Page 520«..1020..519520521522..530540..»

Cowboys coach seeks marrow match for teen daughter

By LizaAVILA

by GEORGE RIBA

WFAA Sports

Posted on February 15, 2014 at 10:35 AM

DALLAS Malena Brown is hoping for a match on this Valentines Day weekend, but its not the kind of match you expect.

The 15-year-old daughter of Dallas Cowboys running backs coach Gary Brown is looking for an "angel donor" whose bone marrow stem cells will match hers and help her overcome what's known as CML, or chronic myeloid leukemia.

Well, its kind of scary knowing that there wasn't a match for me, but we're doing a bone marrow drive now and hopefully find somebody that matches me, Malena said.

Neither one of Malena's siblings is a match, and trying to find one has become a challenge.

The No. 1 challenge has been trying to find a match based on her ancestry, and she being biracial, has been extra difficult because the registry is under-represented with African-American and other multiracial people, said Kim Brown, Malenas mother.

We've had nothing but people trying to help us in any way they can, said father Gary Brown. When you know your daughter is going through something hard, and there are other people out there that care as much as you do and want to help her as much as you do.

To add your name to the national registry, all you do is a simple swab test, add it to a booklet, and send it in.

Go here to see the original:
Cowboys coach seeks marrow match for teen daughter

To Read More: Cowboys coach seeks marrow match for teen daughter
categoriaBone Marrow Stem Cells commentoComments Off on Cowboys coach seeks marrow match for teen daughter | dataFebruary 15th, 2014
Read All

Cowboys coach seeks marrow match for ailing teen daughter

By daniellenierenberg

by GEORGE RIBA

WFAA Sports

Posted on February 14, 2014 at 10:36 PM

Updated today at 8:20 AM

DALLAS Malena Brown is hoping for a match on this Valentines Day weekend, but its not the kind of match you expect.

The 15-year-old daughter of Dallas Cowboys running backs coach Gary Brown is looking for an "angel donor" whose bone marrow stem cells will match hers and help her overcome what's known as CML, or chronic myeloid leukemia.

Well, its kind of scary knowing that there wasn't a match for me, but we're doing a bone marrow drive now and hopefully find somebody that matches me, Malena said.

Neither one of Malena's siblings is a match, and trying to find one has become a challenge.

The No. 1 challenge has been trying to find a match based on her ancestry, and she being biracial, has been extra difficult because the registry is under-represented with African-American and other multiracial people, said Kim Brown, Malenas mother.

We've had nothing but people trying to help us in any way they can, said dad Gary Brown. When you know your daughter is going through something hard, and there are other people out there that care as much as you do and want to help her as much as you do.

See original here:
Cowboys coach seeks marrow match for ailing teen daughter

To Read More: Cowboys coach seeks marrow match for ailing teen daughter
categoriaBone Marrow Stem Cells commentoComments Off on Cowboys coach seeks marrow match for ailing teen daughter | dataFebruary 15th, 2014
Read All

Harvard scientists find cell fate switch that decides liver, or pancreas?

By NEVAGiles23

PUBLIC RELEASE DATE:

13-Feb-2014

Contact: Joseph Caputo joseph_caputo@harvard.edu 617-496-1491 Harvard University

Harvard stem cell scientists have a new theory for how stem cells decide whether to become liver or pancreatic cells during development. A cell's fate, the researchers found, is determined by the nearby presence of prostaglandin E2, a messenger molecule best known for its role in inflammation and pain. The discovery, published in the journal Developmental Cell, could potentially make liver and pancreas cells easier to generate both in the lab and for future cell therapies.

Wolfram Goessling, MD, PhD, and Trista North, PhD, both principal faculty members of the Harvard Stem Cell Institute (HSCI), identified a gradient of prostaglandin E2 in the region of zebrafish embryos where stem cells differentiate into the internal organs. Experiments conducted by postdoctoral fellow Sahar Nissim, MD, PhD, in the Goessling lab showed how liver-or-pancreas-fated stem cells have specific receptors on their membranes to detect the amount of prostaglandin E2 hormone present and coerce the cell into differentiating into a specific organ type.

"Cells that see more prostaglandin become liver and the cells that see less prostaglandin become pancreas," said Goessling, a Harvard Medical School Assistant Professor of Medicine at Brigham and Women's Hospital and Dana-Farber Cancer Institute. "This is the first time that prostaglandin is being reported as a factor that can lead this fate switch and essentially instruct what kind of identity a cell is going to be."

The researchers next collaborated with the laboratory of HSCI Affiliated Faculty member Richard Maas, MD, PhD, Director of the Genetics Division at Brigham and Women's Hospital, to see whether prostaglandin E2 has a similar function in mammals. Richard Sherwood, PhD, a former graduate student of HSCI Co-director Doug Melton, was successfully able to instruct mouse stem cells to become either liver or pancreas cells by exposing them to different amounts of the hormone. Other experiments showed that prostaglandin E2 could also enhance liver growth and regeneration of liver cells.

Goessling and his research partner North, a Harvard Medical School Assistant Professor of Pathology at Beth Israel Deaconess Hospital, first became intrigued by prostaglandin E2 in 2005, as postdoctoral fellows in the lab of HSCI Executive Committee Chair Leonard Zon, MD. It caught their attention during a chemical screen exposing 2,500 known drugs to zebrafish embryos to find any that could amplify blood stem cell populations. Prostaglandin E2 was the most successful hit the first molecule discovered in any system to have such an effectand recently successfully completed Phase 1b clinical trials as a therapeutic to improve cord blood transplants.

"Prostaglandin might be a master regulator of cell growth in different organs," Goessling said. "It's used in cord blood, as we have shown, it works in the liver, and who knows what other organs might be affected by it."

With evidence of how prostaglandin E2 works in the liver, the researchers next want to calibrate how it can be used in the laboratory to instruct induced pluripotent stem cellsmature cells that have been reprogrammed into a stem-like stateto become liver or pancreas cells. The scientists predict that such a protocol could benefit patients who need liver cells for transplantation or who have had organ injury.

Read more here:
Harvard scientists find cell fate switch that decides liver, or pancreas?

To Read More: Harvard scientists find cell fate switch that decides liver, or pancreas?
categoriaUncategorized commentoComments Off on Harvard scientists find cell fate switch that decides liver, or pancreas? | dataFebruary 15th, 2014
Read All

Salk, Stanford equal partners in stem cell genomics program

By NEVAGiles23

Instead of being shut out of a $40 million stem cell grant awarded to Stanford University, San Diego researchers will be major partners, say the scientists who lead the project.

Joseph Ecker of the Salk Institute and Michael Snyder of Stanford say that under an informal arrangement, they will jointly allocate money granted from the California Institute for Regenerative Medicine for a new center on stem cell genomics. CIRM is responsible for distributing $3 billion in state bond money to turn stem cell research into disease treatments.

