicine that apply regenerative technologies while utilizing the natural healing properties inherent in all animals. As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem, Inc. pioneered the use of regenerative stem cells in veterinary medicine. The company holds exclusive licenses to over 50 patents including world-wide veterinary rights for use of adipose derived stem cells. In the last decade over 10,000 animals have been treated using Vet-Stem, Inc.s services, and Vet-Stem is actively investigating stem cell therapy for immune-mediated and inflammatory disease, as well as organ disease and failure. For more on Vet-Stem, Inc. and Veterinary Regenerative Medicine visit http://www.vet-stem.com or call 858-748-2004.

See the original post:
Stem Cell Therapy by Vet-Stem, a Surprising Alternative to Hip Surgery for a New Jersey Chocolate Labrador Retriever

To Read More: Stem Cell Therapy by Vet-Stem, a Surprising Alternative to Hip Surgery for a New Jersey Chocolate Labrador Retriever
categoriaUncategorized commentoComments Off on Stem Cell Therapy by Vet-Stem, a Surprising Alternative to Hip Surgery for a New Jersey Chocolate Labrador Retriever | dataDecember 19th, 2013
Read All

Types of stem cell transplants for treating cancer

By JoanneRUSSELL25

In a typical stem cell transplant for cancer very high doses of chemo are used, often along with radiation therapy, to try to destroy all the cancer cells. This treatment also kills the stem cells in the bone marrow. Soon after treatment, stem cells are given to replace those that were destroyed. These stem cells are given into a vein, much like a blood transfusion. Over time they settle in the bone marrow and begin to grow and make healthy blood cells. This process is called engraftment.

There are 3 basic types of transplants. They are named based on who gives the stem cells.

These stem cells come from you alone. In this type of transplant, your stem cells are taken before you get cancer treatment that destroys them. Your stem cells are removed, or harvested, from either your bone marrow or your blood and then frozen. To find out more about that process, please see the section Whats it like to donate stem cells? After you get high doses of chemo and/or radiation the stem cells are thawed and given back to you.

One advantage of autologous stem cell transplant is that you are getting your own cells back. When you donate your own stem cells you dont have to worry about the graft attacking your body (graft-versus-host disease) or about getting a new infection from another person. But there can still be graft failure, and autologous transplants cant produce the graft-versus-cancer" effect.

This kind of transplant is mainly used to treat certain leukemias, lymphomas, and multiple myeloma. Its sometimes used for other cancers, like testicular cancer and neuroblastoma, and certain cancers in children. Doctors are looking at how autologous transplants might be used to treat other diseases, too, like systemic sclerosis, multiple sclerosis, Crohn disease, and systemic lupus erythematosis.

A possible disadvantage of an autologous transplant is that cancer cells may be picked up along with the stem cells and then put back into your body later. Another disadvantage is that your immune system is still the same as before when your stem cells engraft. The cancer cells were able to grow despite your immune cells before, and may be able to do so again.

To prevent this, doctors may give you anti-cancer drugs or treat your stem cells in other ways to reduce the number of cancer cells that may be present. Some centers treat the stem cells to try to remove any cancer cells before they are given back to the patient. This is sometimes called purging. It isnt clear that this really helps, as it has not yet been proven to reduce the risk of cancer coming back (recurrence).

A possible downside of purging is that some normal stem cells can be lost during this process, causing the patient to take longer to begin making normal blood cells, and have unsafe levels of white blood cells or platelets for a longer time. This could increase the risk of infections or bleeding problems.

One popular method now is to give the stem cells without treating them. Then, after transplant, the patient gets a medicine to get rid of cancer cells that may be in the body. This is called in vivo purging. Rituximab (Rituxan), a monoclonal antibody drug, may be used for this in certain lymphomas and leukemias, and other drugs are being tested. The need to remove cancer cells from transplants or transplant patients and the best way to do it is being researched.

Doing 2 autologous transplants in a row is known as a tandem transplant or a double autologous transplant. In this type of transplant, the patient gets 2 courses of high-dose chemo, each followed by a transplant of their own stem cells. All of the stem cells needed are collected before the first high-dose chemo treatment, and half of them are used for each transplant. Most often both courses of chemo are given within 6 months, with the second one given after the patient recovers from the first one.

