Page 506«..1020..505506507508..520530..»

Umbilical cord blood transplants become standard

By daniellenierenberg

Marie McCullough, Inquirer Staff Writer Last updated: Sunday, April 20, 2014, 8:51 AM Posted: Saturday, April 19, 2014, 4:05 PM

Mason Shaffer was seven months old when doctors treated him for a fatal genetic bone disorder by destroying his blood and immune systems and rebuilding them with donated blood stem cells.

That's when his parents, Sarah and Marc Shaffer of Lansdowne, learned about a fairly unsung medical trend: public, nonprofit facilities that collect, store, and distribute blood from donated umbilical cords. The stem cells that saved Mason, now a healthy 5-year-old, were in cord blood.

Nonprofit cord-blood banking is a complicated, costly network, but it has been growing steadily, thanks to federal support, stem-cell research - and families like the Shaffers.

Sarah and Marc discovered that in the Philadelphia area, even if parents realized umbilical cords were more than just waste products of childbirth, there was no easy way to donate the tissue. So they established the Mason Shaffer Foundation to change that.

This month, Temple University Hospital launched a program in collaboration with the foundation and the New Jersey Cord Blood Bank to educate expectant parents and enable them to donate in a convenient way - at no charge to them or Temple. The foundation provides the educational material, and the cord-blood bank covers the collection costs, which are offset by health insurance reimbursement for transplants.

Three years ago, Lankenau Medical Center in Wynnewood became the foundation's first cord-blood donation center.

Temple, however, is expected to help fill the desperate need for a more racially diverse cord-blood stockpile. That need was recognized by the federal Stem Cell Therapeutic and Research Act of 2005, which included funding that will help underwrite the first year of Temple's program.

Of the 3,200 babies delivered at Temple each year, 65 percent are African American, and 30 percent are Hispanic.

Read more here:
Umbilical cord blood transplants become standard

To Read More: Umbilical cord blood transplants become standard
categoriaBone Marrow Stem Cells commentoComments Off on Umbilical cord blood transplants become standard | dataApril 20th, 2014
Read All

Adult Human Cells Cloned for First Time

By NEVAGiles23

Ever since Dolly the Sheep was cloned in 1996, scientists have been trying to do the same thing with human cells. Using the same technique, scientists say they've finally accomplished the feat with adult cells.

"What we show for the first time is that you can actually take skin cells, from a middle-aged 35-year-old male, but also from an elderly, 75-year-old male" and use the DNA to create tissue with cells of an exact match, said co-author of the study Robert Lanza.

The work was published in the journal Cell Stem Cell.

Last year, the technique was successfully used with infant cells, but in order to create tissue in a lab that could treat adult diseases, such as Alzheimer's, scientists needed to know if the technique would work with adult cells.

"I'm happy to hear that our experiment was verified and shown to be genuine," said Shoukhrat Mitalipov, a development biologist at Oregon Health and Science University, who led the 2013 study.

The work confirmed that starting with a quality human egg is key to the process. The researchers replaced the original DNA in an unfertilized egg with the donor DNA, and then cultured the cells in a lab dish. The stem cells, which were an exact match to the donor's DNA, can then be turned into various tissue types.

Even though full human cloning is a long way off, the report may raise an equal amount of concern and excitement.

"Certainly this kind of technology could be abused by some kind of rogue scientist," Paul Knoepfler of the University of California, Davis, School of Medicine, told NPR.

Follow this link:
Adult Human Cells Cloned for First Time

To Read More: Adult Human Cells Cloned for First Time
categoriaSkin Stem Cells commentoComments Off on Adult Human Cells Cloned for First Time | dataApril 20th, 2014
Read All

Stanford scientists identify source of most cases of invasive bladder cancer

By Dr. Matthew Watson

PUBLIC RELEASE DATE:

20-Apr-2014

Contact: Krista Conger kristac@stanford.edu 650-725-5371 Stanford University Medical Center

STANFORD, Calif. A single type of cell in the lining of the bladder is responsible for most cases of invasive bladder cancer, according to researchers at the Stanford University School of Medicine.

Their study, conducted in mice, is the first to pinpoint the normal cell type that can give rise to invasive bladder cancers. It's also the first to show that most bladder cancers and their associated precancerous lesions arise from just one cell, and explains why many human bladder cancers recur after therapy.

"We've learned that, at an intermediate stage during cancer progression, a single cancer stem cell and its progeny can quickly and completely replace the entire bladder lining," said Philip Beachy, PhD, professor of biochemistry and of developmental biology. "All of these cells have already taken several steps along the path to becoming an aggressive tumor. Thus, even when invasive carcinomas are successfully removed through surgery, this corrupted lining remains in place and has a high probability of progression."

