Bone Marrow Mesenchymal Stem Cells: Key Insights and Functions
By daniellenierenberg
Bone marrow mesenchymal stem cells (BM-MSCs) are a vital component of regenerative medicine due to their ability to differentiate into various cell types and modulate immune responses. Their therapeutic potential has led to extensive research on their biological properties, mechanisms of action, and clinical applications.
Understanding BM-MSCs requires examining their microenvironment, distinguishing characteristics, isolation techniques, differentiation pathways, and how they compare to other stem cell types.
BM-MSCs originate from the mesodermal germ layer during embryonic development and persist into adulthood for tissue maintenance and repair. Within the bone marrow, they coexist with hematopoietic stem cells (HSCs) and other stromal components, contributing to the marrow niches structure and function. Their distribution is not uniform, with higher concentrations in trabecular-rich regions such as the iliac crest, femur, and sternum. These sites provide a supportive environment where BM-MSCs interact with the extracellular matrix, soluble factors, and neighboring cells to regulate proliferation and differentiation.
The bone marrow microenvironment is a specialized niche that governs BM-MSC behavior through biochemical and mechanical cues. It consists of an extracellular matrix composed of collagen, fibronectin, and laminin, which provides structural support and modulates adhesion. Oxygen tension in the marrow is lower than in peripheral tissues, with hypoxic conditions (1% to 7% oxygen) helping maintain BM-MSC quiescence and stemness. Hypoxia-inducible factors (HIFs) mediate responses to low oxygen levels, promoting genes involved in self-renewal and metabolic adaptation.
Cellular interactions further shape BM-MSC function. Crosstalk with endothelial cells, osteoblasts, and pericytes influences their role in supporting hematopoiesis and tissue homeostasis. Endothelial cells secrete vascular endothelial growth factor (VEGF), enhancing BM-MSC survival and migration. Osteoblasts provide osteogenic signals that prime BM-MSCs for differentiation into bone-forming cells. Pericytes, which share similarities with BM-MSCs, contribute to vascular stability and regulate stem cell fate.
BM-MSCs are defined by a unique set of surface markers that distinguish them from other stromal and hematopoietic populations. Unlike HSCs, BM-MSCs lack CD34, CD45, and CD14, which are associated with blood cell lineages. Instead, they express CD73, CD90, and CD105, as established by the International Society for Cell and Gene Therapy (ISCT). These markers facilitate identification, isolation, and functional characterization.
CD73, also known as ecto-5-nucleotidase, catalyzes the conversion of extracellular AMP into adenosine, modulating microenvironmental signals. CD90, or Thy-1, is a glycoprotein involved in cell-cell and cell-matrix interactions, influencing BM-MSC proliferation and differentiation. CD105, or endoglin, serves as a co-receptor for transforming growth factor-beta (TGF-), maintaining BM-MSC multipotency and guiding lineage commitment.
Additional markers refine BM-MSC characterization. CD146, a pericyte-associated marker, is linked to heightened clonogenic potential. STRO-1, an early mesenchymal progenitor marker, correlates with enhanced osteogenic differentiation but diminishes with cell expansion. CD271, or low-affinity nerve growth factor receptor (LNGFR), has been proposed for isolating highly pure BM-MSC populations with superior regenerative properties.
Isolating and expanding BM-MSCs are critical for research and clinical applications. Various techniques selectively extract BM-MSCs while minimizing contamination from hematopoietic and other stromal cells.
Density gradient centrifugation separates mononuclear cells from other bone marrow components based on cell density. Ficoll-Paque and Percoll are commonly used media that enrich BM-MSCs by allowing lower-density mononuclear cells to form a distinct layer after centrifugation. This method is simple and cost-effective but does not exclusively isolate BM-MSCs, as the mononuclear fraction contains hematopoietic cells. To improve purity, plastic adherence-based selection is often employed, where BM-MSCs attach to tissue culture plastic while non-adherent cells are removed. However, this approach has limitations, including variability in yield and potential contamination.
Fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS) isolate BM-MSCs based on surface marker expression. FACS uses fluorescently labeled antibodies targeting BM-MSC markers such as CD73, CD90, and CD105, allowing high-purity selection through laser-based detection. MACS employs magnetic beads conjugated to antibodies, enabling rapid and scalable cell separation. While FACS provides greater resolution, it requires specialized equipment and is time-intensive. MACS, though less precise, is more accessible and suitable for large-scale cell enrichment.
Enzymatic digestion methods use proteolytic enzymes such as collagenase and trypsin to break down the extracellular matrix and release BM-MSCs. Collagenase digestion is commonly used to degrade collagen-rich structures while preserving viability. Trypsin, often combined with other enzymes, aids in cell detachment. While enzymatic dissociation enhances cell recovery, excessive enzyme exposure can compromise viability and surface marker integrity. This method is often combined with culture-based selection for further enrichment.
BM-MSCs can differentiate into osteoblasts, chondrocytes, and adipocytes. This process is governed by transcription factors and environmental cues that guide lineage commitment. The surrounding microenvironment, including mechanical forces and biochemical signals, influences differentiation outcomes.
Osteogenic differentiation is driven by RUNX2, which activates genes responsible for bone matrix deposition. Calcium, phosphate, and bone morphogenetic proteins (BMPs) reinforce osteogenesis by enhancing mineralization. Chondrogenic differentiation is regulated by SOX9, which promotes cartilage-specific proteins such as aggrecan and type II collagen. Hypoxic conditions sustain chondrocyte-like characteristics. Adipogenic differentiation is controlled by PPAR and C/EBP, which drive lipid accumulation and adipocyte-specific gene expression.
BM-MSC differentiation is regulated by signaling pathways that govern self-renewal, proliferation, and lineage commitment. The Notch, Wnt, and BMP pathways play key roles in directing fate decisions.
The Notch pathway influences BM-MSC proliferation and differentiation through cell-to-cell communication. Activation occurs when Notch ligands bind to receptors, triggering cleavage and release of the Notch intracellular domain (NICD). NICD translocates to the nucleus and modulates gene expression. Notch signaling maintains BM-MSCs in an undifferentiated state by suppressing osteogenic and adipogenic differentiation while promoting chondrogenesis. Sustained Notch activation enhances cartilage formation by upregulating SOX9, while inhibition facilitates osteogenesis by relieving suppression on RUNX2.
The Wnt signaling cascade affects BM-MSC fate through canonical and non-canonical pathways. In the canonical pathway, Wnt ligands bind to Frizzled receptors, stabilizing -catenin, which activates osteogenic genes. This pathway promotes bone formation by enhancing RUNX2 expression and matrix mineralization. The non-canonical pathway, independent of -catenin, regulates cytoskeletal organization and migration. Canonical Wnt signaling favors osteogenesis while inhibiting adipogenesis by suppressing PPAR, maintaining a balance in BM-MSC differentiation.
Bone morphogenetic proteins (BMPs) regulate BM-MSC differentiation, particularly in bone and cartilage formation. BMP ligands bind to receptors, triggering SMAD phosphorylation and transcriptional regulation. BMP2 and BMP7 induce osteogenesis by upregulating RUNX2 and enhancing extracellular matrix deposition. BMP signaling also synergizes with SOX9 to promote chondrogenesis. While BMPs favor skeletal differentiation, excessive signaling can lead to aberrant ossification.
BM-MSCs differ from other stem cell populations in differentiation potential, immunomodulatory effects, and tissue origin. Unlike HSCs, which primarily generate blood cells, BM-MSCs contribute to mesodermal-derived tissues such as bone, cartilage, and adipose. Their ability to differentiate into multiple skeletal and connective tissue types makes them valuable for regenerative applications.
Compared to embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), BM-MSCs have a more restricted differentiation capacity, as they do not generate cells from all three germ layers. However, this reduces the risk of teratoma formation, a concern with pluripotent stem cell-based therapies. BM-MSCs are also more accessible and ethically uncontroversial, as they can be harvested from adult bone marrow. Their immunomodulatory properties further distinguish them, as they modulate immune responses through cytokine secretion and direct interactions, making them useful in inflammatory and autoimmune conditions.
