Page 519«..1020..518519520521..530540..»

Immune cells regulate blood stem cells, research shows

By NEVAGiles23

Researchers in Bern have discovered that, during a viral infection, immune cells control the blood stem cells in the bone marrow and therefore also the body's own defenses. The findings could allow for new forms of therapy, such as for bone marrow diseases like leukemia.

During a viral infection, the body needs various defense mechanisms -- amongst other things, a large number of white blood cells (leukocytes) must be produced in the bone marrow within a short period of time. In the bone marrow, stem cells are responsible for this task: the blood stem cells. In addition to white blood cells, blood stem cells also produce red blood cells and platelets.

The blood stem cells are located in specialized niches in the bone marrow and are surrounded by specialized niche cells. During an infection, the blood stem cells must complete two tasks: they must first recognise that more blood cells have to be produced and, secondly, they must recognise what kind of.

Now, for the first time, researchers at the Department of Medical Oncology at the University of Bern and Bern University Hospital headed by Prof. Adrian Ochsenbein have investigated how the blood stem cells in the bone marrow are regulated by the immune system's so-called T killer cells during a viral infection. As this regulation mechanism mediated by the immune system also plays an important role in other diseases such as leukemia, these findings could lead to novel therapeutic approaches. The study is being published in the peer-reviewed journal "Cell Stem Cell" today.

T Killer cells trigger defenses

One function of T killer cells is to "patrol" in the blood and remove pathogen-infected cells. However, they also interact with the blood stem cells in the bone marrow. The oncologists in Bern were able to show that messenger substances secreted by the T killer cells modulate the niche cells. In turn, the niche cells control the production and also the differentiation of the blood stem cells.

This mechanism is important in order to fight pathogens such as viruses or bacteria. However, various forms of the bone marrow disease leukemia are caused by a malignant transformation of exactly these blood stem cells. This leads to the formation of so-called leukemia stem cells. In both cases, the mechanisms are similar: the "good" mechanism regulates healthy blood stem cells during an infection, whilst the "bad" one leads to the multiplication of leukemia stem cells. This in turn leads to a progression of the leukemia.

This similarity has already been investigated in a previous project by the same group of researchers. "We hope that this will enable us to better understand and fight infectious diseases as well as bone marrow diseases such as leukemia," says Carsten Riether from the Department of Clinical Research at the University of Bern and the Department of Medical Oncology at Bern University Hospital and the University of Bern.

Story Source:

The above story is based on materials provided by University of Bern. Note: Materials may be edited for content and length.

Read more:
Immune cells regulate blood stem cells, research shows

To Read More: Immune cells regulate blood stem cells, research shows
categoriaBone Marrow Stem Cells commentoComments Off on Immune cells regulate blood stem cells, research shows | dataFebruary 24th, 2014
Read All

McClellan: Bone marrow registry drives often pay it forward

By NEVAGiles23

On a Saturday last September, Be the Match Foundation sponsored a 5-kilometer walk and run in Creve Coeur Park to promote donor awareness. The foundation is an international bone marrow registry, and it coordinates marrow and stem cell transplants that are used to treat blood disorders.

Mark Pearl was at the event. Two of his three kids were born with a rare blood disorder called Fanconi anemia. Alexandra was diagnosed on Christmas Day 2000. She was 5. Her younger brother, Matthew, was diagnosed shortly thereafter. A marrow donor in Sweden was quickly found for Alexandra, but no matches were found for Matthew.

Mark and his wife, Diane, began organizing donor drives. Its easy to register as a donor. A couple of swabs on the inside of a cheek to collect DNA is all that is required. At their first drive in February 2001, they registered more than 4,000 potential donors. No matches. Over the next five and a half years, they organized more than 1,000 drives and registered more than 100,000 potential donors.

A donor was eventually found in North Carolina. As is almost always the case, the donor registered at someone elses drive. Matthew received his transplant in 2006.

He and his sister are fine.

Also at the event in Creve Coeur was Brian Jakubeck. He did not know Mark, but he had registered as a potential donor at one of the drives the Pearls had organized for Matthew. One of the last drives, actually.

How did that happen? Mark has season tickets for the Rams and sits next to Ted Cassimatis, who is a college friend of Brians brother. So as the Pearls reached out well beyond their own circle of friends, Ted sent out a mass email to his friends, and that email reached Brian. He and his wife, Kathy, registered as potential donors at a drive in May 2006.

Sometime later, Brian heard the good news from Ted that a donor had been found for his friends son.

Several years passed. In August 2012, Brian heard from Be the Match. He appeared to be a match. Would he agree to have some blood samples taken to confirm that he was a match? Sure, he said.

The results were positive. He was a match. He had more tests shortly before Christmas, and in January of last year, he went to St. Louis University Hospital and gave his stem cells. This was done in a process called apheresis. It is similar to giving plasma or platelets. The blood goes through an IV, passes through a machine that collects the stem cells, and then is returned through another IV. Its painless, but takes about six hours.

Read more:
McClellan: Bone marrow registry drives often pay it forward

To Read More: McClellan: Bone marrow registry drives often pay it forward
categoriaBone Marrow Stem Cells commentoComments Off on McClellan: Bone marrow registry drives often pay it forward | dataFebruary 24th, 2014
Read All

Scientists transform human skin cells into mature liver cells

By JoanneRUSSELL25

In a medical first, scientists at the Gladstone Institutes and the University of California, San Francisco (UCSF) have transformed human skin cells into mature, fully functioning liver cells.

Additionally, these cells can thrive on their own after being transplanted into laboratory animals a positive step for future treatment for liver failure.

So far, scientists have been able turn skin cells into cells closely resembling heart cells and pancreas cells, but there hasnt been a method to generate cells that are fully mature. And previous studies on liver-cell reprogramming had difficulties getting the stem-cell-derived liver cells to survive and flourish once transplanted inside the body.