Joseph Ecker, a Salk Institute researcher and co-principal investigator of the new center for stem cell genomics created with a $40 million grant from the California Institute for Regenerative Medicine. / Salk Institute

Genomics, the study of the complete set of genes and DNA in an organism, is necessary to help understand how stem cells function. Stem cells contain virtually the same genes as adult cells but differ in which genes are turned on and off. The signals that cause stem cells to differentiate are not well understood.

By analyzing the genomes of stem cells, researchers expect to better understand how stem cells can produce more stem cells, and which genes are involved in directing stem cells down the path to becoming adult cells of interest, such as islet cells that make insulin, bone or retinal cells.

Last months decision had been characterized as a big win for Stanford, because the university had been awarded the grant over competing applications, including one from The Scripps Research Institute and San Diego DNA sequencing giant Illumina.

Ecker and Snyder said that belief is a misunderstanding, because their proposal is a cooperative venture involving extensive participation from San Diego biomedical scientists.

Michael Snyder, a Stanford University researcher and co-principal investigator of the new center for stem cell genomics created with a $40 million grant from the California Institute for Regenerative Medicine. / Stanford University

The leadership issue is confusing, because CIRM requires a single institute to be listed as the lead on funding proposals, even if the institutions are sharing leadership, Ecker said by email. In fact, Mike Snyder and I, by proxy Stanford and Salk, are equal partners. Responsibility for administration of the center will fall equally to Stanford and Salk researchers, as well as strategic steering and decision-making on what projects to pursue.

Besides Salk and Stanford, partners are UC San Diego, the Ludwig Institute for Cancer Research, the J. Craig Venter Institute, The Scripps Research Institute and UC Santa Cruz. The Howard Hughes Medical Institute also plays a role.

See the original post:
Salk, Stanford equal partners in stem cell genomics program

To Read More: Salk, Stanford equal partners in stem cell genomics program
categoriaUncategorized commentoComments Off on Salk, Stanford equal partners in stem cell genomics program | dataFebruary 15th, 2014
Read All

Media Lab to focus on heart research

By LizaAVILA

ONEIDA >> There is an abundance of groundbreaking research going on at the Cardiac Research Institute, or Masonic Medical Research Laboratory in Utica. Myron Thurston III, the assistant director of development and communications at the institute, will host the next Community Media Lab to share some of the experimental cardiology projects and research with the public, as well as educate them on heart health.

The Community Media Lab will take place Feb. 27 at 6 p.m. at the Oneida Daily Dispatch office, 130 Broad St. in Oneida. It is free and open to the public.

Thurston will explain what were doing in the area of cardiac arrhythmias and irregular heartbeats. An arrhythmia is an abnormal heart rhythm caused by electrical instability within the heart.

Some of the most significant work done at the lab is with stem cell research and bio-engineering. Scientists at the lab are working on using skin cells to create genetically-matching heart cells that can ideally be used for regenerative therapy for failing hearts.

Thurston says the idea is that if the scientists can create a heart or organ made from the persons cells the body wouldnt reject it.

The lab is also pioneering efforts in cloning a human heart. In the beginning of 2013, scientists at the institute began to look into replicating a heart in their revolutionary bioreactor, or bio-engineering chamber, which provides a space for the growth and maturity of cloned organs. They have been testing with rabbit hearts, and hope to scale up from there.

The process begins with removing all of the genetic material from the heart, leaving a shell of the muscle, commonly called a ghost heart because it has a white appearance after decellularization. The goal is to put pluripotent stem cells, or stem cells capable of separating into one of many cell types, into the ghost heart to generate a cloned heart from the patients own cells. Scientist are in the process of putting cells back into the heart, and Thurston says so far its working.

This gets rid of the need for donor hearts, said Thurston. Donor hearts have to be harvested within minutes to be viable for a transplant, he said, which is less time than it takes to harvest most other organs.

Thurston says the next step is for scientists to test pig hearts, which are identical to human hearts once all the genetic material is removed.

While the lab has made several scientific accomplishments including producing revolutionary drugs and treatments for cardiac arrhythmias, it boasts the discovery and naming of the M cell as its most significant breakthrough in heart research. Through the finding of the M cell, researchers were able to determine that the heart was a heterogeneous organ, meaning differences exist in the organs function and drug interaction. The cells were found to be the main reason for many types of arrhythmias, leading to the development of new strategies to fight the irregular heartbeats by targeting the M cells. Continued...

More here:
Media Lab to focus on heart research

To Read More: Media Lab to focus on heart research
categoriaCardiac Stem Cells commentoComments Off on Media Lab to focus on heart research | dataFebruary 14th, 2014
Read All

New stem-cell method offers another alternative to embryonic research

By JoanneRUSSELL25

Baltimore

A new method of creating versatile stem cells from a relatively simple manipulation of existing cells could further reduce the need for any stem-cell research involving human embryos, according to leading ethicists.

Although the process has only been tested in mice, two studies published Jan. 29 in the journal Nature detailed research showing success with a process called stimulus-triggered acquisition of pluripotency, or STAP.

Scientists from Japan's RIKEN research institute and Harvard's Brigham and Women's Hospital in Boston were able to reprogram blood cells from newborn mice by placing them in a low-level acidic bath for 30 minutes. Seven to 9 percent of the cells subjected to such stress returned to a state of pluripotency and were able to grow into other types of cells in the body.

"If this technology proves feasible with human cells, which seems likely, it will offer yet another alternative for obtaining highly flexible stem cells without relying on the destructive use of human embryos," said Fr. Tadeusz Pacholczyk, director of education at the National Catholic Bioethics Center in Philadelphia. "This is clearly a positive direction for scientific research."

Pacholczyk, a priest of the diocese of Fall River, Mass., who holds a doctorate in neuroscience from Yale University, said the only "potential future ethical issue" raised by the new STAP cells would be if scientists were to coax them into "a new degree of flexibility beyond classical pluripotency," creating cells "with essential characteristics of embryos and the propensity to develop into the adult organism."

"Generating human embryos in the laboratory, regardless of the specific methodology, will always raise significant ethical red flags," he said.

The Catholic church opposes any research involving the destruction of human embryos to create stem cells.

Richard Doerflinger, associate director of the U.S. bishops' Secretariat for Pro-Life Activities, said if the new method were used to create stem cells so versatile that they could form placenta tissue and make human cloning easier, "then we would have serious moral problems with that." But there is no indication so far that the scientists could or would do so, he added.

"You could misuse any powerful technology, but the technique itself is not problematic" in terms of Catholic teaching, Doerflinger said.