See the article here:
Bone Marrow Mesenchymal Stem Cells: Key Insights and Functions
Newborn Mice May Hold the Key to Simpler Gene Therapy – the-scientist.com
By daniellenierenberg
Newborn Mice May Hold the Key to Simpler Gene Therapy the-scientist.com
Read the original:
Newborn Mice May Hold the Key to Simpler Gene Therapy - the-scientist.com
In vivo haemopoietic stem cell gene therapy enabled by postnatal trafficking – Nature
By daniellenierenberg
In vivo haemopoietic stem cell gene therapy enabled by postnatal trafficking Nature
See original here:
In vivo haemopoietic stem cell gene therapy enabled by postnatal trafficking - Nature
New Gene Therapy Reverses Three Diseases With Shots to the Bloodstream – SingularityHub
By daniellenierenberg
New Gene Therapy Reverses Three Diseases With Shots to the Bloodstream SingularityHub
See the original post here:
New Gene Therapy Reverses Three Diseases With Shots to the Bloodstream - SingularityHub
U achieves first successful allogenic stem cell transplant using graft from deceased donor – The University of Utah
By daniellenierenberg
U achieves first successful allogenic stem cell transplant using graft from deceased donor The University of Utah
See the original post:
U achieves first successful allogenic stem cell transplant using graft from deceased donor - The University of Utah
Delivery of bone marrow mesenchymal stem cell-derived exosomes into fibroblasts attenuates intestinal fibrosis by weakening its transdifferentiation…
By daniellenierenberg
Gene therapy: a first of its kind at Sainte-Justine Hospital – CityNews Montreal
By daniellenierenberg
Gene therapy: a first of its kind at Sainte-Justine Hospital CityNews Montreal
Link:
Gene therapy: a first of its kind at Sainte-Justine Hospital - CityNews Montreal
Embryonic macrophages orchestrate niche cell homeostasis for the establishment of the definitive hematopoietic stem cell pool – Nature
By daniellenierenberg
Original post:
Embryonic macrophages orchestrate niche cell homeostasis for the establishment of the definitive hematopoietic stem cell pool - Nature
Hematopoietic stem cell – Wikipedia
By daniellenierenberg
Stem cells that give rise to other blood cells
Hematopoietic stem cells (HSCs) are the stem cells[1] that give rise to other blood cells. This process is called haematopoiesis.[2] In vertebrates, the first definitive HSCs arise from the ventral endothelial wall of the embryonic aorta within the (midgestational) aorta-gonad-mesonephros region, through a process known as endothelial-to-hematopoietic transition.[3][4] In adults, haematopoiesis occurs in the red bone marrow, in the core of most bones. The red bone marrow is derived from the layer of the embryo called the mesoderm.
Haematopoiesis is the process by which all mature blood cells are produced. It must balance enormous production needs (the average person produces more than 500 billion blood cells every day) with the need to regulate the number of each blood cell type in the circulation. In vertebrates, the vast majority of hematopoiesis occurs in the bone marrow and is derived from a limited number of hematopoietic stem cells that are multipotent and capable of extensive self-renewal.
Hematopoietic stem cells give rise to different types of blood cells, in lines called myeloid and lymphoid. Myeloid and lymphoid lineages both are involved in dendritic cell formation. Myeloid cells include monocytes, macrophages, neutrophils, basophils, eosinophils, erythrocytes, and megakaryocytes to platelets. Lymphoid cells include T cells, B cells, natural killer cells, and innate lymphoid cells.
The definition of hematopoietic stem cell has developed since they were first discovered in 1961.[5] The hematopoietic tissue contains cells with long-term and short-term regeneration capacities and committed multipotent, oligopotent, and unipotent progenitors. Hematopoietic stem cells constitute 1:10,000 of cells in myeloid tissue.
HSC transplants are used in the treatment of cancers and other immune system disorders[6] due to their regenerative properties.[7]
They are round, non-adherent, with a rounded nucleus and low cytoplasm-to-nucleus ratio. In shape, hematopoietic stem cells resemble lymphocytes.
