Page 54«..1020..53545556..60..»

Engineered cardiac tissue model developed to study human heart

By Sykes24Tracey

When it comes to finding cures for heart disease scientists are working to their own beat. That's because they may have finally developed a tissue model for the human heart that can bridge the gap between animal models and human patients. These models exist for other organs, but for the heart, this has been elusive. Specifically, the researchers generated the tissue from human embryonic stem cells with the resulting muscle having significant similarities to human heart muscle. This research was published in the February 2014 issue of The FASEB Journal.

"We hope that our human engineered cardiac tissues will serve as a platform for developing reliable models of the human heart for routine laboratory use," said Kevin D. Costa, Ph.D., a researcher involved in the work from the Cardiovascular Cell and Tissue Engineering Laboratory, Cardiovascular Research Center, Icahn School of Medicine at Mt. Sinai, in New York, NY. "This could help revolutionize cardiology research by improving the ability to efficiently discover, design, develop and deliver new therapies for the treatment of heart disease, and by providing more efficient screening tools to identify and prevent cardiac side effects, ultimately leading to safer and more effective treatments for patients suffering from heart disease."

To make this advance, Costa and colleagues cultured human engineered cardiac tissue, or hECTs, for 7-10 days and they self-assembled into a long thin heart muscle strip that pulled on the end-posts and caused them to bend with each heart beat, effectively exercising the tissue throughout the culture process. These hECTs displayed spontaneous contractile activity in a rhythmic pattern of 70 beats per minute on average, similar to the human heart. They also responded to electrical stimulation. During functional analysis, some of the responses known to occur in the natural adult human heart were also elicited in hECTs through electrical and pharmacological interventions, while some paradoxical responses of hECTs more closely mimicked the immature or newborn human heart. They also found that these human engineered heart tissues were able to incorporate new genetic information carried by adenovirus.

"We've come a long way in our understanding of the human heart," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal, "but we still lack an adequate tissue model which can be used to test promising therapies and model deadly diseases. This advance, if it proves successful over time, will beat anything that's currently available."

Story Source:

The above story is based on materials provided by Federation of American Societies for Experimental Biology. Note: Materials may be edited for content and length.

Go here to see the original:
Engineered cardiac tissue model developed to study human heart

To Read More: Engineered cardiac tissue model developed to study human heart
categoriaCardiac Stem Cells commentoComments Off on Engineered cardiac tissue model developed to study human heart | dataJanuary 30th, 2014
Read All

Scientists develop an engineered cardiac tissue model to study the human heart

By Dr. Matthew Watson

PUBLIC RELEASE DATE:

30-Jan-2014

Contact: Cody Mooneyhan cmooneyhan@faseb.org 301-634-7104 Federation of American Societies for Experimental Biology

When it comes to finding cures for heart disease scientists are working to their own beat. That's because they may have finally developed a tissue model for the human heart that can bridge the gap between animal models and human patients. These models exist for other organs, but for the heart, this has been elusive. Specifically, the researchers generated the tissue from human embryonic stem cells with the resulting muscle having significant similarities to human heart muscle. This research was published in the February 2014 issue of The FASEB Journal.

"We hope that our human engineered cardiac tissues will serve as a platform for developing reliable models of the human heart for routine laboratory use," said Kevin D. Costa, Ph.D., a researcher involved in the work from the Cardiovascular Cell and Tissue Engineering Laboratory, Cardiovascular Research Center, Icahn School of Medicine at Mt. Sinai, in New York, NY. "This could help revolutionize cardiology research by improving the ability to efficiently discover, design, develop and deliver new therapies for the treatment of heart disease, and by providing more efficient screening tools to identify and prevent cardiac side effects, ultimately leading to safer and more effective treatments for patients suffering from heart disease."

To make this advance, Costa and colleagues cultured human engineered cardiac tissue, or hECTs, for 7-10 days and they self-assembled into a long thin heart muscle strip that pulled on the end-posts and caused them to bend with each heart beat, effectively exercising the tissue throughout the culture process. These hECTs displayed spontaneous contractile activity in a rhythmic pattern of 70 beats per minute on average, similar to the human heart. They also responded to electrical stimulation. During functional analysis, some of the responses known to occur in the natural adult human heart were also elicited in hECTs through electrical and pharmacological interventions, while some paradoxical responses of hECTs more closely mimicked the immature or newborn human heart. They also found that these human engineered heart tissues were able to incorporate new genetic information carried by adenovirus.

"We've come a long way in our understanding of the human heart," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal, "but we still lack an adequate tissue model which can be used to test promising therapies and model deadly diseases. This advance, if it proves successful over time, will beat anything that's currently available."

###

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB). It is among the most cited biology journals worldwide according to the Institute for Scientific Information and has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century.

FASEB is composed of 26 societies with more than 115,000 members, making it the largest coalition of biomedical research associations in the United States. Our mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Follow this link:
Scientists develop an engineered cardiac tissue model to study the human heart

To Read More: Scientists develop an engineered cardiac tissue model to study the human heart
categoriaCardiac Stem Cells commentoComments Off on Scientists develop an engineered cardiac tissue model to study the human heart | dataJanuary 30th, 2014
Read All

Tiny machines that swim using heart muscle cells

By JoanneRUSSELL25

Scientists at the University of Illinois have created a minuscule swimming machine, just under eight-one-hundredth of an inch (1.95 mm), thats powered by beating heart muscle cells. Details of their invention, which might someday have medical applications for precision-targeting medication and micro-surgery inside the body, was published in the January 17, 2014 issue of the journal Nature Communications.

Professor Taher Saif, of the University of Illinois, leads the team that created what they call a tiny bio-hybrid machine or bio-bot. He said, in a press release:

Micro-organisms have a whole world that we only glimpse through the microscope. This is the first time that an engineered system has reached this underworld.

The bio-bot has a flagella-shaped body, that is, a cell with a long tail, like a sperm cell. The machine body is made from a flexible polymer thats coated with a substance called fibronectin, which provides an attachment surface for cardiac cells cultured on the bots head and tail. In a yet-to-be understood phenomenon, the heart cells communicate, align with each other, and synchronize their contraction-relaxation beat to move the machines tail. This motion creates waves in the fluid that propels the bot forward.

The scientists also created a faster-swimming bio-bot model with two tails. They think that a bio-bot with several tails could even be used to steer towards specific locations. This could give rise to tiny machine deployed to work on a microscopic scale. Saif commented:

The long-term vision is simple. Could we make elementary structures and seed them with stem cells that would differentiate into smart structures to deliver drugs, perform minimally invasive surgery or target cancer?

Bottom-line: University of Illinois scientists have created a microscopic swimming bio-bot thats powered by beating cardiac muscle cells. The tiny machine, measuring just under eight-one-hundredth of an inch (1.95 mm), may someday be adapted for medical applications inside the body. The journal Nature Communications published details of this research on January 17, 2014.

Follow this link:
Tiny machines that swim using heart muscle cells

To Read More: Tiny machines that swim using heart muscle cells
categoriaCardiac Stem Cells commentoComments Off on Tiny machines that swim using heart muscle cells | dataJanuary 21st, 2014
Read All

Mayo wins FDA approval to test stem-cell technique for heart patients

By JoanneRUSSELL25

The Mayo Clinic in Rochester announced Friday that a decade-long research project on using stem cells to repair damaged heart tissue has won federal approval for human testing, a step that could have implications for millions of Americans with heart disease.

