Page 530«..1020..529530531532..540550..»

Science’s top 10 breakthroughs of 2013

By Sykes24Tracey

WASHINGTON Every year, the editors of Science huddle together and pick an outstanding scientific achievement as the Breakthrough of the Year. This year's winner is:

CANCER IMMUNOTHERAPY: harnessing the immune system to battle tumors.

Scientists have thought for decades that such an approach to cancer therapy should be possible, but it has been incredibly difficult to make it work. Now many oncologists say we have turned a corner, because two different techniques are helping a subset of patients. One involves antibodies that release a brake on T cells, giving them the power to tackle tumors. Another involves genetically modifying an individual's T cells outside the body so that they are better able to target cancer, and then re-infusing them so they can do just that.

We are still at the beginning of this story and have a long way to go. Only a very small proportion of cancer patients have received these therapies, and many are not helped by them. Doctors and scientists still have a lot to learn about why the treatments do and do not work. But the results have been repeated at different centers and in different tumor types, giving doctors hope that immunotherapy for cancer may benefit more and more people in the future

The editors also singled out nine runners-up for special praise:

GENETIC MICROSURGERY

A year-old gene-editing technique called CRISPR touched off an explosion of research in 2013. It's short for "clustered regularly interspaced short palindromic repeats": repetitive stretches of DNA that bacteria have evolved to combat predatory viruses by slicing up the viral genomes. The "knife" is a protein called Cas9; in 2012, researchers showed they could use it as a scalpel to perform microsurgery on genes. This year the new technology became red hot, as more than a dozen teams wielded it to manipulate specific genes in mice, rats, bacteria, yeast, zebrafish, nematodes, fruit flies, plants and human cells, paving the way for understanding how these genes function and possibly harnessing them to improve health.

CLARITY BRAIN IMAGING

This year, researchers invented a new way of imaging the brain which many say will fundamentally change the way labs study the intricate organ. CLARITY, a method of rendering brain tissue transparent, removes the biggest obstacle to traditional brain imaging: the fatty, light-scattering molecules, called lipids, which form cellular membranes. By replacing lipids with single molecules of a clear gel, the technique renders brain tissue transparent while leaving all neurons, other brain cells and their organelles intact. This allows researchers to infiltrate the brain with labels for specific cell types, neurotransmitters, or proteins, wash them out, and image the brain again with different labels - a process they say could speed up by a hundredfold tasks such as counting all the neurons in a given brain region.

CLONING HUMAN STEM CELLS

Here is the original post:
Science's top 10 breakthroughs of 2013

To Read More: Science’s top 10 breakthroughs of 2013
categoriaIPS Cell Therapy commentoComments Off on Science’s top 10 breakthroughs of 2013 | dataDecember 25th, 2013
Read All

Bone marrow or peripheral blood stem cell transplant for non …

By raymumme

Stem cell transplants are sometimes used to treat lymphoma patients who are in remission (that is, they seem to be disease-free after treatment) or who have had the cancer come back (relapse) during or after treatment.

In a stem cell transplant, doctors give higher doses of chemotherapy (chemo) than would normally be safe. Giving high-dose chemo destroys the bone marrow, which prevents new blood cells from being made. This could normally lead to life-threatening infections, bleeding, and other problems due to low blood cell counts. To get around this problem, after chemo (and sometimes radiation treatment) is finished, the patient gets an infusion of blood-forming stem cells to restore the bone marrow. Blood-forming stem cells are very early cells that can make new blood cells. They are different from embryonic stem cells.

There are 2 main types of stem cell transplants. The difference is the source of the blood-forming stem cells.

Autologous stem cell transplant: For this type of transplant, blood-forming stem cells from the patient's own blood or, less often, from the bone marrow, are removed, frozen, and stored until after treatment. Then the stored stem cells are thawed and given back to the patient through a vein. The cells enter the bloodstream and return to the bone, replacing the marrow and making new blood cells.

This is the most common type of transplant used to treat lymphoma, but it generally isn't an option if the lymphoma has spread to the bone marrow or blood. If that happens, it may be hard to get a stem cell sample with no lymphoma cells in it.

Donor (allogeneic) stem cell transplant: In this approach, the stem cells come from someone else usually a matched donor whose tissue type is very close to the patient's. The donor may be a brother or sister or someone not related to the patient. Sometimes umbilical cord stem cells are used.

This type of transplant is not used a lot in treating non-Hodgkin lymphoma (NHL) because it can have severe side effects that are especially hard for patients who are older or who have other medical problems. And it is often hard to find a matched donor.

"Mini transplant": Many older patients can't have a regular allogeneic transplant that uses high doses of chemo. But some may be able to have what is called a "mini transplant" (or a non-myeloablative transplant or reduced-intensity transplant). For this type of allogeneic transplant, lower doses of chemo and radiation are used so they do not destroy all the stem cells in the bone marrow. The patient is then given the donor stem cells. These cells enter the body and form a new immune system, which sees the cancer cells as foreign and attacks them (called a "graft-versus-lymphoma" effect).

Patients can often do a mini transplant as an outpatient. But this is not yet a standard part of the treatment for most types of lymphoma.

Stem cell transplant is a complex treatment, so it is important to have it done at a hospital where the staff has experience with the procedure. Some transplant programs may not have experience in certain transplants, especially those from unrelated donors.

Read this article:
Bone marrow or peripheral blood stem cell transplant for non ...

To Read More: Bone marrow or peripheral blood stem cell transplant for non …
categoriaBone Marrow Stem Cells commentoComments Off on Bone marrow or peripheral blood stem cell transplant for non … | dataDecember 24th, 2013
Read All

Skin Stem Cell Serum, 1 oz – LifeExtension.com

By NEVAGiles23

Comments about Cosmesis Skin Stem Cell Serum, 1 oz:

WOW. I am shocked that there are not a ton of raving reviews, but then again, this is a new product. I have to say that I have tried EVERYTHING out there for the loose and sagging skin on my neck, fine lines around the mouth and eyes, and budding "jowls" on the sides of my face. A few products made some difference, but by and large: Nothing. But this product made a *HUGE* difference. My neck is so much firmer, I din't even notice it anymore when I look in the mirror. Fine lines, "marionette" laugh lines, and jowliness are all improved - dramatically. How I use it: After washing, and before moisturizer ( use ROC, and I think these 2 work synergystically). A also put a few drops on throughout the day, onto problem areas, right over my makeup. And then before bed - with nothing else. I am ordering 2 more bottles. This stuff is something that works even more than they say it will ... GET IT.