The very first hematopoietic stem cells during (mouse and human) embryonic development are found in aorta-gonad-mesonephros region and the vitelline and umbilical arteries.[8][9][10] Slightly later, HSCs are also found in the placenta, yolk sac, embryonic head, and fetal liver.[3][11]
Stem and progenitor cells can be taken from the pelvis, at the iliac crest, using a needle and syringe.[12] The cells can be removed as liquid (to perform a smear to look at the cell morphology) or they can be removed via a core biopsy (to maintain the architecture or relationship of the cells to each other and to the bone).[citation needed]
A colony-forming unit is a subtype of HSC. (This sense of the term is different from colony-forming units of microbes, which is a cell counting unit.) There are various kinds of HSC colony-forming units:
The above CFUs are based on the lineage. Another CFU, the colony-forming unitspleen (CFU-S), was the basis of an in vivo clonal colony formation, which depends on the ability of infused bone marrow cells to give rise to clones of maturing hematopoietic cells in the spleens of irradiated mice after 8 to 12 days. It was used extensively in early studies, but is now considered to measure more mature progenitor or transit-amplifying cells rather than stem cells[citation needed].
Since hematopoietic stem cells cannot be isolated as a pure population, it is not possible to identify them in a microscope.[citation needed] Hematopoietic stem cells can be identified or isolated by the use of flow cytometry where the combination of several different cell surface markers (particularly CD34) are used to separate the rare hematopoietic stem cells from the surrounding blood cells. Hematopoietic stem cells lack expression of mature blood cell markers and are thus called Lin-. Lack of expression of lineage markers is used in combination with detection of several positive cell-surface markers to isolate hematopoietic stem cells. In addition, hematopoietic stem cells are characterised by their small size and low staining with vital dyes such as rhodamine 123 (rhodamine lo) or Hoechst 33342 (side population).
Hematopoietic stem cells are essential to haematopoiesis, the formation of the cells within blood. Hematopoietic stem cells can replenish all blood cell types (i.e., are multipotent) and self-renew. A small number of hematopoietic stem cells can expand to generate a very large number of daughter hematopoietic stem cells. This phenomenon is used in bone marrow transplantation,[13] when a small number of hematopoietic stem cells reconstitute the hematopoietic system. This process indicates that, subsequent to bone marrow transplantation, symmetrical cell divisions into two daughter hematopoietic stem cells must occur.
Stem cell self-renewal is thought to occur in the stem cell niche in the bone marrow, and it is reasonable to assume that key signals present in this niche will be important in self-renewal.[2] There is much interest in the environmental and molecular requirements for HSC self-renewal, as understanding the ability of HSC to replenish themselves will eventually allow the generation of expanded populations of HSC in vitro that can be used therapeutically.
Hematopoietic stem cells, like all adult stem cells, mostly exist in a state of quiescence, or reversible growth arrest. The altered metabolism of quiescent HSCs helps the cells survive for extended periods of time in the hypoxic bone marrow environment.[14] When provoked by cell death or damage, Hematopoietic stem cells exit quiescence and begin actively dividing again. The transition from dormancy to propagation and back is regulated by the MEK/ERK pathway and PI3K/AKT/mTOR pathway.[15] Dysregulation of these transitions can lead to stem cell exhaustion, or the gradual loss of active Hematopoietic stem cells in the blood system.[15]
Hematopoietic stem cells have a higher potential than other immature blood cells to pass the bone marrow barrier, and, thus, may travel in the blood from the bone marrow in one bone to another bone. If they settle in the thymus, they may develop into T cells. In the case of fetuses and other extramedullary hematopoiesis. Hematopoietic stem cells may also settle in the liver or spleen and develop.
This enables Hematopoietic stem cells to be harvested directly from the blood.