The U.S. Food and Drug Administration has approved a multistate clinical trial of 240 patients with chronic advanced symptomatic heart failure to determine if the procedure produces a significant improvement in heart function.

Safety testing in humans, completed earlier in Europe, showed a preliminary 25 percent improvement in cardiac outflow, according to Dr. Andre Terzic, director of the Mayo Clinic's Center for Regenerative Medicine.

The procedure could be a "paradigm shift" in the treatment of heart disease, Terzic said.

Treatments going forward won't just focus on easing the symptoms of the disease, Terzic said, but rather, on curing it.

The process, developed in collaborations with Cardio3 BioSciences of Belgium, involves harvesting stem cells from a heart patient's bone marrow in the hip, directing the cells to become "cardiopoietic" repair cells, then injecting them back into the heart to do their work.

Mayo researcher Dr. Atta Behfar and other members of Terzic's team isolated hundreds of proteins involved in the transcription process that takes place when stem cells are converted to heart cells. They identified eight proteins that were crucial in the development of heart cells and used them to convert stem cells into heart cells.

"This is unique in the world," Terzic said.

Forty hospitals in Europe and Israel are enrolling heart patients in human trials to test Mayo's new treatment regimen for heart failure. Enrollments are expected to be completed by the end of the year, and early results should be available in 2015, according to Dr. Christian Homsy, CEO of Cardio3 BioSciences.

If things go well, patients could start being treated with the new technology by the end of 2016 in Europe, and perhaps a year later in the United States.

See the original post here:
Mayo wins FDA approval to test stem-cell technique for heart patients

To Read More: Mayo wins FDA approval to test stem-cell technique for heart patients
categoriaCardiac Stem Cells commentoComments Off on Mayo wins FDA approval to test stem-cell technique for heart patients | dataJanuary 18th, 2014
Read All

Stem Cells Might Reverse Heart Damage From Chemo – Cancer …

By LizaAVILA

By Jennifer Thomas HealthDay Reporter

WEDNESDAY, Dec. 30 (HealthDay News) -- Certain types of chemotherapy can damage the heart while thwarting cancer, a dilemma that has vexed scientists for years. But a new study in rats finds that injecting the heart with stem cells can reverse the damage caused by a potent anti-cancer drug.

The findings could one day mean that cancer patients could safely take higher doses of a powerful class of chemotherapy drugs and have any resulting damage to their hearts repaired later on using their own cardiac stem cells, the researchers said.

The study was published online Dec. 28 in advance of print publication in the journal Circulation.

Doxorubicin is a common chemotherapy drug used to treat many types of cancer, including breast, ovarian, lung, thyroid, neuroblastoma, lymphoma and leukemia.

But the drug can have serious side effects, including heart damage that can lead to congestive failure years after cancer treatment ends.

In the study, researchers removed cardiac stem cells from rodents before chemotherapy. The stem cells were isolated and expanded in the lab.

Rats were then given the chemo drug doxorubicin, inducing heart failure. Afterward, the rats' stem cells were re-injected into their hearts, and the damage was reversed.

"Theoretically, patients could be rescued using their own stem cells," said study author Dr. Piero Anversa, director of the Center for Regenerative Medicine at Brigham and Women's Hospital in Boston.

A Phase 1 clinical trial using a similar procedure in people is already under way, said Dr. Roberto Bolli, chief of cardiology and director of the Institute of Molecular Cardiology at the University of Louisville in Kentucky, who is heading the trial.

More:
Stem Cells Might Reverse Heart Damage From Chemo - Cancer ...

To Read More: Stem Cells Might Reverse Heart Damage From Chemo – Cancer …
categoriaCardiac Stem Cells commentoComments Off on Stem Cells Might Reverse Heart Damage From Chemo – Cancer … | dataJanuary 9th, 2014
Read All

Stem cells tested to repair dead heart muscle

By Dr. Matthew Watson

(U-T San Diego) -- A new stem cell treatment may help heart attack patients do something once thought medically impossible regenerate dead heart muscle.

Scripps Health in La Jolla is one of three centers testing the therapy from Capricor, a Los Angeles biotech company. The cardiac stem cells are meant to boost the heart's natural ability to perform minor repairs. If it works, scars should shrink and functional heart muscle should grow.

Capricor gets the cells from donor hearts, grows them into the amount needed for treatment, then sends them to doctors taking part in what is called the Allstar trial. Doctors inject the cells into the coronary artery, where they are expected to migrate to the heart and encourage muscle regrowth.

The trial has successfully completed Phase 1, which mainly evaluates safety. On Dec. 17, Capricor said it had received permission to begin Phase 2, which will examine efficacy in about 300 patients who will get the treatment or a placebo. More information can be found at clinicaltrials.gov under the identifier NCT01458405.

The Allstar trial is funded with a $19.7 million "disease team" grant from the California Institute for Regenerative Medicine, or CIRM, the state's stem cell agency.

"This is a highly significant announcement for us at CIRM as it's the first time we've funded a therapy into a Phase 2 clinical trial, Chairman Jonathan Thomas said in a Dec. 23 statement.

About 600,000 Americans die of heart disease annually, making it the leading cause of death, according to the Centers for Disease Control and Prevention in Atlanta. Even those surviving may be left permanently impaired, if the heart is severely damaged. These are the patients Capricor seeks to help.

Mark Athens received Capricor's treatment on Sept. 25, about a month after having a moderate heart attack. The Encinitas resident was the last treated under Phase 1, said Scripps cardiologist Richard Schatz, who performed the procedure. It will take about six months to know whether the treatment worked, Schatz said.

Unlike many trials, Phase 1 was not placebo-controlled, so Athens knows he got the therapy. He appeared cheerful, smiling and bantering with his examining doctor during a Dec. 17 checkup at Scripps Green Hospital.

There's good reason to be optimistic about the treatment, Schatz said, because an earlier Capricor trial with a slightly different approach showed evidence of working.

Follow this link:
Stem cells tested to repair dead heart muscle

To Read More: Stem cells tested to repair dead heart muscle
categoriaCardiac Stem Cells commentoComments Off on Stem cells tested to repair dead heart muscle | dataJanuary 3rd, 2014
Read All

Stem Cell Therapy for Heart Disease Webchat – Dr. Ellis

By LizaAVILA

Monday, October 11, 2010 - Noon

Stephen Ellis, MD Section Head of Invasive/Interventional Cardiology, Robert and Suzanne Tomsich Department of Cardiovascular Medicine

Stem cells are natures own transformers. When the body is injured, stem cells travel to the scene of the accident and help heal damaged tissue. The cells do this by transforming into whatever type of cell has been injured- bone, skin and even heart tissue. Researchers at Cleveland Clinic believe that the efficiency of stem cells for treating heart tissue can be boosted and help the body recover faster and better from heart attacks. Join us in a free online chat with cardiologist Stephen Ellis, MD. Dr. Ellis is leading one of the clinical trials and will be answering your questions about stem cell therapy for heart disease.

Cleveland_Clinic_Host: Welcome to our "Stem Cell Therapy for Heart Disease" online health chat with Stephen Ellis, MD. Dr. Ellis is leading one of the research studies for stem cell therapy and heart disease so he will be answering a variety of questions on the topic. We are very excited to have him here today!

