Page 154«..1020..153154155156..160170..»

Efficacy and Safety of Sonidegib in Adult Patients with Nevoid Basal C | CCID – Dove Medical Press

By daniellenierenberg

John T Lear,1 Axel Hauschild,2 Eggert Stockfleth,3 Nicholas Squittieri,4 Nicole Basset-Seguin,5 Reinhard Dummer6

1Manchester Royal Infirmary, Manchester, UK; 2Klinik Fr Dermatologie, Venerologie Und Allergologie Universittsklinikum Schleswig-Holstein, Kiel, Germany; 3Universittshautklinik Bochum, Bochum, Germany; 4Sun Pharmaceutical Industries, Inc., Princeton, NJ, USA; 5Department of Dermatology, Hpital Saint Louis, Paris, France; 6Skin Cancer Center University Hospital, Zrich, Switzerland

Correspondence: John T LearUniversity of Manchester, 46 Grafton Street, Manchester M13 9NT, UKTel +44 161 276 4173Fax +44 161 276 8881Email john.lear@srft.nhs.uk

Nevoid basal cell carcinoma syndrome (NBCCS), or Gorlin syndrome, is a rare hereditary disease characterized by the development of multiple cutaneous basal cell carcinomas (BCCs) from a young age.1 Loss-of-function germline mutations in the hedgehog-related patched 1 (PTCH1) tumor suppressor gene are the most common cause of NBCCS.1 The hedgehog signaling pathway plays a major role in embryonic development, and in adulthood, is involved in the renewal and maintenance of distinct tissues, including hair follicles, muscle stem cells, and gastric epithelium.2 Its abnormal activation is thought to drive the formation of both sporadic BCCs and those resulting from NBCCS.1 Patients with NBCCS inherit one inactive copy of PTCH1 and then acquire a second-hit mutation, resulting in hedgehog pathway activation and BCC formation.1 Mutations in Suppressor of fused (SUFU) or the PTCH1 homolog PTCH2 have also been found in a subset of patients meeting criteria for NBCCS.1,3

This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License.By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

View post:
Efficacy and Safety of Sonidegib in Adult Patients with Nevoid Basal C | CCID - Dove Medical Press

To Read More: Efficacy and Safety of Sonidegib in Adult Patients with Nevoid Basal C | CCID – Dove Medical Press
categoriaSkin Stem Cells commentoComments Off on Efficacy and Safety of Sonidegib in Adult Patients with Nevoid Basal C | CCID – Dove Medical Press | dataFebruary 3rd, 2020
Read All

Cosmetic Skin Care Market Enhancement And Its growth prospects forecast 2019 to 2026 – Dagoretti News

By daniellenierenberg

The market analysis and insights included in the Cosmetic Skin Care market report presents key statistics on the market status of global and regional manufacturers and is an essential source of guidance which provides right direction to the companies and individuals interested in the industry. To prosper in this competitive market place, businesses are highly benefited if they adopt innovative solutions such as this Cosmetic Skin Care market research report. This wide-ranging market research report acts as a backbone for the success of business in any sector. The market drivers and restraints have been explained in the report with the use of SWOT analysis.

Global cosmetic skin care market is set to witness a substantial CAGR of 5.5% in the forecast period of 2019- 2026. The report contains data of the base year 2018 and historic year 2017. Increasing self-consciousness among population and rising demand for anti- aging skin care products are the factor for the market growth.

Global Cosmetic Skin Care Market By Product (Anti-Aging Cosmetic Products, Skin Whitening Cosmetic Products, Sensitive Skin Care Products, Anti-Acne Products, Dry Skin Care Products, Warts Removal Products, Infant Skin Care Products, Anti-Scars Solution Products, Mole Removal Products, Multi Utility Products), Application (Flakiness Reduction, Stem Cells Protection against UV, Rehydrate the skins surface, Minimize wrinkles, Increase the viscosity of Aqueous, Others), Gender (Men, Women), Distribution Channel (Online, Departmental Stores and Convenience Stores, Pharmacies, Supermarket, Others), Geography (North America, Europe, Asia-Pacific, South America, Middle East and Africa) Industry Trends and Forecast to 2026 ;

Complete report on Global Cosmetic Skin Care Market Research Report 2019-2026 spread across 350 Pages, profiling Top companies and supports with tables and figures

Market Definition: Global Cosmetic Skin Care Market

Cosmetic skin care is a variety of products which are used to improve the skins appearance and alleviate skin conditions. It consists different products such as anti- aging cosmetic products, sensitive skin care products, anti- scar solution products, warts removal products, infant skin care products and other. They contain various ingredients which are beneficial for the skin such as phytochemicals, vitamins, essential oils, and other. Their main function is to make the skin healthy and repair the skin damages.

