Page 517«..1020..516517518519..530540..»

VIbes-Advanced Stem Cell Therapy & PRP Treatment 12 Feb’14 – TV5 Hyderabad – Video

By raymumme


VIbes-Advanced Stem Cell Therapy PRP Treatment 12 Feb #39;14 - TV5 Hyderabad

By: Vibes Healthcare Ltd

See the original post:
VIbes-Advanced Stem Cell Therapy & PRP Treatment 12 Feb'14 - TV5 Hyderabad - Video

To Read More: VIbes-Advanced Stem Cell Therapy & PRP Treatment 12 Feb’14 – TV5 Hyderabad – Video
categoriaUncategorized commentoComments Off on VIbes-Advanced Stem Cell Therapy & PRP Treatment 12 Feb’14 – TV5 Hyderabad – Video | dataMarch 15th, 2014
Read All

New cell line should accelerate embryonic stem cell research

By Sykes24Tracey

University of Washington researchers have created a line of human embryonic stem cells with the ability to develop into a far broader range of tissues than most existing cell lines.

"These cells will allow us to gain a much greater understanding of normal embryonic development and have the real potential for use in developing ways to grow new tissues and organs for transplantation," said Carol Ware, a professor of comparative medicine. She is the lead author of a paper describing the new cell line.

The findings are reported in the March 10 issue of the journal Proceedings of the National Academy of Sciences. The cells, called nave embryonic stem cells, normally appear at the earliest stages of embryonic development. They retain the ability to turn into any of all the different types of cells of the human body -- a capacity called "pluripotency."

Researchers had been able to develop nave cells using mouse embryonic stem cells, but to create naive human embryonic stem cells has required inserting a set of genes that force the cells to behave like naive cells.

While these transgenic cells are valuable research tools, the presence of artificially introduced genes meant the cells will not develop as normal embryonic cells would nor could they be safely used to create tissues and organs for transplantation.

In an article, Ware and her colleagues from the UW Institute for Stem Cell and Regenerative Medicine describe how they successfully created a line of nave human embryonic stem cells without introducing an artificial set of genes.

They first took embryonic stem cells that are slightly more developed, called primed stem cells, and grew them in a medium that contained factors that switched them back -- or "reverse toggled" them -- to the nave state. They then used the reverse toggled cells to develop a culture medium that would keep them in the nave state and create a stable cell line for study and research.

While the "reverse toggled" cells are much easier to create and will prove valuable research tools, Ware said, the cells that were directly derived from embryos are the more important advance because they are more likely to behave, grow and develop as embryonic cells do in nature.

The new cell line is called Elf1: "El" for the Ellison Foundation, a major supporter of the lab's work; "f" for female, the sex of the stem cell; and "1" for first.

Story Source:

The rest is here:
New cell line should accelerate embryonic stem cell research

To Read More: New cell line should accelerate embryonic stem cell research
categoriaUncategorized commentoComments Off on New cell line should accelerate embryonic stem cell research | dataMarch 15th, 2014
Read All

Stem Cell Research in pursuit of Spinal Cord Injury …

By Sykes24Tracey

(Page 1 of 2)

Because neurons (nerve cells) in the central nervous system (the brain and spinal cord) do not repair or replace themselves after being injured, researchers are investigating whether transplanting cells into an injured area can restore function.

One of the many challenges for researchers is obtaining cells that will function as neurons in the brain or spinal cord. Because a persons body doesnt have spare neurons for transplantation, efforts are being made to find other cells that can be transformed into neurons. One potential source is stem cells from human embryos. Less than a week after conception cells in an embryo begin to differentiate that is, they begin to form specific types of cells, such as bone cells, red blood cells, heart muscle cells, and so on. Stem cells are simply cells that can differentiate into other types of cells. Early in the life of an embryo stem cells have the potential to differentiate into the more than two hundred types of cells in a human body. There are other kinds of stem cells, including stem cells in adults, which can differentiate into a more limited number of types of cells.

Using embryonic stem cells for transplantation is controversial because it is necessary to first create human embryos to produce the stem cells and then kill the embryos in the process of harvesting the stem cells. Opponents of the process contend that it is unethical or immoral to create and then kill any form of human life for the purpose of harvesting stem cells. Proponents of stem cell transplantation either claim that embryos created in a laboratory have no value or significance apart from producing stem cells or that the end of helping injured or ill people justifies the means of creating and then killing human life.

Apart from the controversy about creating and killing human embryos, stem cell researchers are faced with another challenge which is partly practical and partly ethical. The bodys immune system recognizes what is part of the body and what is not. Every cell in the body has protein molecules on the surface of the cell wall that identify the cell as being part of the body (these are known as human leukocyte antigens (HLA)). These markers are recognized by the cells in our immune systems. If the immune system doesnt detect the bodys specific markers, it will sound the alarm and go on the attack. This allows our immune system to recognize and fight invaders in the form of bacteria, viruses, and fungi, protecting us from diseases that would otherwise kill us.

However, this same ability of the immune system presents a serious problem when tissue from another person (or animal) is transplanted into the body. The immune system will ordinarily identify the transplant as foreign and begin to attack it. The attack is carried out by cells using chemical weapons that can kill other cells. This process is known as transplant rejection.

To prevent rejection two different strategies have been used. One is to find a transplant donor who has genetic markers (HLA) that are similar to those of the person receiving the transplant. The more similar the markers, the less likely it is that the immune system will reject the transplant. The other strategy is to administer drugs to transplant recipients that suppress the ability of the immune system to recognize and target transplants for destruction. While these drugs usually work, they have numerous side-effects and can make an individual more vulnerable to infections. Often times both strategies are used.

One potential solution to the problem of transplant rejection would be to create a transplant with markers identical to those of the person receiving the transplant. A persons DNA contains the unique blueprint for that persons body, including the details for the markers (HLA) that are recognized by the immune system. Some researchers are attempting to insert human DNA into cells that are then used to create human embryos. This process is known as cloning that is, artificially producing another organism with DNA that is identical to the DNA of the donor. Cloning has been performed with some types of animals but not with a human being(1). If human cloning is eventually successful, the clone would have markers identical to those of the DNA donor. This would potentially allow transplants to be created with the DNA of the patient, which would be recognized by the immune system as belonging to the body. There would be no potential for transplant rejection and no need for drugs to suppress the immune system.

However, even if cloning is successful, researchers will still need to learn how to stimulate an embryonic stem cell to produce a neuron rather than a skin cell or some other type of cell. Transplanting undifferentiated stem cells runs the risk of creating a tumor, an event which has actually occurred when embryonic stem cells have been transplanted into mice. Furthermore, while finding a source of cells that can differentiate into neurons is one major challenge in developing a cure for spinal cord injuries, there are others (click on the Treatments for the Future link under the Spinal Injury Treatment tab.) Consequently, any effective treatment to repair spinal cord injuries using embryonic stem cells lies years, if not a decade or more, in the future.