But in this latest study, published in the journal Nature, researchers figured out a way to overcome these obstacles.

Earlier studies tried to reprogram skin cells back into a pluripotent, stem cell-like state in order to then grow liver cells, senior author Sheng Ding, a professor of pharmaceutical chemistry at UCSF, said in a press release. However, generating these so-called induced pluripotent stem cells, or iPS cells, and then transforming them into liver cells wasnt always resulting in complete transformation. So we thought that, rather than taking these skin cells all the way back to a pluripotent, stem cell-like state, perhaps we could take them to an intermediate phase.

Dings regeneration method involved using a specific cocktail of reprogramming genes and chemical compounds. This mixture helped to transform the skin cells into cells resembling those in the endoderm an embryonic cell layer that eventually forms many of the bodys major organs. According to the researchers, this state allowed the cells to be more easily coaxed into becoming liver cells.

Then, using another set of genes and compounds, Ding and his team transformed the endoderm-like cells into nearly indistinguishable liver cells. To see how well these cells performed on their own, the researchers implanted them into the livers of mice that had been genetically altered to experience liver failure. Nine months post-transplantation, the team saw an overall rise in human liver protein levels an indication that the liver cells were growing and thriving.

This study has major implications for those suffering from liver failure, as a costly liver transplant is often the only form of treatment.

Many questions remain, but the fact that these cells can fully mature and grow for months post-transplantation is extremely promising, said Dr. Holger Willenbring, associate director of the UCSF Liver Center and the papers other senior author. In the future, our technique could serve as an alternative for liver-failure patients who dont require full-organ replacement, or who dont have access to a transplant due to limited donor organ availability.

Click for more from University of California, San Francisco.

Link:
Scientists transform human skin cells into mature liver cells

To Read More: Scientists transform human skin cells into mature liver cells
categoriaSkin Stem Cells commentoComments Off on Scientists transform human skin cells into mature liver cells | dataFebruary 24th, 2014
Read All

Scientists Transform Skin Cells Into Functioning Liver Cells

By daniellenierenberg

Gladstone Institutes

Joint Gladstone-UCSF study highlights novel reprogramming method; offers new hope for treating liver failure

SAN FRANCISCO, CAFebruary 23, 2014 The power of regenerative medicine now allows scientists to transform skin cells into cells that closely resemble heart cells, pancreas cells and even neurons. However, a method to generate cells that are fully maturea crucial prerequisite for life-saving therapieshas proven far more difficult. But now, scientists at the Gladstone Institutes and the University of California, San Francisco (UCSF), have made an important breakthrough: they have discovered a way to transform skin cells into mature, fully functioning liver cells that flourish on their own, even after being transplanted into laboratory animals modified to mimic liver failure.

In previous studies on liver-cell reprogramming, scientists had difficulty getting stem cell-derived liver cells to survive once being transplanted into existing liver tissue. But the Gladstone-UCSF team figured out a way to solve this problem. Writing in the latest issue of the journal Nature, researchers in the laboratories of Gladstone Senior Investigator Sheng Ding, PhD, and UCSF Associate Professor Holger Willenbring, MD, PhD, reveal a new cellular reprogramming method that transforms human skin cells into liver cells that are virtually indistinguishable from the cells that make up native liver tissue.

These results offer new hope for the millions of people suffering from, or at risk of developing, liver failurean increasingly common condition that results in progressive and irreversible loss of liver function. At present, the only option is a costly liver transplant. So, scientists have long looked to stem cell technology as a potential alternative. But thus far they have come up largely empty-handed.

Earlier studies tried to reprogram skin cells back into a pluripotent, stem cell-like state in order to then grow liver cells, explained Dr. Ding, one of the papers senior authors, who is also a professor of pharmaceutical chemistry at UCSF, with which Gladstone is affiliated. However, generating these so-called induced pluripotent stem cells, or iPS cells, and then transforming them into liver cells wasnt always resulting in complete transformation. So we thought that, rather than taking these skin cells all the way back to a pluripotent, stem cell-like state, perhaps we could take them to an intermediate phase.

This research, which was performed jointly at the Roddenberry Center for Stem Cell Research at Gladstone and the Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, involved using a cocktail of reprogramming genes and chemical compounds to transform human skin cells into cells that resembled the endoderm. Endoderm cells are cells that eventually mature into many of the bodys major organsincluding the liver.

Instead of taking the skin cells back to the beginning, we took them only part way, creating endoderm-like cells, added Gladstone and CIRM Postdoctoral Scholar Saiyong Zhu, PhD, one of the papers lead authors. This step allowed us to generate a large reservoir of cells that could more readily be coaxed into becoming liver cells.

Next, the researchers discovered a set of genes and compounds that can transform these cells into functioning liver cells. And after just a few weeks, the team began to notice a transformation.

The cells began to take on the shape of liver cells, and even started to perform regular liver-cell functions, said UCSF Postdoctoral Scholar Milad Rezvani, MD, the papers other lead author. They werent fully mature cells yetbut they were on their way.

View post:
Scientists Transform Skin Cells Into Functioning Liver Cells

To Read More: Scientists Transform Skin Cells Into Functioning Liver Cells
categoriaSkin Stem Cells commentoComments Off on Scientists Transform Skin Cells Into Functioning Liver Cells | dataFebruary 24th, 2014
Read All

STAP stem cell doubts keep proliferating

By Dr. Matthew Watson

Doubts keep growing about the stunning discovery that super stem cells could be created merely by placing white blood cells from young mice in acid or otherwise stressing them, says Paul Knoepfler, a stem cell researcher at UC Davis.