Key Questions Answered in Global Cosmetic Skin Care Market Report:-

Our Report offers:-

Top Key Players:

Market Drivers:

Market Restraints:

Key Developments in the Market:

Customize report of Global Cosmetic Skin Care Market as per customers requirement also available.

Market Segmentations:

Global Cosmetic Skin Care Market is segmented on the basis of

Market Segmentations in Details:

By Product

By Application

By Gender

By Distribution Channel

By Geography

North America

Europe

Asia-Pacific

South America

Middle East & Africa

Competitive Analysis: Global Cosmetic Skin Care Market

Global cosmetic skin care market is highly fragmented and the major players have used various strategies such as new product launches, expansions, agreements, joint ventures, partnerships, acquisitions, and others to increase their footprints in this market. The report includes market shares of cosmetic skin care market for Global, Europe, North America, Asia-Pacific, South America and Middle East & Africa.

About Data Bridge Market Research:

Data Bridge Market Researchset forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.

Contact:

Data Bridge Market Research

Tel: +1-888-387-2818

Email: [emailprotected]

Go here to read the rest:
Cosmetic Skin Care Market Enhancement And Its growth prospects forecast 2019 to 2026 - Dagoretti News

To Read More: Cosmetic Skin Care Market Enhancement And Its growth prospects forecast 2019 to 2026 – Dagoretti News
categoriaSkin Stem Cells commentoComments Off on Cosmetic Skin Care Market Enhancement And Its growth prospects forecast 2019 to 2026 – Dagoretti News | dataFebruary 3rd, 2020
Read All

SASpine to offer Stem Cell Therapy – Yahoo Finance

By daniellenierenberg

SAN ANTONIO, Feb. 3, 2020 /PRNewswire/ -- SASpine is now offering cutting edge Stem Cell Treatments to patients. For the past several years Dr. Steven Cyr, Mayo Clinic Trained Spine Surgeon, has been researching the benefits of stem cells in the treatment of multiple medical conditions including spinal disorders, specifically, conditions which involve spinal cord injury, degenerative disc disease, herniated discs, and as a supplement to enhance the success of Spinal fusions when treating instability, deformity, and fractures of the spine.

Steven J. Cyr, M.D., is a spine surgeon who has gained a reputation for surgical excellence in Texas, throughout the nation, and abroad.

Dr. Steven Cyr has been treating patients using growth factors and stem cells contained in amniotic tissue and bone marrow aspirate to provide a potential for improved success with fusion procedures, when treating herniated discs, and for arthritic or damaged joints, with remarkable success. "The goal of any medical intervention is to yield improved outcomes with the ideal result of returning a patient to normal function, when possible," states Dr Cyr. He went on to elaborate that there are times when only a structural solution can solve problems related to spinal disorders, but even in that scenario, the use of stem cells or growth factors derived from stem cell products can possibly improve the success of surgical procedures. "I have patients previously unable to jog or run return to normal function and athletic ability after injections of growth factors and stem cell products into the knee joints, hip joints, and shoulder joints," he said. "This includes high-level athletes, professional dancers, and the average weekend warrior."

There may be promise in treating patients with spinal cord injury as well. SASpine CEO, LeAnn Cyr, states, "There are reports of patients gaining significant neurological improvement after being treated with stem cells." Dr Cyr continues, "Most patients with spinal cord injuries resulting from trauma also have mechanical pressure on the nerves that result either from bone fragments or disc material compressing the spinal cord that needs to be removed along with surgical stabilization of the spinal bones. There's significant potential that stem cells bring to the equation when treating these types of patients, and I am excited about the potential that these products offer to the host of treatments to address spinal conditions and arthritic joints."

For more information about SASpine's Stem Cell Treatment Program, visit http://www.saspine.com or call (210) 487-7463 in San Antonio or (832) 919-7990 in Houston.