Cloning is one example of genetic engineering, an activity in which people manipulate DNA to create organisms that wouldnt otherwise exist in nature. While the first mammal (Dolly the sheep) was cloned in 1997, some clones have had health problems not characteristic of the species (including Dolly), are more prone to have offspring with birth defects, or have much shorter than normal life spans. The long term results of cloning are not known. As a result, ethical issues abound, and particularly when human cloning is the issue.

Follow this link:
Stem Cell Research in pursuit of Spinal Cord Injury ...

To Read More: Stem Cell Research in pursuit of Spinal Cord Injury …
categoriaSpinal Cord Stem Cells commentoComments Off on Stem Cell Research in pursuit of Spinal Cord Injury … | dataMarch 14th, 2014
Read All

Heart cells respond to stiff environments

By JoanneRUSSELL25

5 hours ago Schematic illustrating how mechanical properties of substrates affect where YAP/TAZ protein localization in cardiac stem cells (left) and how this affects stem cell development and function (right).

Proteins associated with the regulation of organ size and shape have been found to respond to the mechanics of the microenvironment in ways that specifically affect the decision of adult cardiac stem cells to generate muscular or vascular cells.

Cell development for specific functionsso-called cell differentiationis crucial for maintaining healthy tissue and organs. Two proteins in particularthe Yes-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1 or TAZ)have been linked with control of cell differentiation in the tissues of the lymphatic, circulatory, intestinal and neural systems, as well as regulating embryonic stem cell renewal. An international collaboration of researchers has now identified that changes in the elasticity and nanotopography of the cellular environment of these proteins can affect how heart stem cells differentiate with implications for the onset of heart diseases.

Researchers at the International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) collaborated with researchers in Finland, Italy, the Netherlands, Saudi Arabia and the Czech Republic in the study.

They engineered YAP and TAZ proteins that expressed green fluorescent protein so that their location within the cell could be tracked. They then prepared cell substrates from smart biomaterials displaying dynamic control of elasticity and nanostructure with temperature. "Our data provide the first evidence for YAP/TAZ shuttling activity between the nucleus and the cytoplasm being promptly activated in response to dynamic modifications in substrate stiffness or nanostructure," explain the researchers.

Observations of gene expression highlighted the key role of YAP/TAZ proteins in cell differentiation. In further investigations on the effect of substrate stiffness they also found that cell differentiation was most efficient for substrates displaying stiffness similar to that found in the heart.

The authors suggest that understanding the effects of microenvironment nanostructure and mechanics on how these proteins affect cell differentiation could be used to aid processes that maintain a healthy heart. They conclude, "These proteins are indicated as potential targets to control cardiac progenitor cell fate by materials design."

Explore further: Study identifies gene important to breast development and breast cancer

More information: Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure. Diogo Mosqueira, et al. 2014 ACS Nano; DOI: 10.1021/nn4058984

A new study in Cell Reports identifies a gene important to breast development and breast cancer, providing a potential new target for drug therapies to treat aggressive types of breast cancer.

Follow this link:
Heart cells respond to stiff environments

To Read More: Heart cells respond to stiff environments
categoriaCardiac Stem Cells commentoComments Off on Heart cells respond to stiff environments | dataMarch 14th, 2014
Read All

Stem cell therapy may help severe congestive heart failure

By NEVAGiles23

PUBLIC RELEASE DATE:

13-Mar-2014

Contact: Toni Baker tbaker@gru.edu 706-721-4421 Medical College of Georgia at Georgia Regents University

Augusta, Ga. Researchers want to know whether patients with debilitating heart failure can benefit by having their own stem cells injected into their ailing heart muscle.

The severe condition is ischemic dilated cardiomyopathy, a currently incurable condition resulting from significantly compromised blood flow to the heart muscle as well as heart attacks, which leave the muscle bulky and inefficient and patients unable to carry out routine activities.

"We want to know if stem cell therapy is an option for patients who have essentially run out of options," said Dr. Adam Berman, electrophysiologist at the Medical College of Georgia at Georgia Regents University and Director of Cardiac Arrhythmia Ablation Services at Georgia Regents Health System. "It's a very exciting potential therapy, and these studies are designed to see if it works to help these patients."

Berman is a Principal Investigator on the multi-site study in which stem cells are removed from the bone marrow, their numbers significantly increased by technology developed by Aastrom Biosciences, then injected into multiple weak points in the heart. At GR Health System, the procedure is performed in the Electrophysiology Lab where Berman threads a catheter into an artery from the groin into the heart. Three-dimensional maps of the heart are created to provide a clear picture of its natural geography as well as major sites of damage.

"Everyone's heart is different, their scar burden is different, everything is different," Berman said. From that vantage point, small needles - similar in size to those used for skin testing - are used to make about 12 to 20 strategic injections of mesenchymal stem cells, which can differentiate into a variety of cell types. In this case, researchers hope the cells will improve blood flow and function of the heart.

Half of the study participants receive the stem cell treatment called ixmyelocel-T and the remainder a saline placebo. Patients go home the next day but researchers follow all participants for 12 months to assess heart function and quality of life. GR Health System plans to enroll a handful of patients in the clinical trial.

Treatment options for heart failure include frontline therapies such as diuretics to more extreme measures such as implantable ventricular assist devices and heart transplants.

Read this article:
Stem cell therapy may help severe congestive heart failure

To Read More: Stem cell therapy may help severe congestive heart failure
categoriaCardiac Stem Cells commentoComments Off on Stem cell therapy may help severe congestive heart failure | dataMarch 14th, 2014
Read All

Leukemia patient pins hopes on OneMatch stem cell donor registry

By NEVAGiles23

Each day is a gift for Chris Taylor and every phone call could be the one that saves his life.

Thats why the 36-year-old man with acute myeloid leukemia keeps his cellphone within reach, waiting to hear that a stem cell donor has been found and hell get the bone marrow transplant he needs.

Taylor, who was diagnosed in July 2012, has already had two false alarms but is confident a match will become available before its too late.

Getting the call is a miracle in itself. It comes after an online search of unrelated people by the Canadian Blood Services OneMatch Stem Cell and Marrow Network. The registry has access to 22 million potential volunteer donors in 71 countries, strangers prepared to help those like Taylor.

Despite popular belief, family members are matches only 25 per cent of the time, said Mary-Lynn Pride, a patient transplant liaison specialist at OneMatch.