Among other inconsistencies, Knoepfler referred to several unexplained anomalies in images of these STAP cells in two papers, published by the prestigious journal Nature on Jan. 29. One image appears to suggest signs that virtually all cells treated with an acid bath were being reprogrammed, a result that would be extraordinary. Stem cell reprogramming to date has been inefficient, with a low percentage of treated cells being reprogrammed.

"The more I look at these two STAP papers, the more concerned I get ... The bottom line for me now is that some level a part of me still clings to a tiny and receding hope this has all been overblown due to simple misunderstandings, but that seems increasingly unlikely," Knoepfler wrote Sunday on his blog, IPS Cell.

This undated image made available by the journal Nature shows a mouse embryo formed with specially-treated cells from a newborn mouse that had been transformed into stem cells. Researchers in Boston and Japan say they created stem cells from various tissues of newborn mice. If the same technique works for humans, it may provide a new way to grow tissue for treating illnesses like diabetes and Parkinson's disease. The report was published online on Wednesday, Jan. 29, 2014 in the journal Nature. (AP Photo/RIKEN Center for Developmental Biology, Haruko Obokata)

Nature is conducting its own investigation, Knoepfler noted. But in addition, the journal should release "unmodified, original versions" of the images and data in the papers, Knoepfler wrote.

The images contained "minor errors" that didn't change the basic findings, said Charles Vacanti, a Harvard University professor who is part of the scientific team reporting the discovery, according to a Feb. 22 article in a Japanese newspaper, the Asahi Shimbun.

Controversy is normal for any major scientific advance. Skeptics must be converted, and the only way to do that is to show the data. The 1997 announcement of the first mammalian clone, Dolly the sheep, was greeted with considerable doubt because it was believed that genetic imprinting made such cloning impossible. But others were eventually able to confirm the finding.

In this case, doubters say such an apparently easy method of reprogramming cells would generate pluripotent stem cells far too easily, because stress is common in animals. Such stem cells are known to cause tumors, so evolution should have selected against such a response.

Nature's own role has been criticized. The journal was taken to task for its handling of online journalism Feb. 20 by another stem cell blogger, Alexey Bersenev. He chided Nature for not linking to sources.

"In scientific journalism, every claim must be linked to appropriate original source," Berseney wrote. "Nature consistently refuses to acknowledge bloggers, online discussions and other web resources with valid credible information. This is not acceptable for sci journalism."

The rest is here:
STAP stem cell doubts keep proliferating

To Read More: STAP stem cell doubts keep proliferating
categoriaIPS Cell Therapy commentoComments Off on STAP stem cell doubts keep proliferating | dataFebruary 24th, 2014
Read All

Stem cells to fight brain diseases say Cambridge scientists

By NEVAGiles23

Cambridge News Follow us on

Monday 24 Feb 2014 2:43 PM

Written byELEANOR DICKINSON

Sufferers of serious brain diseases could one day be helped by stem cell treatments , according to scientists at Cambridge University.

Scientists at the University hope to be able to use the regenerative power of stem cells to treat major brain conditions such as Parkinsons and Huntingtons disease.

Their findings are expected to be revealed at the Cambridge Festival of Science next month.

Robin Franklin, the newly appointed Professor of Stem Cell Medicine, will be discussing his research into central nervous system regeneration and the possibility of treating multiple sclerosis.

He said: The brain, although capable of unmatched feats of adaptability, is generally considered to be an organ that is very poor at mending itself after injury.

However, one particular type of brain cell, called the oligodendrocyte the cell that makes the myelin wrapping around nerve fibres can be regenerated when lost in disease by the brains own stem cells.

By studying in the laboratory how brain stem cells generate new oligodendrocytes it has been possible to identify ways in which this important regenerative process might be achieved in the clinic, offering the

Read this article:
Stem cells to fight brain diseases say Cambridge scientists

To Read More: Stem cells to fight brain diseases say Cambridge scientists
categoriaUncategorized commentoComments Off on Stem cells to fight brain diseases say Cambridge scientists | dataFebruary 24th, 2014
Read All

Skin cells transformed into functioning liver cells in mouse study

By Dr. Matthew Watson

The power of regenerative medicine now allows scientists to transform skin cells into cells that closely resemble heart cells, pancreas cells and even neurons. However, a method to generate cells that are fully mature -- a crucial prerequisite for life-saving therapies -- has proven far more difficult. But now, scientists at the Gladstone Institutes and the University of California, San Francisco (UCSF), have made an important breakthrough: they have discovered a way to transform skin cells into mature, fully functioning liver cells that flourish on their own, even after being transplanted into laboratory animals modified to mimic liver failure.

In previous studies on liver-cell reprogramming, scientists had difficulty getting stem cell-derived liver cells to survive once being transplanted into existing liver tissue. But the Gladstone-UCSF team figured out a way to solve this problem. Writing in the latest issue of the journal Nature, researchers in the laboratories of Gladstone Senior Investigator Sheng Ding, PhD, and UCSF Associate Professor Holger Willenbring, MD, PhD, reveal a new cellular reprogramming method that transforms human skin cells into liver cells that are virtually indistinguishable from the cells that make up native liver tissue.

These results offer new hope for the millions of people suffering from, or at risk of developing, liver failure -- an increasingly common condition that results in progressive and irreversible loss of liver function. At present, the only option is a costly liver transplant. So, scientists have long looked to stem cell technology as a potential alternative. But thus far they have come up largely empty-handed.

"Earlier studies tried to reprogram skin cells back into a pluripotent, stem cell-like state in order to then grow liver cells," explained Dr. Ding, one of the paper's senior authors, who is also a professor of pharmaceutical chemistry at UCSF, with which Gladstone is affiliated. "However, generating these so-called induced pluripotent stem cells, or iPS cells, and then transforming them into liver cells wasn't always resulting in complete transformation. So we thought that, rather than taking these skin cells all the way back to a pluripotent, stem cell-like state, perhaps we could take them to an intermediate phase."