Hematopoietic stem cell transplantation (HSCT) is the transplantation of multipotent hematopoietic stem cells, usually derived from bone marrow, peripheral blood, or umbilical cord blood.[16][17][13] It may be autologous (the patient's own stem cells are used), allogeneic (the stem cells come from a donor) or syngeneic (from an identical twin).[16][17]
It is most often performed for patients with certain cancers of the blood or bone marrow, such as multiple myeloma or leukemia.[17] In these cases, the recipient's immune system is usually destroyed with radiation or chemotherapy before the transplantation. Infection and graft-versus-host disease are major complications of allogeneic HSCT.[17]
In order to harvest stem cells from the circulating peripheral blood, blood donors are injected with a cytokine, such as granulocyte-colony stimulating factor (G-CSF), that induces cells to leave the bone marrow and circulate in the blood vessels.[18]In mammalian embryology, the first definitive Hematopoietic stem cells are detected in the AGM (aorta-gonad-mesonephros), and then massively expanded in the fetal liver prior to colonising the bone marrow before birth.[11]
Hematopoietic stem cell transplantation remains a dangerous procedure with many possible complications; it is reserved for patients with life-threatening diseases. As survival following the procedure has increased, its use has expanded beyond cancer to autoimmune diseases[19][20] and hereditary skeletal dysplasias; notably malignant infantile osteopetrosis[21][22] and mucopolysaccharidosis.[23]
Stem cells can be used to regenerate different types of tissues. HCT is an established as therapy for chronic myeloid leukemia, acute lymphatic leukemia, aplastic anemia, and hemoglobinopathies, in addition to acute myeloid leukemia and primary immune deficiencies. Hematopoietic system regeneration is typically achieved within 24 weeks post-chemo- or irradiation therapy and HCT. HSCs are being clinically tested for their use in non-hematopoietic tissue regeneration.[24]
DNA strand breaks accumulate in long term hematopoietic stem cells during aging.[25] This accumulation is associated with a broad attenuation of DNA repair and response pathways that depends on HSC quiescence.[25] Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. NHEJ is referred to as "non-homologous" because the break ends are directly ligated without the need for a homologous template. The NHEJ pathway depends on several proteins including ligase 4, DNA polymerase mu and NHEJ factor 1 (NHEJ1, also known as Cernunnos or XLF).
DNA ligase 4 (Lig4) has a highly specific role in the repair of double-strand breaks by NHEJ. Lig4 deficiency in the mouse causes a progressive loss of hematopoietic stem cells during aging.[26] Deficiency of lig4 in pluripotent stem cells results in accumulation of DNA double-strand breaks and enhanced apoptosis.[27]
In polymerase mu mutant mice, hematopoietic cell development is defective in several peripheral and bone marrow cell populations with about a 40% decrease in bone marrow cell number that includes several hematopoietic lineages.[28] Expansion potential of hematopoietic progenitor cells is also reduced. These characteristics correlate with reduced ability to repair double-strand breaks in hematopoietic tissue.
Deficiency of NHEJ factor 1 in mice leads to premature aging of hematopoietic stem cells as indicated by several lines of evidence including evidence that long-term repopulation is defective and worsens over time.[29] Using a human induced pluripotent stem cell model of NHEJ1 deficiency, it was shown that NHEJ1 has an important role in promoting survival of the primitive hematopoietic progenitors.[30] These NHEJ1 deficient cells possess a weak NHEJ1-mediated repair capacity that is apparently incapable of coping with DNA damages induced by physiological stress, normal metabolism, and ionizing radiation.[30]
The sensitivity of hematopoietic stem cells to Lig4, DNA polymerase mu and NHEJ1 deficiency suggests that NHEJ is a key determinant of the ability of stem cells to maintain themselves against physiological stress over time.[26] Rossi et al.[31] found that endogenous DNA damage accumulates with age even in wild type Hematopoietic stem cells, and suggested that DNA damage accrual may be an important physiological mechanism of stem cell aging.
A study shows the clonal diversity of hematopoietic stem cells gets drastically reduced around age 70 , substantiating a novel theory of ageing which could enable healthy aging.[32][33] Of note, the shift in clonal diversity during aging was previously reported in 2008[34] for the murine system by the Christa Muller-Sieburg laboratory in San Diego, California.