Thank for joining us Dr. Ellis, let's begin with the questions.

Dr__Ellis: Thank you for having me today.

Robert_B: I have a question on Stem Cell and stabilizing a two chamber heart condition.. Could donor adult stem cells help stabilize the heart and repair some of the damage? Patient also suffers from cardiac sclerosis of the liver.

Dr__Ellis: Stem cells are currently being evaluated to see if they may or may not strengthen hearts previously damaged by heart attacks or other conditions. They are considered experimental for this purpose. There are several ongoing clinical trials available in the U.S.

cabbagepatch: I have been going through other tests for heart transplant consideration, & with everything I have been going through would I be a candidate for heart stem cell repair? How would I find out? My cardiologist is Dr. Hsich in Cleveland.

Dr__Ellis: You may be a candidate for the NIH FOCUS trial at the Cleveland Clinic. Please ask Dr. Hsich - she would be able to help you.

Read more:
Stem Cell Therapy for Heart Disease Webchat - Dr. Ellis

To Read More: Stem Cell Therapy for Heart Disease Webchat – Dr. Ellis
categoriaCardiac Stem Cells commentoComments Off on Stem Cell Therapy for Heart Disease Webchat – Dr. Ellis | dataJanuary 3rd, 2014
Read All

Heart Stem Cell Therapy – – – University of Utah Health Care …

By JoanneRUSSELL25

Keeping in tradition with the Us commitment to advance the fields of medicine and surgery, our physicians are focusing on regenerative medicine as the next frontier in treating cardiovascular disease. Researchers within the Cardiovascular Center estimate cell therapy will be FDA-approved within three years. The goal of this therapy is to give cells back to the heart in order for it to grow stronger, work harder, and function more like a younger heart. Currently, studies include the potentiality of injecting cardiac repair cells into patients hearts to improve function.

This is the first trial of its kind in the United States, providing heart patients who have limited or no other options with a viable treatment. Using some of the best imaging technology, researchers have been able to see improvements in patients within six months after injecting their own cells directly into the left ventricle of the heart during minimally invasive surgery.

To contact us, please use the contact number provided.

The rest is here:
Heart Stem Cell Therapy - - - University of Utah Health Care ...

To Read More: Heart Stem Cell Therapy – – – University of Utah Health Care …
categoriaCardiac Stem Cells commentoComments Off on Heart Stem Cell Therapy – – – University of Utah Health Care … | dataJanuary 3rd, 2014
Read All

Groundbreaking Stem Cell Clinical Trial

By Sykes24Tracey

Florida Hospital Pepin Heart Institute is First in West & Central Florida to Perform a Groundbreaking Stem Cell Clinical Trial for Heart Failure Patients

The first patient has been treated as part of The ATHENA Trial, which derives stem cells from the patientsown adipose (fat) tissue and injects extracted cells into damaged parts of the heart.

TAMPA, Florida (December 20, 2013) Florida Hospital Pepin Heart Institute and Dr. Kiran C. Patel Research Institute announced the first patient, a 59 year old Clearwater man, has been treated as part of the ATHENA clinical trial. The trial, sponsored by San Diego-based Cytori Therapeutics, derives stem cells from the patients own fat tissue and injects extracted cells into damaged parts of the heart. The ATHENA trial is a treatment for chronic heart failure due to coronary heart disease. Dr. Charles Lambert, Medical Director of Florida Hospital Pepin Heart Institute, is leading the way for the first U.S. FDA approved clinical trial using adipose-derived regenerative cells, known as ADRCs, in chronic heart failure patients. I am pleased to report that all procedures went well. The patient is doing well, he was released and is recovering at home. We look forward to following his progress over the coming months, said Dr. Charles Lambert. Heart failure (HF) can occur when the muscles of the heart become weakened and cannot pump blood sufficiently throughout the body. The injury is most often caused by inadequate blood flow to the heart resulting from chronic or acute cardiovascular disease, including heart attacks. The ATHENA clinical trial procedure is a three step process. First, the trial involves the collection of fat from the patients body by liposuction. Then the fat sample is filtered through a machine that extracts out the stem cells. Finally, the stem cells are injected into the damaged part of the patients heart. During this first case at Florida Hospital Pepin Heart Institute, Dr. Paul Smith performed the liposuction to obtain the fat sample, a team at the Dr. Kiran C. Patel Research Institute isolated stem cells from the fat sample and then Dr. Charles Lambert performed the cell therapy by direct injection into the patients heart. Pepin Heart and Dr. Kiran C. Patel Research Institute is exploring and conducting leading-edge research to develop break-through treatments long before they are even available in other facilities. Stem cells have the unique ability to develop into many different cell types, and in many tissues serve as an internal repair system, dividing essentially without limit to replenish other cells, said Dr. Lambert.

The Pepin Heart Institute has a history of cardiovascular stem cell research as part of the NIH sponsored Cardiac Cell Therapy Research Network (CCTRN) as well as other active cell therapy trials. The trial is a double blind, randomized, placebo controlled study designed to study the use of a patients own Adipose-Derived Regenerative Cells (ADRCs) to treat chronic heart failure from coronary heart disease in patients who are on maximal therapy and still have heart failure symptoms. All trial participants undergo a minor liposuction procedure to remove fat (adipose) tissue. Following the liposuction, trial participants may have their tissue processed with Cytoris proprietary Celution System to separate and concentrate cells, and prepare them for therapeutic use. Trial participants will then have either their own cells or a placebo injected back into their damaged heart tissue. To test whether ADRCs will improve heart function, several measurements will be made, including peak oxygen consumption (VO2max), which measures how much physical exercise (gentle walking on a treadmill) a patient can perform, blood flow to the heart (perfusion), the amount of blood in the left ventricle at the end of contraction and relaxation (end-systolic and end-diastolic volumes), and the fraction of blood that is pumped during each contraction (ejection fraction). After the injection procedure, patients are seen in the clinic for follow-up visits over the first 12 months; they are then contacted by phone once a year for up to five years after the procedure.

There are approximately 5.1 million Americans currently living with heart failure, according to the American Heart Association. Chronic heart failure due to coronary heart disease is a severe, debilitating condition caused by restriction of blood flow to the heart muscle, reducing the hearts oxygen supply and limiting its pumping function. Individuals interested in participating in the ATHENA clinical research trial or learning more can visit http://www.theathenatrial.com or call Brian Nordgren, Florida Hospital Pepin Heart Institute Physician Assistant & Stem Cell Program Lead at (813) 615-7527.

About Florida Hospital Tampa Florida Hospital Tampa is a not-for-profit 475-bed tertiary hospital specializing in cardiovascular medicine, neuroscience, orthopaedics, womens services, pediatrics, oncology, endocrinology, bariatrics, wound healing, sleep medicine and general surgery including minimally invasive and robotic-assisted procedures. Also located at Florida Hospital Tampa is the renowned Florida Hospital Pepin Heart Institute, a recognized leader in cardiovascular disease prevention, diagnosis, treatment and leading-edge research. Part of the Adventist Health System, Florida Hospital is a leading health network comprised of 22 hospitals throughout the state. For more information, visit http://www.FHTampa.org.