Read more from the original source:
Skin Stem Cell Serum, 1 oz - LifeExtension.com

To Read More: Skin Stem Cell Serum, 1 oz – LifeExtension.com
categoriaSkin Stem Cells commentoComments Off on Skin Stem Cell Serum, 1 oz – LifeExtension.com | dataDecember 24th, 2013
Read All

Stem Cell Research at Johns Hopkins Medicine: Stem Cell Therapy

By LizaAVILA

The most successful stem cell therapybone marrow transplanthas been around for more than 40 years. Johns Hopkins researchers played an integral role in establishing the methods for how bone marrow transplants are done, which you can read about in Human Stem Cells at Johns Hopkins: A Forty Year History. The latest developments in bone marrow transplants are Half-Matched Transplants, which may be helpful in treating more diseases than ever before. In The Promise of the Future, three Hopkins researchers who study blood diseases share their ideas about which technologies hold most promise for developing therapies.

Induced pluripotent stem cells, or iPS cells, are adult cells that are engineered to behave like stem cells and to regain the ability to differentiate into various cell types. Engineered Blood describes current research in generating blood cells that contain disease traits with Those Magic Scissors so we can learn more in the lab about diseases like sickle cell anemia.

Adult stem cells are being used in other applications as well. Stem Cells Enhance Healing tells of an undergraduate biomedical engineering team at Hopkins that has devised medical sutures containing stem cells which speed up healing when stitched in. And A New Path for Cardiac Stem Cells tells of how a patients own heart stem cells were used to repair his heart after a heart attack.

In the podcast What Anti-Depression Treatments Actually Target In The Brain, Hongjun Song reveals that current antidepressant therapies may have unknowingly been targeting stem cells all along.

Follow this link:
Stem Cell Research at Johns Hopkins Medicine: Stem Cell Therapy

To Read More: Stem Cell Research at Johns Hopkins Medicine: Stem Cell Therapy
categoriaIPS Cell Therapy commentoComments Off on Stem Cell Research at Johns Hopkins Medicine: Stem Cell Therapy | dataDecember 24th, 2013
Read All

Stem cell therapy in India for Avascular Necrosis – Video

By raymumme


Stem cell therapy in India for Avascular Necrosis

By: StemRx BioScience

More here:
Stem cell therapy in India for Avascular Necrosis - Video

To Read More: Stem cell therapy in India for Avascular Necrosis – Video
categoriaUncategorized commentoComments Off on Stem cell therapy in India for Avascular Necrosis – Video | dataDecember 24th, 2013
Read All

Adult Stem Cell Therapy | Orthopedic Stem Cell Institute

By NEVAGiles23

Our state-of- the- art Orthopedic Stem Cell Institute, at the base of the breathtaking Rocky Mountains, in Johnstown, Colorado, uses our own developing research to provide adult stem cell therapies promoting natural healing. We offer two revolutionary non-invasive treatments, Stem Cell therapy and Platelet Rich Plasma (PRP), which are transforming the lives of athletes and everyday people suffering with Spine and Orthopedic injuries caused by aging and degeneration. Dr. Kenneth Pettine, a world renowned spine surgeon and a pioneer in spinal stem cell therapy opened OSCI for patients seeking possible alternatives to surgery. Pettine and his staff treat patients from around the world, using the newest and most advanced technology to treat a number of conditions, including:knees, hips, spine, shoulders, feet and ankles, and other joints. Our adult stem cell therapyprocedureuses adult mesenchymal, multipotent stem cells taken from a patients own bone marrow and then injected back into the same patient into the injured, damaged, or painful area. For patients in Colorado or anywhere in the United States, we can help.About Adult Stem Cell Therapy

Here is the original post:
Adult Stem Cell Therapy | Orthopedic Stem Cell Institute

To Read More: Adult Stem Cell Therapy | Orthopedic Stem Cell Institute
categoriaUncategorized commentoComments Off on Adult Stem Cell Therapy | Orthopedic Stem Cell Institute | dataDecember 24th, 2013
Read All

Stem Cell Therapy in Miami Florida – Stem Cell Treatment …

By Sykes24Tracey

erectile dysfunction treatment, type 2 diabetes treatment, arthritis cure, cure for arthritis, therapy for autism, Vision loss therapy, hair loss treatment, preventing hair loss, Pumonary disease therapy, Kidney diseases

CellTherapyFlorida U.S. Program and PRP Therapy are now being applied towards painful, injured and inflammatory conditions facilitating healing of muscle, tendons, ligaments, articular and meniscal injuries.

Loss of Hair Your own stem cells from a small area of adipose (fat) tissue can be isolated and activated. Together with a PRP and growth factors from a small sample of blood, it can be locally injected into the scalp for male and female pattern hair loss treatment.

A single treatment of Stem Cells can be of a long-term benefit. Other therapies and drugs are an hours-to-days alternative!

The utilization of insulin in the conventional treatment of diabetes mellitus is only a "symptomatic" approach, and curing diabetes involves a great deal more.

Due to the fact most of the diseases that lead to loss of vision do so as a result of abnormal vasculature and/or nerve degeneration, the use of stem cells to stabilize or prevent visual loss holds great promise.

Autism is characterized by abnormalities in social interaction, impaired verbal and nonverbal communication, and repetitive, obsessive behavior.

Regenerative cellular therapy aims for the return of damaged lung(s) to a more functional state through the use of autologous adult stem cells. Promising results have been reported in patients with lung diseases receiving this type of regenerative therapy.

Chronic kidney disease means progressive loss of the kidney function that leads to end stage kidney disease (ESKD). End stage kidney disease is the complete or almost complete kidney function failure. This condition takes place when kidneys lose their ability to maintain the day to day level of function.

Here is the original post:
Stem Cell Therapy in Miami Florida - Stem Cell Treatment ...

To Read More: Stem Cell Therapy in Miami Florida – Stem Cell Treatment …
categoriaUncategorized commentoComments Off on Stem Cell Therapy in Miami Florida – Stem Cell Treatment … | dataDecember 24th, 2013
Read All

West Coast Stem Cell Clinic, TeleHealth, Now Offering PRP Therapy for Hip Arthritis Treatment

By daniellenierenberg

Orange County, California (PRWEB) December 23, 2013

The top stem cell therapy clinic in California, TeleHealth, is now offering PRP therapy for hip arthritis. The treatments are often able to delay or avoid the need for joint replacement, and are administered by Board Certified doctors at two clinic locations. Call (888) 828-4575 for more information and scheduling.