Read this article:
Types of stem cell transplants for treating cancer

To Read More: Types of stem cell transplants for treating cancer
categoriaBone Marrow Stem Cells commentoComments Off on Types of stem cell transplants for treating cancer | dataDecember 18th, 2013
Read All

Study Shows Therapeutic Potential of Fat-derived Stem Cells Declines As Donor’s Age Rises

By raymumme

Durham, NC (PRWEB) December 18, 2013

A new study released today in STEM CELLS Translational Medicine demonstrates that the therapeutic value of stem cells collected from fat declines when the cells come from older patients.

This could restrict the effectiveness of autologous cell therapy using fat, or adipose-derived mesenchymal stromal cells (ADSCs), and require that we test cell material before use and develop ways to pretreat ADSCs from aged patients to enhance their therapeutic potential, said Anastasia Efimenko, M.D., Ph.D. She and Nina Dzhoyashvili, M.D., were first authors of the study led by Yelena Parfyonova, M.D., D.Sc., at Lomonosov Moscow State University, Moscow.

Cardiovascular disease remains the most common cause of death in most countries. Mesenchymal stromal cells (MSCs), stem cells collected from either bone marrow or adipose tissue, are considered one of the most promising therapeutic agents for regenerating damaged tissue because of their proliferation potential and ability to be coaxed into different cell types. Importantly, they also have the ability to stimulate the growth of new blood vessels, a process known as angiogenesis.

Adipose tissue in particular is considered an ideal source for MSCs because it is largely dispensable and the stem cells are easily accessible in large amounts using a minimally invasive procedure. ADSCs have been used in several clinical trials looking at cell therapy for heart conditions, but most of the studies employed cells taken from relatively healthy young donors rather than sick, older ones the typical patient when it comes to heart disease.

We knew that aging and disease itself may negatively affect MSC activities, Dr. Dzhoyashvili said. So the aim of our study was to investigate how patient age affects the properties of ADSCs, with special emphasis on their ability to stimulate angiogenesis.

The team analyzed age-associated changes in ADSCs collected from patients of different age groups, including some with coronary artery disease and some without. The results showed that ADSCs from the older patients in both groups expressed various age markers, including shorter telomeres, and, thus, confirmed that ADSCs did age. Telomeres, the regions of repetitive DNA at the end of a chromosome, protect it from deterioration.

We showed that ADSCs from older patients both with and without coronary artery disease produced significantly less amounts of angiogenesis-stimulating factors compared with the younger patients in the study and their angiogenic capabilities lessened, Dr. Efimenko concluded. The results provide new insight into molecular mechanisms underlying the age-related decline of stem cells therapeutic potential.

These findings are significant because the successful development of cell therapies depends on a thorough understanding of how age may affect the regenerative potential of autologous cells, said Anthony Atala, M.D., editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine.

###

Read more from the original source:
Study Shows Therapeutic Potential of Fat-derived Stem Cells Declines As Donor’s Age Rises

To Read More: Study Shows Therapeutic Potential of Fat-derived Stem Cells Declines As Donor’s Age Rises
categoriaBone Marrow Stem Cells commentoComments Off on Study Shows Therapeutic Potential of Fat-derived Stem Cells Declines As Donor’s Age Rises | dataDecember 18th, 2013
Read All

Preferable treatment for MS found in allogenic bone marrow stem cells

By raymumme

PUBLIC RELEASE DATE:

18-Dec-2013

Contact: Robert Miranda cogcomm@aol.com Cell Transplantation Center of Excellence for Aging and Brain Repair

Putnam Valley, NY. (Dec. 18, 2013) Multiple sclerosis (MS), an inflammatory autoimmune disease affecting more than one million people worldwide, is caused by an immune reaction to myelin proteins, the proteins that help form the myelin insulating substance around nerves. Demyelination and MS are a consequence of this immune reaction. Bone marrow mesenchymal stem cells (MSCs) have been considered as an important source for cell therapy for autoimmune diseases such as MS because of their immunosuppressive properties.