Although the cancer stem cells, and the precancerous lesions they form in the bladder lining, universally express an important signaling protein called sonic hedgehog, the cells of subsequent invasive cancers invariably do not a critical switch that appears vital for invasion and metastasis. This switch may explain certain confusing aspects of previous studies on the cellular origins of bladder cancer in humans. It also pinpoints a possible weak link in cancer progression that could be targeted by therapies.

"This could be a game changer in terms of therapeutic and diagnostic approaches," said Michael Hsieh, MD, PhD, assistant professor of urology and a co-author of the study. "Until now, it's not been clear whether bladder cancers arise as the result of cancerous mutations in many cells in the bladder lining as the result of ongoing exposure to toxins excreted in the urine, or if it's due instead to a defect in one cell or cell type. If we can better understand how bladder cancers begin and progress, we may be able to target the cancer stem cell, or to find molecular markers to enable earlier diagnosis and disease monitoring."

Beachy is the senior author of the study, which will be published online April 20 in Nature Cell Biology. He is the Ernest and Amelia Gallo Professor in the School of Medicine and a member of the Stanford Cancer Institute and the Stanford Institute for Stem Cell Biology and Regenerative Medicine. He is also a Howard Hughes Medical Institute investigator. Kunyoo Shin, PhD, an instructor at the institute, is the lead author.

Bladder cancer is the fourth most common cancer in men and the ninth most common in women. Smoking is a significant risk factor. There are two main types of the disease: one that invades the muscle around the bladder and metastasizes to other organs, and another that remains confined to the bladder lining. Unlike the more-treatable, noninvasive cancer which comprises about 70 percent of bladder cancers the invasive form is largely incurable. It is expensive and difficult to treat, and the high likelihood of recurrence requires ongoing monitoring after treatment.

The rest is here:
Stanford scientists identify source of most cases of invasive bladder cancer

To Read More: Stanford scientists identify source of most cases of invasive bladder cancer
categoriaUncategorized commentoComments Off on Stanford scientists identify source of most cases of invasive bladder cancer | dataApril 20th, 2014
Read All

Ankle arthritis; 4 months after stem cell therapy by Dr Harry Adelson – Video

By LizaAVILA


Ankle arthritis; 4 months after stem cell therapy by Dr Harry Adelson
Craig discusses his results from his stem cell therapy by Dr Harry Adelson for his arthritic ankle http://www.docereclinics.com.

By: Harry Adelson, N.D.

More here:
Ankle arthritis; 4 months after stem cell therapy by Dr Harry Adelson - Video

To Read More: Ankle arthritis; 4 months after stem cell therapy by Dr Harry Adelson – Video
categoriaUncategorized commentoComments Off on Ankle arthritis; 4 months after stem cell therapy by Dr Harry Adelson – Video | dataApril 20th, 2014
Read All

In a cloning first, scientists create stem cells from …

By NEVAGiles23

Scientists have moved a step closer to the goal of creating stem cells perfectly matched to a patient's DNA in order to treat diseases, they announced on Thursday, creating patient-specific cell lines out of the skin cells of two adult men.

The advance, described online in the journal Cell Stem Cell, is the first time researchers have achieved "therapeutic cloning" of adults. Technically called somatic-cell nuclear transfer, therapeutic cloning means producing embryonic cells genetically identical to a donor, usually for the purpose of using those cells to treat disease.

But nuclear transfer is also the first step in reproductive cloning, or producing a genetic duplicate of someone - a technique that has sparked controversy since the 1997 announcement that it was used to create Dolly, the clone of a ewe. In 2005, the United Nations called on countries to ban it, and the United States prohibits the use of federal funds for either reproductive or therapeutic cloning.

The new study was funded by a foundation and the South Korean government.

If confirmed by other labs, it could prove significant because many illnesses that might one day be treated with stem cells, such as heart failure and vision loss, primarily affect adults. Patient-specific stem cells would have to be created from older cells, not infant or fetal ones. That now looks possible, though far from easy: Out of 39 tries, the scientists created stem cells only once for each donor.

Outside experts had different views of the study, which was led by Young Gie Chung of the Research Institute for Stem Cell Research at CHA Health Systems in Los Angeles.

Stem cell biologist George Daley of the Harvard Stem Cell Institute called it "an incremental advance" and "not earth-shattering."

Reproductive biologist Shoukhrat Mitalipov of Oregon Health and Science University, who developed the technique the CHA team adapted, was more positive. "The advance here is showing that (nuclear transfer) looks like it will work with people of all ages," he said in an interview.

A year ago, Mitalipov led the team that used nuclear transfer of fetal and infant DNA to produce stem cells, the first time that had been accomplished in humans of any age.