This research, which was performed jointly at the Roddenberry Center for Stem Cell Research at Gladstone and the Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, involved using a 'cocktail' of reprogramming genes and chemical compounds to transform human skin cells into cells that resembled the endoderm. Endoderm cells are cells that eventually mature into many of the body's major organs -- including the liver.

"Instead of taking the skin cells back to the beginning, we took them only part way, creating endoderm-like cells," added Gladstone and CIRM Postdoctoral Scholar Saiyong Zhu, PhD, one of the paper's lead authors. "This step allowed us to generate a large reservoir of cells that could more readily be coaxed into becoming liver cells."

Next, the researchers discovered a set of genes and compounds that can transform these cells into functioning liver cells. And after just a few weeks, the team began to notice a transformation.

"The cells began to take on the shape of liver cells, and even started to perform regular liver-cell functions," said UCSF Postdoctoral Scholar Milad Rezvani, MD, the paper's other lead author. "They weren't fully mature cells yet -- but they were on their way."

Now that the team was encouraged by these initial results in a dish, they wanted to see what would happen in an actual liver. So, they transplanted these early-stage liver cells into the livers of mice. Over a period of nine months, the team monitored cell function and growth by measuring levels of liver-specific proteins and genes.

Two months post-transplantation, the team noticed a boost in human liver protein levels in the mice, an indication that the transplanted cells were becoming mature, functional liver cells. Nine months later, cell growth had shown no signs of slowing down. These results indicate that the researchers have found the factors required to successfully regenerate liver tissue.

Excerpt from:
Skin cells transformed into functioning liver cells in mouse study

To Read More: Skin cells transformed into functioning liver cells in mouse study
categoriaUncategorized commentoComments Off on Skin cells transformed into functioning liver cells in mouse study | dataFebruary 24th, 2014
Read All

Hero stem-cell donor saves brave leukaemia patient Margot Martini

By raymumme

21 Feb 2014 20:33

Staffordshire toddler has life-saving bone marrow transplant after match is finally found

Parents of a brave toddler battling leukaemia hailed a stem-cell donor their hero as their daughter received a life-saving bone marrow transplant.

Vicky and Yaser Martini, from Essington, Staffordshire, launched a huge internet campaign to find a match for 18-month-old Margot after she was diagnosed with two types of the cancer last October.

An estimated 40,000 people have requested donor packs from charity Delete Blood Cancer since the appeal, which has been backed by celebrities Stephen Fry, Gary Barlow and former Wolves hero Steve Bull.

Margot underwent a two-hour bone marrow transplant at Great Ormond Street Hospital in London on Friday after a stem cell donor match, said to be from outside the UK, was confirmed earlier this month.

The toddler napped contentedly in her pram as the stem cells were administered via a Hickman line in her chest said dad Yaser.

This young chap has done this selfless and benevolent thing. Frankly, he is my hero, he added.

I am watching it as it happens. It is quite something.

Margot Martini, with her brothers Rufus and Oscar, her dad Yaser and mum Vicky

The rest is here:
Hero stem-cell donor saves brave leukaemia patient Margot Martini

To Read More: Hero stem-cell donor saves brave leukaemia patient Margot Martini
categoriaBone Marrow Stem Cells commentoComments Off on Hero stem-cell donor saves brave leukaemia patient Margot Martini | dataFebruary 22nd, 2014
Read All

Duke Health System CEO appointed to head Institute of Medicine – Boston.com

By Dr. Matthew Watson

Duke University Health SystemDr. Victor J. Dzau, the current president and CEO of Duke University Health System

Dr. Victor J. Dzau, the current president and CEO of Duke University Health System and chancellor for health affairs at Duke University, has been appointed to a six-year term as the next president of the Institute of Medicine (IOM), effective July 1, 2014. Dr. Dzau will take over the lead role from Dr. Harvey Fineberg, who served in the position for twelve years.

Dr. Dzau began his career in medicine as a cardiologist, having previously taught at Harvard Medical School and served as chair of the department of medicine. He also worked at Brigham and Womens Hospital as the director of research. His ongoing award-winning research has been key in the development of cardiovascular drugs, as well as techniques to repair tissue damage from heart attacks and heart disease using stem cell therapies.

Dr. Eugene Braunwald, often called the father of modern cardiology and a professor of medicine at Harvard Medical School, has known Dr. Dzau for more than 40 years and worked with him at many different stages of his career at Brigham and Womens Hospital and Partners Healthcare. In an interview Wednesday he called the upcoming IOM president a force of nature.

He is what I would call a talented, quadruple threat. A great physician, inspiring teacher, and a very creative scientist, said Dr. Braunwald, who trained Dzau when he was a resident at Brigham and Womens and continued to work with him on cardiovascular research when Dr. Dzau became chief resident, and then faculty at Harvard Medical School. The quadruple threat is that he also sees the larger picture. Hes interested in areas of medicine that most academic physicians have stayed away from. His work and ideas in global and community-based medicine have left an important heritage at each institution where hes worked.

After nearly a decade at Duke, Dr. Dzaus leadership has been credited with the launch of a number of innovative and global-focused medical institutions, including the Duke-National University of Signapore Graduate Medical School, Duke Global Health Institute, Duke Institute for Health Innovation, Duke Cancer Institute, as well as the Duke Translational Medicine Institute.

Im deeply honored to become the next president of the IOM and recognize the critically important role that the IOM will have in improving the health of the nation at a time of extraordinary evolution in biomedical research and health care delivery, Dzau said in a press release from Duke University Health System. The explosion of new data resources, novel technologies and breathtaking research advances make this the most promising time in history for driving innovations that will improve health care delivery, outcomes and quality.