Tens of millions of Americans suffer from hip arthritis, and hundreds of thousands of hip replacements are performed every year. Nonoperative treatments prior to joint replacement often consist of steroid injections for pain relief. While the joint replacement typically has excellent pain relief outcomes, there are risks involved and sometimes the eventual need for a revision procedure.

Therefore, a procedure that offers pain relief while offering the potential for joint repair is a welcome option in hip arthritis management. TeleHealth is now offering platelet rich plasma therapy, known as PRP therapy for short, to provide pain relief and potential joint regeneration. The procedure involves a simple blood draw at the office, with the blood then being spun down in a centrifuge to obtain a solution of concentrated platelets and growth factors.

The PRP is then injected into the symptomatic hip, providing an immense amount of regenerative medicine to the arthritic joint. The material then calls in the body's stem cells as well. Published studies on PRP for joint arthritis have so far shown excellent results for pain relief.

Often times, PRP therapy at TeleHealth is covered by insurance. Verification by the clinic is able to check prior to the procedure. Patients are seen from all over Southern California for treatment of hip, knee and shoulder arthritis along with tendonitis and ligament injury. This often includes athletes, weekend warriors, executives, senior citizens and more.

To receive further information on stem cell and PRP therapy for joint arthritis or soft tissue injury, call (888) 828-4575.

See the article here:
West Coast Stem Cell Clinic, TeleHealth, Now Offering PRP Therapy for Hip Arthritis Treatment

To Read More: West Coast Stem Cell Clinic, TeleHealth, Now Offering PRP Therapy for Hip Arthritis Treatment
categoriaUncategorized commentoComments Off on West Coast Stem Cell Clinic, TeleHealth, Now Offering PRP Therapy for Hip Arthritis Treatment | dataDecember 24th, 2013
Read All

Adult stem cells suppress cancer while dormant

By Sykes24Tracey

Los Angeles, Dec 21 : Researchers at UCLA's (University of California, Los Angeles') Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have discovered a mechanism by which certain adult stem cells suppress their ability to initiate skin cancer during their dormant phase an understanding that could be exploited for better cancer-prevention strategies.

The study, which was led by UCLA postdoctoral fellow Andrew White and William Lowry, an associate professor of molecular, cell and developmental biology who holds the Maria Rowena Ross Term Chair in Cell Biology in the UCLA College of Letters and Science, was published online Dec. 15 in the journal Nature Cell Biology.

Hair follicle stem cells, the tissue-specific adult stem cells that generate the hair follicles, are also the cells of origin for cutaneous squamous cell carcinoma, a common skin cancer. These stem cells cycle between periods of activation (during which they can grow) and quiescence (when they remain dormant).

Using mouse models, White and Lowry applied known cancer-causing genes to hair follicle stem cells and found that during their dormant phase, the cells could not be made to initiate skin cancer. Once they were in their active period, however, they began growing cancer.

"We found that this tumor suppression via adult stem cell quiescence was mediated by PTEN, a gene important in regulating the cell's response to signaling pathways," White said.

"Therefore, stem cell quiescence is a novel form of tumor suppression in hair follicle stem cells, and PTEN must be present for the suppression to work."

Understanding cancer suppression through quiescence could better inform preventative strategies for certain patients, such as organ transplant recipients, who are particularly susceptible to squamous cell carcinoma, and for those taking the drug vemurafenib for melanoma, another type of skin cancer.

The study also may reveal parallels between squamous cell carcinoma and other cancers in which stem cells have a quiescent phase.

The research was supported by the California Institute of Regenerative Medicine, the University of California Cancer Research Coordinating Committee and the National Institutes of Health.

--IBNS (Posted on 21-12-2013)

See more here:
Adult stem cells suppress cancer while dormant

To Read More: Adult stem cells suppress cancer while dormant
categoriaUncategorized commentoComments Off on Adult stem cells suppress cancer while dormant | dataDecember 22nd, 2013
Read All

"Leading Edge" Set to Produce New Content Featuring Stem Cell Therapy, with Host Jimmy Johnson

By LizaAVILA

(PRWEB) December 21, 2013

Stem cell therapy has a tremendous potential to cure various illnesses and injuries. Recent news items have highlighted possibilities that it could treat damaged spinal cords or revitalize hip joints. Scientists are working on stem cell remedies for dementia, heart disease and diabetes. Doctors in some countries have begun using this therapy to grow replacement body tissue and treat leukemia.

However, stem cell treatments remain controversial. Some people object to them on ethical or religious grounds. Others express concern about the safety of these newfound cures. Animal testing has revealed that minor mistakes can result in impurities that cause cells to produce tumors and other ill effects. Some patients have died after receiving experimental therapies that weren't adequately tested.

The producers of the "Leading Edge" TV series plan to release a new segment that examines this fascinating yet contentious health topic. Presenter Jimmy Johnson will offer an update on important facts and recent developments in the world of stem cell research. Viewers can benefit from the program's concise and unbiased perspective on an issue that many people have yet to learn about.

"Leading Edge" is independently distributed to local public TV broadcasters across the U.S. The national Public Broadcasting Service does not act as its distributor. To learn more about this informational series, please browse http://www.leadingedgeseries.com or send an email message to the program's producers. They can be reached at info(at)leadingedgeseries(dot)com.

Link:
"Leading Edge" Set to Produce New Content Featuring Stem Cell Therapy, with Host Jimmy Johnson

To Read More: "Leading Edge" Set to Produce New Content Featuring Stem Cell Therapy, with Host Jimmy Johnson
categoriaUncategorized commentoComments Off on "Leading Edge" Set to Produce New Content Featuring Stem Cell Therapy, with Host Jimmy Johnson | dataDecember 22nd, 2013
Read All

Groundbreaking Stem Cell Clinical Trial

By Sykes24Tracey

Florida Hospital Pepin Heart Institute is First in West & Central Florida to Perform a Groundbreaking Stem Cell Clinical Trial for Heart Failure Patients

The first patient has been treated as part of The ATHENA Trial, which derives stem cells from the patientsown adipose (fat) tissue and injects extracted cells into damaged parts of the heart.