ELECTRIC JOLT

Original post:
In a cloning first, scientists create stem cells from ...

To Read More: In a cloning first, scientists create stem cells from …
categoriaCardiac Stem Cells commentoComments Off on In a cloning first, scientists create stem cells from … | dataApril 19th, 2014
Read All

Scientists create stem cells from adult skin cells

By Dr. Matthew Watson

A breakthrough in human stem cell research could lead to the treatment of countless diseases, invaluable scientific research and yes, human cloning.

According to a study in the journalCell Stem Cell, scientists have synthesized human embryonic stem cells from the cells of adults, creating two different lines from the skin of two donors.

>> Read more trending stories

Using the nuclear transfermethod,scientists took DNA out of egg cells and replaced it with the donor DNA. The cells were basically reprogrammed, butof the 77 samplesonly two fully developed into cloned stem cells.

Lead researcher Robert Lanza says the 5 percent success rate isn't surprising."Reprogramming is more difficult for adult cells than for fetal [and] infant cells, presumably at least in part because their epigenetic landscape from the pluripotent state,"meaning the cells generally dont' have the right enzymes for change anymore.

The researchers reportedly tweaked a method made famous by the cloning of the sheep Dolly in 1996 and improved by scientists at Oregon Health & Science University just last year.

The nuclear transfermethod is the third discovered way to harvest or create stem cells. In the past, scientists have extracted cells from leftover embryos after in vitro fertilizations,a controversial practice. And in 2006 aJapanese researcher discovered a way to create themby injecting new genes. (ViaAsian Scientist)

Lanza's method could provide easy access to stem cells, opening up new research intodiseases like diabetes, Parkinsons and even leukemia. And according toNPR, the researcher wants to create a virtual library of cells using carefully selected DNA donors.

The implications of a real and viable approach for creating stem cells could be startling, andscientists have been wrestling with the ethical questions since the cloning of Dolly.

An official at Oregon Health & Science Universitythinks studying stemcells is necessary, tellingTime,They have become kind of like cursed cells. But we clearly need to understand more about them.

View post:
Scientists create stem cells from adult skin cells

To Read More: Scientists create stem cells from adult skin cells
categoriaSkin Stem Cells commentoComments Off on Scientists create stem cells from adult skin cells | dataApril 19th, 2014
Read All

Stem Cells Created From Adult Cells

By NEVAGiles23

April 18, 2014

Brett Smith for redOrbit.com Your Universe Online

In a significant breakthrough a team of scientists from California and Seoul, South Korea have been able to create viable stem cells from an adult donor that perfectly match the donors DNA, according to a new report in the journal Cell Stem Cell.

The development, referred to as therapeutic cloning, involves the production of embryonic cells for scientific purposes and many object to this type of research based on moral or religious grounds. Debate over this type of work was stoked in 1997 with the announcement that it was used to create the clone of a sheep, called Dolly. In 2005, the United Nations called for a ban on cloning and the United States government currently prohibits the use of federal dollars for cloning research.

The scientists behind the latest development, which was partially funded by the government of South Korea, acknowledged that if the embryos in their study were implanted in a uterus they could have developed into a fetus.

Without regulations in place, such embryos could also be used for human reproductive cloning, although this would be unsafe and grossly unethical, study author Dr. Robert Lanza, chief scientist of Massachusetts-based biotech Advanced Cell Technology, told Reuters reporter Sharon Begley.

To produce viable stem cells from an adult donor, the researchers first inserted DNA from an adult skin cell into a donated ovum. The scientists then delivered an electric shock to fuse the genetic material to the ovum. Eventually, the ovum divides and multiplies becoming a viable embryo in five or six days. Pluripotent stem cells, which can become any type of cell in the body, are located on the interior of this embryo.

Last year, a team of Oregon scientists reported on their success in combining genetic material from fetal and infant cells with DNA-extracted eggs. The team was able to develop their eggs into approximately 150-cell embryos.

The Oregon team said a major aspect of their success was allowing the engineered eggs to sit for 30 minutes before hitting them with the charge of electricity that like Dr. Frankensteins monster set the eggs on the path to becoming alive.

In the new study, the researchers waited two hours before triggering the egg, which Lanza said allowed them to succeed.

Go here to read the rest:
Stem Cells Created From Adult Cells

To Read More: Stem Cells Created From Adult Cells
categoriaSkin Stem Cells commentoComments Off on Stem Cells Created From Adult Cells | dataApril 19th, 2014
Read All

Scientists use cloning to make stem cells matched to two adults

By daniellenierenberg

Scientists have replicated one of the most significant accomplishments in stem cell research by creating human embryos that were clones of two men.