As the health sciences extension of the National Academy of Sciences, the Institute of Medicine is known for its leadership in advancing health sciences and objective medical research nationally as a nonprofit academic research organization. The outgoing IOM president, Dr. Harvey Fineberg (previously Dean of the Harvard School of Public Health) has lead the nonprofit for twelve years. His focus and research have centered around public health policy and an improvement in informed medical decision making.

This leaves the medical community wondering what Dr. Dzau will bring to the Institute.

As a former chairman of the Association of Academic Health Centers (AAHC), Dr. Dzau advocated for the innovative transition of academic medical and health centers into institutions that can survive the rapid transitions in the health care industry. In a recent article in the New England Journal of Medicine, Dr. Dzau discusses the uncertain future of academic medical centers. He argues that industry pressures and cost restraints from the Affordable Care Act limit the research and education-based missions of teaching hospitals.

View original post here:
Duke Health System CEO appointed to head Institute of Medicine - Boston.com

To Read More: Duke Health System CEO appointed to head Institute of Medicine – Boston.com
categoriaUncategorized commentoComments Off on Duke Health System CEO appointed to head Institute of Medicine – Boston.com | dataFebruary 22nd, 2014
Read All

CLINICell Stem Cell Therapy for Knee Meniscus Tear 1 year Follow-Up – Video

By Sykes24Tracey


CLINICell Stem Cell Therapy for Knee Meniscus Tear 1 year Follow-Up
Stem cell therapy for knee post operative interview. This patient came in with a knee meniscus tear and one year after his initial procedure patient is pain ...

By: ClinicellTech

View post:
CLINICell Stem Cell Therapy for Knee Meniscus Tear 1 year Follow-Up - Video

To Read More: CLINICell Stem Cell Therapy for Knee Meniscus Tear 1 year Follow-Up – Video
categoriaUncategorized commentoComments Off on CLINICell Stem Cell Therapy for Knee Meniscus Tear 1 year Follow-Up – Video | dataFebruary 22nd, 2014
Read All

Stem Cell Therapy – Studies That Support Regenerative Therapy (Regenexx) – Video

By LizaAVILA


Stem Cell Therapy - Studies That Support Regenerative Therapy (Regenexx)
Dr Robert Wagner of Stem Cell ARTS discusses the research and science behind advanced regenerative medicine therapies and the track record of treating knee, ...

By: StemCell ARTS

See the rest here:
Stem Cell Therapy - Studies That Support Regenerative Therapy (Regenexx) - Video

To Read More: Stem Cell Therapy – Studies That Support Regenerative Therapy (Regenexx) – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy – Studies That Support Regenerative Therapy (Regenexx) – Video | dataFebruary 22nd, 2014
Read All

Helping people with spinal cord injuries

By JoanneRUSSELL25

REGINA Meeting Rick Hansen during his Man in Motion world tour sparked six-year-old Josef Buttigiegs fascination with biology and set his career course in motion.

Twenty-eight years after first meeting Hansen, Buttigieg is a biology professor at the University of Regina. Recently he received a $100,000 grant over two years from the Saskatchewan Health Research Foundation (SHRF) to improve the lives of people with spinal cord injuries.

One day Buttigieg hopes hes able to heal his hero.

He vividly recalls hearing Hansen speak at his elementary school in Toronto and talking with him afterwards.

I was really curious about how being in a car accident can result in a spinal cord injury or not being able to walk I just couldnt fathom that, Buttigieg said.

During his first year at McMaster University in Hamilton, Buttigieg again crossed paths with Hansen when he spoke at the university during a ceremony where he received an honorary doctorate.

Further inspired, Buttigieg became a volunteer research student in a spinal cord injury lab at McMaster before pursuing graduate studies there. He went on to work with a prominent neurosurgeon specializing in spinal cord injuries before arriving at the U of R in 2011 and starting his research program.

One of the focuses of Buttigiegs research is stem cell regeneration for spinal cord injuries, stroke and multiple sclerosis.

In terms of the damage to the nervous system, its very similar between the three cases, he said.

When a spinal cord is healthy, a signal is sent from the brain to the nerve, and then the nerve is turned off.

Originally posted here:
Helping people with spinal cord injuries

To Read More: Helping people with spinal cord injuries
categoriaSpinal Cord Stem Cells commentoComments Off on Helping people with spinal cord injuries | dataFebruary 21st, 2014
Read All

Okyanos Heart Institute Inks Deal with Cytori Therapeutics For Long-Term Supply Agreement

By Sykes24Tracey

Freeport, The Bahamas (PRWEB) February 21, 2014

Okyanos Heart Institute, whose mission it is to bring a new standard of care and a better quality of life to patients with coronary artery disease using adult stem cell therapy, and Cytori Therapeutics have announced that they have established a ten year supply agreement for the Celution System family of products to be utilized by the Okyanos Heart Institute.

Cytoris Celution system is a CE-marked device that is compliant with the European Medical Device Directive, has a well established safety record and will be used by Okyanos to treat patients with coronary artery disease and other ischemic conditions, stated Matthew Feshbach, CEO and co-founder of Okyanos. In a small but rigorous double-blinded, placebo-controlled trial, strong signals of efficacy from the placement of adipose-derived stem and regenerative cells (ADRCs) in the heart were reported, added Feshbach.

For Cytori, this agreement represents our expanding customer base and an important new customer focused on utilizing the global standard CelutionTM System to process ADRCs to treat patients, stated Christopher Calhoun, CEO of Cytori.

The Bahamas Parliament passed stem cell legislation and regulations in August, 2013, which focus on patient safety and require scientific and clinical trial data supporting the treatment being provided. Okyanos is building out a state-of-the-art cath lab capable of treating more than 1,000 patients per year in Freeport, The Bahamas.