More than 800 Canadians currently await transplants. OneMatch has more than 333,000 registered Canadian donors.

Taylor signed up after a second round of chemotherapy last summer, when doctors at Princess Margaret Hospital advised he needed a bone marrow transplant.

Taylor received the first call last November. The timing was perfect because his cancer was in remission, the only time a transplant can be done.

Two days before he was to be admitted to hospital, Taylor got bad news. The procedure was cancelled because the donor had unspecified medical complications, he said. OneMatch does not say why donors decide to abandon the procedure.

The second call came last month, but the donor withdrew for reasons unknown to Taylor.

The rest is here:
Leukemia patient pins hopes on OneMatch stem cell donor registry

To Read More: Leukemia patient pins hopes on OneMatch stem cell donor registry
categoriaBone Marrow Stem Cells commentoComments Off on Leukemia patient pins hopes on OneMatch stem cell donor registry | dataMarch 14th, 2014
Read All

FDA's Regulation of Regenerative Medicine including Stem Cell Treatments, Tissue Engineering, Etc.

By NEVAGiles23

Course Description: Regenerative medicine focuses on harnessing the power of ones own stem cells and regenerative capabilities to restore function to damaged cells, tissues and organs. In April 2006, the U.S. Food and Drug Administrations (FDA) implemented regulations governing the use of human cells, tissues, and cellular and tissue-based products (HCT/Ps) in humans including bone, ligament, skin, dura mater, stem cells, cartilage cells, and various other cellular and tissue-based products. Currently, there is an ongoing debate in the industry on how such therapies should be regulated by FDA or under the practice of medicine, under federal law or state law, and as drugs or simply biologics.

This 2-day interactive seminar on FDA regulations of regenerative medicine will cover:

-How FDA is currently regulating regenerative therapies and products intended for both human and veterinary use. -The distinction being made between human regenerative products and their regulation as drugs, biologics, devices, and combination products. -The New Drug Application (NDA) and the Biologic License Application (BLA) review and approval processes including a discussion of available options, application components, relevant meetings, timing, costs and approval requirements. -The option for obtaining designation and approval as Orphan Drug Product. -Designing and conducting appropriate clinical trials to support the approval of regenerative therapies. -FDAs regulation of some regenerative medicine products and accessories as Medical Devices. -The Current Good Manufacturing Practices (cGMPs) and Good Laboratory Practices (GLPs) being applied by FDA to human regenerative products. -The labeling and marketing of regenerative products and therapies. -The potential for enforcement action and recommendations for mitigating that risk. -The current regulation of veterinary cellular treatments including autologous, allogeneic and xenogeneic cellular products in the United States.

Learning Objectives: Participants who attend this course on FDA regulation of regenerative medicines will leave with a comprehensive understanding of:

-How FDA regulates regenerative treatments and therapies? -The HCT/P Criteria and Minimal Manipulation Standard. -The Drug and Biological Approval Process. -Regenerative Products as Medical Devices. -How to Design Appropriate Clinical Trials? -Applicable cGMPs and cGLPs. -Marketing Exclusivity and Patent Restoration. -Product Labeling, Marketing and Advertising. -FDA and other Federal Agency Enforcement Action. -The Regulation of Veterinary Regenerative Medicine. -The New Animal Drug Application (NADA) Process. -Veterinary User Fees and Waivers.

Who will benefit: This course is designed for professionals in stem cell, biotech, pharmaceutical and animal drug companies, veterinary hospitals and clinics. The following personnel will find this session valuable:

-Senior quality managers -Quality professionals -Regulatory professionals -Compliance professionals -Production supervisors -Manufacturing engineers -Production engineers -Design engineers -Labelers and Private Labelers -Contract Manufacturers -Importers and Custom Agents -U.S. Agents of Foreign Corporations -Process owners -Quality engineers -Quality auditors -Document control specialists -Record retention specialists -Medical affairs -Legal Professionals -Financial Advisors and Institutional Investors -Consultants, Inspectors and cGMP Experts

Link:
FDA's Regulation of Regenerative Medicine including Stem Cell Treatments, Tissue Engineering, Etc.

To Read More: FDA's Regulation of Regenerative Medicine including Stem Cell Treatments, Tissue Engineering, Etc.
categoriaSkin Stem Cells commentoComments Off on FDA's Regulation of Regenerative Medicine including Stem Cell Treatments, Tissue Engineering, Etc. | dataMarch 14th, 2014
Read All

Bioquark Inc. Announces the Appointment of Dr. Luis Martinez, MD, MPH, Regenerative Medicine and Cell Therapy …

By raymumme

Philadelphia, PA (PRWEB) March 13, 2014

Bioquark, Inc., (http://www.bioquark.com) a company focused on the development of combinatorial biologics for regeneration and disease reversion in human organs and tissues, today announces the appointment of Dr. Luis Martinez, MD, MPH, as VP of Global Operations.

We are honored to have someone with Dr. Martinezs experience join us as we execute on a globalized strategy in regenerative medicine, said Ira S. Pastor, CEO, Bioquark Inc. His broad clinical experience in applied regenerative medicine and cellular therapies make him a very valuable addition to the Bioquark team.

Dr. Martinez is a regenerative medicine and cell therapy specialist with over 10 years of experience in the clinical setting. He is currently the President of Elite Regenerative Medicine Group, a premier treatment and research center specializing in cell therapy applications for therapeutic, regenerative and preventive purposes. Dr. Martinez obtained his medical degree, as well as his Master of Public Health, at the Ponce School of Medicine and Health Sciences, and completed his residency at the prestigious University of Pennsylvania. He also completed a fellowship in biosecurity with the UPMC Center for Health Security. He is currently a clinical instructor at the Ponce School of Medicine and Health Sciences and is a board certified physician. Dr. Martinez also serves as vice-president of the XanoGene Anti-Aging Clinic and is President at Xyrion Medical, a biomedical consulting firm. He is a current consultant for multiple biomedical and pharmaceutical companies and conducts clinical research for various clients in the industry. Dr. Martinez is also a renowned international speaker, speaking at multiple venues for professional and academic organizations and he offers training to physicians in multiple applications of regenerative medicine, including Platelet Rich Plasma (PRP) therapy, adipose and bone marrow stem cell derived harvesting, preparation and therapeutic administration, as well as cytokine, growth factor and peptide therapies.

I am very excited about the biologic candidates being developed at Bioquark Inc. and their very novel approach to human regeneration and disease reversion, which has broad clinical applicability towards a range of degenerative disorders," said Dr. Martinez. "I'm pleased to be joining the team and am looking forward to playing a more active role in this truly transformational platform."

About Bioquark, Inc.