Related Linkswww.facebook.com/saspinewww.instagram.com/surgical.associates.in.spine

If you've been living with back pain, you're not alone. Here at SASpine, we have experienced spine specialists who are committed to improving your quality of life. (PRNewsfoto/SASpine)

View original content to download multimedia:http://www.prnewswire.com/news-releases/saspine-to-offer-stem-cell-therapy-300997355.html

SOURCE SASpine

See the rest here:
SASpine to offer Stem Cell Therapy - Yahoo Finance

To Read More: SASpine to offer Stem Cell Therapy – Yahoo Finance
categoriaSpinal Cord Stem Cells commentoComments Off on SASpine to offer Stem Cell Therapy – Yahoo Finance | dataFebruary 3rd, 2020
Read All

Patient in Japan 1st to have iPS cell heart muscle transplant : The Asahi Shimbun – Asahi Shimbun

By daniellenierenberg

A patient who received the worlds first transplant of cardiac muscle cells using artificially derived stem cells known as iPS cells this month is in stable condition, an Osaka University team said Jan. 27.

After surgery, doctors closely monitored the patient, who had ischemic cardiomyopathy, a condition in which clotted arteries cause heart muscles to malfunction. But the patient has been moved toa general hospital ward, the team said.

Yoshiki Sawa, a professor of cardiovascular surgery at the university, who led the team that conducted the transplant, said the team aims to put the technique into practical use.

Sawa said the team hopestransplants of heart muscle tissues derived from induced pluripotent stem cellswill be used to save many patients who have heart conditions.

In the clinical trial, three sheets of heart muscle tissues made from iPS cells stocked at Kyoto Universitys Center for iPS Cell Research and Application were attached to affected parts of the patients heart. The iPS cells were created from tissues provided by a healthy donor.

The sheets were 4 to 5 centimeters in diameter and 0.1 millimeter thick.

The transplant's goal is to regenerate cardiac blood vessels using a substance secreted by the sheets of muscle cells. The sheets are degradable and disappear from the body several months after they secrete the substance, according to the team.

The university plans to perform similar transplants on nine other patients who have serious heart problems.

The Osaka University team had planned to conduct the clinical trial of the transplant earlier after the government approved the plan in May 2018.

But it was postponed due to damage from a powerful earthquake that hit Osaka Prefecture the following month that rendered its facility to cultivate cells unusable.

The trial is part of the process toward the future distribution of medical products using cells.

Osaka Universitys announcement of the successful transplant of tissues created from iPS cells marked the fourth such transplantation.

Including Osaka University's trial, Japanese surgeons have now successfully transplanted tissues created from iPS cells four times.

The world's first transplant of iPS-derived cells was conducted in 2014 whenthe Riken research institute transplanted retina cells for a patient with age-related macular degeneration.

In 2018, Kyoto University transplanted nerve cells for a Parkinson disease patient. Osaka University transplanted cornea cells into a patient with a disease of the cornea in 2019.

Patients who undergo transplants using iPS-derived cell must accept the risk that the cells may become cancerous.

The moreiPS-derived cells a patient receives, the higher their risk.

Hundreds of thousands of retina cells were used in the 2014 retina transplant. In the 2018 and 2019 transplants, the number of nerve and cornea cells used soared to between 5 million to 6 million.

Osaka University's latest transplant utilized roughly 100 milliontissues made from iPS cells.

Sawa acknowledged the transplanted heart muscle tissues could turn cancerous, but said the teamhas made great efforts to remove potentially cancerous cells.

Hideyuki Okano, professor of molecular neurobiology at Keio University, who is researching the application of iPS-derived nerve cells to treat patients with spinal cord damage, said the risk was worth it.

Okano said the Osaka University's transplant, using tissues made from iPS cells from a donor, could be more effective than the existing therapy, which uses the patients own muscle tissues.

I understand that the transplanted tissues might become cancerous or cause an erratic heart rhythm, but the transplantation of the iPS-derived heart muscle tissues can be more effective than muscle tissue sheets made from the patients leg, Okano said.

Keio University is also planning to conduct clinical research using iPS-derived cells to regenerate heart tissues.

Read more:
Patient in Japan 1st to have iPS cell heart muscle transplant : The Asahi Shimbun - Asahi Shimbun

To Read More: Patient in Japan 1st to have iPS cell heart muscle transplant : The Asahi Shimbun – Asahi Shimbun
categoriaSpinal Cord Stem Cells commentoComments Off on Patient in Japan 1st to have iPS cell heart muscle transplant : The Asahi Shimbun – Asahi Shimbun | dataFebruary 3rd, 2020
Read All

A New Path for Cardiac Stem Cells – hopkinsmedicine.org

By daniellenierenberg

By the time Bill Beatty made it to the Emergency Department in Howard County, he was already several hours into a major heart attack. His physicians performed a series of emergency treatments that included an intra-aortic balloon pump, but the 57-year-old engineers blood pressure remained dangerously low. The cardiologist called for a helicopter to transfer him to Johns Hopkins.