The lab-engineered embryos were harvested within days and used to create lines of infinitely reproducing embryonic stem cells, which are capable of growing into any type of human tissue.

The work, reported Thursday in the journal Cell Stem Cell, comes 11 months after researchers in Oregon said they had produced the world's first human embryo clones and used them to make stem cells. Their study, published in Cell, aroused skepticism after critics pointed out multiple errors and duplicated images.

In addition, the entire effort to clone human embryos and then dismantle them in the name of science troubles some people on moral grounds.

MORE: Medicines and machines, inspired by nature

The scientists in Oregon and the authors of the new report acknowledged that the clones they created could develop into babies if implanted in surrogate wombs. But like others in the field, they have said reproductive cloning would be unethical and irresponsible.

The process used to create cloned embryos is called somatic cell nuclear transfer, or SCNT. It involves removing the nucleus from an egg cell and replacing it with a nucleus from a cell of the person to be cloned. The same method was used to create Dolly the sheep in 1996, along with numerous animals from other species.

Human cloning was a particular challenge, in part because scientists had trouble getting enough donor eggs to carry out their experiments. Some scientists said SCNT in humans would be impossible.

Dr. Robert Lanza, the chief scientific officer for Advanced Cell Technology Inc. in Marlborough, Mass., has been working on SCNT off and on for about 15 years. He and his colleagues finally achieved success with a modified version of the recipe used by the Oregon team and skin cells donated by two men who were 35 and 75.

After swapping out the nucleus in the egg cell, both groups used caffeine to delay the onset of cell division a technique that has been called "the Starbucks effect." But instead of waiting 30 minutes to prompt cell division, as was done in the Oregon experiment, Lanza and his team waited two hours.

See the article here:
Scientists use cloning to make stem cells matched to two adults

To Read More: Scientists use cloning to make stem cells matched to two adults
categoriaSkin Stem Cells commentoComments Off on Scientists use cloning to make stem cells matched to two adults | dataApril 19th, 2014
Read All

Sweet Science Lesson! See How Stem Cell Therapy Works – Video

By Dr. Matthew Watson


Sweet Science Lesson! See How Stem Cell Therapy Works
http://www.innovationsstemcellcenter.com Call: 214.420.7970 Facebook: https://www.facebook.com/innovationsmedical Twitter: https://twitter.com/dallasdrj Inst...

By: dallasdrj

Read more here:
Sweet Science Lesson! See How Stem Cell Therapy Works - Video

To Read More: Sweet Science Lesson! See How Stem Cell Therapy Works – Video
categoriaUncategorized commentoComments Off on Sweet Science Lesson! See How Stem Cell Therapy Works – Video | dataApril 19th, 2014
Read All

GTGP Dr Linzey Stem Cell Therapy – Video

By daniellenierenberg


GTGP Dr Linzey Stem Cell Therapy

By: Mountain Television Network

Read more:
GTGP Dr Linzey Stem Cell Therapy - Video

To Read More: GTGP Dr Linzey Stem Cell Therapy – Video
categoriaUncategorized commentoComments Off on GTGP Dr Linzey Stem Cell Therapy – Video | dataApril 19th, 2014
Read All

Bone Marrow Stem Cells Help TBI Case! See the Amazing Before & After Results! – Video

By daniellenierenberg


Bone Marrow Stem Cells Help TBI Case! See the Amazing Before After Results!
Dr. Steenblock treated John F. for a TBI. John suffered from a TBI or a traumatic brain injury after a bike accident. He had just one bone marrow stem cell t...

By: David Steenblock

Continued here:
Bone Marrow Stem Cells Help TBI Case! See the Amazing Before & After Results! - Video

To Read More: Bone Marrow Stem Cells Help TBI Case! See the Amazing Before & After Results! – Video
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Stem Cells Help TBI Case! See the Amazing Before & After Results! – Video | dataApril 18th, 2014
Read All

Proper stem cell function requires hydrogen sulfide

By NEVAGiles23

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Ostrow School of Dentistry.

Professor Songtao Shi, principal investigator on the project, said the presence of hydrogen sulfide produced by the cells governs the flow of calcium ions. The essential ions activate a chain of cellular signals that results in osteogenesis, or the creation of new bone tissue, and keeps the breakdown of old bone tissue at a proper level.

Conversely, having a hydrogen sulfide deficiency disrupted bone homeostasis and resulted in a condition similar to osteoporosis -- weakened, brittle bones -- in experimental mice. In humans, osteoporosis can cause serious problems such as bone fractures, mobility limitations and spinal problems; more than 52 million Americans have or are at risk for the disease.