ABOUT OKYANOS HEART INSTITUTE: (Oh key AH nos) Based in Freeport, The Bahamas, Okyanos Heart Institutes mission is to bring a new standard of care and a better quality of life to patients with coronary artery disease using cardiac stem cell therapy. Okyanos adheres to U.S. surgical center standards and is led by Chief Medical Officer Howard T. Walpole Jr., M.D., M.B.A., F.A.C.C., F.S.C.A.I. Okyanos Treatment utilizes a unique blend of stem and regenerative cells derived from ones own adipose (fat) tissue. The cells, when placed into the heart via a minimally-invasive procedure, can stimulate the growth of new blood vessels, a process known as angiogenesis. Angiogenesis facilitates blood flow in the heart, which supports intake and use of oxygen (as demonstrated in rigorous clinical trials such as the PRECISE trial). The literary name Okyanos, the Greek god of rivers, symbolizes restoration of blood flow.

Okyanos LinkedIn Page: http://www.linkedin.com/company/okyanos-heart-institute

Okyanos Facebook Page: https://www.facebook.com/OKYANOS

Okyanos Twitter Page: https://twitter.com/#!/OkyanosHeart

Okyanos Google+ Page: https://plus.google.com/+Okyanos/posts

Follow this link:
Okyanos Heart Institute Inks Deal with Cytori Therapeutics For Long-Term Supply Agreement

To Read More: Okyanos Heart Institute Inks Deal with Cytori Therapeutics For Long-Term Supply Agreement
categoriaCardiac Stem Cells commentoComments Off on Okyanos Heart Institute Inks Deal with Cytori Therapeutics For Long-Term Supply Agreement | dataFebruary 21st, 2014
Read All

'Largest ever' trial of adult stem cells in heart attack patients begins

By LizaAVILA

Current ratings for: 'Largest ever' trial of adult stem cells in heart attack patients begins

Public / Patient:

0 0 ratings

Health Professionals:

0 0 ratings

The largest ever trial of adult stem cell therapy in heart attack patients has begun at The London Chest Hospital in the UK.

Heart disease is the world's leading cause of death. Globally, more than 17 million people died from heart disease last year. In the US, over 1 million people suffer a heart attack each year, and about half of them die.

Heart attacks are usually caused by a clot in the coronary artery, which stops the supply of blood and oxygen to the heart. If the blockage is not treated within a few hours, then it causes the heart muscle to die.

The stem cell trial - titled "The effect of intracoronary reinfusion of bone marrow-derived mononuclear cells (BM-MNC) on allcause mortality in acute myocardial infarction," or "BAMI" for short - has been made possible due to a 5.9 million ($8.1 million) award from the European Commission.

The full study involves 19 partners across France, Germany, Italy, Finland, Denmark, Spain, Belgium, Poland, the Czech Republic and the UK.

Read more:
'Largest ever' trial of adult stem cells in heart attack patients begins

To Read More: 'Largest ever' trial of adult stem cells in heart attack patients begins
categoriaBone Marrow Stem Cells commentoComments Off on 'Largest ever' trial of adult stem cells in heart attack patients begins | dataFebruary 21st, 2014
Read All

A changing view of bone marrow cells

By NEVAGiles23

PUBLIC RELEASE DATE:

20-Feb-2014

Contact: Deborah Williams-Hedges debwms@caltech.edu 626-395-3227 California Institute of Technology

In the battle against infection, immune cells are the body's offense and defensesome cells go on the attack while others block invading pathogens. It has long been known that a population of blood stem cells that resides in the bone marrow generates all of these immune cells. But most scientists have believed that blood stem cells participate in battles against infection in a delayed way, replenishing immune cells on the front line only after they become depleted.

Now, using a novel microfluidic technique, researchers at Caltech have shown that these stem cells might be more actively involved, sensing danger signals directly and quickly producing new immune cells to join the fight.

"It has been most people's belief that the bone marrow has the function of making these cells but that the response to infection is something that happens locally, at the infection site," says David Baltimore, president emeritus and the Robert Andrews Millikan Professor of Biology at Caltech. "We've shown that these bone marrow cells themselves are sensitive to infection-related molecules and that they respond very rapidly. So the bone marrow is actually set up to respond to infection."

The study, led by Jimmy Zhao, a graduate student in the UCLA-Caltech Medical Scientist Training Program, will appear in the April 3 issue of the journal Cell Stem Cell.

In the work, the researchers show that blood stem cells have all the components needed to detect an invasion and to mount an inflammatory response. They show, as others have previously, that these cells have on their surface a type of receptor called a toll-like receptor. The researchers then identify an entire internal response pathway that can translate activation of those receptors by infection-related molecules, or danger signals, into the production of cytokines, signaling molecules that can crank up immune-cell production. Interestingly, they show for the first time that the transcription factor NF-B, known to be the central organizer of the immune response to infection, is part of that response pathway.

To examine what happens to a blood stem cell once it is activated by a danger signal, the Baltimore lab teamed up with chemists from the lab of James Heath, the Elizabeth W. Gilloon Professor and professor of chemistry at Caltech. They devised a microfluidic chipprinted in flexible silicon on a glass slide, complete with input and output ports, control valves, and thousands of tiny wellsthat would enable single-cell analysis. At the bottom of each well, they attached DNA molecules in strips and introduced a flow of antibodiespathogen-targeting proteins of the immune systemthat had complementary DNA. They then added the stem cells along with infection-related molecules and incubated the whole sample. Since the antibodies were selected based on their ability to bind to certain cytokines, they specifically captured any of those cytokines released by the cells after activation. When the researchers added a secondary antibody and a dye, the cytokines lit up. "They all light up the same color, but you can tell which is which because you've attached the DNA in an orderly fashion," explains Baltimore. "So you've got both visualization and localization that tells you which molecule was secreted." In this way, they were able to measure, for example, that the cytokine IL-6 was secreted most frequentlyby 21.9 percent of the cells tested.