About Florida Hospital Pepin Heart Institute and Dr. Kiran C. Patel Research Institute Florida Hospital Pepin Heart Institute is a free-standing cardiovascular institute providing comprehensive cardiovascular care with over 76,000 angioplasty procedures and 11,000 open-heart surgeries in the Tampa Bay region. Leading the way with the first accredited chest pain emergency room in Tampa Bay, the institute is among an elite few in the state of Florida chosen to perform the ground breaking Transcatheter Aortic Valve Replacement (TAVR) procedure. It is also a HeartCaring designated provider and a Larry King Cardiac Foundation Hospital. Florida Hospital Pepin Heart Institute and the Dr. Kiran C. Patel Research Institute, affiliated with the University of South Florida (USF), are exploring and conducting leading-edge research to develop break-through treatments long before they are available in most other hospitals. To learn more, visit http://www.FHPepin.org.

ends

Scoop Media

More here:
Groundbreaking Stem Cell Clinical Trial

To Read More: Groundbreaking Stem Cell Clinical Trial
categoriaCardiac Stem Cells commentoComments Off on Groundbreaking Stem Cell Clinical Trial | dataDecember 21st, 2013
Read All

Florida Hospital Pepin Heart Institute is First in West & Central Florida to Perform a Groundbreaking Stem Cell …

By raymumme

(PRWEB) December 20, 2013

Florida Hospital Pepin Heart Institute and Dr. Kiran C. Patel Research Institute announced the first patient, a 59 year old Clearwater man, has been treated as part of the ATHENA clinical trial. The trial, sponsored by San Diego-based Cytori Therapeutics, derives stem cells from the patients own fat tissue and injects extracted cells into damaged parts of the heart. The ATHENA trial is a treatment for chronic heart failure due to coronary heart disease. Dr. Charles Lambert, Medical Director of Florida Hospital Pepin Heart Institute, is leading the way for the first U.S. FDA approved clinical trial using adipose-derived regenerative cells, known as ADRCs, in chronic heart failure patients. I am pleased to report that all procedures went well. The patient is doing well, he was released and is recovering at home. We look forward to following his progress over the coming months, said Dr. Charles Lambert.

Heart failure (HF) can occur when the muscles of the heart become weakened and cannot pump blood sufficiently throughout the body. The injury is most often caused by inadequate blood flow to the heart resulting from chronic or acute cardiovascular disease, including heart attacks. The ATHENA clinical trial procedure is a three step process. First, the trial involves the collection of fat from the patients body by liposuction. Then the fat sample is filtered through a machine that extracts out the stem cells. Finally, the stem cells are injected into the damaged part of the patients heart. During this first case at Florida Hospital Pepin Heart Institute, Dr. Paul Smith performed the liposuction to obtain the fat sample, a team at the Dr. Kiran C. Patel Research Institute isolated stem cells from the fat sample and then Dr. Charles Lambert performed the cell therapy by direct injection into the patients heart. Pepin Heart and Dr. Kiran C. Patel Research Institute is exploring and conducting leading-edge research to develop break-through treatments long before they are even available in other facilities. Stem cells have the unique ability to develop into many different cell types, and in many tissues serve as an internal repair system, dividing essentially without limit to replenish other cells, said Dr. Lambert. The Pepin Heart Institute has a history of cardiovascular stem cell research as part of the NIH sponsored Cardiac Cell Therapy Research Network (CCTRN) as well as other active cell therapy trials. The trial is a double blind, randomized, placebo controlled study designed to study the use of a patients own Adipose-Derived Regenerative Cells (ADRCs) to treat chronic heart failure from coronary heart disease in patients who are on maximal therapy and still have heart failure symptoms. All trial participants undergo a minor liposuction procedure to remove fat (adipose) tissue. Following the liposuction, trial participants may have their tissue processed with Cytoris proprietary Celution System to separate and concentrate cells, and prepare them for therapeutic use. Trial participants will then have either their own cells or a placebo injected back into their damaged heart tissue. To test whether ADRCs will improve heart function, several measurements will be made, including peak oxygen consumption (VO2max), which measures how much physical exercise (gentle walking on a treadmill) a patient can perform, blood flow to the heart (perfusion), the amount of blood in the left ventricle at the end of contraction and relaxation (end-systolic and end-diastolic volumes), and the fraction of blood that is pumped during each contraction (ejection fraction). After the injection procedure, patients are seen in the clinic for follow-up visits over the first 12 months; they are then contacted by phone once a year for up to five years after the procedure. There are approximately 5.1 million Americans currently living with heart failure, according to the American Heart Association. Chronic heart failure due to coronary heart disease is a severe, debilitating condition caused by restriction of blood flow to the heart muscle, reducing the hearts oxygen supply and limiting its pumping function. Individuals interested in participating in the ATHENA clinical research trial or learning more can visit http://www.theathenatrial.com or call Brian Nordgren, Florida Hospital Pepin Heart Institute Physician Assistant & Stem Cell Program Lead at (813) 615-7527.

About Florida Hospital Pepin Heart Institute and Dr. Kiran C. Patel Research Institute Florida Hospital Pepin Heart Institute, located at Florida Hospital Tampa, is a free-standing cardiovascular institute providing comprehensive cardiovascular care with over 76,000 angioplasty procedures and 11,000 open-heart surgeries in the Tampa Bay region. Leading the way with the first accredited chest pain emergency room in Tampa Bay, the institute is among an elite few in the state of Florida chosen to perform the ground breaking Transcatheter Aortic Valve Replacement (TAVR) procedure. It is also a HeartCaring designated provider and a Larry King Cardiac Foundation Hospital. Florida Hospital Pepin Heart Institute and the Dr. Kiran C. Patel Research Institute, affiliated with the University of South Florida (USF), are exploring and conducting leading-edge research to develop break-through treatments long before they are available in most other hospitals. To learn more, visit http://www.FHPepin.org

About Cytori Therapeutics Cytori Therapeutics, Inc. is developing cell therapies based on autologous adipose-derived regenerative cells (ADRCs) to treat cardiovascular disease and repair soft tissue defects. Our scientific data suggest ADRCs improve blood flow, moderate the immune response and keep tissue at risk of dying alive. As a result, we believe these cells can be applied across multiple "ischemic" conditions. These therapies are made available to the physician and patient at the point-of-care by Cytori's proprietary technologies and products, including the Celution system product family. http://www.cytori.com

Original post:
Florida Hospital Pepin Heart Institute is First in West & Central Florida to Perform a Groundbreaking Stem Cell ...