A cobblestone area-forming cell (CAFC) assay is a cell culture-based empirical assay. When plated onto a confluent culture of stromal feeder layer,[35] a fraction of hematopoietic stem cells creep between the gaps (even though the stromal cells are touching each other) and eventually settle between the stromal cells and the substratum (here the dish surface) or trapped in the cellular processes between the stromal cells. Emperipolesis is the in vivo phenomenon in which one cell is completely engulfed into another (e.g. thymocytes into thymic nurse cells); on the other hand, when in vitro, lymphoid lineage cells creep beneath nurse-like cells, the process is called pseudoemperipolesis. This similar phenomenon is more commonly known in the HSC field by the cell culture terminology cobble stone area-forming cells (CAFC), which means areas or clusters of cells look dull cobblestone-like under phase contrast microscopy, compared to the other hematopoietic stem cells, which are refractile. This happens because the cells that are floating loosely on top of the stromal cells are spherical and thus refractile. However, the cells that creep beneath the stromal cells are flattened and, thus, not refractile. The mechanism of pseudoemperipolesis is only recently coming to light. It may be mediated by interaction through CXCR4 (CD184) the receptor for CXC Chemokines (e.g., SDF1) and 41 integrins.[36]
Hematopoietic stem cells (HSC) cannot be easily observed directly, and, therefore, their behaviors need to be inferred indirectly. Clonal studies are likely the closest technique for single cell in vivo studies of HSC. Here, sophisticated experimental and statistical methods are used to ascertain that, with a high probability, a single HSC is contained in a transplant administered to a lethally irradiated host. The clonal expansion of this stem cell can then be observed over time by monitoring the percent donor-type cells in blood as the host is reconstituted. The resulting time series is defined as the repopulation kinetic of the HSC.
The reconstitution kinetics are very heterogeneous. However, using symbolic dynamics, one can show that they fall into a limited number of classes.[37] To prove this, several hundred experimental repopulation kinetics from clonal Thy-1lo SCA-1+ lin(B220, CD4, CD8, Gr-1, Mac-1 and Ter-119)[38] c-kit+ HSC were translated into symbolic sequences by assigning the symbols "+", "-", "~" whenever two successive measurements of the percent donor-type cells have a positive, negative, or unchanged slope, respectively. By using the Hamming distance, the repopulation patterns were subjected to cluster analysis yielding 16 distinct groups of kinetics. To finish the empirical proof, the Laplace add-one approach was used to determine that the probability of finding kinetics not contained in these 16 groups is very small. By corollary, this result shows that the hematopoietic stem cell compartment is also heterogeneous by dynamical criteria.
It was originally believed that all hematopoietic stem cells were alike in their self-renewal and differentiation abilities. This view was first challenged by the 2002 discovery by the Muller-Sieburg group in San Diego, who illustrated that different stem cells can show distinct repopulation patterns that are epigenetically predetermined intrinsic properties of clonal Thy-1lo Sca-1+ lin c-kit+ HSC.[39][40][41] The results of these clonal studies led to the notion of lineage bias. Using the ratio = L / M {displaystyle rho =L/M} of lymphoid (L) to myeloid (M) cells in blood as a quantitative marker, the stem cell compartment can be split into three categories of HSC. Balanced (Bala) hematopoietic stem cells repopulate peripheral white blood cells in the same ratio of myeloid to lymphoid cells as seen in unmanipulated mice (on average about 15% myeloid and 85% lymphoid cells, or 3 10). Myeloid-biased (My-bi) hematopoietic stem cells give rise to very few lymphocytes resulting in ratios 0 < < 3, while lymphoid-biased (Ly-bi) hematopoietic stem cells generate very few myeloid cells, which results in lymphoid-to-myeloid ratios of > 10. All three types are normal types of HSC, and they do not represent stages of differentiation. Rather, these are three classes of HSC, each with an epigenetically fixed differentiation program. These studies also showed that lineage bias is not stochastically regulated or dependent on differences in environmental influence. My-bi HSC self-renew longer than balanced or Ly-bi HSC. The myeloid bias results from reduced responsiveness to the lymphopoetin interleukin 7 (IL-7).[40]
Subsequently, other groups confirmed and highlighted the original findings.[42] For example, the Eaves group confirmed in 2007 that repopulation kinetics, long-term self-renewal capacity, and My-bi and Ly-bi are stably inherited intrinsic HSC properties.[43] In 2010, the Goodell group provided additional insights about the molecular basis of lineage bias in side population (SP) SCA-1+ lin c-kit+ HSC.[44] As previously shown for IL-7 signaling, it was found that a member of the transforming growth factor family (TGF-beta) induces and inhibits the proliferation of My-bi and Ly-bi HSC, respectively.