Go here to read the rest:
New stem-cell method offers another alternative to embryonic research

To Read More: New stem-cell method offers another alternative to embryonic research
categoriaBone Marrow Stem Cells commentoComments Off on New stem-cell method offers another alternative to embryonic research | dataFebruary 14th, 2014
Read All

StemCells, Inc. Expands Phase I/II Spinal Cord Injury …

By Sykes24Tracey

StemCells, Inc. Expands Phase I/II Spinal Cord Injury Trial to North America

NEWARK, Calif., Jan. 10, 2014 (GLOBE NEWSWIRE) -- StemCells, Inc. (Nasdaq:STEM) announced today that a team at the University of Calgary successfully transplanted its first subject in the Company's Phase I/II clinical trial in chronic spinal cord injury, with the Company's proprietary HuCNS-SC human neural stem cells. The ninth subject to enroll in the trial, which was initiated in Switzerland, is the first spinal cord injury patient to have undergone transplantation in North America. This expansion from a single-site, single-country study to a multi-site, multi-country program accelerates the current trial, which should complete enrollment of the remaining three patients this quarter, and pave the way for a controlled Phase II efficacy study that StemCells, Inc. plans to initiate mid-year to further investigate its HuCNS-SC product candidate as a treatment for spinal cord injury.

"With this transplantation in Canada, we have the first international trial investigating neural stem cells for spinal cord injury," said Stephen Huhn, M.D., FACS, FAAP, Vice President, CNS Clinical Research at StemCells, Inc. "The 12-month data from the first cohort has demonstrated a favorable safety profile, and sensory gains first detected in two of the three subjects at the six-month assessment have persisted. The third subject remains stable. We are extremely encouraged with the progress of our spinal cord injury program and the transition into an international study will accelerate completion of enrollment."

Steve Casha, M.D., Ph.D., FRCSC, the principal investigator at the University of Calgary, added, "We are proud to be the first center to enroll a subject in North America. This important research is yielding critical insight into the use of stem cells in treating spinal cord injury patients. The results should serve as a solid foundation for the Company's planned Phase II controlled efficacy study and represents an important step in the development of this promising technology."

"We have closely followed the conduct of the StemCells, Inc. trial at the University of Zurich, under the direction of Dr. Armin Curt," said Michael Fehlings M.D., Ph.D., FACS, FRCSC. Dr. Fehlings is Medical Director of the Krembil Neuroscience Centre, Professor of Neurosurgery at the University of Toronto, head of the Spinal Program at the Toronto Western Hospital, and principal investigator for the trial at the University of Toronto. "There is a large unmet medical need for treatments in spinal cord injury. The opening of sites in North America is great news for the worldwide community of patients and their families, as well as for researchers. There is a strong rationale to explore novel therapeutic approaches to treating spinal cord injury, and we are pleased to be working with StemCells at the forefront of this trailblazing study."

About the StemCells, Inc. Spinal Cord Injury Clinical Trial

The Company's Phase I/II clinical trial is designed to assess both safety and preliminary efficacy of HuCNS-SC cells as a treatment for chronic spinal cord injury. The Company plans to enroll 12 subjects with thoracic (chest-level) neurological injuries at the T2-T11 level, classified as complete or incomplete according to the American Spinal Injury Association Impairment Scale.

To date, nine patients have been enrolled and transplanted with HuCNS-SC cells.Each of the first three subjects suffered a complete injury prior to enrolling in the study. Twelve months after transplantation of the HuCNS-SC cells, data showed multi-segment gains in sensory function in two of the first three subjects, one of which converted from a complete injury classification to an incomplete injury.The third subject in this cohort remained stable, 12 months after transplantation. The company expects to report additional interim data on both the first and second cohorts by mid-2014.

The trial is currently enrolling spinal cord injury patients at three centers: the University of Calgary; the University of Toronto; and at Balgrist University Hospital, University of Zurich, a world-leading medical center for spinal cord injury and rehabilitation. Patients who may qualify and are interested in participating in the study in North America should contact the University of Calgary at 403-944-4334 or the University of Toronto at 416-603-5285. For information on enrollment in Switzerland, interested parties may contact the study nurse either by phone at +41 44 386 39 01, or by email at stemcells.pz@balgrist.ch.

All subjects who enroll in the trial will receive HuCNS-SC cells through direct transplantation into the spinal cord and will undergo temporary treatment with immunosuppressive drugs.Evaluations will be regularly performed in the post-transplant period in order to monitor and assess the safety of the HuCNS-SC cells, the surgery and the immunosuppression, as well as to measure any change in neurological function.Preliminary efficacy will be evaluated based on defined clinical endpoints, such as changes in sensation, motor function and bowel/bladder function.The Company intends to follow the effects of this intervention long term, and each of the subjects will be invited to enroll in a separate four-year observational study after completing the Phase I/II study.In addition, the Company plans to initiate a controlled Phase II efficacy trial in in spinal cord injury in 2014.

Continue reading here:
StemCells, Inc. Expands Phase I/II Spinal Cord Injury ...

To Read More: StemCells, Inc. Expands Phase I/II Spinal Cord Injury …
categoriaSpinal Cord Stem Cells commentoComments Off on StemCells, Inc. Expands Phase I/II Spinal Cord Injury … | dataFebruary 13th, 2014
Read All

Help for a scarred heart: Scarring cells turned to beating …

By NEVAGiles23

Poets and physicians know that a scarred heart cannot beat the way it used to, but the science of reprogramming cells offers hope--for the physical heart, at least.

A team of University of Michigan biomedical engineers has turned cells common in scar tissue into colonies of beating heart cells. Their findings could advance the path toward regenerating tissue that's been damaged in a heart attack.

Previous work in direct reprogramming, jumping straight from a cell type involved in scarring to heart muscle cells, has a low success rate. But Andrew Putnam, an associate professor of biomedical engineering and head of the Cell Signaling in Engineered Tissues Lab, thinks he knows at least one of the missing factors for better reprogramming.

"Many reprogramming studies don't consider the environment that the cells are in -- they don't consider anything other than the genes," he said. "The environment can dictate the expression of those genes."

To explore how the cells' surroundings might improve the efficiency of reprogramming, Yen Peng Kong, a post-doctoral researcher in the lab, attempted to turn scarring cells, or fibroblasts, into heart muscle cells while growing them in gels of varying stiffness. He and his colleagues compared a soft commercial gel with medium-stiffness fibrin, made of the proteins that link with platelets to form blood clots, and with high-stiffness collagen, made of structural proteins.

The fibroblasts came from mouse embryos. To begin the conversion to heart muscle cells, Kong infected the fibroblasts with a specially designed virus that carried mouse transgenes -- genes expressed by stem cells.

Fooled into stem cell behavior, the fibroblasts transformed themselves into stem-cell-like progenitor cells. This transition, which would be skipped in direct reprogramming, encouraged the cells to divide and grow into colonies rather than remaining as lone rangers. The tighter community might have helped to ease the next transition, since naturally developing heart muscle cells are also close with their neighbors.