To Read More: Florida Hospital Pepin Heart Institute is First in West & Central Florida to Perform a Groundbreaking Stem Cell …
categoriaCardiac Stem Cells commentoComments Off on Florida Hospital Pepin Heart Institute is First in West & Central Florida to Perform a Groundbreaking Stem Cell … | dataDecember 21st, 2013
Read All

Induced stem cells – Wikipedia, the free encyclopedia

By LizaAVILA

Induced stem cells (iSC) are stem cells artificially derived from some other (somatic, reproductive, pluripotent etc.) cell types by induced (i.e. initiated, forced) epigenetic reprogramming. In accordance to the developmental potentiality and the degree of cell dedifferentiation caused by induced reprogramming they are distinguished and subdivided as: induced totipotent, induced pluripotent stem cells (iPSc) and, obtained by so-called direct reprogramming or directed forced differentiation, induced progenitor (multipotent or unipotent) stem cells, also called induced somatic stem cells. Currently, there are three ways to reprogram somatic cells into stem cells[1] These are:

The reversible transformation of one differentiated cell type to another type of mature differentiated cells is called metaplasia.[22] This transition from one cell type to another can be a part of the normal maturation process, or caused by some of its inducing stimulus. For example: transformation of cells of the iris to the lens in the process of maturation and transformation of the retinal pigment epithelium cells into the neural retina during regeneration in adult newt eyes. This process allows the body to replace the original cells not suitable to new conditions, into new cells which are more suited to new conditions. In experiments on cells in Drosophila imaginal discs, it was found that there are a limited number of standard discrete states of differentiation and the cells have to choose one of them. The fact that transdetermination (change of the path of differentiation) often take place not in one, but in a group of cells shows that it is not caused by a mutation but is induced.[23][24]

Some types of mature, specialized adult cells can naturally revert to stem cells. For example, differentiated cells, which are called chief cells and express the stem cell marker Troy, normally produce digestive fluids for the stomach, yet they can change back into stem cells to make temporary repairs in significant stomach injuries, such as a cut or damage from infection. Moreover theyre making this transition even in the absence of noticeable injuries and are capable of replenishing entire gastric units, essentially serving as quiescent reserve stem cells.[25] Differentiated airway epithelial cells can revert into stable and functional stem cells in vivo.[26] After injury, mature terminally differentiated kidney cells dedifferentiate into more primordial versions of themselves, and then differentiate into the cell types needing replacement in the damaged tissue[27] Macrophages can self-renew by local proliferation of mature differentiated cells.[28] In Newts, muscle tissue is regenerated from specialized muscle cells that dedifferentiate and forget what type of cell they've been. This capacity to regenerate tissue does not decline with age, which may be linked to their ability to make new stem cells from muscle cells on demand.[29]

It should be noted that there are also a variety of nontumorigenic stem cells with the ability to generate the multiple cell types. For instance, multilineage-differentiating stress-enduring (Muse) cells are the stress-tolerant adult human stem cells that can self-renew; form characteristic cell clusters in suspension culture that express a set of genes associated with pluripotency; and can differentiate into endodermal, ectodermal, and mesodermal cells both in vitro and in vivo.[30][31][32][33]

Detailed description of some other well-documented examples of transdifferentiation, and their significance in development and regeneration are reviewed in.[34]

Induced totipotent cells usually can be obtained by reprogramming somatic cells by somatic-cell nuclear transfer (SCNT) to the recipient eggs or oocytes.[3][5][35][36][37] Sometimes may be used the oocytes of other species, such as sheep.[38] New possibilities for creating genetically modified animals opens method of induced androgenetic haploid embryonic stem cells, which can be used instead of sperm. These cells, synchronized in M phase and injected into the oocyte allow to get viable offspring.[39] These developments, together with data on the possibility to obtain unlimited number of oocytes from mitotically active reproductive stem cells[40] offer the possibility of industrial production of transgenic farm animals. Repeated recloning of viable mice through a somatic cell nuclear transfer method that includes a histone deacetylase inhibitor trichostatin, added to the cell culture medium,[41] show that it may be possible to reclone animals indefinitely without any visible accumulation of reprogramming or genomic errors [42] However, research into technologies to develop sperm and egg cells from stem cells bring up bioethical issues.

Such technologies may also have far-reaching clinical applications for overcoming cytoplasmic defects in human oocytes.[43][44][45] For example, the technology have been developed that could prevent inherited mitochondrial disease being passed on to the next generation. Mitochondria, often described as the powerhouse of the cell, contain genetic material, which is passed from mother to child. Mutations on mitochondrial DNA can cause diabetes, deafness, eye disorders, gastrointestinal disorders, heart disease, dementia and several other neurological diseases. The nucleus from one human egg cell have been transferred to another egg, effectively swapping the cell cytoplasm, which includes the mitochondria (and their DNA), creating a cell that could be regarded as having two mothers. The eggs were then fertilised, and the resulting embryonic stem cells carried the swapped mitochondrial DNA.[46]

Read more about the latest achievements of the cloning techniques and the generation of totipotent cells, in:[47]

See also main article: induced pluripotent stem cells (iPSc)

First iPSc were obtained in the form of transplantable teratocarcinoma induced by the graft taken from mouse embryos.[48] It was shown that teratocarcinoma formed from somatic cells.[49] The fact that normal genetically mosaic mice can be obtained from malignant teratocarcinoma cells confirmed their pluripotency.[50][51][52] It turned out that teratocarcinoma cells are able to maintain a culture of pluripotent embryonic stem cells in an undifferentiated state, by supplying the culture medium with various factors.[53] Thus, as early as in the 1980s, it became clear that the transplantation of pluripotent or embryonic stem cells into the body of adult mammals, usually leads to the formation of teratomas, which can then turn into a malignant tumor teratocarcinoma.[54] If, however, to put the teratocarcinoma cells into the early mammal embryo (at the blastocyst stage), they became incorporated in the cell mass of blastocysts and from such a chimeric (i.e. composed of cells from different organisms) blastocyst often develops normal chimeric animal.[55][56][57] This indicated that the cause of the teratoma is a dissonance - mutual misunderstanding of "speech" of young donor cells and surrounding adult cells (so-called niche) of the recipient.

Here is the original post:
Induced stem cells - Wikipedia, the free encyclopedia

To Read More: Induced stem cells – Wikipedia, the free encyclopedia
categoriaCardiac Stem Cells commentoComments Off on Induced stem cells – Wikipedia, the free encyclopedia | dataDecember 19th, 2013
Read All

Regenerative medicine: Mayo Clinic and collaborators develop new tool for transplanting stem cells

By Dr. Matthew Watson

PUBLIC RELEASE DATE:

16-Dec-2013

Contact: Jennifer Schutz newsbureau@mayo.edu 507-284-5005 Mayo Clinic

ROCHESTER, Minn. -- Mayo Clinic researchers and colleagues in Belgium have developed a specialized catheter for transplanting stem cells into the beating heart. The novel device includes a curved needle and graded openings along the needle shaft, allowing for increased distribution of cells. The result is maximized retention of stem cells to repair the heart. The findings appear in the journal Circulation: Cardiovascular Interventions.

"Although biotherapies are increasingly more sophisticated, the tools for delivering regenerative therapies demonstrate a limited capacity in achieving high cell retention in the heart," says Atta Behfar, M.D., Ph.D., a Mayo Clinic cardiology specialist and lead author of the study. "Retention of cells is, of course, crucial to an effective, practical therapy."

Researchers from the Mayo Clinic Center for Regenerative Medicine in Rochester and Cardio3 Biosciences in Mont-Saint-Guibert, Belgium, collaborated to develop the device, beginning with computer modeling in Belgium. Once refined, the computer-based models were tested in North America for safety and retention efficiency.

What's the significance?

This new catheter is being used in the European CHART-1 clinical trials, now underway. This is the first Phase III trial to regenerate hearts of patients who have suffered heart attack damage. The studies are the outcome of years of basic science research at Mayo Clinic and earlier clinical studies with Cardio3 BioSciences and Cardiovascular Centre in Aalst, Belgium, conducted between 2009 and 2010.