TAMPA, Florida (December 20, 2013) Florida Hospital Pepin Heart Institute and Dr. Kiran C. Patel Research Institute announced the first patient, a 59 year old Clearwater man, has been treated as part of the ATHENA clinical trial. The trial, sponsored by San Diego-based Cytori Therapeutics, derives stem cells from the patients own fat tissue and injects extracted cells into damaged parts of the heart. The ATHENA trial is a treatment for chronic heart failure due to coronary heart disease. Dr. Charles Lambert, Medical Director of Florida Hospital Pepin Heart Institute, is leading the way for the first U.S. FDA approved clinical trial using adipose-derived regenerative cells, known as ADRCs, in chronic heart failure patients. I am pleased to report that all procedures went well. The patient is doing well, he was released and is recovering at home. We look forward to following his progress over the coming months, said Dr. Charles Lambert. Heart failure (HF) can occur when the muscles of the heart become weakened and cannot pump blood sufficiently throughout the body. The injury is most often caused by inadequate blood flow to the heart resulting from chronic or acute cardiovascular disease, including heart attacks. The ATHENA clinical trial procedure is a three step process. First, the trial involves the collection of fat from the patients body by liposuction. Then the fat sample is filtered through a machine that extracts out the stem cells. Finally, the stem cells are injected into the damaged part of the patients heart. During this first case at Florida Hospital Pepin Heart Institute, Dr. Paul Smith performed the liposuction to obtain the fat sample, a team at the Dr. Kiran C. Patel Research Institute isolated stem cells from the fat sample and then Dr. Charles Lambert performed the cell therapy by direct injection into the patients heart. Pepin Heart and Dr. Kiran C. Patel Research Institute is exploring and conducting leading-edge research to develop break-through treatments long before they are even available in other facilities. Stem cells have the unique ability to develop into many different cell types, and in many tissues serve as an internal repair system, dividing essentially without limit to replenish other cells, said Dr. Lambert.

The Pepin Heart Institute has a history of cardiovascular stem cell research as part of the NIH sponsored Cardiac Cell Therapy Research Network (CCTRN) as well as other active cell therapy trials. The trial is a double blind, randomized, placebo controlled study designed to study the use of a patients own Adipose-Derived Regenerative Cells (ADRCs) to treat chronic heart failure from coronary heart disease in patients who are on maximal therapy and still have heart failure symptoms. All trial participants undergo a minor liposuction procedure to remove fat (adipose) tissue. Following the liposuction, trial participants may have their tissue processed with Cytoris proprietary Celution System to separate and concentrate cells, and prepare them for therapeutic use. Trial participants will then have either their own cells or a placebo injected back into their damaged heart tissue. To test whether ADRCs will improve heart function, several measurements will be made, including peak oxygen consumption (VO2max), which measures how much physical exercise (gentle walking on a treadmill) a patient can perform, blood flow to the heart (perfusion), the amount of blood in the left ventricle at the end of contraction and relaxation (end-systolic and end-diastolic volumes), and the fraction of blood that is pumped during each contraction (ejection fraction). After the injection procedure, patients are seen in the clinic for follow-up visits over the first 12 months; they are then contacted by phone once a year for up to five years after the procedure.

There are approximately 5.1 million Americans currently living with heart failure, according to the American Heart Association. Chronic heart failure due to coronary heart disease is a severe, debilitating condition caused by restriction of blood flow to the heart muscle, reducing the hearts oxygen supply and limiting its pumping function. Individuals interested in participating in the ATHENA clinical research trial or learning more can visit http://www.theathenatrial.com or call Brian Nordgren, Florida Hospital Pepin Heart Institute Physician Assistant & Stem Cell Program Lead at (813) 615-7527.

About Florida Hospital Tampa Florida Hospital Tampa is a not-for-profit 475-bed tertiary hospital specializing in cardiovascular medicine, neuroscience, orthopaedics, womens services, pediatrics, oncology, endocrinology, bariatrics, wound healing, sleep medicine and general surgery including minimally invasive and robotic-assisted procedures. Also located at Florida Hospital Tampa is the renowned Florida Hospital Pepin Heart Institute, a recognized leader in cardiovascular disease prevention, diagnosis, treatment and leading-edge research. Part of the Adventist Health System, Florida Hospital is a leading health network comprised of 22 hospitals throughout the state. For more information, visit http://www.FHTampa.org.

About Florida Hospital Pepin Heart Institute and Dr. Kiran C. Patel Research Institute Florida Hospital Pepin Heart Institute is a free-standing cardiovascular institute providing comprehensive cardiovascular care with over 76,000 angioplasty procedures and 11,000 open-heart surgeries in the Tampa Bay region. Leading the way with the first accredited chest pain emergency room in Tampa Bay, the institute is among an elite few in the state of Florida chosen to perform the ground breaking Transcatheter Aortic Valve Replacement (TAVR) procedure. It is also a HeartCaring designated provider and a Larry King Cardiac Foundation Hospital. Florida Hospital Pepin Heart Institute and the Dr. Kiran C. Patel Research Institute, affiliated with the University of South Florida (USF), are exploring and conducting leading-edge research to develop break-through treatments long before they are available in most other hospitals. To learn more, visit http://www.FHPepin.org.

ends

Scoop Media

More here:
Groundbreaking Stem Cell Clinical Trial

To Read More: Groundbreaking Stem Cell Clinical Trial
categoriaCardiac Stem Cells commentoComments Off on Groundbreaking Stem Cell Clinical Trial | dataDecember 21st, 2013
Read All

Florida Hospital Pepin Heart Institute is First in West & Central Florida to Perform a Groundbreaking Stem Cell …

By raymumme

(PRWEB) December 20, 2013

Florida Hospital Pepin Heart Institute and Dr. Kiran C. Patel Research Institute announced the first patient, a 59 year old Clearwater man, has been treated as part of the ATHENA clinical trial. The trial, sponsored by San Diego-based Cytori Therapeutics, derives stem cells from the patients own fat tissue and injects extracted cells into damaged parts of the heart. The ATHENA trial is a treatment for chronic heart failure due to coronary heart disease. Dr. Charles Lambert, Medical Director of Florida Hospital Pepin Heart Institute, is leading the way for the first U.S. FDA approved clinical trial using adipose-derived regenerative cells, known as ADRCs, in chronic heart failure patients. I am pleased to report that all procedures went well. The patient is doing well, he was released and is recovering at home. We look forward to following his progress over the coming months, said Dr. Charles Lambert.