Now, a research team in Brazil has compared MSCs isolated from MS patients and from healthy donors to determine if the MSCs from MS patients are normal or defective. The study will be published in a future issue of Cell Transplantation but is currently freely available on-line as an unedited early e-pub at: http://www.ingentaconnect.com/content/cog/ct/pre-prints/content-ct1131.

"The ability of MSCs to modulate the immune response suggests a possible role of these cells in tolerance induction in patients with autoimmune diseases, and also supports the rationale for MSC application in the treatment of MS," said study corresponding author Dr. Gislane Lelis Vilela de Oliveira of the Center for Cell-Based Research at the University of Sao Paulo. "We found that MS patient-derived MSCs present higher senescence, or biological aging, and decreased expression of important immune system markers as well as a different transcriptional profile when compared to their healthy counterparts."

The researchers suggested that further clinical studies should be conducted using transplanted allogenic (other-donated) MSCs derived from healthy donors to determine if the MSCs have a therapeutic effect over transplanted autologous (self-donated) MSCs from patients.

"Several reports have shown that bone marrow-derived MSCs are able to modulate innate and adaptive immunity cell responses and induce tolerance, thus supporting the rationale for their application in treating autoimmune diseases, " said the researchers.

They also noted that studies have shown that transplanted MSCs migrate to demyelinated areas as well as induce generation and expansion of regulatory T cells, important in immunity.

"We found that the transcriptional profile of patient MSCs after transplantation was closer to that of their pre-transplant MSC samples than those from their healthy counterparts, suggesting that treatment with patient self-donated MSCs does not reverse the alterations we observed in MSCs from MS patients," they concluded.

Follow this link:
Preferable treatment for MS found in allogenic bone marrow stem cells

To Read More: Preferable treatment for MS found in allogenic bone marrow stem cells
categoriaBone Marrow Stem Cells commentoComments Off on Preferable treatment for MS found in allogenic bone marrow stem cells | dataDecember 18th, 2013
Read All

Mayo Clinic researcher to grow human cells in space to test treatment for stroke

By Sykes24Tracey

PUBLIC RELEASE DATE:

18-Dec-2013

Contact: Kevin Punsky punsky.kevin@mayo.edu 904-953-2299 Mayo Clinic

JACKSONVILLE, Fla. -- Abba Zubair, M.D., Ph.D, believes that cells grown in the International Space Station (ISS) could help patients recover from a stroke, and that it may even be possible to generate human tissues and organs in space. He just needs a chance to demonstrate the possibility.

He now has it. The Center for the Advancement of Science in Space (CASIS), a nonprofit organization that promotes research aboard the ISS, has awarded Dr. Zubair a $300,000 grant to send human stem cells into space to see if they grow more rapidly than stem cells grown on Earth.

Dr. Zubair, medical and scientific director of the Cell Therapy Laboratory at Mayo Clinic in Florida, says the experiment will be the first one Mayo Clinic has conducted in space and the first to use these human stem cells, which are found in bone marrow.

"On Earth, we face many challenges in trying to grow enough stem cells to treat patients," he says. "It now takes a month to generate enough cells for a few patients. A clinical-grade laboratory in space could provide the answer we all have been seeking for regenerative medicine."

He specifically wants to expand the population of stem cells that will induce regeneration of neurons and blood vessels in patients who have suffered a hemorrhagic stroke, the kind of stroke which is caused by blood clot. Dr. Zubair already grows such cells in his Mayo Clinic laboratory using a large tissue culture and several incubators -- but only at a snail's pace.

Experiments on Earth using microgravity have shown that stem cells -- the master cells that produce all organ and tissue cell types -- will grow faster, compared to conventionally grown cells.

"If you have a ready supply of these cells, you can treat almost any condition, and can theoretically regenerate entire organs using a scaffold," Dr. Zubair says. "Additionally, they don't need to come from individual patients -- anyone can use them without rejection."

See the original post:
Mayo Clinic researcher to grow human cells in space to test treatment for stroke

To Read More: Mayo Clinic researcher to grow human cells in space to test treatment for stroke
categoriaBone Marrow Stem Cells commentoComments Off on Mayo Clinic researcher to grow human cells in space to test treatment for stroke | dataDecember 18th, 2013
Read All

Stroke and Stem Cell Therapy

By LizaAVILA

Gypenosides pre-treatment protects the brain against cerebral ischemia and increases neural stem cells/progenitors in the subventricular zone.