However, Shi and his team demonstrated that the mice's condition could be rescued by administering small molecules that release hydrogen sulfide inside the body. The results indicate that a similar treatment may have potential to help human patients, Shi said.

"These results demonstrate hydrogen sulfide regulates bone marrow mesenchymal stem cells, and restoring hydrogen sulfide levels via non-toxic donors may provide treatments for diseases such as osteoporosis, which can arise from hydrogen sulfide deficiencies," Shi said.

Story Source:

The above story is based on materials provided by University of Southern California. The original article was written by Beth Newcomb. Note: Materials may be edited for content and length.

More:
Proper stem cell function requires hydrogen sulfide

To Read More: Proper stem cell function requires hydrogen sulfide
categoriaBone Marrow Stem Cells commentoComments Off on Proper stem cell function requires hydrogen sulfide | dataApril 18th, 2014
Read All

Dr. Taylor assists international team of researchers achieve milestone by tissue engineering construction of esophagus

By raymumme

Researchers announced today that tissue engineering has been used to construct natural esophagi which in combination with bone marrow stem cells have been safely and effectively transplanted in rats, according to a study published in the prestigious online journal, Nature Communications. The study shows that the transplanted organs remain patent and display regeneration of nerves, muscles, epithelial cells and blood vessels.

The new method was developed by researchers at Karolinska Institutet in Sweden, within an international collaboration lead by Professor Paolo Macchiarini, and including Doris Taylor, MD, Director of Regenerative Medicine Research at the Texas Heart Institute (THI).

We are very excited and honored to be a part of the team taking such heroic steps, that will ultimately benefit so many patients throughout the world, said Dr. Taylor, who is leading ground-breaking organ-building work at THI that may ultimately lead to the ability to grow new hearts and other organs using a patients own stem cells.

Dr. Taylor has collaborated with Professor Macchiarini for several years, and they have jointly published previous papers on tissue engineering. THI and Dr. Taylor are in the midst of multiple international collaborations in this field, and she also serves on a committee named by Texas Medical Center (TMC) President Robert Robbins, MD, to help guide regenerative medicine research throughout TMC.

The joint goal is to discover, develop, and take first steps toward delivering a more complex tissue, such as a heart, added Dr. Taylor. We see this as another important milestone along that path, which we expect will ultimately help many millions of patients.

James T. Willerson, MD, President, THI added This is a very important step forward toward the goal of regenerating tissues using Dr. Taylors methods. The ability to regenerate a patients esophagus after it has been injured, will help many people. The same is true for an injured heart.

The technique to grow human tissues and organs so called tissue engineering has been employed so far to produce urinary bladder, trachea and blood vessels, which have also been used clinically. However, despite several attempts, it has been proven difficult to grow tissue to replace a damaged esophagus.

In this new study, the researchers created the bioengineered organs by soaking esophagi from rats to remove all the cells. With the cells gone, a scaffold remains in which the structure as well as mechanical and chemical properties of the organ are preserved. The produced scaffolds were then reseeded with cells from the bone marrow of the recipient. The adhering cells have low immunogenicity, which minimizes the risk of immune reaction and graft rejection and also eliminates the need for immunosuppressive drugs. The cells adhered to the biological scaffold and started to show organ-specific characteristics within three weeks.

The cultured tissues were used to replace segments of the esophagus in rats. All rats survived and after two weeks the researchers found indications of the major components in the regenerated graft: epithelium, muscle cells, blood vessels and nerves.

We believe that these very promising findings represent major advances towards the clinical translation of tissue engineered esophagi, said Paolo Macchiarini, Director of Advanced Center for Translational Regenerative Medicine (ACTREM) at Karolinska Institutet.

Read the original here:
Dr. Taylor assists international team of researchers achieve milestone by tissue engineering construction of esophagus

To Read More: Dr. Taylor assists international team of researchers achieve milestone by tissue engineering construction of esophagus
categoriaBone Marrow Stem Cells commentoComments Off on Dr. Taylor assists international team of researchers achieve milestone by tissue engineering construction of esophagus | dataApril 18th, 2014
Read All

International team of researchers engineer construction of esophagus

By raymumme

Researchers announced today that tissue engineering has been used to construct natural esophagi which in combination with bone marrow stem cells have been safely and effectively transplanted in rats, according to a study published in the prestigious online journal, Nature Communications. The study shows that the transplanted organs remain patent and display regeneration of nerves, muscles, epithelial cells and blood vessels.

The new method was developed by researchers at Karolinska Institutet in Sweden, within an international collaboration lead by Professor Paolo Macchiarini, and including Doris Taylor, MD, Director of Regenerative Medicine Research at the Texas Heart Institute (THI).