###

The development of the catheter and subsequent studies were supported by Cardio3 BioSciences; Walloon Region General Directorate for Economy, Employment & Research; Meijer Lavino Foundation for Cardiac Research Aalst (Belgium); the National Institutes of Health; Grainger Foundation; Florida Heart Research Institute; Marriott Heart Disease Research Program; and the Mayo Clinic Center for Regenerative Medicine.

Read more:
Regenerative medicine: Mayo Clinic and collaborators develop new tool for transplanting stem cells

To Read More: Regenerative medicine: Mayo Clinic and collaborators develop new tool for transplanting stem cells
categoriaCardiac Stem Cells commentoComments Off on Regenerative medicine: Mayo Clinic and collaborators develop new tool for transplanting stem cells | dataDecember 17th, 2013
Read All

Studies: Stem cells reverse heart damage – CNN.com

By Dr. Matthew Watson

A new study says heart damage may be reversible with stem cell therapy without dangerous side effects.

STORY HIGHLIGHTS

(CNN) -- On a June day in 2009, a 39-year-old man named Ken Milles lay on an exam table at Cedars-Sinai Medical Center in Los Angeles. A month earlier, he'd suffered a massive heart attack that destroyed nearly a third of his heart.

"The most difficult part was the uncertainty," he recalls. "Your heart is 30% damaged, and they tell you this could affect you the rest of your life." He was about to receive an infusion of stem cells, grown from cells taken from his own heart a few weeks earlier. No one had ever tried this before.

About three weeks later, in Kentucky, a patient named Mike Jones underwent a similar procedure at the University of Louisville's Jewish Hospital. Jones suffered from advanced heart failure, the result of a heart attack years earlier. Like Milles, he received an infusion of stem cells, grown from his own heart tissue.

"Once you reach this stage of heart disease, you don't get better," says Dr. Robert Bolli, who oversaw Jones' procedure, explaining what doctors have always believed and taught. "You can go down slowly, or go down quickly, but you're going to go down."

Conventional wisdom took a hit Monday, as Bolli's group and a team from Cedars-Sinai each reported that stem cell therapies were able to reverse heart damage, without dangerous side effects, at least in a small group of patients.

In Bolli's study, published in The Lancet, 16 patients with severe heart failure received a purified batch of cardiac stem cells. Within a year, their heart function markedly improved. The heart's pumping ability can be quantified through the "Left Ventricle Ejection Fraction," a measure of how much blood the heart pumps with each contraction. A patient with an LVEF of less than 40% is considered to suffer severe heart failure. When the study began, Bolli's patients had an average LVEF of 30.3%. Four months after receiving stem cells, it was 38.5%. Among seven patients who were followed for a full year, it improved to an astounding 42.5%. A control group of seven patients, given nothing but standard maintenance medications, showed no improvement at all.

"We were surprised by the magnitude of improvement," says Bolli, who says traditional therapies, such as placing a stent to physically widen the patient's artery, typically make a smaller difference. Prior to treatment, Mike Jones couldn't walk to the restroom without stopping for breath, says Bolli. "Now he can drive a tractor on his farm, even play basketball with his grandchildren. His life was transformed."

At Cedars-Sinai, 17 patients, including Milles, were given stem cells approximately six weeks after suffering a moderate to major heart attack. All had lost enough tissue to put them "at big risk" of future heart failure, according to Dr. Eduardo Marban, the director of the Cedars-Sinai Heart Institute, who developed the stem cell procedure used there.

Originally posted here:
Studies: Stem cells reverse heart damage - CNN.com

To Read More: Studies: Stem cells reverse heart damage – CNN.com
categoriaCardiac Stem Cells commentoComments Off on Studies: Stem cells reverse heart damage – CNN.com | dataDecember 14th, 2013
Read All

More Efficient Way to Grow Heart Muscle from Stem Cells Could Yield New Regenerative Therapies

By JoanneRUSSELL25

Durham, NC (PRWEB) December 09, 2013

Generating new cardiac muscle from human embryonic stem cells (hESCs) and/or induced pluripotent stem cells (iPSC) could fulfill the demand for therapeutic applications and drug testing. The production of a similar population of these cells remains a major limitation, but in a study just published in STEM CELLS Translational Medicine, researchers now believe they have found a way to do this.

By combining small molecules and growth factors, the international research team led by investigators at the Cardiovascular Research Center at Icahn School of Medicine at Mount Sinai developed a two-step system that caused stem cells to differentiate into ventricular heart muscle cells from hESCs and iPSCs. The process resulted in high efficiency and reproducibility, in a manner that mimicked the developmental steps of normal cardiovascular development.

These chemically induced, ventricular-like cardiomyocytes (termed ciVCMs) exhibited the expected cardiac electrophysiological and calcium handling properties as well as the appropriate heart rate responses, said lead investigator Ioannis Karakikes, Ph.D., of the Stanford University School Of Medicine, Cardiovascular Institute. Other members of the team included scientists from the Icahn School of Medicine at Mount Sinai, New York, and the Stem Cell & Regenerative Medicine Consortium at the University of Hong Kong.

In addition, using an integrated approach involving computational and experimental systems, the researchers demonstrated that using molecules to modulate the Wnt pathway, which passes signals from cell to cell, plays a key role in whether a cell evolves into an atrial or ventricular muscle cell.

The further clarification of the molecular mechanism(s) that underlie this kind of subtype specification is essential to improving our understanding of cardiovascular development. We may be able to regulate the commitment, proliferation and differentiation of pluripotent stem cells into heart muscle cells and then harness them for therapeutic purposes, Dr. Karakikes said.

"Most cases of heart failure are related to a deficiency of heart muscle cells in the lower chambers of the heart, said said Anthony Atala, MD, editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. An efficient, cost-effective and reproducible system for generating ventricular cardiomyocytes would be a valuable resource for cell therapies as well as drug screening.

###

The full article, Small Molecule-Mediated Directed Differentiation of Human Embryonic Stem Cells Toward Ventricular Cardiomyocytes, can be accessed at http://www.stemcellstm.com.

About STEM CELLS Translational Medicine: STEM CELLS TRANSLATIONAL MEDICINE (SCTM), published by AlphaMed Press, is a monthly peer-reviewed publication dedicated to significantly advancing the clinical utilization of stem cell molecular and cellular biology. By bridging stem cell research and clinical trials, SCTM will help move applications of these critical investigations closer to accepted best practices.

Read the rest here:
More Efficient Way to Grow Heart Muscle from Stem Cells Could Yield New Regenerative Therapies

To Read More: More Efficient Way to Grow Heart Muscle from Stem Cells Could Yield New Regenerative Therapies
categoriaCardiac Stem Cells commentoComments Off on More Efficient Way to Grow Heart Muscle from Stem Cells Could Yield New Regenerative Therapies | dataDecember 13th, 2013
Read All

Space Station made accessible for stem cell research

By LizaAVILA

Washington, Dec 7 : NASA and the Center for the Advancement of Science in Space (CASIS) are enabling research aboard the International Space Station that could lead to new stem cell-based therapies for medical conditions faced on Earth and in space.

Scientists will take advantage of the space station's microgravity environment to study the properties of non-embryonic stem cells.

NASA is interested in space-based cell research because it is seeking ways to combat the negative health effects astronauts face in microgravity, including bone loss and muscle atrophy.

Mitigation techniques are necessary to allow humans to push the boundaries of space exploration far into the solar system. This knowledge could help people on Earth, particularly the elderly, who are afflicted with similar conditions.