It was fortuitous timing: Beatty was an ideal candidate for a clinical trial and soon received an infusion of stem cells derived from his own heart tissue, making him the second patient in the world to undergo the procedure.

Of all the attempts to harness the promise of stem cell therapy, few have garnered more hope than the bid to repair damaged hearts. Previous trials with other stem cells have shown conflicting results. But this new trial, conducted jointly with cardiologist Eduardo Marbn at Cedars-Sinai Medical Center in Los Angeles, is the first time stem cells come from the patients own heart.

Cardiologist Jeffrey Brinker, M.D., a member of the Hopkins team, thinks the new protocol could be a game-changer. That's based partly on recent animal studies in which scientists at both institutions isolated stem cells from the injured animals hearts and infused them back into the hearts of those same animals. The stem cells formed new heart muscle and blood vessel cells. In fact, says Brinker, the new cells have a pre-determined cardiac fate. Even in the culture dish, he says, theyre a beating mass of cells.

Whats more, according to Gary Gerstenblith, M.D., J.D., the animals in these studies showed a significant decrease in relative infarct size, shrinking by about 25 percent. Based on those and earlier findings, investigators were cleared by the FDA and Hopkins Institutional Review Board to move forward with a human trial.

In Beattys case, Hopkins heart failure chief extracted a small sample of heart tissue and shipped it to Cedars Sinai, where stem cells were isolated, cultured and expanded to large numbers. Hopkins cardiologist Peter Johnston, M.D., says cardiac tissue is robust in its ability to generate stem cells, typically yielding several million transplantable cells within two months.

When ready, the cells were returned to Baltimore and infused back into Beatty through a balloon catheter placed in his damaged artery, ensuring target-specific delivery. Then the watching and waiting began. For the Hopkins team, Beattys infarct size will be tracked by imaging chief Joao Lima, M.D., M.B.A.,and his associates using MRI scans.

Now back home and still struggling with episodes of compromised stamina and shortness of breath, Beatty says his Hopkins cardiologists were fairly cautious in their prognosis, but hell be happy for any improvement.

Nurse coordinator Elayne Breton says Beatty is scheduled for follow-up visits at six months and 12 months, when they hope to find an improvement in his hearts function. But at least one member of the Hopkins team was willing acknowledge a certain optimism. The excitement here, says Brinker, is huge.

The trial is expected to be completed within one to two years.

--by Ramsey Flynn

View post:
A New Path for Cardiac Stem Cells - hopkinsmedicine.org

To Read More: A New Path for Cardiac Stem Cells – hopkinsmedicine.org
categoriaCardiac Stem Cells commentoComments Off on A New Path for Cardiac Stem Cells – hopkinsmedicine.org | dataFebruary 2nd, 2020
Read All

Neuralstem (NASDAQ:CUR) & SpringWorks Therapeutics (NASDAQ:SWTX) Financial Review – Riverton Roll

By daniellenierenberg

Neuralstem (NASDAQ:CUR) and SpringWorks Therapeutics (NASDAQ:SWTX) are both small-cap medical companies, but which is the better investment? We will contrast the two companies based on the strength of their analyst recommendations, earnings, institutional ownership, profitability, valuation, dividends and risk.

Earnings & Valuation

This table compares Neuralstem and SpringWorks Therapeutics gross revenue, earnings per share and valuation.

SpringWorks Therapeutics has lower revenue, but higher earnings than Neuralstem.

Institutional and Insider Ownership

38.3% of Neuralstem shares are owned by institutional investors. Comparatively, 72.1% of SpringWorks Therapeutics shares are owned by institutional investors. 5.4% of Neuralstem shares are owned by insiders. Strong institutional ownership is an indication that hedge funds, endowments and large money managers believe a stock is poised for long-term growth.

Profitability

This table compares Neuralstem and SpringWorks Therapeutics net margins, return on equity and return on assets.

Analyst Ratings

This is a summary of current ratings and target prices for Neuralstem and SpringWorks Therapeutics, as reported by MarketBeat.

SpringWorks Therapeutics has a consensus price target of $35.50, suggesting a potential upside of 12.77%. Given SpringWorks Therapeutics higher possible upside, analysts plainly believe SpringWorks Therapeutics is more favorable than Neuralstem.