We are very excited and honored to be a part of the team taking such heroic steps, that will ultimately benefit so many patients throughout the world, said Dr. Taylor, who is leading ground-breaking organ-building work at THI that may ultimately lead to the ability to grow new hearts and other organs using a patients own stem cells.

Dr. Taylor has collaborated with Professor Macchiarini for several years, and they have jointly published previous papers on tissue engineering. THI and Dr. Taylor are in the midst of multiple international collaborations in this field, and she also serves on a committee named by Texas Medical Center (TMC) President Robert Robbins, MD, to help guide regenerative medicine research throughout TMC.

The joint goal is to discover, develop, and take first steps toward delivering a more complex tissue, such as a heart, added Dr. Taylor. We see this as another important milestone along that path, which we expect will ultimately help many millions of patients.

James T. Willerson, MD, President, THI added This is a very important step forward toward the goal of regenerating tissues using Dr. Taylors methods. The ability to regenerate a patients esophagus after it has been injured, will help many people. The same is true for an injured heart.

The technique to grow human tissues and organs so called tissue engineering has been employed so far to produce urinary bladder, trachea and blood vessels, which have also been used clinically. However, despite several attempts, it has been proven difficult to grow tissue to replace a damaged esophagus.

In this new study, the researchers created the bioengineered organs by soaking esophagi from rats to remove all the cells. With the cells gone, a scaffold remains in which the structure as well as mechanical and chemical properties of the organ are preserved. The produced scaffolds were then reseeded with cells from the bone marrow of the recipient. The adhering cells have low immunogenicity, which minimizes the risk of immune reaction and graft rejection and also eliminates the need for immunosuppressive drugs. The cells adhered to the biological scaffold and started to show organ-specific characteristics within three weeks.

The cultured tissues were used to replace segments of the esophagus in rats. All rats survived and after two weeks the researchers found indications of the major components in the regenerated graft: epithelium, muscle cells, blood vessels and nerves.

We believe that these very promising findings represent major advances towards the clinical translation of tissue engineered esophagi, said Paolo Macchiarini, Director of Advanced Center for Translational Regenerative Medicine (ACTREM) at Karolinska Institutet.

Read more:
International team of researchers engineer construction of esophagus

To Read More: International team of researchers engineer construction of esophagus
categoriaBone Marrow Stem Cells commentoComments Off on International team of researchers engineer construction of esophagus | dataApril 18th, 2014
Read All

Scientists create stem cells from adults

By Sykes24Tracey

Scientists have moved a step closer to the goal of creating stem cells perfectly matched to a patient's DNA in order to treat diseases, they announced on Thursday, creating patient-specific cell lines out of the skin cells of two adult men.

The advance, described online in the journal Cell Stem Cell, is the first time researchers have achieved "therapeutic cloning" of adults. Technically called somatic-cell nuclear transfer, therapeutic cloning means producing embryonic cells genetically identical to a donor, usually for the purpose of using those cells to treat disease.

But nuclear transfer is also the first step in reproductive cloning, or producing a genetic duplicate of someone - a technique that has sparked controversy since the 1997 announcement that it was used to create Dolly, the clone of a ewe. In 2005, the United Nations called on countries to ban it, and the United States prohibits the use of federal funds for either reproductive or therapeutic cloning.

The new study was funded by a foundation and the South Korean government.

If confirmed by other labs, it could prove significant because many illnesses that might one day be treated with stem cells, such as heart failure and vision loss, primarily affect adults. Patient-specific stem cells would have to be created from older cells, not infant or fetal ones. That now looks possible, though far from easy: Out of 39 tries, the scientists created stem cells only once for each donor.

Outside experts had different views of the study, which was led by Young Gie Chung of the Research Institute for Stem Cell Research at CHA Health Systems in Los Angeles.

Stem cell biologist George Daley of the Harvard Stem Cell Institute called it "an incremental advance" and "not earth-shattering."

Reproductive biologist Shoukhrat Mitalipov of Oregon Health and Science University, who developed the technique the CHA team adapted, was more positive. "The advance here is showing that (nuclear transfer) looks like it will work with people of all ages," he said in an interview.

A year ago, Mitalipov led the team that used nuclear transfer of fetal and infant DNA to produce stem cells, the first time that had been accomplished in humans of any age.

ELECTRIC JOLT

See the article here:
Scientists create stem cells from adults

To Read More: Scientists create stem cells from adults
categoriaSkin Stem Cells commentoComments Off on Scientists create stem cells from adults | dataApril 18th, 2014
Read All

First Embryonic Stem Cells Cloned From A Man's Skin

By JoanneRUSSELL25

hide captionThis mouse egg (top) is being injected with genetic material from an adult cell to ultimately create an embryo and, eventually, embryonic stem cells. The process has been difficult to do with human cells.