Bioquark Inc. is focused on the development of biologic based products that have the ability to alter the regulatory state of human tissues and organs, with the goal of curing a wide range of diseases, as well as effecting complex regeneration. Bioquark is developing biological pharmaceutical candidates, as well as products for the global consumer health and wellness market segments.

View original post here:
Bioquark Inc. Announces the Appointment of Dr. Luis Martinez, MD, MPH, Regenerative Medicine and Cell Therapy ...

To Read More: Bioquark Inc. Announces the Appointment of Dr. Luis Martinez, MD, MPH, Regenerative Medicine and Cell Therapy …
categoriaUncategorized commentoComments Off on Bioquark Inc. Announces the Appointment of Dr. Luis Martinez, MD, MPH, Regenerative Medicine and Cell Therapy … | dataMarch 14th, 2014
Read All

Man hoping for third stem cell match after first 2 donors back out

By Sykes24Tracey

Watch the video above:Leukemia patient Chris Taylor loses 2nd bone marrow transplant donor. Angie Seth reports.

TORONTO A 36-year-old leukemia patient is searching for a bone marrow donor for the third time, after his first two donors backed out for medical or unknown reasons.

Chris Taylor was diagnosed with leukemia in 2012. He originally went to Mount Sinai hospital with chest pains and spent several days in the ICU though doctors couldnt figure out what was wrong with him, he said.

But several weeks later, Princess Margaret Hospital found his cancer at the chromosomal level. HE immediately started chemotherapy and it went into remission.

It came back after ten months, he said. I was starting to feel better and the side effects were starting to wear off and then the cancer came back.

They found a match around Christmas of 2013, he said. They started preliminary testing and even got a proposed date but two days before, the donor pulled out.

Unfortunately that donor was medically unfit to donate, Taylor said.

So they went back to searching. They found another donor.

We began again the process of getting ready to go in for the transplant, he said. Unfortunately for unknown reasons that donor had to opt-out of the procedure.

I was disappointed but I dont hold any ill-will or anything like that.

Originally posted here:
Man hoping for third stem cell match after first 2 donors back out

To Read More: Man hoping for third stem cell match after first 2 donors back out
categoriaBone Marrow Stem Cells commentoComments Off on Man hoping for third stem cell match after first 2 donors back out | dataMarch 13th, 2014
Read All

Stem cell donor, recipient get together

By Sykes24Tracey

Richard France has been visiting Pine Island for 18 years. Each winter he escapes the Ohio winters for the sunny warmth of Pine Island for about six months a year.

"In 2008 I was diagnosed when I was 68 years old with acute leukemia," France said. "I underwent treatments for a fair amount of time, 4 or 5 months - chemotherapy. We usually come down in January but that year we were here for March and April."

He continued, "After that I was in remission for three years but then in 2011 we were here in Florida and I got a call from my doctor. He said the cancer had returned and that I needed to get back to Ohio. They recommended that I have a bone marrow transplant and I got on the transplant list. I think it was under a year when I got word that they had a donor. By then they had decided against a bone marrow transplant and were looking for a stem cell donor. It was the day before Thanksgiving that I went into the hospital and I stayed until almost Christmas. On Nov. 30, I got Laurie Burnworth's stem cells."

Laurie Burnworth stem cell donor and Richard France recipient.

PHOTO PROVIDED

A stem cell (blood or marrow) transplant is the infusion, or injection, of healthy stem cells into your body to replace damaged or diseased stem cells. A stem cell transplant may be necessary if your bone marrow stops working and doesn't produce enough healthy stem cells. A stem cell transplant also may be performed if high-dose chemotherapy or radiation therapy is given in the treatment of blood disorders such as leukemia, lymphoma or multiple myeloma.

"I've been donating blood for years," Burnworth said. "I think I may have signed up for this at one of those times I signed up for blood but I really don't remember. It seems one thing led to another and I believe we were matched up in 2008 and they called me. But that's when Richard went into remission and they held off. Then in 2011 they contacted me again and said 'You are the perfect match for this gentleman and if you're still interested we're going to do this.' After extensive testing we went ahead.

"I think a lot of people don't sign up because they think they take the material from the bone," Burnworth continued. "But in my case you just go to the blood bank, which for me was in Rockford, Ill., and sit in a chair and then you just get hooked up like you're donating blood the difference being though is you're hooked up with both arms. One arm collects the blood where it is sent to a centrifuge that separates the platelets and then the blood is returned through the other arm to your body.

"It's really not a bad process," Burnworth said. "It takes a little time but this is the result. For the first year you can correspond with each other anonymously. Then after a year you sign forms releasing the information. It was Christmas 2012 that I got my phone call from Richard. And, of course, I didn't recognize the phone number so I didn't answer but he left a message and I immediately called back. That's when it really hit me and I cried because Richard and his family got to celebrate Christmas. Then this year they got to celebrate their 50th wedding anniversary and I cried again."

"We meant to get together last year but didn't," France said. "My wife urged that we get together this year and here we are. It's been two years since I got my transplant and I've got another three to go before I'm considered cured. I'm getting pretty much everything back and I feel wonderful and I'm so thankful for Laurie. I wish more people would look into donating organs in general."

Read this article:
Stem cell donor, recipient get together

To Read More: Stem cell donor, recipient get together
categoriaBone Marrow Stem Cells commentoComments Off on Stem cell donor, recipient get together | dataMarch 13th, 2014
Read All

Stem cells inside sutures could improve healing in Achilles tendon injuries

By daniellenierenberg

PUBLIC RELEASE DATE:

12-Mar-2014

Contact: Camille Gamboa camille.gamboa@sagepub.com 805-410-7441 SAGE Publications

Los Angeles, CA (March 12, 2014) Researchers have found that sutures embedded with stem cells led to quicker and stronger healing of Achilles tendon tears than traditional sutures, according to a new study published in the March 2014 issue of Foot & Ankle International (published by SAGE).

Achilles tendon injuries are common for professional, collegiate and recreational athletes. These injuries are often treated surgically to reattach or repair the tendon if it has been torn. Patients have to keep their legs immobilized for a while after surgery before beginning their rehabilitation. Athletes may return to their activities sooner, but risk rerupturing the tendon if it has not healed completely.

Drs. Lew Schon, Samuel Adams, and Elizabeth Allen and Researchers Margaret Thorpe, Brent Parks, and Gary Aghazarian from MedStar Union Memorial Hospital in Baltimore, Maryland, conducted the study. They compared traditional surgery, surgery with stem cells injected in the injury area, and surgery with special sutures embedded with stem cells in rats. The results showed that the group receiving the stem cell sutures healed better.