After seven days, Kong changed the mixture used to feed the cells, adding a protein that encourages the growth of heart tissue. This helped push the cells toward adopting the heart muscle identity. A few days later, some of the colonies were contracting spontaneously, marking themselves out as heart muscle colonies.

The transition was particularly successful in the fibrin and fibrin-collagen mixes, which saw as many as half of the colonies converting to heart muscle.

The team has yet to discover exactly what it is about fibrin that makes it better for supporting heart muscle cell. While most materials either stretch or weaken under strain, fibrin gets harder. Putnam wonders whether the fibrin was successful because heart muscles expect a material that toughens up when they contract.

Go here to read the rest:
Help for a scarred heart: Scarring cells turned to beating ...

To Read More: Help for a scarred heart: Scarring cells turned to beating …
categoriaCardiac Stem Cells commentoComments Off on Help for a scarred heart: Scarring cells turned to beating … | dataFebruary 13th, 2014
Read All

PGI offers ray of hope for ALS patients – Times Of India

By Sykes24Tracey

Shimona Kanwar, TNN Feb 11, 2014, 02.07PM IST

CHANDIGARH: A substantial number of stem cell shots from the bone marrow might treat an irreversible neurodegenerative disease. And, this hope is being offered by PGI, as none of the centres elsewhere have started clinical trials for Amyotrophic Lateral Sclerosis (ALS). The first phase of the stem cell trial for the neurodegenerative disease started at PGI three years ago.

Ten ALS patients received one shot of the stem cell. After a follow-up, it was found they could not be relieved. But a study has revealed that the condition of the patients did not deterioratea??one of the features of ALS is that it progresses to disability. This provided a premise for the neurology department of the institute to carry forward with the second phase of the stem cell trial.

"Now, we have increased the sample to 30 patients who have received two shots of the stem cells in a year. We are following them up. Most of them have shown no progress in deterioration, while a few have shown unexceptional results," said Dr S Prabhakar, head of the department and the main investigator of the study.

It was felt that with just one shot of autologous stem cells (cells derived from the patient's own bone marrow) the degeneration could not be repaired. The early symptoms of the disease were muscle weakness or stiffness, which later progressed to paralysis of the muscles that control functions such as speech and swallowing among others.

"There are patients who are unable to hold a pen, speak or walk without assistance. We can only switch them to some mechanical or life supporters. But stem cell is the only therapy which may treat the disease which disables a person," said Dr Prabhakar.

Continue reading here:
PGI offers ray of hope for ALS patients - Times Of India

To Read More: PGI offers ray of hope for ALS patients – Times Of India
categoriaBone Marrow Stem Cells commentoComments Off on PGI offers ray of hope for ALS patients – Times Of India | dataFebruary 13th, 2014
Read All

Making Bone Marrow Transplants More Accessible for AML Patients with New Therapy

By JoanneRUSSELL25

Contact Information

Available for logged-in reporters only

Newswise Acute myeloid leukemia (AML) is a cancer of the myeloid line of blood cells, characterized by the rapid growth of abnormal white blood cells that accumulate in the bone marrow and interfere with the production of normal blood cells. It is the most common acute leukemia affecting adults, and its incidence increases with age. Although AML is a relatively rare disease, accounting for approximately 1.2 percent of cancer deaths in the United States, its incidence is expected to increase as the population ages.

AML has several subtypes, but treatment and prognosis are similar for all subtypes except M3 (acute promyelocytic leukemia), which is treated differently and has a much better prognosis. AML is treated initially with combination chemotherapy aimed at inducing a remission; patients may go on to receive additional chemotherapy or hematopoietic stem cell transplant (HSCT). The latter can be either a bone marrow transplant (BMT) or transplant of blood stem cells isolated from peripheral blood (PBSC). In either case, it involves transplanting cells capable of restoring normal bone marrow function into a patient. Even though peripheral blood stem cells are used nowadays more often than bone marrow stem cells, all HSCT treatments are commonly referred to as bone marrow transplants and many academic institutions and associations still retain the term bone marrow transplant in their names.

An increasing number of patients in need of HSCT are over age 55, but many in this group are ruled ineligible. This is because the high-dose chemotherapy or chemotherapy combined with high doses of radiation used to prepare patients for HSCTstandard therapy for younger patientsare often deemed too harsh even for healthy looking older people. Indeed, in certain indications, more than one-third of patients over 50 treated with standard transplant regimens die as a direct consequence of treatment while almost half still have the leukemia recur.

Since more than half of AML patients are over 65 years old, new tactics are needed. For example, what if a patients existing bone marrow could be prepared prior to the transplant in the process called myeloconditioning in a way that eliminated the need for high-dose chemotherapy? This promising approach is being pursued by Actinium Pharmaceuticals, Inc., a New York City-based biotech company, under the guidance of its Chief Medical Officer, Dragan Cicic, M.D.

The companys approach to cancer treatment is based on combining the cancer-targeting precision of monoclonal antibodies (mAb) with the power of radioisotopes. To this end, it has developed two compounds currently in clinical trials, Iomab-B and Actimab-B.

Actiniums lead compound, Iomab-B, has been successfully harnessed as a myeloconditioning agent in Phase 1/2 trials involving more than 250 patients including cases of incurable blood cancers such as AML resistant to all available therapies. It has demonstrated the ability to prepare such patients for bone marrow transplants when no other treatment was indicated.

Iomab-B is a radioimmunoconjugate consisting of BC8, a novel murine monoclonal antibody, and iodine 131 radioisotope. BC8 was developed at the Fred Hutchinson Cancer Research Center to target CD45, a pan-leukocytic antigen widely expressed on white blood cells but not on other tissues. This antigen makes BC8 potentially useful in targeting white blood cells in preparation for HSCT in a number of blood cancer indications, including AML, chronic myeloid leukemia, acute lymphoblastic leukemia, chronic lymphocytic leukemia, Hodgkin disease, Non-Hodgkin lymphomas and multiple myeloma. When labeled with radioactive isotopes, BC8 carries radioactivity directly to the site of cancerous growth and bone marrow while avoiding effects of radiation on most healthy tissues.

With any cancer treatment, success is usually increased when treatment initiates soon after diagnosis. This is especially true when projected survival is only a few months. Waiting for half that time to initiate a therapy can have a serious impact. Very significantly, treatment with Iomab-B prepares a patient for bone marrow transplant in only 10 days, compared to approximately six weeks required with traditional carea potentially vital difference in the face of a fast-evolving cancer.

Read the original:
Making Bone Marrow Transplants More Accessible for AML Patients with New Therapy

To Read More: Making Bone Marrow Transplants More Accessible for AML Patients with New Therapy
categoriaBone Marrow Stem Cells commentoComments Off on Making Bone Marrow Transplants More Accessible for AML Patients with New Therapy | dataFebruary 13th, 2014
Read All

Scientists discover pre-leukemic stem cell at root of cancer

By Dr. Matthew Watson

;

Dr. John Dick, a senior scientist at Princess Margaret Cancer Centre in Toronto, is shown in a handout photo.