Heart failure (HF) can occur when the muscles of the heart become weakened and cannot pump blood sufficiently throughout the body. The injury is most often caused by inadequate blood flow to the heart resulting from chronic or acute cardiovascular disease, including heart attacks. The ATHENA clinical trial procedure is a three step process. First, the trial involves the collection of fat from the patients body by liposuction. Then the fat sample is filtered through a machine that extracts out the stem cells. Finally, the stem cells are injected into the damaged part of the patients heart. During this first case at Florida Hospital Pepin Heart Institute, Dr. Paul Smith performed the liposuction to obtain the fat sample, a team at the Dr. Kiran C. Patel Research Institute isolated stem cells from the fat sample and then Dr. Charles Lambert performed the cell therapy by direct injection into the patients heart. Pepin Heart and Dr. Kiran C. Patel Research Institute is exploring and conducting leading-edge research to develop break-through treatments long before they are even available in other facilities. Stem cells have the unique ability to develop into many different cell types, and in many tissues serve as an internal repair system, dividing essentially without limit to replenish other cells, said Dr. Lambert. The Pepin Heart Institute has a history of cardiovascular stem cell research as part of the NIH sponsored Cardiac Cell Therapy Research Network (CCTRN) as well as other active cell therapy trials. The trial is a double blind, randomized, placebo controlled study designed to study the use of a patients own Adipose-Derived Regenerative Cells (ADRCs) to treat chronic heart failure from coronary heart disease in patients who are on maximal therapy and still have heart failure symptoms. All trial participants undergo a minor liposuction procedure to remove fat (adipose) tissue. Following the liposuction, trial participants may have their tissue processed with Cytoris proprietary Celution System to separate and concentrate cells, and prepare them for therapeutic use. Trial participants will then have either their own cells or a placebo injected back into their damaged heart tissue. To test whether ADRCs will improve heart function, several measurements will be made, including peak oxygen consumption (VO2max), which measures how much physical exercise (gentle walking on a treadmill) a patient can perform, blood flow to the heart (perfusion), the amount of blood in the left ventricle at the end of contraction and relaxation (end-systolic and end-diastolic volumes), and the fraction of blood that is pumped during each contraction (ejection fraction). After the injection procedure, patients are seen in the clinic for follow-up visits over the first 12 months; they are then contacted by phone once a year for up to five years after the procedure. There are approximately 5.1 million Americans currently living with heart failure, according to the American Heart Association. Chronic heart failure due to coronary heart disease is a severe, debilitating condition caused by restriction of blood flow to the heart muscle, reducing the hearts oxygen supply and limiting its pumping function. Individuals interested in participating in the ATHENA clinical research trial or learning more can visit http://www.theathenatrial.com or call Brian Nordgren, Florida Hospital Pepin Heart Institute Physician Assistant & Stem Cell Program Lead at (813) 615-7527.

About Florida Hospital Pepin Heart Institute and Dr. Kiran C. Patel Research Institute Florida Hospital Pepin Heart Institute, located at Florida Hospital Tampa, is a free-standing cardiovascular institute providing comprehensive cardiovascular care with over 76,000 angioplasty procedures and 11,000 open-heart surgeries in the Tampa Bay region. Leading the way with the first accredited chest pain emergency room in Tampa Bay, the institute is among an elite few in the state of Florida chosen to perform the ground breaking Transcatheter Aortic Valve Replacement (TAVR) procedure. It is also a HeartCaring designated provider and a Larry King Cardiac Foundation Hospital. Florida Hospital Pepin Heart Institute and the Dr. Kiran C. Patel Research Institute, affiliated with the University of South Florida (USF), are exploring and conducting leading-edge research to develop break-through treatments long before they are available in most other hospitals. To learn more, visit http://www.FHPepin.org

About Cytori Therapeutics Cytori Therapeutics, Inc. is developing cell therapies based on autologous adipose-derived regenerative cells (ADRCs) to treat cardiovascular disease and repair soft tissue defects. Our scientific data suggest ADRCs improve blood flow, moderate the immune response and keep tissue at risk of dying alive. As a result, we believe these cells can be applied across multiple "ischemic" conditions. These therapies are made available to the physician and patient at the point-of-care by Cytori's proprietary technologies and products, including the Celution system product family. http://www.cytori.com

Original post:
Florida Hospital Pepin Heart Institute is First in West & Central Florida to Perform a Groundbreaking Stem Cell ...

To Read More: Florida Hospital Pepin Heart Institute is First in West & Central Florida to Perform a Groundbreaking Stem Cell …
categoriaCardiac Stem Cells commentoComments Off on Florida Hospital Pepin Heart Institute is First in West & Central Florida to Perform a Groundbreaking Stem Cell … | dataDecember 21st, 2013
Read All

Best Christmas ever as Gaurav gets the gift of life

By daniellenierenberg

It's the Christmas gift one little boys family thought they would never receive a life-saving transplant after a worldwide search for a donor.

But miraculously, two-year-old Gaurav Bains has finally had the operation he desperately needed.

His family have endured a torturous ordeal as the months counted down to a Christmas deadline to find a bone marrow donor with a 100 per cent match.

The young lad had always been ill after being born premature, but earlier this year, after a series of chest infections, he was diagnosed with Monosomy 7 Syndrome, a rare blood condition.

Then in the summer, his family was told his best chance of a healthy life would be if a donor was found before Christmas

Had a match not been found, Gauravs condition meant he would have been likely to develop an aggressive form of childhood leukaemia, which he may not have survived.

But thanks to a huge campaign, and the determination of his family, thousands of people signed up to the donation register from around the country and the world.

And this week the youngster finally had the operation that could save his life.

The whole procedure, which saw donated stem cells passed into his body, only took 90 minutes, and now his family, from Alexandra Road in Tipton, are optimistic.

Dad Sunny Bains, aged 31 and a shopkeeper, said: Everything went alright and he didnt have any side effects.

Go here to read the rest:
Best Christmas ever as Gaurav gets the gift of life

To Read More: Best Christmas ever as Gaurav gets the gift of life
categoriaBone Marrow Stem Cells commentoComments Off on Best Christmas ever as Gaurav gets the gift of life | dataDecember 21st, 2013
Read All

Stem Cell Research Could Lead To A Cure For Baldness, And More

By JoanneRUSSELL25

December 20, 2013

redOrbit Staff & Wire Reports Your Universe Online

Regenerative medicine research conducted throughout this year at the University of Southern California (USC) could lead to new ways to counter baldness and receding hairlines using stem cells.

USC Assistant Professor of Pathology Dr. Krzysztof Kobielak and his colleagues have published a trio of papers in the journals Stem Cells and the Proceedings of the National Academy of Sciences (PNAS) describing some of the biological factors responsible for when hair starts growing, when it stops, and when it falls out.