Eighteen years ago, scientists in Scotland took the nuclear DNA from the cell of an adult sheep and put it into another sheep's egg cell that had been emptied of its own nucleus. The resulting egg was implanted in the womb of a third sheep, and the result was Dolly, the first clone of a mammal.

Dolly's birth set off a huge outpouring of ethical concern along with hope that the same techniques, applied to human cells, could be used to treat myriad diseases.

But Dolly's birth also triggered years of frustration. It's proved very difficult to do that same sort of DNA transfer into a human egg.

Last year, scientists in Oregon said they'd finally done it, using DNA taken from infants. Robert Lanza, chief scientific officer at Advanced Cell Technology, says that was an important step, but not ideal for medical purposes.

"There are many diseases, whether it's diabetes, Alzheimer's or Parkinson's disease, that usually increase with age," Lanza says. So ideally scientists would like to be able to extract DNA from the cells of older people not just cells from infants to create therapies for adult diseases.

Lanza's colleagues, including Young Gie Chung at the CHA Stem Cell Institute in Seoul, Korea (with labs in Los Angeles as well), now report success.

Writing in the journal Cell Stem Cell, they say they started with nuclear DNA extracted from the skin cells of a middle-age man and injected it into human eggs donated by four women. As with Dolly, the women's nuclear DNA had been removed from these eggs before the man's DNA was injected. They repeated the process this time starting with the genetic material extracted from the skin cells of a much older man.

hide captionDolly, the first mammal to be genetically cloned from adult cells, poses for the camera in 1997 at the Roslin Institute in Edinburgh, Scotland.

Dolly, the first mammal to be genetically cloned from adult cells, poses for the camera in 1997 at the Roslin Institute in Edinburgh, Scotland.

See the rest here:
First Embryonic Stem Cells Cloned From A Man's Skin

To Read More: First Embryonic Stem Cells Cloned From A Man's Skin
categoriaSkin Stem Cells commentoComments Off on First Embryonic Stem Cells Cloned From A Man's Skin | dataApril 18th, 2014
Read All

Group Makes Stem Cells Using Clone Technique

By raymumme

Researchers say they have made powerful stem cells from both young and old adults using cloning techniques, and also found clues about why it is so difficult to do this with human beings.

The team, at Massachusetts-based Advanced Cell Technology and the Institute for Stem Cell Research in Los Angeles, say they used the cloning methods to create the stem cells to match a 35-year-old man and a 75-year-old man.

They used a bit of skin from each man, took the DNA from the skin cells and inserted it into the egg cell of a female donor, and grew very early embryos called blastocysts, the team reports in the journal Cell Stem Cell. Cells from these embryos closely match the men and could, in theory, be used to make near-identical tissue, blood or organ transplants for the men.

If verified, it would be only the second confirmed time someones been able to use cloning methods to make human embryonic stem cells, considered the bodys master cells.

Therapeutic cloning has long been envisioned as a means for generating patient-specific stem cells that could be used to treat a range of age-related diseases, said Dr. Robert Lanza, chief scientific officer for Advanced Cell Technology.

However, despite cloning success in animals, the derivation of stem cells from cloned human embryos has proven elusive. Only one group has ever succeeded, and their lines were generated using fetal and infant cells.

That was last year, at Oregon Health & Science University.

When human embryonic stem cells were first discovered in 1998, scientists immediately dreamed of using cloning technology to help people grow their own organ and tissue transplants, and to use them to study disease. Theyd be perfect genetic matches for each patient, meaning an end to a lifetime of taking dangerous immune-suppressing drugs after an organ transplant.

But in the many years since, no labs been able to do the work easily. It seems it is much harder to clone a human being than it is to clone a sheep, a frog or a mouse.

And using the cloning technique is controversial, because it involves creating, then destroying, a human embryo.

See the article here:
Group Makes Stem Cells Using Clone Technique

To Read More: Group Makes Stem Cells Using Clone Technique
categoriaSkin Stem Cells commentoComments Off on Group Makes Stem Cells Using Clone Technique | dataApril 18th, 2014
Read All

Breakthrough in human cloning offers new transplant hope

By JoanneRUSSELL25

However a team at the Research Institute for Stem Cell Research at CHA Health Systems in Los Angeles and the University of Seoul said they had achieved the same result with two men, one aged 35 and one 75.

"The proportion of diseases you can treat with lab-made tissue increases with age. So if you cant do this with adult cells it is of limited value, said Robert Lanza, co-author of the research which published in the journal Cell Stem Cell

The technique works by removing the nucleus from an unfertilised egg and replacing it with the nucleus of a skin cell. An electric shock causes the cells to begin dividing until they form a blastocyst a small ball of a few hundred cells.