"The experimental challenges here were significantwe needed to isolate what are actually quite rare cells, and then measure the levels of a dozen secreted proteins from each of those cells," says Heath. "The end result was sort of like putting on a new pair of glasseswe were able to observe functional properties of these stem cells that were totally unexpected."

The rest is here:
A changing view of bone marrow cells

To Read More: A changing view of bone marrow cells
categoriaBone Marrow Stem Cells commentoComments Off on A changing view of bone marrow cells | dataFebruary 21st, 2014
Read All

Stem cell donor clinic planned for 4-year-old battling leukemia again

By Dr. Matthew Watson

Paul Herron and Anne Hodgkinson wake up every day knowing their daughter could die.

Their 4-year-old, Katie, has cancer, and for the second time in her young life she is fighting to stay alive.

Shes scared. Shes terrified, Herron told the Star from Torontos Ronald McDonald House, where the Cambridge family is currently staying so Katie can get treatment at the Hospital for Sick Children.

For Anne and I, its been a parents worst nightmare.

When Katie was just 15 months old, she was diagnosed with acute lymphoblastic leukemia. But after 25 months of intensive treatment, including lumbar punctures, bone marrow aspirations, chemotherapy and steroids, Katie fought the cancer into remission.

Finally, the family thought, they could say goodbye to hospital beds and the hours spent pacing hallways waiting for results. Finally, they could be normal.

But last November, the life they had built for themselves crumbled once again. The cancer was back, and this time Katie would need a stem cell donor.

The first time, we never made it public. We kept to ourselves, said Herron. But because this time she needs a stem cell donation, we had to get the word out.

No one in the family is a match, and the national registry has yet to turn up a name. This Saturday, Katies supporters will host a stem cell donor clinic at the Cambridge Sports Park from 1 to 5 p.m. All thats required for testing is a cheek swab.

(Stem cells are collected from a matching donors bone marrow or blood after the donor has given informed consent and undergone medical tests to encourage good health and compatibility.)

Follow this link:
Stem cell donor clinic planned for 4-year-old battling leukemia again

To Read More: Stem cell donor clinic planned for 4-year-old battling leukemia again
categoriaBone Marrow Stem Cells commentoComments Off on Stem cell donor clinic planned for 4-year-old battling leukemia again | dataFebruary 21st, 2014
Read All

Nanotechnology to help in healing hearts

By JoanneRUSSELL25

6 hours ago

Professor Sami Franssila is participating in a research project that could, if successful, revolutionise the treatment of coronary thrombosis and brain damage.

You cannot walk into the clean rooms of Micronova with your snowy boots.

'We fabricate nano-scale objects so any undesired particles, including dust, must be smaller than the objects being made,' Sami Franssila, Professor of Microtechnology explains and points at the researchers working in their protective clothing on the other side of the window.

'The floor is vibration isolated and the air conditioning keeps the temperature and humidity between precise limits.'

Accelerating stem cell differentiation

Precision is also required in the large strategic research opening by Tekes which Franssila and his research group are participating in with the University of Helsinki and Helsinki University Central Hospital. The project has an ambitious goal: getting damaged organs to heal themselves. Achieving this goal requires drugs that are targeted at an organ, such as the heart or the brain, using nanotechnology. The drugs then locally enhance the differentiation of stem cells so that the necessary new heart or nerve cells are created.

'The idea is to heal cell damages locally,' Sami Franssila explains.

'One of the greatest challenges is determining the essential chemicals which affect the differentiation of cells. The work requires micro and nanotechnology as we, in collaboration with the University of Helsinki Division of Pharmaceutical Chemistry, have to develop an analysis method that is so sensitive that it can be used to examine extremely small amounts of substance consisting of as few as one thousand molecules. In addition to sensitivity, the method also has to be accurate to counterbalance the natural biological fluctuation of the samples taken from the cells,' Franssila continues.

Ten years of cooperation

More:
Nanotechnology to help in healing hearts

To Read More: Nanotechnology to help in healing hearts
categoriaSkin Stem Cells commentoComments Off on Nanotechnology to help in healing hearts | dataFebruary 21st, 2014
Read All

Immune cells regulate blood stem cells

By NEVAGiles23

7 hours ago Blood stem cell cultures: Blood stem cells from colonies (cell clusters) in vitro consisting of different blood cells. Nine blood stem cell colonies are illustrated in the image, which have developed into differentiated cell types, particularly into white blood cells (leukocytes).Credit: Department of Clinical Research of the University of Bern, Tumor-Immunology research group

Researchers in Bern, Germany, have discovered that, during a viral infection, immune cells control the blood stem cells in the bone marrow and therefore also the body's own defences. The findings could allow for new forms of therapy, such as for bone marrow diseases like leukaemia.

During a viral infection, the body needs various defence mechanisms amongst other things, a large number of white blood cells (leukocytes) must be produced in the bone marrow within a short period of time. In the bone marrow, stem cells are responsible for this task: the blood stem cells. In addition to white blood cells, blood stem cells also produce red blood cells and platelets.

The blood stem cells are located in specialized niches in the bone marrow and are surrounded by specialized niche cells. During an infection, the blood stem cells must complete two tasks: they must first recognise that more blood cells have to be produced and, secondly, they must recognise what kind of.