According to USC, the three studies focused on stem cells that are located in adult hair follicles. Those cells, known as hfSCs, can regenerate both hair follicles and skin, and are governed by bone morphogenetic proteins (BMPs) and the Wnt signaling pathways groups of molecules that work together in order to control the cycles of hair growth and other cellular functions.

The most recent paper, published in the journal Stem Cells in November 2013, focuses on how the gene Wnt7b activates hair growth. Without Wnt7b, hair is much shorter, the team said. Kobielaks team originally proposed Wnt7bs role in a study published this January in PNAS. That paper identified a complex network of genes, including the Wnt and BMP signaling pathways, which controls the cycles of hair growth.

Reduced BMP signaling and increased Wnt signaling activate hair growth, while increased BMP signaling and decreased Wnt signaling keeps the hfSCs in a resting state, the researchers explained. The third paper, published in Stem Cells in September, sheds new light on the BMP signaling pathway. It looked at the function of the proteins Smad1 and Smad 5, which send and receive signals that regulate hair-related stem cells during growth periods.

Collectively, these new discoveries advance basic science and, more importantly, might translate into novel therapeutics for various human diseases, Kobielak explained. Since BMP signaling has a key regulatory role in maintaining the stability of different types of adult stem cell populations, the implication for future therapies might be potentially much broader than baldness and could include skin regeneration for burn patients and skin cancer.

Other USC researchers involved in the studies include postdoctoral fellow Eve Kandyba, Yvonne Leung, Yi-Bu Chen, Randall Widelitz, Cheng-Ming Chuong, Virginia M. Hazen, Agnieszka Kobielak, and Samantha J. Butler. Funding for the research was provided by the Donald E. and Delia B. Baxter Foundation Award and National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (NIH).

Source: redOrbit Staff & Wire Reports - Your Universe Online

Follow this link:
Stem Cell Research Could Lead To A Cure For Baldness, And More

To Read More: Stem Cell Research Could Lead To A Cure For Baldness, And More
categoriaSkin Stem Cells commentoComments Off on Stem Cell Research Could Lead To A Cure For Baldness, And More | dataDecember 21st, 2013
Read All

Induced stem cells – Wikipedia, the free encyclopedia

By LizaAVILA

Induced stem cells (iSC) are stem cells artificially derived from some other (somatic, reproductive, pluripotent etc.) cell types by induced (i.e. initiated, forced) epigenetic reprogramming. In accordance to the developmental potentiality and the degree of cell dedifferentiation caused by induced reprogramming they are distinguished and subdivided as: induced totipotent, induced pluripotent stem cells (iPSc) and, obtained by so-called direct reprogramming or directed forced differentiation, induced progenitor (multipotent or unipotent) stem cells, also called induced somatic stem cells. Currently, there are three ways to reprogram somatic cells into stem cells[1] These are:

The reversible transformation of one differentiated cell type to another type of mature differentiated cells is called metaplasia.[22] This transition from one cell type to another can be a part of the normal maturation process, or caused by some of its inducing stimulus. For example: transformation of cells of the iris to the lens in the process of maturation and transformation of the retinal pigment epithelium cells into the neural retina during regeneration in adult newt eyes. This process allows the body to replace the original cells not suitable to new conditions, into new cells which are more suited to new conditions. In experiments on cells in Drosophila imaginal discs, it was found that there are a limited number of standard discrete states of differentiation and the cells have to choose one of them. The fact that transdetermination (change of the path of differentiation) often take place not in one, but in a group of cells shows that it is not caused by a mutation but is induced.[23][24]

Some types of mature, specialized adult cells can naturally revert to stem cells. For example, differentiated cells, which are called chief cells and express the stem cell marker Troy, normally produce digestive fluids for the stomach, yet they can change back into stem cells to make temporary repairs in significant stomach injuries, such as a cut or damage from infection. Moreover theyre making this transition even in the absence of noticeable injuries and are capable of replenishing entire gastric units, essentially serving as quiescent reserve stem cells.[25] Differentiated airway epithelial cells can revert into stable and functional stem cells in vivo.[26] After injury, mature terminally differentiated kidney cells dedifferentiate into more primordial versions of themselves, and then differentiate into the cell types needing replacement in the damaged tissue[27] Macrophages can self-renew by local proliferation of mature differentiated cells.[28] In Newts, muscle tissue is regenerated from specialized muscle cells that dedifferentiate and forget what type of cell they've been. This capacity to regenerate tissue does not decline with age, which may be linked to their ability to make new stem cells from muscle cells on demand.[29]

It should be noted that there are also a variety of nontumorigenic stem cells with the ability to generate the multiple cell types. For instance, multilineage-differentiating stress-enduring (Muse) cells are the stress-tolerant adult human stem cells that can self-renew; form characteristic cell clusters in suspension culture that express a set of genes associated with pluripotency; and can differentiate into endodermal, ectodermal, and mesodermal cells both in vitro and in vivo.[30][31][32][33]

Detailed description of some other well-documented examples of transdifferentiation, and their significance in development and regeneration are reviewed in.[34]

Induced totipotent cells usually can be obtained by reprogramming somatic cells by somatic-cell nuclear transfer (SCNT) to the recipient eggs or oocytes.[3][5][35][36][37] Sometimes may be used the oocytes of other species, such as sheep.[38] New possibilities for creating genetically modified animals opens method of induced androgenetic haploid embryonic stem cells, which can be used instead of sperm. These cells, synchronized in M phase and injected into the oocyte allow to get viable offspring.[39] These developments, together with data on the possibility to obtain unlimited number of oocytes from mitotically active reproductive stem cells[40] offer the possibility of industrial production of transgenic farm animals. Repeated recloning of viable mice through a somatic cell nuclear transfer method that includes a histone deacetylase inhibitor trichostatin, added to the cell culture medium,[41] show that it may be possible to reclone animals indefinitely without any visible accumulation of reprogramming or genomic errors [42] However, research into technologies to develop sperm and egg cells from stem cells bring up bioethical issues.