In IVF it is a blastocyst which is implanted into the womb, but with this technique the cells would be harvested to be used to create other organs or tissues.

However, the breakthrough is likely to reignite the debate about the ethics of creating human embryos for medical purposes and the possible use of the same technique to produce cloned babies which is illegal in Britain.

Although the embryos created may not give rise to a human clone even if implanted in a womb, the prospect is now scientifically closer.

However scientists have been trying for years to clone monkeys and have yet to succeed.

Dr Lanza admitted that without strong regulations, the early embryos produced in therapeutic cloning could also be used for human reproductive cloning, although this would be unsafe and grossly unethical.

However, he said it was important for the future of regenerative medicine that research into therapeutic cloning should continue.

Reproductive biologist Shoukhrat Mitalipov of Oregon Health and Science University, who developed the technique last year said: "The advance here is showing that (nuclear transfer) looks like it will work with people of all ages.

Follow this link:
Breakthrough in human cloning offers new transplant hope

To Read More: Breakthrough in human cloning offers new transplant hope
categoriaSkin Stem Cells commentoComments Off on Breakthrough in human cloning offers new transplant hope | dataApril 18th, 2014
Read All

Results are a leap for embryonic stem cells

By NEVAGiles23

Scientists have replicated one of the most significant accomplishments in stem cell research by creating human embryos that were clones of two men.

The lab-engineered embryos were harvested within days and used to create lines of infinitely reproducing embryonic stem cells, which are capable of growing into any type of human tissue.

The work, reported Thursday in the journal Cell Stem Cell, comes 11 months after researchers in Oregon said they had produced the world's first human embryo clones and used them to make stem cells. Their study, published in Cell, aroused skepticism after critics pointed out multiple errors and duplicated images.

In addition, the entire effort to clone human embryos and then dismantle them in the name of science troubles some people on moral grounds.

The scientists in Oregon and the authors of the new report acknowledged that the clones they created could develop into babies if implanted in surrogate wombs. But like others in the field, they have said reproductive cloning would be unethical and irresponsible.

The process used to create cloned embryos is called somatic cell nuclear transfer, or SCNT. It involves removing the nucleus from an egg cell and replacing it with a nucleus from a cell of the person to be cloned. The same method was used to create Dolly the sheep in 1996, along with numerous animals from other species.

Human cloning was a particular challenge, in part because scientists had trouble getting enough donor eggs to carry out their experiments. Some scientists said SCNT in humans would be impossible.

Dr. Robert Lanza, the chief scientific officer for Advanced Cell Technology Inc. in Marlborough, Mass., has been working on SCNT off and on for about 15 years. He and his colleagues finally achieved success with a modified version of the recipe used by the Oregon team and skin cells donated by two men who were 35 and 75.

After swapping out the nucleus in the egg cell, both groups used caffeine to delay the onset of cell division a technique that has been called "the Starbucks effect." But instead of waiting 30 minutes to prompt cell division, as was done in the Oregon experiment, Lanza and his team waited two hours.

It remains unclear exactly how the egg causes the cells in previously mature tissues in this case, skin to transform into a more versatile, pluripotent state.

More here:
Results are a leap for embryonic stem cells

To Read More: Results are a leap for embryonic stem cells
categoriaSkin Stem Cells commentoComments Off on Results are a leap for embryonic stem cells | dataApril 18th, 2014
Read All

Scientists Clone Stem Cells From Adults For The First Time

By JoanneRUSSELL25

For the first time, scientists have created early-stage embryos using cloned cells from adults.

A study from Advanced Cell Technology published Thursday in the journal Cell Stem Cell highlights how researchers were able to create embryos from the skin cells of two men, ages 35 and 75. Tissue from the embryos featured exact DNA matches with the donors.

Last year, scientists at Oregon Health and Science University made a major breakthrough with the first early-stage human clones derived from infant and fetal cells. However, the experiment drew criticism because early-stage human embryos are destroyed when cells are extracted from them.

This more recent experiment involving adult cells, funded by the South Korean government and performed in California, has large implications for advances in medical treatment. However, the success ratio was low: Scientists attempted 39 times to create stem cells but succeeded only once with each donor.

View post:
Scientists Clone Stem Cells From Adults For The First Time

To Read More: Scientists Clone Stem Cells From Adults For The First Time
categoriaSkin Stem Cells commentoComments Off on Scientists Clone Stem Cells From Adults For The First Time | dataApril 18th, 2014
Read All

Page 506«..1020..505506507508..520530..»


Copyright :: 2024