Two stem cell investigations scheduled to fly to the space station next year were highlighted Friday, Dec. 6, at the World Stem Cell Summit in San Diego.

Lee Hood, a member of the CASIS Board of Directors, moderated a panel session in which scientists Mary Kearns-Jonker of Loma Linda University in California and Roland Kaunas of Texas A&M University discussed their planned research, which will gauge the impact of microgravity on fundamental stem cell properties.

Kearns-Jonker's research will study the aging of neonatal and adult cardiac stem cells in microgravity with the ultimate goal of improving cardiac cell therapy.

Kaunas is a part of a team of researchers developing a system for co-culturing and analyzing stem cells mixed with bone tumor cells in microgravity.

This system will allow researchers to identify potential molecular targets for drugs specific to certain types of cancer.

Stem cells are cells that have not yet become specialized in their functions. They display a remarkable ability to give rise to a spectrum of cell types and ensure life-long tissue rejuvenation and regeneration.

Read more from the original source:
Space Station made accessible for stem cell research

To Read More: Space Station made accessible for stem cell research
categoriaCardiac Stem Cells commentoComments Off on Space Station made accessible for stem cell research | dataDecember 13th, 2013
Read All

What are the potential uses of human stem cells and the …

By Dr. Matthew Watson

Introduction: What are stem cells, and why are they important? What are the unique properties of all stem cells? What are embryonic stem cells? What are adult stem cells? What are the similarities and differences between embryonic and adult stem cells? What are induced pluripotent stem cells? What are the potential uses of human stem cells and the obstacles that must be overcome before these potential uses will be realized? Where can I get more information? VII. What are the potential uses of human stem cells and the obstacles that must be overcome before these potential uses will be realized?

There are many ways in which human stem cells can be used in research and the clinic. Studies of human embryonic stem cells will yield information about the complex events that occur during human development. A primary goal of this work is to identify how undifferentiated stem cells become the differentiated cells that form the tissues and organs. Scientists know that turning genes on and off is central to this process. Some of the most serious medical conditions, such as cancer and birth defects, are due to abnormal cell division and differentiation. A more complete understanding of the genetic and molecular controls of these processes may yield information about how such diseases arise and suggest new strategies for therapy. Predictably controlling cell proliferation and differentiation requires additional basic research on the molecular and genetic signals that regulate cell division and specialization. While recent developments with iPS cells suggest some of the specific factors that may be involved, techniques must be devised to introduce these factors safely into the cells and control the processes that are induced by these factors.

Human stem cells could also be used to test new drugs. For example, new medications could be tested for safety on differentiated cells generated from human pluripotent cell lines. Other kinds of cell lines are already used in this way. Cancer cell lines, for example, are used to screen potential anti-tumor drugs. The availability of pluripotent stem cells would allow drug testing in a wider range of cell types. However, to screen drugs effectively, the conditions must be identical when comparing different drugs. Therefore, scientists will have to be able to precisely control the differentiation of stem cells into the specific cell type on which drugs will be tested. Current knowledge of the signals controlling differentiation falls short of being able to mimic these conditions precisely to generate pure populations of differentiated cells for each drug being tested.

Perhaps the most important potential application of human stem cells is the generation of cells and tissues that could be used for cell-based therapies. Today, donated organs and tissues are often used to replace ailing or destroyed tissue, but the need for transplantable tissues and organs far outweighs the available supply. Stem cells, directed to differentiate into specific cell types, offer the possibility of a renewable source of replacement cells and tissues to treat diseases including Alzheimer's diseases, spinal cord injury, stroke, burns, heart disease, diabetes, osteoarthritis, and rheumatoid arthritis.

Figure 3. Strategies to repair heart muscle with adult stem cells. Click here for larger image.

2001 Terese Winslow

For example, it may become possible to generate healthy heart muscle cells in the laboratory and then transplant those cells into patients with chronic heart disease. Preliminary research in mice and other animals indicates that bone marrow stromal cells, transplanted into a damaged heart, can have beneficial effects. Whether these cells can generate heart muscle cells or stimulate the growth of new blood vessels that repopulate the heart tissue, or help via some other mechanism is actively under investigation. For example, injected cells may accomplish repair by secreting growth factors, rather than actually incorporating into the heart. Promising results from animal studies have served as the basis for a small number of exploratory studies in humans (for discussion, see call-out box, "Can Stem Cells Mend a Broken Heart?"). Other recent studies in cell culture systems indicate that it may be possible to direct the differentiation of embryonic stem cells or adult bone marrow cells into heart muscle cells (Figure 3).

Cardiovascular disease (CVD), which includes hypertension, coronary heart disease, stroke, and congestive heart failure, has ranked as the number one cause of death in the United States every year since 1900 except 1918, when the nation struggled with an influenza epidemic. Nearly 2600 Americans die of CVD each day, roughly one person every 34 seconds. Given the aging of the population and the relatively dramatic recent increases in the prevalence of cardiovascular risk factors such as obesity and type 2 diabetes, CVD will be a significant health concern well into the 21st century.

Cardiovascular disease can deprive heart tissue of oxygen, thereby killing cardiac muscle cells (cardiomyocytes). This loss triggers a cascade of detrimental events, including formation of scar tissue, an overload of blood flow and pressure capacity, the overstretching of viable cardiac cells attempting to sustain cardiac output, leading to heart failure, and eventual death. Restoring damaged heart muscle tissue, through repair or regeneration, is therefore a potentially new strategy to treat heart failure.

More here:
What are the potential uses of human stem cells and the ...

To Read More: What are the potential uses of human stem cells and the …
categoriaCardiac Stem Cells commentoComments Off on What are the potential uses of human stem cells and the … | dataDecember 11th, 2013
Read All

Heart Stem Cell Trial: Interview With Researcher Roberto Bolli, MD

By JoanneRUSSELL25

An interview with Roberto Bolli, MD.

University of Louisville cardiologist Roberto Bolli, MD, led the stem cell study that tested using patients' own heart stem cells to help their hearts recover from heart failure. Though that trial was preliminary, the results look promising -- and may one day lead to a cure for heart failure.

Here, Bolli talks about what this work means and when it might become an option for patients.

2012 WebMD, LLC. All rights reserved.

"Realistically, this will not come... for another three or four years, at least," Bolli says. "It may be longer, depending on the results of the next trial, of course."

Larger studies are needed to confirm the procedure's safety and effectiveness. If those succeed, it could be "the biggest advance in cardiovascular medicine in my lifetime," Bolli says.

A total of 20 patients took part in the initial study.

All of them experienced significant improvement in their heart failure and now function better in daily life, according to Bolli. "The patients can do more, there's more ability to exercise, and the quality of life improves markedly," Bolli says.

Bolli's team published its findings on how the patients were doing one year after stem cell treatment in November 2011 in the Lancet, a British medical journal.

Each patient was infused with about 1 million of his or her own cardiac stem cells, which could eventually produce an estimated 4 trillion new cardiac cells, Bolli says. His team plans to follow each patient for two years after their stem cell procedure.