From Greek haimato-, combining form of haima 'blood', and from the Latinized form of Greek poietikos 'capable of making, creative, productive', from poiein 'to make, create'.[45]
Continued here:
Hematopoietic stem cell - Wikipedia
A step closer to the confident production of blood stem cells for regenerative medicine – Medical Xpress
By daniellenierenberg
A step closer to the confident production of blood stem cells for regenerative medicine Medical Xpress
Circadian rhythm and aryl hydrocarbon receptor crosstalk in bone marrow adipose tissue and implications in leukemia – Nature
By daniellenierenberg
Bone Marrow vs. Stem Cell Transplants | A Comprehensive Guide
By daniellenierenberg
Dr (Brig) Anil Kumar Dhar is one of the top medical oncologists in Gurugram. He has a vast experience of more than 30 years in the field of Medical oncology. He his specialised in treating leukemia,lymphoma, hematological oncology and other complex oncology cases . He is also specialised in Bone Marrow Transplantation (BMT) treatment. He is working as a Senior Consultant, HOD, Medical Oncologist in American Oncology Institute, Gurugram.
View post:
Bone Marrow vs. Stem Cell Transplants | A Comprehensive Guide
Inside incredible cutting edge therapy that’s curing patients of ‘untreatable’ diseases after Selma Blair brea – Daily Mail
By daniellenierenberg
Narsoplimab for refractory transplantation-associated thrombotic microangiopathy (TA-TMA) in adult patients receiving allogeneic hematopoietic stem…
By daniellenierenberg
View original post here:
Narsoplimab for refractory transplantation-associated thrombotic microangiopathy (TA-TMA) in adult patients receiving allogeneic hematopoietic stem...
Autologous Versus Allogeneic Adipose-Derived Mesenchymal Stem Cell Therapy for Knee Osteoarthritis: A Systematic Review, Pairwise and Network…
By daniellenierenberg
Stem Cell Therapies Could Treat Parkinson’s Disease by Rebuilding Lost Circuitry in the Brain, Studies Suggest – Smithsonian Magazine
By daniellenierenberg
Stem Cell Therapies Could Treat Parkinson's Disease by Rebuilding Lost Circuitry in the Brain, Studies Suggest Smithsonian Magazine
Read the rest here:
Stem Cell Therapies Could Treat Parkinson's Disease by Rebuilding Lost Circuitry in the Brain, Studies Suggest - Smithsonian Magazine
What are stem cells and why are they a lifesaving cure for blood cancer? – India Today
By daniellenierenberg
What are stem cells and why are they a lifesaving cure for blood cancer? India Today
Excerpt from:
What are stem cells and why are they a lifesaving cure for blood cancer? - India Today
Exploring the mechanism of bone marrow mesenchymal stromal cell exosomes in respiratory syncytial virus infection based on miRNA sequencing – Nature
By daniellenierenberg
hBMEC altered CD34 expression in HSPC. HSPC were irradiated (2, 4 Gy… – ResearchGate
By daniellenierenberg
hBMEC altered CD34 expression in HSPC. HSPC were irradiated (2, 4 Gy... ResearchGate
Read more here:
hBMEC altered CD34 expression in HSPC. HSPC were irradiated (2, 4 Gy... - ResearchGate
Bone marrow versus peripheral blood stem cells as the graft source for allogeneic transplantation from HLA-matched relative donors in adult T-cell…
By daniellenierenberg
Follow this link:
Bone marrow versus peripheral blood stem cells as the graft source for allogeneic transplantation from HLA-matched relative donors in adult T-cell...