Such technologies may also have far-reaching clinical applications for overcoming cytoplasmic defects in human oocytes.[43][44][45] For example, the technology have been developed that could prevent inherited mitochondrial disease being passed on to the next generation. Mitochondria, often described as the powerhouse of the cell, contain genetic material, which is passed from mother to child. Mutations on mitochondrial DNA can cause diabetes, deafness, eye disorders, gastrointestinal disorders, heart disease, dementia and several other neurological diseases. The nucleus from one human egg cell have been transferred to another egg, effectively swapping the cell cytoplasm, which includes the mitochondria (and their DNA), creating a cell that could be regarded as having two mothers. The eggs were then fertilised, and the resulting embryonic stem cells carried the swapped mitochondrial DNA.[46]

Read more about the latest achievements of the cloning techniques and the generation of totipotent cells, in:[47]

See also main article: induced pluripotent stem cells (iPSc)

First iPSc were obtained in the form of transplantable teratocarcinoma induced by the graft taken from mouse embryos.[48] It was shown that teratocarcinoma formed from somatic cells.[49] The fact that normal genetically mosaic mice can be obtained from malignant teratocarcinoma cells confirmed their pluripotency.[50][51][52] It turned out that teratocarcinoma cells are able to maintain a culture of pluripotent embryonic stem cells in an undifferentiated state, by supplying the culture medium with various factors.[53] Thus, as early as in the 1980s, it became clear that the transplantation of pluripotent or embryonic stem cells into the body of adult mammals, usually leads to the formation of teratomas, which can then turn into a malignant tumor teratocarcinoma.[54] If, however, to put the teratocarcinoma cells into the early mammal embryo (at the blastocyst stage), they became incorporated in the cell mass of blastocysts and from such a chimeric (i.e. composed of cells from different organisms) blastocyst often develops normal chimeric animal.[55][56][57] This indicated that the cause of the teratoma is a dissonance - mutual misunderstanding of "speech" of young donor cells and surrounding adult cells (so-called niche) of the recipient.

Here is the original post:
Induced stem cells - Wikipedia, the free encyclopedia

To Read More: Induced stem cells – Wikipedia, the free encyclopedia
categoriaCardiac Stem Cells commentoComments Off on Induced stem cells – Wikipedia, the free encyclopedia | dataDecember 19th, 2013
Read All

Ex-Mounties serve as couriers for life-saving bone marrow stem cells

By NEVAGiles23

Keith Leishman, a retired RCMP staff sergeant and former CSIS officer, was sent on a critical international mission this year but not the kind youd think.

It had nothing to so with detective work or espionage: Leishman completed a high-stakes medical mission as a volunteer bone marrow stem cell courier.

The 72-year-old South Surrey resident is one of a dozen retired Mounties recruited and trained by the Bruce Denniston Bone Marrow Society to make crucial deliveries of human tissue to B.C. patients awaiting life-saving treatments.

The Bone Marrow Courier Program was set up by the Society and Vancouver Coastal Health in 2012. Formerly, Vancouver General Hospital staff served as couriers, but as more treatments were performed, some staff were away 50 per cent of the year. And, it was costly.

Because of the delicate nature of human tissue transport, not just any volunteer would do. Yet retired Mounties have experience with stressful operations, understand the importance of securing evidence and confidentiality, and are accustomed to dealing calmly and authoritatively with security.

One of the advantages they see with RCMP officers is the experience they have with continuity of possession, Leishman explained. Just like you take a piece of evidence, once we take possession of those stem cells they cant leave our sight until we turn them over at the lab at VGH. There is a very strict protocol in place.

Deliveries must be made within 72 hours of removal from a donor, as the tissue starts to degrade. Samples must be kept at a precise temperature and in sight at all times even while navigating customs and airport security.

Leishman went on his first mission in mid-September, flying to Berlin to collect a sample. He secured it as his carry-on luggage, got it safely through customs but never through X-rays, which damage the material and completed his mission without incident. Others have faced flight delays, airline strikes and bad weather.

Volunteers often spend just 24 hours on the ground.

Its not a holiday, he said. You are focused on getting that package back to someone who is very ill. It could be someones last chance.

More:
Ex-Mounties serve as couriers for life-saving bone marrow stem cells

To Read More: Ex-Mounties serve as couriers for life-saving bone marrow stem cells
categoriaBone Marrow Stem Cells commentoComments Off on Ex-Mounties serve as couriers for life-saving bone marrow stem cells | dataDecember 19th, 2013
Read All

Stem cells offer clues to reversing receding hairlines

By Dr. Matthew Watson

Dec. 18, 2013 Regenerative medicine may offer ways to banish baldness that don't involve toupees. The lab of USC scientist Krzysztof Kobielak, MD, PhD has published a trio of papers in the journals Stem Cells and The Proceedings of the National Academy of Sciences (PNAS) that describe some of the factors that determine when hair grows, when it stops growing and when it falls out.

Authored by Kobielak, postdoctoral fellow Eve Kandyba, PhD, and their colleagues, the three publications focus on stem cells located in hair follicles (hfSCs), which can regenerate hair follicles as well as skin. These hfSCs are governed by the signaling pathways BMP and Wnt -- which are groups of molecules that work together to control cell functions, including the cycles of hair growth.

The most recent paper, published in the journal Stem Cells in November 2013, focuses on how the gene Wnt7b activates hair growth. Without Wnt7b, hair is much shorter.

The Kobielak lab first proposed Wnt7b's role in a January 2013 PNAS publication. The paper identified a complex network of genes -- including the Wnt and BMP signaling pathways -- controlling the cycles of hair growth. Reduced BMP signaling and increased Wnt signaling activate hair growth. The inverse -- increased BMP signaling and decreased Wnt signaling -- keeps the hfSCs in a resting state.

Both papers earned the recommendation of the Faculty of 1000, which rates top articles by leading experts in biology and medicine.

A third paper published in Stem Cells in September 2013 further clarified the workings of the BMP signaling pathway by examining the function of two key proteins, called Smad1 and Smad5. These proteins transmit the signals necessary for regulating hair stem cells during new growth.

"Collectively, these new discoveries advance basic science and, more importantly, might translate into novel therapeutics for various human diseases," said Kobielak. "Since BMP signaling has a key regulatory role in maintaining the stability of different types of adult stem cell populations, the implication for future therapies might be potentially much broader than baldness -- and could include skin regeneration for burn patients and skin cancer."

Originally posted here:
Stem cells offer clues to reversing receding hairlines

To Read More: Stem cells offer clues to reversing receding hairlines
categoriaSkin Stem Cells commentoComments Off on Stem cells offer clues to reversing receding hairlines | dataDecember 19th, 2013
Read All

Researchers Generate Kidney Tubular Cells From Stem Cells

By raymumme

Contact Information

Available for logged-in reporters only

Highlights Investigators have discovered a cocktail of chemicals which, when added to stem cells in a precise order, turns on genes found in kidney cells in the same order that they turn on during embryonic kidney development. The kidney cells continued to behave like kidney cells when transplanted into adult or embryonic mouse kidneys.