Gypenosides pre-treatment protects the brain against cerebral ischemia and increases neural stem cells/progenitors in the subventricular zone.

Int J Dev Neurosci. 2013 Dec 12;

Authors: Wang XJ, Sun T, Kong L, Shang ZH, Yang KQ, Zhang QY, Jing FM, Dong L, Xu XF, Liu JX, Xin H, Chen ZY

Abstract Gypenosides (GPs) have been reported to have neuroprotective effects in addition to other bioactivities. The protective activity of GPs during stroke and their effects on neural stem cells (NSCs) in the ischemic brain have not been fully elucidated. Here, we test the effects of GPs during stroke and on the NSCs within the subventricular zone (SVZ) of middle cerebral artery occlusion (MCAO) rats. Our results show that pre-treatment with GPs can reduce infarct volume and improve motor function following MCAO. Pre-treatment with GPs significantly increased the number of BrdU-positive cells in the ipsilateral and contralateral SVZ of MCAO rats. The proliferating cells in both sides of the SVZ were glial fibrillary acidic protein (GFAP)/nestin-positive type B cells and Doublecortin (DCX)/nestin-positive type A cells. Our data indicate that GPs have neuroprotective effects during stroke which might be mediated through the enhancement of neurogenesis within the SVZ. These findings provide new evidence for a potential therapy involving GPs for the treatment of stroke.

PMID: 24334222 [PubMed - as supplied by publisher]

Cell based therapies for ischemic stroke: from basic science to bedside.

Prog Neurobiol. 2013 Dec 12;

Authors: Liu X, Ye R, Yan T, Yu SP, Wei L, Xu G, Fan X, Jiang Y, Stetler RA, Chen J

Abstract Cell therapy is emerging as a viable therapy to restore neurological function after stroke. Many types of stem/progenitor cells from different sources have been explored for their feasibility and efficacy for the treatment of stroke. Transplanted cells not only have the potential to replace the lost circuitry, but also produce growth and trophic factors, or stimulate the release of such factors from host brain cells, thereby enhancing endogenous brain repair processes. Although stem/progenitor cells have shown a promising role in ischemic stroke in experimental studies as well as initial clinical pilot studies, cellular therapy is still at an early stage in humans. Many critical issues need to be addressed including the therapeutic time window, cell type selection, delivery route, and in vivo monitoring of their migration pattern. This review attempts to provide a comprehensive synopsis of preclinical evidence and clinical experience of various donor cell types, their restorative mechanisms, delivery routes, imaging strategies, future prospects and challenges for translating cell therapies as a neurorestorative regimen in clinical applications.

More:
Stroke and Stem Cell Therapy

To Read More: Stroke and Stem Cell Therapy
categoriaIPS Cell Therapy commentoComments Off on Stroke and Stem Cell Therapy | dataDecember 18th, 2013
Read All

365 days: 2013 in review

By Dr. Matthew Watson

Shutdowns, lethal viruses, typhoons and meteorites much of this years science news seemed to come straight from the set of a Hollywood disaster movie. But there were plenty of feel-good moments, too. Space exploration hit a new high, cash poured in to investigate that most cryptic of human organs, the brain, and huge leaps were made in stem-cell therapies and the treatment of HIV. Here, captured in soundbites, statistics and summaries, is everything you need to know about the science that mattered in 2013.

LUX: Carlos H. Faham

The Large Underground Xenon dark-matter experiment, deep in a mine in South Dakota.

One of the years most important cosmological results was an experimental no-show. The Large Underground Xenon (LUX, pictured) experiment at Sanford Underground Research Facility in Lead, South Dakota 370 kilograms of liquid xenon almost 1.5kilometres down in a gold mine did not see any particles of elusive dark matter flying through Earth. But it put the tightest constraints yet on the mass of dark-matter particles, and their propensity to interact with visible matter. Theoretical physicist Matthew Strassler at Rutgers University in Piscataway, New Jersey, says a consensus is forming that hints of dark matter seen by earlier experiments in the past three years were probably just statistical fluctuations.