TORONTO Canadian researchers have discovered a pre-leukemic stem cell that may be at the root of acute myeloid leukemia and also be the bad actor that evades chemotherapy and triggers a relapse in patients who have gone into remission.

Acute myeloid leukemia, or AML, is a rapidly progressing cancer of the blood and bone marrow that affects myeloid cells, which normally develop into mature red and white blood cells and platelets.

Leukemia develops when blood stem cells in the bone marrow make abnormal blood cells, which over time crowd out normal blood cells, affecting their ability to function as they should.

READ MORE:Could this new therapy kill cancer? Canadian doc thinks so

In a paper published online Wednesday in the journal Nature, researchers led by John Dick of Princess Margaret Cancer Centre in Toronto report on the discovery of a pre-leukemic stem cell the forerunner to leukemia stem cells that give rise to the disease.

A leukemia stem cell can lie dormant and theyre the ones that will sustain the growth of the leukemia, Dick said in an interview. The pre-leukemic guys are basically the ancestors that are on their way to becoming leukemia and becoming leukemic stem cells.

Dicks lab was the first to identify the existence of leukemia stem cells, in 1994, followed by the discovery of colon cancer stem cells in 2007.

Teasing out pre-leukemic stem cells from the blood of AML patients based on samples taken at diagnosis, after chemotherapy-induced remission, and then following recurrence advances the understanding of the genetic changes a normal cell has to go through before it turns into AML.

More here:
Scientists discover pre-leukemic stem cell at root of cancer

To Read More: Scientists discover pre-leukemic stem cell at root of cancer
categoriaBone Marrow Stem Cells commentoComments Off on Scientists discover pre-leukemic stem cell at root of cancer | dataFebruary 13th, 2014
Read All

Brokaw cancer is treatable, but not curable

By Dr. Matthew Watson

Related Content

DAYTON, Ohio (WDTN) Longtime NBC News anchor Tom Brokaw announced Tuesday that he has cancer, but doctors say his chances of beating it are good.

Brokaw has multiple myeloma, a cancer affecting blood cells in the bone marrow.

A cancer or leukemia starts with the white cell count called plasma cells overpopulating. It can cause destruction of the bone, said Dr. Burhan Yanes, Miami Valley Hospital.

Normally, healthy bone would show solid in an x-ray. A bone damaged by multiple myeloma is spongy, with holes.

Then they could break. Thats the problem, you can break a bone, break your back and be paralyzed.

The disorder can also cause severe anemia and kidney damage.

There is no cure, but treatment, Dr. Yanes says, can extend life for a decade or more.

The standard treatment for anyone younger, less than age 65, we do chemo induction and after that we do high dose chemo and stem cell transplant.

The aggressive transplant for an older person like the 74 year old Tom Brokaw is risky.

See more here:
Brokaw cancer is treatable, but not curable

To Read More: Brokaw cancer is treatable, but not curable
categoriaBone Marrow Stem Cells commentoComments Off on Brokaw cancer is treatable, but not curable | dataFebruary 13th, 2014
Read All

Protein Switch Dictates Cellular Fate: Stem Cell or Neuron

By LizaAVILA

Contact Information

Available for logged-in reporters only

Newswise Researchers at the University of California, San Diego School of Medicine have discovered that a well-known protein has a new function: It acts in a biological circuit to determine whether an immature neural cell remains in a stem-like state or proceeds to become a functional neuron.

The findings, published in the February 13 online issue of Cell Reports, more fully illuminate a fundamental but still poorly understood cellular act and may have significant implications for future development of new therapies for specific neurological disorders, including autism and schizophrenia.

Postdoctoral fellow Chih-Hong Lou, working with principal investigator Miles F. Wilkinson, PhD, professor in the Department of Reproductive Medicine and a member of the UC San Diego Institute for Genomic Medicine, and other colleagues, discovered that this critical biological decision is controlled by UPF1, a protein essential for the nonsense-mediated RNA decay (NMD) pathway.

NMD was previously established to have two broad roles. First, it is a quality control mechanism used by cells to eliminate faulty messenger RNA (mRNA) molecules that help transcribe genetic information into the construction of proteins essential to life. Second, it degrades a specific group of normal mRNAs. The latter function of NMD has been hypothesized to be physiologically important, but until now it had not been clear whether this is the case.

Wilkinson and colleagues discovered that in concert with a special class of RNAs called microRNA, UPF1 acts as a molecular switch to determine when immature (non-functional) neural cells differentiate into non-dividing (functional) neurons. Specifically, UPF1 triggers the decay of a particular mRNA that encodes for a protein in the TGF- signaling pathway that promotes neural differentiation. By degrading that mRNA, the encoded protein fails to be produced and neural differentiation is prevented. Thus, Lou and colleagues identified for the first time a molecular circuit in which NMD acts to drive a normal biological response.

NMD also promotes the decay of mRNAs encoding proliferation inhibitors, which Wilkinson said may explain why NMD stimulates the proliferative state characteristic of stem cells.

There are many potential clinical ramifications for these findings, Wilkinson said. One is that by promoting the stem-like state, NMD may be useful for reprogramming differentiated cells into stem cells more efficiently.

Another implication follows from the finding that NMD is vital to the normal development of the brain in diverse species, including humans. Humans with deficiencies in NMD have intellectual disability and often also have schizophrenia and autism. Therapies to enhance NMD in affected individuals could be useful in restoring the correct balance of stem cells and differentiated neurons and thereby help restore normal brain function.

Go here to see the original:
Protein Switch Dictates Cellular Fate: Stem Cell or Neuron

To Read More: Protein Switch Dictates Cellular Fate: Stem Cell or Neuron
categoriaUncategorized commentoComments Off on Protein Switch Dictates Cellular Fate: Stem Cell or Neuron | dataFebruary 13th, 2014
Read All

What is Stem Cell Therapy? – Video

By raymumme


What is Stem Cell Therapy?
According to J. Peter Rubin, MD, Chair of the University of Pittsburgh #39;s Department of Plastic Surgery, stem cells are small cells that live within the tissu...

By: Smart Beauty Guide

Excerpt from:
What is Stem Cell Therapy? - Video

To Read More: What is Stem Cell Therapy? – Video
categoriaUncategorized commentoComments Off on What is Stem Cell Therapy? – Video | dataFebruary 13th, 2014
Read All

Vet-Stem, Inc. and Petplan Work Together in the New Year to Bring Regenerative Cell Therapies to Pets

By NEVAGiles23

Poway, California (PRWEB) February 13, 2014

The leading Regenerative Veterinary Medicine company, Vet-Stem, Inc., and Americas best-loved pet insurer, Petplan, are working together to bring stem cell therapy and other regenerative cell therapies to pets nationwide. Stem cell therapy by Vet-Stem has been available for pets like dogs and cats for the last decade and covered by Petplan since 2010.