Now, for the first time, researchers at the Department of Medical Oncology at the University of Bern and Bern University Hospital headed by Prof. Adrian Ochsenbein have investigated how the blood stem cells in the bone marrow are regulated by the immune system's so-called T killer cells during a viral infection. As this regulation mechanism mediated by the immune system also plays an important role in other diseases such as leukaemia, these findings could lead to novel therapeutic approaches. The study is being published in the peer-reviewed journal Cell Stem Cell today.

T Killer cells trigger defences

One function of T killer cells is to "patrol" in the blood and remove pathogen-infected cells. However, they also interact with the blood stem cells in the bone marrow. The oncologists in Bern were able to show that messenger substances secreted by the T killer cells modulate the niche cells. In turn, the niche cells control the production and also the differentiation of the blood stem cells.

This mechanism is important in order to fight pathogens such as viruses or bacteria. However, various forms of the bone marrow disease leukaemia are caused by a malignant transformation of exactly these blood stem cells. This leads to the formation of so-called leukaemia stem cells. In both cases, the mechanisms are similar: the "good" mechanism regulates healthy blood stem cells during an infection, whilst the "bad" one leads to the multiplication of leukaemia stem cells. This in turn leads to a progression of the leukaemia.

This similarity has already been investigated in a previous project by the same group of researchers. "We hope that this will enable us to better understand and fight infectious diseases as well as bone marrow diseases such as leukaemia," says Carsten Riether from the Department of Clinical Research at the University of Bern and the Department of Medical Oncology at Bern University Hospital and the University of Bern.

Explore further: New discovery on early immune system development

Read the original post:
Immune cells regulate blood stem cells

To Read More: Immune cells regulate blood stem cells
categoriaSkin Stem Cells commentoComments Off on Immune cells regulate blood stem cells | dataFebruary 21st, 2014
Read All

Family of wounded teen marathon victim starts fund

By raymumme

AP/February 20, 2014

BOSTON (AP) The family of a teenager who almost lost a leg in the Boston Marathon bombings has started a fund to explore limb regeneration and the use of stem cells to regrow bones and skin.

Gillian Renys parents started the fund with an undisclosed sum and have formed a team for this years marathon to raise more. The goal is $3 million to fund research intended to help others at risk of amputation.

Reny, as well her parents Audrey Epstein Reny and Steven Reny, havent spoken publicly about their ordeal, but are coming forward now in interviews with The Boston Globe and WCVB-TV to talk about the Gillian Reny Stepping Strong Fund.

Both of Renys legs were injured in the April blast, and doctors were not sure they could save her mangled lower right leg.

I knew from seeing the destruction of my legs that something very serious had happened, Reny said.

Reny was standing near the finish line with her parents to watch her sister complete the race when twin bombs detonated, killing three people and injuring more than 260 others.

Reny, now a 19-year-old freshman at the University of Pennsylvania, is still rehabilitating but is able to walk on her own after undergoing several surgeries.

Initially, doctors did not know if Renys leg could be saved, said plastic surgeon Dr. Eric Halvorson.

But Halvorson found that a vital nerve was undamaged, and tests showed that major blood vessels were largely intact. Reny spent several weeks at Brigham & Womens Hospital and within two months recovered enough to attend her graduation from Buckingham Brown & Nichols School on crutches.

See the article here:
Family of wounded teen marathon victim starts fund

To Read More: Family of wounded teen marathon victim starts fund
categoriaSkin Stem Cells commentoComments Off on Family of wounded teen marathon victim starts fund | dataFebruary 21st, 2014
Read All

$5B initiative proposed for stem cell research

By Dr. Matthew Watson

Supporters of Californias multibillion-dollar stem cell program plan to ask for $5 billion more to bring the fruits of research to patients.

Robert Klein, a leader of the 2004 initiative campaign that established the program, said Thursday hes going to be talking with California voters about the proposal. If the public seems receptive, backers will work to get an initiative on the 2016 ballot to extend funding for the California Institute for Regenerative Medicine

Klein outlined the proposal Thursday at UC San Diego Moores Cancer Center, during a symposium on how to speed research to patient care.

Since cancer cells and stem cells share some underlying characteristics, CIRM has funded research into those similarities, including the work of Moores Cancer Center researchers David Cheresh and Catriona Jamieson.

Klein said supporters, including researchers, patients and patient advocates need to educate the public about the benefits of funding stem cell research, and the results to date. A former chairman of CIRM, Klein is no longer formally affiliated with the agency but continues to support its work.

No stem cell treatments funded by CIRM have been approved, but patients have benefited in other ways. CIRM-funded research into cancer stem cells led to a clinical trial of a drug that caused remission of a bone marrow cancer in Sandra Dillon, a patient of Jamiesons. Moreover, California has vaulted into prominence in regenerative medicine, and the field has also provided a new growth engine for the states large biotech industry.

Though CIRM has been praised for advancing quality research, it has been criticized for being slow to fund commercialization by life science companies.

In addition, CIRM has been criticized for a lack of transparency and conflicts of interest in how it awards grants. The agency revamped its policies last year to forbid members of its governing oversight committee from voting on proposals to fund research at their own institutions.

California voters set aside $3 billion in bond money for CIRM in 2004 under Proposition 71. The money is expected to run out around 2017, so Klein and other supporters have been preparing to go back to the public. The amount paid back will be $6 billion, including interest over the life of the bonds, Klein noted. So the $5 billion for CIRM would require a $10 billion bond measure.

Can it be done again? Klein asked. If we continue to have the extraordinary results the scientists and research institutes are presenting, as well as the biotech sector.

Read more here:
$5B initiative proposed for stem cell research

To Read More: $5B initiative proposed for stem cell research
categoriaSkin Stem Cells commentoComments Off on $5B initiative proposed for stem cell research | dataFebruary 21st, 2014
Read All

Page 519«..1020..518519520521..530540..»


Copyright :: 2024