Newswise Washington, DC (December 19, 2013) Researchers have successfully coaxed stem cells to become kidney tubular cells, a significant advance toward one day using regenerative medicine, rather than dialysis and transplantation, to treat kidney failure. The findings are published in the Journal of the American Society of Nephrology (JASN).

Chronic kidney disease is a major global public health problem, and when patients progress to kidney failure, their treatment options are limited to dialysis and kidney transplantation. Regenerative medicinewhich involves rebuilding or repairing tissues and organsmay offer a promising alternative.

Albert Lam, MD, Benjamin Freedman, PhD, Ryuji Morizane, MD, PhD (Brigham and Womens Hospital), and their colleagues have been working for the past five years to develop strategies to coax human pluripotent stem cellsparticularly human embryonic stem (ES) cells and human induced pluripotent stem (iPS) cellinto kidney cells for the purposes of kidney regeneration.

Our goal was to develop a simple, efficient, and reproducible method of differentiating human pluripotent stem cells into cells of the intermediate mesoderm, the earliest tissue in the developing embryo that is fated to give rise to the kidneys, said Dr. Lam. He noted that these cells would be the starting blocks for deriving more specific kidney cells.

The researchers discovered a cocktail of chemicals which, when added to stem cells in a precise order, causes them to turn off genes found in ES cells and turn on genes found in kidney cells, in the same order that they turn on during embryonic kidney development. The investigators were able to differentiate both human ES cells and human iPS cells into cells expressing PAX2 and LHX1, two key markers of the intermediate mesoderm. The iPS cells were derived by transforming fibroblasts obtained from adult skin biopsies to pluripotent cells, making the techniques applicable to personalized approaches where the starting cells can be derived from skin cells of a patient. The differentiated cells expressed multiple genes expressed in intermediate mesoderm and could spontaneously give rise to tubular structures that expressed markers of mature kidney tubules. The researchers could then differentiate them further into cells expressing SIX2, SALL1, and WT1, important markers of the metanephric cap mesenchyme, a critical stage of kidney differentiation. In kidney development, the metanephric cap mesenchyme contains a population of progenitor cells that give rise to nearly all of the epithelial cells of the kidney.

The cells also continued to behave like kidney cells when transplanted into adult or embryonic mouse kidneys, giving hope that investigators might one day be able to create kidney tissues that could function in a patient and would be 100% immunocompatible.

We believe that the successful derivation of kidney progenitor cells or functional kidney cells from human pluripotent stem cells will have an enormous impact on a variety of clinical and translational applications, including kidney tissue bioengineering, renal assist devices to treat acute and chronic kidney injury, drug toxicity screening, screening for novel therapeutics, and human kidney disease modeling, said Dr. Lam.

Go here to read the rest:
Researchers Generate Kidney Tubular Cells From Stem Cells

To Read More: Researchers Generate Kidney Tubular Cells From Stem Cells
categoriaSkin Stem Cells commentoComments Off on Researchers Generate Kidney Tubular Cells From Stem Cells | dataDecember 19th, 2013
Read All

Mayo cell therapy researcher plans to grow stem cells in space, where he thinks they will grow faster than on Earth

By daniellenierenberg

Abba Zubair, medical and scientific director of the Cell Therapy Laboratory at the Mayo Clinic in Jacksonville, wants to test the feasibility of growing stem cells in outer space, cells that could be used to generate new tissue and even new organs in human beings.

There are reasons to believe that stem cells, which are hard to grow in the great quantity they are needed on Earth, will grow much more rapidly in the microgravity environment in space, Zubair thinks. Now the Center for the Advancement in Science in Space has given Zubair a $300,000 grant to test that by placing stem cells in a specialized cell bioreactor in the International Space Station.

It now takes a month to generate enough cells for a few patients, Zubair said. A clinical laboratory in space could provide the answer we all have been seeking for regenerative medicine. ... If you have a ready supply of these cells, you can treat almost any condition and can theoretically regenerate entire organs using a scaffold. Additionally, they dont need to come from individual patients. Anyone can use them without rejection.

The stem cells he plans to grow in space will be stem cells that can induce regeneration of neurons and blood vessels in patients who have suffered hemorrhagic strokes caused by blood clots.

I have a special personal interest in stroke, Zubair said. Thats what killed my mom years ago. I really would like to conquer and treat stroke.

The first step in growing stem cells in space is happening at the University of Colorado where engineers are building the cell bioreactor Zubair will use on the space station. Within a year, Zubair hopes to transport the bioreactor and stem cells to the space station, perhaps aboard a flight by SpaceX, a company expected to begin commercial flights to the space station soon.

Once the bioreactor and stem cells are aboard the space station, it will take about a month to grow them, Zubair said. The results will then be analyzed by the astronauts on the space station and by researches back in Zubairs Jacksonville laboratories.

We will be trying to determine if our notion that stem cells grow faster in microgravity is true, Zubair said. We also want to know how feasible it is to produce clinical grade cells in space that can be used in humans.

Hes optimistic his study will show that growing stem cells in space is a viable way to create stem cells in quantity.

Were quite excited, he said. I really think the future is full of promise. We just have to take the opportunity to make that a reality.

Visit link:
Mayo cell therapy researcher plans to grow stem cells in space, where he thinks they will grow faster than on Earth

To Read More: Mayo cell therapy researcher plans to grow stem cells in space, where he thinks they will grow faster than on Earth
categoriaUncategorized commentoComments Off on Mayo cell therapy researcher plans to grow stem cells in space, where he thinks they will grow faster than on Earth | dataDecember 19th, 2013
Read All

Stem Cell Therapy – Facet Syndrome Patients Relieve Back and Neck Pain Dr Robert Wagner – NSPC – Video

By Sykes24Tracey


Stem Cell Therapy - Facet Syndrome Patients Relieve Back and Neck Pain Dr Robert Wagner - NSPC
How to know if the cause of your back or neck pain is Facet Syndrome. Discover how biologic regenerative treatments are able to pick up where traditional tre...

By: StemCell Arts

Excerpt from:
Stem Cell Therapy - Facet Syndrome Patients Relieve Back and Neck Pain Dr Robert Wagner - NSPC - Video

To Read More: Stem Cell Therapy – Facet Syndrome Patients Relieve Back and Neck Pain Dr Robert Wagner – NSPC – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy – Facet Syndrome Patients Relieve Back and Neck Pain Dr Robert Wagner – NSPC – Video | dataDecember 19th, 2013
Read All

Page 530«..1020..529530531532..540550..»


Copyright :: 2024