The rest is here:
Heart Stem Cell Trial: Interview With Researcher Roberto Bolli, MD

To Read More: Heart Stem Cell Trial: Interview With Researcher Roberto Bolli, MD
categoriaCardiac Stem Cells commentoComments Off on Heart Stem Cell Trial: Interview With Researcher Roberto Bolli, MD | dataDecember 6th, 2013
Read All

Priming ‘cocktail’ shows promise as cardiac stem cell grafting …

By NEVAGiles23

PUBLIC RELEASE DATE:

5-Dec-2013

Contact: Jennifer Nachbur jennifer.nachbur@uvm.edu 802-656-7875 University of Vermont

New research by University of Vermont Associate Professor of Medicine Jeffrey Spees, Ph.D., and colleagues has identified a new tool that could help facilitate future stem cell therapy for the more than 700,000 Americans who suffer a heart attack each year. The study appeared online in Stem Cells Express.

Stem cells, which can come from embryos, fetal tissue and adult tissues, have the potential to develop into a variety of cell types in the body, such as muscle cells, brain cells and red blood cells. These cells also possess the ability to repair human tissues. The field of regenerative medicine which explores the viability of using embryonic, fetal and adult stem cells to repair and regenerate tissues and organs has struggled to successfully graft cells from culture back into injured tissue.

"Many grafts simply didn't take; the cells wouldn't stick or would die," explains Spees. So he and his research team set out to develop ways to enhance graft success.

They focused on a type of bone marrow-derived progenitor cell that forms stromal cells. Stromal cells form connective tissue and also support the creation of blood cells. The researchers were aware of that these cells secrete a diverse array of molecules called ligands that protect injured tissue, promote tissue repair and support stem and progenitor cells in culture. Different ligands interact with specific receptors on the surface of a stem or progenitor cell, transmitting signals that can instruct the cell to adhere, to divide, or to differentiate into a mature functional cell.

To confirm whether or not these types of ligands would protect a cardiac progenitor cell and help it graft, the group isolated a conditioned medium from human bone marrow-derived progenitor cells. They found that the medium contained Connective Tissue Growth Factor (CTGF) and the hormone insulin.

"Both CTGF and insulin are protective," says Spees. "Together, they have a synergistic effect."

In the study, Spees and colleagues compared the impact of sending a cardiac stem cell "naked" into a rodent heart with infarction (heart attack) to a cell that instead wore a "backpack" of protective ligands, created by incubating about 125,000 cardiac cells in a "cocktail" of CTGF and insulin on ice for 30 minutes. The team grafted the cells sub-epicardially between the outer layer and the muscle tissue of the heart and found that their priming cocktail resulted in improved graft success.

Follow this link:
Priming 'cocktail' shows promise as cardiac stem cell grafting ...

To Read More: Priming ‘cocktail’ shows promise as cardiac stem cell grafting …
categoriaCardiac Stem Cells commentoComments Off on Priming ‘cocktail’ shows promise as cardiac stem cell grafting … | dataDecember 5th, 2013
Read All

Howard Leonhardt of Leonhardt Ventures to Present at World …

By Sykes24Tracey

SAN DIEGO, Dec. 5, 2013 /PRNewswire/ -- Howard Leonhardt of Leonhardt Ventures and the Cal-X Stars Innovation and Business Accelerator team will present at the 2013 World Stem Cell Summit on Friday, December 6, 2013 at the Manchester Grand Hyatt in San Diego in two sessions.

2pm Harbor Room AB - Developing Combination Products Cells, Genes, Devices

3pm Harbor Room DE - Startup Considerations for Stem Cell Companies - Getting Funding and Avoiding Pitfalls

Cal-X Stars Business Accelerator, Inc.is an innovation accelerator with an unprecedented portfolio of breakthrough cardiovascular life science and high social good impact innovations that have primarily been majority funded to date by Leonhardt Ventures and its associated angel investor network.

The innovation laboratory and business accelerator has two clearfocusareas:

Management team and board have a proven track record in leading breakthrough innovations in these focused spaces -http://www.calstockexchange.com/team-cal-x/.

Cardiovascular portfolio technologies include...

MyoStim Pacershttp:/www.myostimpacers.com- heart failure pacemaker designed to recruit reparative stem cells to damaged and weakened heart tissue.

Bioheart, Inc.http://www.bioheartinc.com- Phase III leader in applying adult muscle stem cells to treat advanced heart failuresince 1999.Only cell type known to grow new contractile muscle in the depths of heart scar tissue. In the Phase II/III MARVEL randomized, double blinded, placebo controlled study Bioheart's MyoCell achieved 95.7 meters improvement in exercise capacity over placebo (minus 4 meters).

BioPace biological pacemaker made entirely of living cells.

See the original post:
Howard Leonhardt of Leonhardt Ventures to Present at World ...

To Read More: Howard Leonhardt of Leonhardt Ventures to Present at World …
categoriaCardiac Stem Cells commentoComments Off on Howard Leonhardt of Leonhardt Ventures to Present at World … | dataDecember 5th, 2013
Read All

Research | Research news | 2013 | The heart’s own stem cells …

By LizaAVILA

The hearts own stem cells play their part in regeneration

Sca1 stem cells replace steadily ageing heart muscle cells

November 28, 2013

Up until a few years ago, the common school of thought held that the mammalian heart had very little regenerative capacity. However, scientists now know that heart muscle cells constantly regenerate, albeit at a very low rate. Researchers at the Max Planck Institute for Heart and Lung Research in Bad Nauheim, have identified a stem cell population responsible for this regeneration. Hopes are growing that it will be possible in future to stimulate the self-healing powers of patients with diseases and disorders of the heart muscle, and thus develop new potential treatments.

Stem cells play a part in heart regeneration. This image of the fluorescence microscope depicts a section of the heart tissue of a mouse. The green colouring of the cells in the middle shows that the cell originated from a so-called Sca1 stem cell.

MPI for Heart and Lung Research

MPI for Heart and Lung Research

Some vertebrates seem to have found the fountain of youth, the source of eternal youth, at least when it comes to their heart. In many amphibians and fish, for example, this important organ has a marked capacity for regeneration and self-healing. Some species in the two animal groups have even perfected this capability and can completely repair damage caused to heart tissue, thus maintaining the organs full functionality.

The situation is different for mammals, whose hearts have a very low regenerative capacity. According to the common school of thought that has prevailed until recently, the reason for this deficit is that the heart muscle cells in mammals cease dividing shortly after birth. It was also assumed that the mammalian heart did not have any stem cells that could be used to form new heart muscle cells. On the contrary: new studies show that aged muscle cells are also replaced in mammalian hearts. Experts estimate, however, that between just one and four percent of heart muscle cells are replaced every year.

Scientists in Thomas Brauns Research Group at the Max Planck Institute for Heart and Lung Research have succeeded in identifying a stem cell population in mice that plays a key role in this regeneration of heart muscle cells. Experiments conducted by the researchers in Bad Nauheim on genetically modified mice show that the Sca1 stem cells in a healthy heart are involved in the ongoing replacement of heart muscle cells. The Sca-1 cells increase their activity if the heart is damaged, with the result that significantly more new heart muscle cells are formed.

See more here:
Research | Research news | 2013 | The heart’s own stem cells ...

To Read More: Research | Research news | 2013 | The heart’s own stem cells …
categoriaCardiac Stem Cells commentoComments Off on Research | Research news | 2013 | The heart’s own stem cells … | dataDecember 4th, 2013
Read All

Page 54«..1020..53545556..60..»


Copyright :: 2024