Founded in 2003 by Chris and Natasha Ashton, Petplan was recently named to Forbes magazines annual ranking of Americas Most Promising Companies for the second year in a row, and is rated one of the top pet insurance companies by Consumer Advocate and Canine Journal. Petplan proudly offers life-long coverage for hereditary and chronic conditions as well as alternative treatments, like stem cell therapy, as standard.

Our core value is that pets come first, and that starts with our comprehensive plans. So, were excited to see so many of our policyholders start to take advantage of cutting-edge treatments like Vet-Stem Regenerative Cell Therapy. Our team thrives on being able to provide coverage for the best and most up-to-date treatment modalities for the pets in our Petplan family, so hearing great stories about stem cell therapy from our policyholders is a real boost for us! - Dr. Jules Benson, Vice President of Veterinary Services at Petplan

Current uses of stem cell therapy are treating the pain and inflammation from arthritis and to repair orthopedic injuries. According to veterinarians, greater than 80% of dogs showed an improved quality of life after stem cell therapy. At 90 days post-treatment, more than 33% of dogs discontinued use of non-steroidal anti-inflammatory drugs (NSAIDs) completely, with an additional 28% decreasing their usage.

I started Vet-Stem in order to help horses with career-ending injuries to their tendons and ligaments, but so many more animals have been saved from a life of pain or even from euthanasia. I feel privileged and excited to be a part of this therapy that has changed how veterinary medicine is practiced, as well as contributing to changes in human medicine, - Robert Harman, DVM, CEO, Vet-Stem, Inc.

About Vet-Stem, Inc. Vet-Stem, Inc. was formed in 2002 to bring regenerative medicine to the veterinary profession. The privately held company is working to develop therapies in veterinary medicine that apply regenerative technologies while utilizing the natural healing properties inherent in all animals. As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem, Inc. pioneered the use of regenerative stem cells in veterinary medicine. The company holds exclusive licenses to over 50 patents including world-wide veterinary rights for use of adipose derived stem cells. In the last decade over 10,000 animals have been treated using Vet-Stem, Inc.s services, and Vet-Stem is actively investigating stem cell therapy for immune-mediated and inflammatory disease, as well as organ disease and failure. For more on Vet-Stem, Inc. and Veterinary Regenerative Medicine visit http://www.vet-stem.com or call 858-748-2004.

More here:
Vet-Stem, Inc. and Petplan Work Together in the New Year to Bring Regenerative Cell Therapies to Pets

To Read More: Vet-Stem, Inc. and Petplan Work Together in the New Year to Bring Regenerative Cell Therapies to Pets
categoriaUncategorized commentoComments Off on Vet-Stem, Inc. and Petplan Work Together in the New Year to Bring Regenerative Cell Therapies to Pets | dataFebruary 13th, 2014
Read All

New Brain-Image Database Could Help People With Chronic Pain

By JoanneRUSSELL25

Up To 500,000 Spinal Cord Injuries Per Year Worldwide The World Health Organization says as many as 500,000 people suffer spinal cord injuries every year. And it says people with such injuries are much more likely to die early. Recently, the World Health Organization released a report called International Perspectives on Spinal Cord Injuries. Alana Officer works at the WHO. She says spinal cord injuries do more than just cause paralysis, or lack of movement. There are a lot more associated health problems, such as difficulty with bowel and bladder function, difficulty with sexual function, associated problems around mental health conditions. So its much broader than just experiencing paralysis. Alana Officer is the WHOs Coordinator for Disability and Rehabilitation. She says the main causes of spinal cord injuries are traffic accidents, falls and violence. She says some causes are more common in certain areas. For example, road traffic crashes are the main contributors of spinal cord injury in Africa and the Western Pacific region. Falls tend to be the leading cause in Southeast Asia and the Middle East. And then we have high rates of violence in certain countries. We have high rates in the U.S. We have high rates in South Africa. And then weve also got the non-traumatic causes of spinal cord injuries, such as tumors and cancers, tuberculosis and spinabifida. Most people think of tuberculosis as a lung disease. But in some African countries, it is responsible for about one third of the non-violent spinal cord injuries. The birth defect spinabifida causes damage to the spine. In severe cases, it can affect walking and daily activities. Health officials say they do not yet know the exact cause of spinabifida. But they say it may be linked to genes and the environment. Alana Officer says more men than women suffer spinal cord injuries. Theres a ratio of about two-to-one of males to females. Men tend to be more likely to experience spinal cord injury between the ages of about 20 and 29 -- women, or certainly girls much younger, between sort of 15 and 19. So thats our first peak in young people. And then we get a second peak, interestingly, in older people. And the major driver of that is falls, tumors, cancer, et cetera. She says the main reason people with spinal cord injuries are more likely to die early is lack of medical care. A lot of people with spinal cord injuries, certainly in low- and middle- income countries, do not get appropriate emergency response care. Mortality rates are very strongly affected by the quality of the health care system. For example, if youre in a low-income country, you are three times more likely of dying in (a) hospital following a spinal cord injury than you would be in a high-income country. Ms. Officer says many of the causes of spinal cord injury deaths in poor countries are preventable. These include urinary tract infections and pressure sores, also known as bedsores. These are areas of damaged skin caused by a person staying in one position too long. Bedsores are usually not life-threatening problems in wealthy countries. People with spinal cord injuries can live pretty much the same amount of time as somebody without a spinal cord injury. Theres a slight difference, but certainly life expectancy has increased considerably in high-income countries. And its not the case in low- income countries. Experts suggest immediate action if a spinal cord injury is suspected, including immobilization of the spine, restricting its movement. The WHO says that should be followed by what it calls, care appropriate to the level and severity of the injury, degree of instability of the spine and compression of nerves. It also suggests skilled rehabilitation and mental health services. The WHO notes that up to 30 percent of people with spinal cord injuries show clinically-significant signs of depression. There is currently no cure for paralysis from spinal cord injuries, but many researchers are looking for one. Alana Officer says there is much that can be done to prevent such injuries -- including building safer roads and vehicles, reducing drinking and driving and wearing seatbelts. Other measures include improving safety in sports and the workplace, and adding window guards to windows. She says spinal cord injuries would be reduced if doctors could identify and treat tuberculosis earlier and by improving nutrition to reduce spinabifida cases. Scientists Create Lung Tissue from Stem Cells Finally, scientists have used stem cell technology to create working lung cells. Researchers say stem cells also could be used to create new drugs to treat diseases that restrict breathing. And they think the cells could one day create tissue for lung transplant operations. The research is another step toward what is being called personalized medicine. Over the past several years, scientists have used stem cells and growth factors to force the bodys master cells to create other cells. This process has created heart, intestinal, liver, nerve and insulin-producing cells as possible replacements for diseased organs.

x

Continued here:
New Brain-Image Database Could Help People With Chronic Pain

To Read More: New Brain-Image Database Could Help People With Chronic Pain
categoriaSpinal Cord Stem Cells commentoComments Off on New Brain-Image Database Could Help People With Chronic Pain | dataFebruary 12th, 2014
Read All

Melson keeps fighting

By Sykes24Tracey

By Matt Richardson Photos by Ed Mulholland

Junior middleweight Boyd Melson has a fight scheduled for tomorrow night at the Roseland Ballroom in Manhattan against Donald Ward. Its a fight that Melson (13-1-1, 4 KOs) says he expects will be difficult, despite Ward being a late replacement for veteran Mike Ruiz. Its a fight, however, thats relatively small in relation to the one Melson fights on a daily basis.