"The exciting news from this early work is that the stem cells stayed in the tendon, promoting healing right away, during a time when patients are not able to begin aggressive rehabilitation. When people can't fully use their leg, the risk is that atrophy sets in and adhesions can develop which can impact how strong and functional the muscle and tendon are after it is reattached," said Dr. Schon. "Not only did the stem cells encourage better healing at the cellular level, the tendon strength itself was also stronger four weeks following surgery than in the other groups in our study," he added.

###

For further information on how to take care of your feet and ankles, or to find a local orthopaedic foot and ankle surgeon, visit the American Orthopaedic Foot & Ankle Society patient website at http://www.footcaremd.org.

"Stem Cell-Bearing Suture Improves Achilles Tendon Healing in a Rat Model" by Samuel B. Adams, Jr, MD; Margaret A. Thorpe, BS; Brent G. Parks, MSc; Gary Aghazarian, BS; Elizabeth Allen, MD; and Lew C. Schon, MD in the March 2014 Foot & Ankle International.

Read more here:
Stem cells inside sutures could improve healing in Achilles tendon injuries

To Read More: Stem cells inside sutures could improve healing in Achilles tendon injuries
categoriaSkin Stem Cells commentoComments Off on Stem cells inside sutures could improve healing in Achilles tendon injuries | dataMarch 13th, 2014
Read All

DaSilva Institute of Anti-Aging, Regenerative & Functional Medicine Offers Autologous Stem Cell Therapy for Men …

By NEVAGiles23

Sarasota, FL (PRWEB) March 12, 2014

Erectile dysfunction (ED) is the most commonly studied disorder when it comes to male sexual dysfunction. It is estimated that 18 million men in the US alone suffer from erectile dysfunction and that it appears to be affecting 1 in 4 males under age 40 according to a study published in The Journal of Sexual Medicine.

While the emphasis of treatments for ED focuses on relieving the symptoms, they only provide a temporary solution rather than a cure or reversing the cause.

The DaSilva Institute is excited to announce the recruitment of males suffering from ED, in an IRB study, which will look at the safety, and efficacy of autologous, adipose derived stem cells (ADSCs) in regenerating the causes of ED.

The evidence shows that ADSCs reverses the pathophysiological changes leading to ED, rather than treating the symptoms of ED. Not only is the data in the literature compelling, but our own, in-house, results on our patients have been phenomenal, states Dr. DaSilva.

The many underlying causes for ED that are being investigated range from those secondary to aging, to injury of the cavernous nerve secondary to injury, surgery and/or radiation of the prostate, to diabetic ED and Peyronies Disease to name a few. According to Dr. DaSilva, the possibilities for ADSCs in reversing ED are limitless.

Currently, there is an expansive and growing body of evidence in the medical literature strongly indicating that ADSCs might be a potential cure for ED, rather than merely symptom relief, which is indicative of the increasing interest in ADSC-regenerative options for sexual medicine over the past decade. The DaSilva Institutes goal is to take this from pre-clinical studies to the clinical world offering it to all males that suffer from intractable ED under an IRB approved protocol.

More information about Dr. DaSilva and the DaSilva Institute Guy DaSilva, MD is currently the medical director of the DaSilva Institute of Anti-Aging, Regenerative & Functional Medicine, located in Sarasota, Florida. Dr. DaSilvas enthusiasm for using autologous stem cells in regenerative medicine comes from his early days as a pathologist in New York City back in 1987 and later as a fellow in hematology in1990 following his residency in internal medicine.

He later brought his expertise in molecular and cellular medicine to the University of Kansas Medical Center where he served as chief of Hematology & Hematopathology. He later became the CEO and medical director of HemePath Institute, a diagnostic leader in diagnosing the most difficult cases of leukemia and lymphomas. Most recently, Dr. DaSilva teamed up with one of the most influential stem cell scientist in the world to bring the highest quality and viability of the harvested stem cells, bar none, to the DaSilva Institute.

Dr. DaSilva is board certified and fellowship trained in Anti-Aging and Regenerative Medicine. For more information about Dr. DaSilva or the DaSilva Institute go to http://www.dasilvainstitute.com.

Read this article:
DaSilva Institute of Anti-Aging, Regenerative & Functional Medicine Offers Autologous Stem Cell Therapy for Men ...

To Read More: DaSilva Institute of Anti-Aging, Regenerative & Functional Medicine Offers Autologous Stem Cell Therapy for Men …
categoriaUncategorized commentoComments Off on DaSilva Institute of Anti-Aging, Regenerative & Functional Medicine Offers Autologous Stem Cell Therapy for Men … | dataMarch 13th, 2014
Read All

Miami Stem Cell Treatment Center: What The Stem Cell Procedure Entails and An Invitation To MSCTC Public Seminar; Meet …

By JoanneRUSSELL25

Boca Raton, Florida (PRWEB) March 12, 2014

The Miami Stem Cell Treatment Center, PC, located in Miami, Ft. Lauderdale, and Boca Raton, Florida, offers a free public seminar on the use of stem cells for various degenerative and inflammatory conditions. They will be provided by Dr. Thomas A. Gionis, Surgeon-in-Chief, and, Dr. Nia Smyrniotis, Medical Director. The next upcoming seminar will be held on March 16th at the Comfort Suites Weston, 2201 N. Commerce Parkway, Weston, Florida 33326, at 2pm.

Regenerative Medicine: Our Procedure The Miami Stem Cell Treatment Center uses Autologous Adult Adipose Stem Cells to provide care for patients suffering from chronic conditions that may benefit from adult stem cell-based regenerative medicine.

The Miami Stem Cell Treatment Center follows the regenerative medicine procedures developed by the California Stem Cell Treatment Centers (CSCTC) and Cell Surgical Network (CSN) which involves the initial screening, examination and evaluation of every potential candidate for stem cell investigational therapy by one of our physicians. Once a patient is deemed to be an appropriate candidate, the procedure itself is performed by our Surgeon-in-Chief, who is assisted by a team of experienced surgical team members and surgical technicians. The entire process from start to finish takes less than two hours. It is relatively painless, and recovery time is minimal.

In recent times, the bone marrow has been a source for stem cells. Taking bone marrow, however, is a painful procedure. Fat, however, contains many times more stem cells than bone marrow and is much easier and safer to harvest.

For many disease types such as cardiac pathology, adipose derived cells appear to be showing superiority to bone marrow derived cells. This may be related to the well documented fact that chronic disease causes bone marrow suppression. Fat derived cells are a natural choice for our investigational work considering their easy and rapid availability in extremely high numbers.