PlancK: ESA/Planck Collaboration

Whatever dark matter is, it makes up around 84% of the Universes total matter, according to observations, released in March, of the Universes cosmic microwave background (CMB) by the European Space Agencys Planck satellite. Plancks image (pictured) also strongly supports the hypothesis of inflation, in which the Universe is thought to have expanded rapidly after the Big Bang. A better probe of inflation might be provided through its predicted influence on how the polarization of CMB photons varies across the sky (B-mode polarization). That subtle signal has not been measured yet, but astronomers hopes were raised by news of the first sighting of a related polarization signal, by the South Pole Telescope, in July. And another Antarctic telescope the underground IceCube observatory confirmed this year that the high-energy neutrinos it has detected come from far away in the cosmos, hinting at a new world of neutrino astronomy.

Jae C. Hong/AP

US workers came out in force against the shutdown.

The slow decline of US federal support for research and development spending is already down 16.3% since 2010 reached a new nadir in October, when political brinkmanship led the government to shut down for 16 days. Grant money stopped flowing; work halted at major telescopes, US Antarctic bases and most federal laboratories; and key databases maintained by the government went offline. Many government researchers were declared non-essential and barred by law from visiting their offices and laboratories, or even checking their official e-mail accounts. Since the shutdowns end, grant backlogs and missed deadlines have scrambled agency workloads.

Away from the deadlock in the United States, the European Union negotiated a path to a 201420 research budget of almost 80billion (US$110billion), a 27% rise in real terms over the previous 200713 period. And funding in South Korea, China, Germany and Japan continued to increase (the United Kingdom and France saw little change). But Japans largesse came with the clear understanding that its science investment would bring fast commercial pay-offs. Along similar lines, US Republican politicians are calling for the National Science Foundation to justify every grant it awards as being in the national interest.

Follow this link:
365 days: 2013 in review

To Read More: 365 days: 2013 in review
categoriaIPS Cell Therapy commentoComments Off on 365 days: 2013 in review | dataDecember 18th, 2013
Read All

Adult Stem Cells Found to Suppress Cancer While Dormant

By LizaAVILA

Contact Information

Available for logged-in reporters only

Newswise Researchers at UCLAs Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have discovered a mechanism in adult stem cells by which the cells suppress their ability to initiate cancer during their dormant phase, an understanding that could be exploited for better cancer prevention strategies. The study was led by Andrew White, post-doctoral fellow, and William Lowry, associate professor of molecular, cell and developmental biology in the life sciences and the Maria Rowena Ross Term Chair in Cell Biology.

The study was published online ahead of print in Nature Cell Biology on December 15, 2013.

Hair follicle stem cells (HFSC), the tissue-specific adult stem cells that generate the hair follicles, are also the cells of origin for cutaneous squamous cell carcinoma (SCC), a common skin cancer. These HFSCs cycle between periods of activation, during which they can grow, and quiescence, when they remain dormant.

Using mouse models, White and Lowry applied known cancer-causing genes (oncogenes) to HFSCs and found that during cell quiescence, the cells could not be made to initiate SCC. Once the HFSC were in their active period, they began growing cancer.

We found that this tumor suppression via adult stem cell quiescence was mediated by Pten, a gene important in regulating the cells response to signaling pathways, White said, therefore, stem cell quiescence is a novel form of tumor suppression in hair follicle stem cells, and Pten must be present for the suppression to work.

Understanding cancer suppression through quiescence could better inform preventative strategies in patients susceptible to SCC, such as organ transplant patients, or those taking the drug vemurafenib for melanoma, another type of skin cancer. This study also may reveal parallels between SCC and other cancers in which stem cells have a quiescent phase. This research was supported by the California Institute of Regenerative Medicine (CIRM), University of California Cancer Research Coordinating Committee (CRCC) and National institutes of Health (NIH).

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLAs Jonsson Comprehensive Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu.

Originally posted here:
Adult Stem Cells Found to Suppress Cancer While Dormant

To Read More: Adult Stem Cells Found to Suppress Cancer While Dormant
categoriaUncategorized commentoComments Off on Adult Stem Cells Found to Suppress Cancer While Dormant | dataDecember 18th, 2013
Read All

Page 533«..1020..532533534535..540550..»


Copyright :: 2024