Thats because Melson, an Army captain in the U.S. Army Reserves, is also battling a much tougher foe: spinal cord injuries. As a boxer who donates his full purses to spinal cord research, its easy to say he has a dog in this fight and its one where hes continuing to punch, despite the odds.

Were trying to bring awareness to spinal cord injuries and fund a clinical trial to happen here in the U.S, explained Melson. Theres a clinical trial thats going to be happening at the end of this year that a doctor named Dr. Wise Young is working on. Hes doing a trial here hopefully in New York and New Jersey, before this year is out, where hes going to be using umbilical cord cells and injecting them into the spinal cord. He already did this in China and hes using that data to get FDA approval here.

15 out of the 20 patients he did that were paralyzed after seven years, one of them was as long as 19 years paralyzed, Melson continued. But 15 out of the 20 are walking now with a walker and no human assistance. Its out of this world. Its a miracle. Its real frustrating for me to know that in another part of the world we may have a cure for this and its not here yet. It stinks.

Despite his being profiled in a series of publications and television programs, Melson said theres still a way to go in matching the awareness of the issue to a potential cure.

Its still a big fight, he admitted. Maybe, locally in New York people know about it. Or theyll just know that I donate my purses. A lot of them think its stem cell research, which is not correct. That happened because theyre taking stem cells from the umbilical cord for this study but theyre adult stem cells. They were donated after the baby was born. But there are plenty of different types of therapies people are using, going outside stem cells. This one just happens to be using it but its to cure paralysis, not to study stem cells.

Melson isnt alone in his aim to obtain more spinal cord injury research and has even secured the support of a series of other fighters, including Steve Cunningham, Demetrius Andrade, Deandre Latimore, Edgar Santana and Danny Jacobs on his Team Fight to Walk.

Those are some pretty strong names right there, he said.

Hes right.

See more here:
Melson keeps fighting

To Read More: Melson keeps fighting
categoriaSpinal Cord Stem Cells commentoComments Off on Melson keeps fighting | dataFebruary 12th, 2014
Read All

Okyanos Heart Institute Hosts Networking Reception for the …

By NEVAGiles23

February 11, 2014 --

Freeport, Bahamas (PRWEB) February 11, 2014

Matt Feshbach, CEO of Okyanos Heart Institute whose mission it is to bring a new standard of care and better quality of life to patients with coronary artery disease using cardiac stem cell therapy, announces the company will host a hard hat reception for conference attendees at their new facility in Freeport. The conference, titled Bridging the Gap: Research to Point of Care, brings together medical scientists, clinicians, regulatory experts, and investors to discuss progress in the field of research and clinical protocols and the process of taking promising therapies to fight chronic disease to market in a responsible manner. Gold Sponsor Okyanos Heart Institute hosts a networking reception for conference attendees at their facility in Freeport on Friday, February 21st from 5:00 7:00 p.m. The company is calling the reception a hard hat reception metaphorically as the construction is not yet completed.

Chief Medical Officer Howard Walpole, M.D., M.B.A., F.A.C.C., F.S.C.A.I. and Chief Science Officer Leslie Miller, M.D., F.A.C.C. will host the reception, along with CEO Matthew Feshbach and offer tours of the commercial cath lab which will offer stem cell therapy to qualified patients with advanced coronary artery disease under the new laws and regulations in The Bahamas.

Douglas Hammond, president of STEMSO, states, STEMSO will continue to provide a proactive and positive voice for organizations and jurisdictions using adult stem cells for therapies and transplants. The Commonwealth of The Bahamas, and our Gold Sponsor Okyanos Heart Institute provide an excellent example of the results that can be brought about with realistic, modern and balanced regulations that serve the national economic interest, patient needs for life-saving medicine and the business advantages for commercialization and translation of adult stem cells.

The reception in our facility will showcase the capabilities in The Bahamas to deliver high quality healthcare to patients in need, says Walpole. It will also provide an informal forum for relevant discussion on bridging the gap between research and point of care between scientists, regulatory experts, clinicians and government officials, and help to address issues of paramount importance such as patient safety and effective tracking of progress once the patients return home. We are proud to host this reception at Okyanos Heart Institute.

Treating patients with adipose-derived stem and regenerative cells (ADRCs) is showing existing promise in clinical trials, states Leslie Miller, M.D., F.A.C.C. an investigator in more than eighty clinical trials for heart failure. The next step in delivering stem cells to patients outside of clinical trials is close. I am enormously excited about the opportunity with this conference to engage in meaningful discussion around what parameters must exist to treat heart failure patients safely and tracking the effectiveness of these new options, which previously were unavailable to patients who have had heart attacks and/or stents, and who continue to worsen after exhausting all other interventions available to them.

The complete agenda for the conference can be found on STEMSOs website at http://www.stemso.org. Other speakers include stem cell researchers, scientists and practitioners from around the world with leading discoveries in the field, and investors in the healthcare space.

Registration is open for attending and exhibiting on STEMSOs website.

About Okyanos Heart Institute: (Oh key AH nos) Based in Freeport, The Bahamas, Okyanos Heart Institutes mission is to bring a new standard of care and a better quality of life to patients with coronary artery disease using cardiac stem cell therapy. Okyanos adheres to U.S. surgical center standards and is led by Chief Medical Officer Howard T. Walpole Jr., M.D., M.B.A., F.A.C.C., F.S.C.A.I. Okyanos Treatment utilizes a unique blend of stem and regenerative cells derived from ones own adipose (fat) tissue. The cells, when placed into the heart via a minimally-invasive catheterization, stimulate the growth of new blood vessels, a process known as angiogenesis. The treatment facilitates blood flow in the heart and supports intake and use of oxygen (as demonstrated in rigorous clinical trials such as the PRECISE trial). The literary name Okyanos (Oceanos) symbolizes flow. For more information, go to http://www.okyanos.com.

Continued here:
Okyanos Heart Institute Hosts Networking Reception for the ...