With our current technology, we can harvest your own fat cells, digest the fat cells and separate out the stem cells. The most significant advantage of using your fat as a source for the stem cells, is that the procedure can be done in the office in only a few hours, as the stem cells can be ready for injection after only 60 minutes of processing with our state of the art equipment. Your stem cells do NOT need to be sent out for processing and there is no need for you to travel outside of the U.S. to have them injected.

Indeed, adipose tissue is an abundant source of mesenchymal stem cells, which have shown promise in the field of regenerative medicine. Furthermore, these cells can be readily harvested in large numbers with low donor-site morbidity. During the past decade, numerous studies have provided pre-clinical data on the safety and efficacy of adipose-derived stem cells, supporting the use of these cells in clinical applications. Various clinical trials have shown the regenerative capability of adipose-derived stem cells in numerous fields of medicine. In addition, a great deal of knowledge concerning the harvesting, characterization, and culture of adipose-derived stem cells has been reported.

Our current areas of study include: Heart Failure, Emphysema, COPD, Asthma, Parkinsons Disease, Stroke, Multiple Sclerosis, and orthopedic joint injections. . The investigational protocols utilized by the Miami Stem Cell Treatment Center have been reviewed and approved by an IRB (Institutional Review Board) which is registered with the U.S. Department of Research Protections; and the study is registered with http://www.Clinicaltrials.gov, a service of the U.S. National Institutes of Health (NIH). For more information contact: Miami(at)MiamiStemCellsUSA(dot)com or visit our website: http://www.MiamiStemCellsUSA.com.

Go here to see the original:
Miami Stem Cell Treatment Center: What The Stem Cell Procedure Entails and An Invitation To MSCTC Public Seminar; Meet ...

To Read More: Miami Stem Cell Treatment Center: What The Stem Cell Procedure Entails and An Invitation To MSCTC Public Seminar; Meet …
categoriaUncategorized commentoComments Off on Miami Stem Cell Treatment Center: What The Stem Cell Procedure Entails and An Invitation To MSCTC Public Seminar; Meet … | dataMarch 13th, 2014
Read All

Advances in Stem Cell, Organ Printing, Tissue Engineering Changing Healthcare, Saving Lives

By raymumme

Contact Information

Available for logged-in reporters only

Newswise COLUMBUS, Ohio -- Imagine a world where malfunctioning organs are replaced by new ones made from your own tissues, where infected wounds are cured with a signal from your smartphone, where doctors find the perfect medicine for whatever ails you simply by studying your stem cells.

Its a world thats inching closer to reality because of the work of some of the nations top scientists, many of whom will gather March 13-15 at The Ohio State University for the 7th Annual Translational to Clinical (T2C) Regenerative Medicine Conference to discuss their recent successes and challenges in coaxing the body to heal itself in extraordinary ways.

Regenerative medicine will change the way you and I experience sickness, health and healthcare, said Chandan Sen, director of the Center for Regenerative Medicine and Cell Based Therapies at Ohio States Wexner Medical Center. Because the field is so new, we as researchers are also changing the way we work to be synergistic not competitive, so patients are able to access the benefits more quickly.

And the benefits are desperately needed, says keynote speaker Dr. Anthony Atala, director of the Wake Forest Institute for Regenerative Medicine at Wake Forest Baptist Medical Center.

From chronic diseases such as kidney failure that costs billions of dollars each year to the medical needs of our aging population and the significant injuries sustained by military troops in Afghanistan, developing new treatment paradigms is essential, said Atala, who was selected to lead the $75 million Armed Forces Institute of Regenerative Medicine (AFIRM), a consortium of 30 academic and industry partners in applying regenerative medicine techniques to battlefield injuries.

In theory, every tissue in the body has the ability to regenerate and heal itself. Its good to come to this meeting and exchange ideas that will enable us to harness that remarkable ability.

Other speakers include Elaine Fuchs, Howard Hughes Medical Institute investigator and Rebecca C. Lancefield Professor at Rockefeller University in New York, who has advanced multiple areas of stem cell research through her work in skin cells and genetics; and Dr. Michael Longaker, director of the Hagey Laboratory for Stem Cell Biology for Pediatric Regenerative Medicine at Stanford University. Longaker is considered one of the nations experts in using a combination of stem cell- and bioengineering-based technologies for craniofacial reconstruction.

Several Ohio State College of Medicine and Wexner Medical Center clinician-scientists are also sharing research updates during pre-conference lectures and the meeting:

Excerpt from:
Advances in Stem Cell, Organ Printing, Tissue Engineering Changing Healthcare, Saving Lives

To Read More: Advances in Stem Cell, Organ Printing, Tissue Engineering Changing Healthcare, Saving Lives
categoriaUncategorized commentoComments Off on Advances in Stem Cell, Organ Printing, Tissue Engineering Changing Healthcare, Saving Lives | dataMarch 13th, 2014
Read All

Father of 2-Year-Old in Need of Bone Marrow: This Is Her Last Chance

By Dr. Matthew Watson

The parents of a 2-year-old Pasadena girl who was diagnosed with an aggressive form of leukemia were this week renewing calls for help in their search for a bone marrow donor after stem cells donated from the girls father failed to help.

Sofia Flores, shown in a family photo, needs a bone marrow donor.

Sofia Flores story first came to light in October 2013 when her parents asked for help in finding a bone marrow donor for their daughter.

Sofia needed a marrow transplant to combat acute myeloid leukemia, according to A3M, a Los Angeles nonprofit that is helping Sofias parents seek a match for the little girl.

However, after an extensive search, no match was found.

On Jan. 23, her father donated his stem cells to her, which was the only alternative available at the time, according to Erica Westfall, Sofias mother.

But the treatment was not successful and Sofias cancer relapsed.

Sofias last chance for survival would be a transplant from an unrelated donor in the next two months, according to her mother.

Weve been searching for a bone marrow match even harder because this is her last chance, her father Ignacio Flores said in a video released to news media on Monday.

Sofia has not found a donor through the Be the Match registry, in part because her mixed-race ethnicity makes it difficult to find a compatible donor, according to A3M. Sofia is half white and half Mexican.

Read the original post:
Father of 2-Year-Old in Need of Bone Marrow: This Is Her Last Chance

To Read More: Father of 2-Year-Old in Need of Bone Marrow: This Is Her Last Chance
categoriaBone Marrow Stem Cells commentoComments Off on Father of 2-Year-Old in Need of Bone Marrow: This Is Her Last Chance | dataMarch 11th, 2014
Read All

Finding hiding place of virus could lead to new treatments

By JoanneRUSSELL25

PUBLIC RELEASE DATE:

11-Mar-2014

Contact: Karen Richardson krchrdsn@wakehealth.edu 336-716-4453 Wake Forest Baptist Medical Center

WINSTON-SALEM, N.C. March 11, 2014 Discovering where a common virus hides in the body has been a long-term quest for scientists. Up to 80 percent of adults harbor the human cytomegalovirus (HCMV), which can cause severe illness and death in people with weakened immune systems.

Now, researchers at Wake Forest Baptist Medical Center's Institute for Regenerative Medicine report that stem cells that encircle blood vessels can be a hiding place, suggesting a potential treatment target.

In the American Journal of Transplantation (online ahead of print), senior scientist Graca Almeida-Porada, M.D., Ph.D., professor of regenerative medicine at Wake Forest Baptist, and colleagues report that perivascular stem cells, which are found in bone marrow and surround blood vessels in the body's organs, are a reservoir of HCMV.

The virus, which is part of the herpes family, is unnoticed in healthy people. Half to 80 percent of all adults in the U.S. are infected with HCMV, according to the Centers for Disease Control and Prevention. In people with weakened immune systems, including those with HIV, undergoing chemotherapy, or who are organ or bone marrow transplant recipients, the virus can become re-activated.

Once re-activated, HCMV can cause a host of problems from pneumonia to inflammation of the liver and brain that are associated with organ rejection and death.

"There are anti-viral medications designed to prevent HCMV from re-activating, but HVMC infection remains one of the major complications after both organ and bone marrow transplants," said Almeida-Porada. "The question scientists have been asking for years is, 'Where does the virus hide when it is latent?' Maybe if we knew, we could target it."

Scientists have previously shown that one hiding place is hematopoietic stem cells, which give rise to blood cells. "There has been research on and off looking for the other hiding places," said Almeida-Porada. "Identifying the cells that can harbor the virus and are responsible for its re-activation could potentially lead to development of novel targeted therapies."

Originally posted here:
Finding hiding place of virus could lead to new treatments

To Read More: Finding hiding place of virus could lead to new treatments
categoriaBone Marrow Stem Cells commentoComments Off on Finding hiding place of virus could lead to new treatments | dataMarch 11th, 2014
Read All

Auckland scientists discover new stem cell in human skin

By raymumme

Auckland scientists have discovered new cells with stem cell properties in human skin, opening the door to a range of new treatments for skin diseases and unhealed wounds.

Auckland scientists have discovered new cells with stem cell properties in human skin, opening the door to a range of new treatments for skin diseases and unhealed wounds.

The scientists, Professor Rod Dunbar, Dr Vaughan Feisst, Dr Anna Brooks and Jenni Chen, are members of the Maurice Wilkins Centre for Molecular Biodiscovery, and the research was carried out in the School of Biological Sciences at the University of Auckland.

They identified mesenchymal progenitor cells (MPCs) in the dermis, the middle layer of skin, and discovered that these could turn themselves into fat cells. This signals that they can probably become other types of cells that repair and regenerate tissue, like similar stem cells found in fat and bone marrow.

"Nobody has identified these cells before, so this opens the door to advances in both skin healing and skin diseases," says Professor Dunbar. "Every time you find new cells with stem cell-like properties, you know youre onto something that could have major implications."

"Its a really exciting discovery," he adds. "We try to avoid getting too carried away about our results because were constitutionally cautious - but this discovery is a pretty fundamental finding."

The team hopes that its research, which started in 2011, could eventually lead to treatments for conditions that severely thicken the skin such as keloid scarring, in which tough, irregularly-shaped scars grow and spread. The team also suspects loss of these MPC cells may prevent proper healing, when, for example, radiation treatment for cancer has damaged the skin.

The tissue used in the research came from men and women who had undergone procedures such as liposuction, abdominoplasty or breast reduction with Auckland surgeons Ms Michelle Locke, Mr Jonathan Wheeler and Mr Julian Lofts. All patients consented to their tissue being used for the study.

The research involved sorting many millions of cells - "like sorting mixed-up flocks of sheep into their different breeds", says Professor Dunbar - with a laser-based technology called flow cytometry.

The research is published this week as the cover article in the March 2014 edition of the international journal Stem Cells and Development.

More:
Auckland scientists discover new stem cell in human skin

To Read More: Auckland scientists discover new stem cell in human skin
categoriaSkin Stem Cells commentoComments Off on Auckland scientists discover new stem cell in human skin | dataMarch 11th, 2014
Read All

Pezcoller Foundation and American Association for Cancer Research Honor Outstanding Achievements of Dr. Elaine Fuchs

By NEVAGiles23

Contact Information

Available for logged-in reporters only

Newswise SAN DIEGO Elaine Fuchs, Ph.D., will receive the 2014 Pezcoller Foundation-American Association for Cancer Research (AACR) International Award for Cancer Research at the AACR Annual Meeting 2014, to be held in San Diego, Calif., April 5-9, in recognition of her seminal work contributing to the understanding of mammalian skin, skin stem cells, and skin-related diseases, particularly cancers, genetic diseases, and proinflammatory disorders.

Fuchs is the Rebecca C. Lancefield professor and head of the Laboratory of Mammalian Cell Biology and Development at The Rockefeller University in New York, N.Y., and an investigator of the Howard Hughes Medical Institute. She will give her lecture, Stem Cells in Silence, Action, and Cancer, Sunday, April 6, 4:30 p.m. PT, in Halls F-G in the San Diego Convention Center.

Dr. Fuchs is an exceptional scientist, and we are delighted to recognize her pioneering research on the biology of skin stem cells and how they go awry in human diseases of the skin, including cancer, said Margaret Foti, Ph.D., M.D. (hon.), chief executive officer of the AACR. Her seminal studies have had a profound impact not only on the field of cancer research, but also on the research disciplines of genetics and dermatology.

Fuchs is highly regarded for her studies using reverse genetics to understand the biological basis of normal and abnormal skin development and function. Among her important research discoveries was the clarification of the molecular mechanisms underlying the ability of skin stem cells to produce the epidermis and its appendages, including hair follicles and sweat and oil glands. She has also defined how the normal biology of skin stem cells can be deregulated in skin cancers and other hyperproliferative disorders of the skin.

I'm honored, delighted, and humbled to receive this award from the AACR, said Fuchs. My students, postdocs, and staff, present and past, are the ones who truly merit recognition. My group has long had an interest in skin stem cells, how they make and repair tissues, and how this goes awry in cancers. As a basic scientist who studies the fundamental mechanisms underlying stem cell biology and cancer, it is particular pleasing to be recognized not only by basic cancer biologists, but also by physician scientists and clinicians. It is the diversity and breadth of the AACR that make this Society and this honor so special.

The Pezcoller Foundation-AACR International Award, now in its 17th year, recognizes an individual scientist of international renown who has made a major scientific discovery in basic or translational cancer research.