To Read More: Okyanos Heart Institute Hosts Networking Reception for the …
categoriaCardiac Stem Cells commentoComments Off on Okyanos Heart Institute Hosts Networking Reception for the … | dataFebruary 12th, 2014
Read All

Okyanos Heart Institute Hosts Networking Reception for the International Stem Cell Society (STEMSO) World Conference …

By daniellenierenberg

Freeport, Bahamas (PRWEB) February 11, 2014

Matt Feshbach, CEO of Okyanos Heart Institute whose mission it is to bring a new standard of care and better quality of life to patients with coronary artery disease using cardiac stem cell therapy, announces the company will host a hard hat reception for conference attendees at their new facility in Freeport. The conference, titled Bridging the Gap: Research to Point of Care, brings together medical scientists, clinicians, regulatory experts, and investors to discuss progress in the field of research and clinical protocols and the process of taking promising therapies to fight chronic disease to market in a responsible manner. Gold Sponsor Okyanos Heart Institute hosts a networking reception for conference attendees at their facility in Freeport on Friday, February 21st from 5:00 7:00 p.m. The company is calling the reception a hard hat reception metaphorically as the construction is not yet completed.

Chief Medical Officer Howard Walpole, M.D., M.B.A., F.A.C.C., F.S.C.A.I. and Chief Science Officer Leslie Miller, M.D., F.A.C.C. will host the reception, along with CEO Matthew Feshbach and offer tours of the commercial cath lab which will offer stem cell therapy to qualified patients with advanced coronary artery disease under the new laws and regulations in The Bahamas.

Douglas Hammond, president of STEMSO, states, STEMSO will continue to provide a proactive and positive voice for organizations and jurisdictions using adult stem cells for therapies and transplants. The Commonwealth of The Bahamas, and our Gold Sponsor Okyanos Heart Institute provide an excellent example of the results that can be brought about with realistic, modern and balanced regulations that serve the national economic interest, patient needs for life-saving medicine and the business advantages for commercialization and translation of adult stem cells.

The reception in our facility will showcase the capabilities in The Bahamas to deliver high quality healthcare to patients in need, says Walpole. It will also provide an informal forum for relevant discussion on bridging the gap between research and point of care between scientists, regulatory experts, clinicians and government officials, and help to address issues of paramount importance such as patient safety and effective tracking of progress once the patients return home. We are proud to host this reception at Okyanos Heart Institute.

Treating patients with adipose-derived stem and regenerative cells (ADRCs) is showing existing promise in clinical trials, states Leslie Miller, M.D., F.A.C.C. an investigator in more than eighty clinical trials for heart failure. The next step in delivering stem cells to patients outside of clinical trials is close. I am enormously excited about the opportunity with this conference to engage in meaningful discussion around what parameters must exist to treat heart failure patients safely and tracking the effectiveness of these new options, which previously were unavailable to patients who have had heart attacks and/or stents, and who continue to worsen after exhausting all other interventions available to them.

The complete agenda for the conference can be found on STEMSOs website at http://www.stemso.org. Other speakers include stem cell researchers, scientists and practitioners from around the world with leading discoveries in the field, and investors in the healthcare space.

Registration is open for attending and exhibiting on STEMSOs website.

About Okyanos Heart Institute: (Oh key AH nos) Based in Freeport, The Bahamas, Okyanos Heart Institutes mission is to bring a new standard of care and a better quality of life to patients with coronary artery disease using cardiac stem cell therapy. Okyanos adheres to U.S. surgical center standards and is led by Chief Medical Officer Howard T. Walpole Jr., M.D., M.B.A., F.A.C.C., F.S.C.A.I. Okyanos Treatment utilizes a unique blend of stem and regenerative cells derived from ones own adipose (fat) tissue. The cells, when placed into the heart via a minimally-invasive catheterization, stimulate the growth of new blood vessels, a process known as angiogenesis. The treatment facilitates blood flow in the heart and supports intake and use of oxygen (as demonstrated in rigorous clinical trials such as the PRECISE trial). The literary name Okyanos (Oceanos) symbolizes flow. For more information, go to http://www.okyanos.com.

Okyanos LinkedIn Page: http://www.linkedin.com/company/okyanos-heart-institute Okyanos Facebook Page: https://www.facebook.com/OKYANOS Okyanos Twitter Page: https://twitter.com/#!/OkyanosHeart Okyanos Google+ Page: https://plus.google.com/+Okyanos/posts Okyanos You Tube Physician Channel: http://www.youtube.com/user/okyanosforphysicians

Excerpt from:
Okyanos Heart Institute Hosts Networking Reception for the International Stem Cell Society (STEMSO) World Conference ...

To Read More: Okyanos Heart Institute Hosts Networking Reception for the International Stem Cell Society (STEMSO) World Conference …
categoriaCardiac Stem Cells commentoComments Off on Okyanos Heart Institute Hosts Networking Reception for the International Stem Cell Society (STEMSO) World Conference … | dataFebruary 12th, 2014
Read All

Skin reactions during radiation therapy preventable – research

By JoanneRUSSELL25

Severe skin reactions during radiation therapy could be prevented by applying a thin transparent silicone dressing to the skin from the first day of treatment, a clinical trial shows.

Although many skincare products have been tested in clinical trials over the years, until now none have been able to completely prevent severe skin reactions, says senior lecturer Dr Patries Herst of University of Otago Wellingtons Department of Radiation Therapy.

Dr Herst and her team of radiation therapists, oncology nurses and medical physicists have completed five randomised controlled clinical trials in public hospitals in Dunedin, Wellington, Palmerston North and Auckland Radiation Oncology over the past five years, all focusing on side effects caused by radiation therapy.

Their most recent trial was a close collaboration with Dunedin Hospital, and demonstrated it is possible to prevent skin reactions from developing in breast cancer patients undergoing radiation therapy.

Skin reactions are common in these patients, ranging from mild redness to ulceration with symptoms of pain, burning and itchiness, Dr Herst says.

"This can impact negatively on day-to-day life for patients who already have to cope with being diagnosed with and treated for cancer."

She is delighted with the results, and identification of a product that really works.

"This is fantastic news for cancer patients and it has put New Zealand firmly on the world map as a leader in clinical research into radiation-induced acute side effects."

The dressings work by adhering closely to the small folds in the skin without the use of adhesives, so do not stick to open wounds. By protecting the radiation-damaged skin from friction against items of clothing or other parts of the body, they allow the stem cells of the skin to heal from the radiation damage in an undisturbed environment. The dressings are also free of chemicals that could react with the skin.

Dr Herst is currently setting up a trial that will test the dressings in head and neck cancer patients.

Continued here:
Skin reactions during radiation therapy preventable - research

To Read More: Skin reactions during radiation therapy preventable – research
categoriaSkin Stem Cells commentoComments Off on Skin reactions during radiation therapy preventable – research | dataFebruary 12th, 2014
Read All

Page 520«..1020..519520521522..530540..»


Copyright :: 2024