As recipient of this award, Fuchs will also present the Ninth Annual Stanley J. Korsmeyer Lecture at the Venetian Institute for Molecular Medicine in Padua, Italy, prior to the Pezcoller Foundations official award ceremony in Trento, Italy, May 2014.

Fuchs was named one of the inaugural Fellows of the AACR Academy last year. She has received many additional honors throughout her career, including the AACR-Women in Cancer Research Charlotte Friend Memorial Lectureship, the National Medal of Science, the Albany Prize in Medicine, the Kligman-Frost Leadership Award from the Society of Investigative Dermatology, LOreal-Unesco Award, the March of Dimes Prize, and the Pasarow Award for Cancer Research. She is an elected member of the National Academy of Sciences, the Institute of Medicine, the American Philosophical Society, the American Academy of Arts and Sciences, and the European National Academy of Sciences (EMBO).

The rest is here:
Pezcoller Foundation and American Association for Cancer Research Honor Outstanding Achievements of Dr. Elaine Fuchs

To Read More: Pezcoller Foundation and American Association for Cancer Research Honor Outstanding Achievements of Dr. Elaine Fuchs
categoriaSkin Stem Cells commentoComments Off on Pezcoller Foundation and American Association for Cancer Research Honor Outstanding Achievements of Dr. Elaine Fuchs | dataMarch 11th, 2014
Read All

Pezcoller Foundation and AACR honor outstanding achievements of Dr. Elaine Fuchs

By daniellenierenberg

PUBLIC RELEASE DATE:

11-Mar-2014

Contact: Lauren Riley lauren.riley@aacr.org 215-446-7155 American Association for Cancer Research

SAN DIEGO Elaine Fuchs, Ph.D., will receive the 2014 Pezcoller Foundation-American Association for Cancer Research (AACR) International Award for Cancer Research at the AACR Annual Meeting 2014, to be held in San Diego, Calif., April 5-9, in recognition of her seminal work contributing to the understanding of mammalian skin, skin stem cells, and skin-related diseases, particularly cancers, genetic diseases, and proinflammatory disorders.

Fuchs is the Rebecca C. Lancefield professor and head of the Laboratory of Mammalian Cell Biology and Development at The Rockefeller University in New York, N.Y., and an investigator of the Howard Hughes Medical Institute. She will give her lecture, "Stem Cells in Silence, Action, and Cancer," Sunday, April 6, 4:30 p.m. PT, in Halls F-G in the San Diego Convention Center.

"Dr. Fuchs is an exceptional scientist, and we are delighted to recognize her pioneering research on the biology of skin stem cells and how they go awry in human diseases of the skin, including cancer," said Margaret Foti, Ph.D., M.D. (hon.), chief executive officer of the AACR. "Her seminal studies have had a profound impact not only on the field of cancer research, but also on the research disciplines of genetics and dermatology."

Fuchs is highly regarded for her studies using reverse genetics to understand the biological basis of normal and abnormal skin development and function. Among her important research discoveries was the clarification of the molecular mechanisms underlying the ability of skin stem cells to produce the epidermis and its appendages, including hair follicles and sweat and oil glands. She has also defined how the normal biology of skin stem cells can be deregulated in skin cancers and other hyperproliferative disorders of the skin.

"I'm honored, delighted, and humbled to receive this award from the AACR," said Fuchs. "My students, postdocs, and staff, present and past, are the ones who truly merit recognition. My group has long had an interest in skin stem cells, how they make and repair tissues, and how this goes awry in cancers. As a basic scientist who studies the fundamental mechanisms underlying stem cell biology and cancer, it is particular pleasing to be recognized not only by basic cancer biologists, but also by physician scientists and clinicians. It is the diversity and breadth of the AACR that make this Society and this honor so special."

The Pezcoller Foundation-AACR International Award, now in its 17th year, recognizes an individual scientist of international renown who has made a major scientific discovery in basic or translational cancer research.

As recipient of this award, Fuchs will also present the Ninth Annual Stanley J. Korsmeyer Lecture at the Venetian Institute for Molecular Medicine in Padua, Italy, prior to the Pezcoller Foundation's official award ceremony in Trento, Italy, May 2014.

See the article here:
Pezcoller Foundation and AACR honor outstanding achievements of Dr. Elaine Fuchs

To Read More: Pezcoller Foundation and AACR honor outstanding achievements of Dr. Elaine Fuchs
categoriaSkin Stem Cells commentoComments Off on Pezcoller Foundation and AACR honor outstanding achievements of Dr. Elaine Fuchs | dataMarch 11th, 2014
Read All

Stem Cell Researcher Calls for Retraction of His Own Work

By Dr. Matthew Watson

Health

Teruhiko Wakayama, a respected stem cell scientist from Japans RIKEN Institute, said he is not certain about the methods used in two studies he co-authored with lead investigator Haruko Obokata.

In the ground-breaking work, heralded by some in the field as a game-changer in the way stem cells are made, Obokata and her team, which included researchers from Harvard University and other international institutes, detailed how they were able to coax already developed cells to revert back to an embryonic-like state to become stem cells by simply exposing them to chemical solutions (mostly acidic) or physical stress. Stem cells can be manipulated to develop into any of the bodys tissues to repair or replace diseased cells.

The controversy erupted when Obokata and her team published a tips sheet for other researchers to follow to replicate their work. But inconsistencies between the newly released methods and the original protocol in the papers, as well as questions about images in the published work, led some to wonder about the validity of the results. Wakayama himself said he was able to repeat the study only once, with Obokatas assistance, but not on his own.

MORE: The Rise and Fall of the Cloning King

In a press conference in Japan last month, Wakayama, who is best known for using stem cell techniques to clone mice, said he asked all of the scientists involved to retract the papers, which were published in the journal Nature in January, and to have the data and results reviewed by other scientists. RIKEN is investigating the work, as is Nature.

The development adds another black eye to the field of stem cell science, which is ripe with possibility but has struggled to establish its credibility. In 2006, Korean researcher Woo Suk Hwang claimed he had become the first to successfully clone human cells, generating patient-specific lines of stem cells from a persons skin cell. The work turned out to be fraudulent, and the stem cells derived from an already established technique of extracting them from existing embryos.

Since then, both policy makers and those in the field have been more skeptical of milestone claims for good reason, as the latest study shows.

Originally posted here:
Stem Cell Researcher Calls for Retraction of His Own Work

To Read More: Stem Cell Researcher Calls for Retraction of His Own Work
categoriaSkin Stem Cells commentoComments Off on Stem Cell Researcher Calls for Retraction of His Own Work | dataMarch 11th, 2014
Read All

Page 517«..1020..516517518519..530540..»


Copyright :: 2024