Summary

SpringWorks Therapeutics beats Neuralstem on 6 of the 8 factors compared between the two stocks.

Neuralstem Company Profile

Neuralstem, Inc., a clinical stage biopharmaceutical company, focuses on the research and development of nervous system therapies based on its proprietary human neuronal stem cells and small molecule compounds. The company's stem cell based technology enables the isolation and expansion of human neural stem cells from various areas of the developing human brain and spinal cord enabling the generation of physiologically relevant human neurons of various types. Its lead product candidate is NSI-189, a chemical entity, which has been completed Phase II clinical trial for the treatment of major depressive disorder, as well as is in preclinical study for the treatment-refractory depression, Angelman Syndrome, Alzheimer's disease, ischemic stroke, diabetic neuropathy, irradiation-induced cognitive deficit, and long-term potentiation enhancement. The company also develops NSI-566, which has completed Phase II clinical trial for treating amyotrophic lateral sclerosis disease; Phase II clinical trial for the treatment of chronic ischemic stroke; and Phase I clinical trials for the treatment of chronic spinal cord injury, as well as is in preclinical study for the traumatic brain injury. In addition, it develops NSI-532, which is in preclinical study for treatment of Alzheimer's disease; and NSI-777 that is in preclinical study for treatment of human demyelinating diseases. Neuralstem, Inc. was founded in 1996 and is headquartered in Germantown, Maryland.

SpringWorks Therapeutics Company Profile

SpringWorks Therapeutics, Inc., a clinical-stage biopharmaceutical company, acquires, develops, and commercializes medicines for underserved patient populations suffering from rare diseases and cancer. Its advanced product candidate is nirogacestat, an oral small molecule gamma secretase inhibitor that is in Phase 3 clinical trials for the treatment of desmoid tumors. The company is also developing mirdametinib, an oral small molecule MEK inhibitor that is in Phase 2b clinical trials for the treatment of neurofibromatosis type 1-associated plexiform neurofibromas; and Nirogacestat + belantamab mafodotin, which is in Phase 1b clinical trials for the treatment of relapsed or refractory multiple myeloma. In addition, it is developing Mirdametinib + lifirafenib, a combination therapy that is in Phase 1b clinical trials in patients with advanced or refractory solid tumors; and BGB-3245, an investigational oral selective small molecule inhibitor of specific BRAF driver mutations and genetic fusions, which is in preclinical studies in a range of tumor models with BRAF mutations or fusions. The company has collaborations with BeiGene, Ltd. and GlaxoSmithKline plc to develop combination approaches with nirogacestat and mirdametinib, as well as other standalone medicines. SpringWorks Therapeutics, Inc. was founded in 2017 and is headquartered in Stamford, Connecticut.

Receive News & Ratings for Neuralstem Daily - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings for Neuralstem and related companies with MarketBeat.com's FREE daily email newsletter.

Visit link:
Neuralstem (NASDAQ:CUR) & SpringWorks Therapeutics (NASDAQ:SWTX) Financial Review - Riverton Roll

To Read More: Neuralstem (NASDAQ:CUR) & SpringWorks Therapeutics (NASDAQ:SWTX) Financial Review – Riverton Roll
categoriaSpinal Cord Stem Cells commentoComments Off on Neuralstem (NASDAQ:CUR) & SpringWorks Therapeutics (NASDAQ:SWTX) Financial Review – Riverton Roll | dataFebruary 2nd, 2020
Read All

Fighting cancer with every step to Patagonia – Essex News Daily

By daniellenierenberg

Photo Courtesy of Michael MankowichAbove, Michael Mankowich and his wife, Kathleen, in Patagonia

NUTLEY, NJ When Nutley resident Michael Mankowichs lower back started to bother him, he figured it was a souvenir from his earlier athletic days. Mike, 58, had been a top-notch wrestler at 132 pounds at Long Islands Commack North High School. Hed been an all-American, in fact, as well as a two-time all-Ivy, three-time New York state champ and three-time EIWA tournament placer as a wrestler at Cornell University. An old wrestlers injury was all it was, he figured, a physical reminder of a quick takedown of an opponent 40 years long forgotten.

But the pain did not go away.

Mike began to see a doctor and a chiropractor, and eventually he got an MRI. The news he received at Memorial Sloan Kettering Cancer Center in February 2017 was not good. He was diagnosed with multiple myeloma, a cancer that attacks the blood plasma cells responsible for creating disease-fighting antibodies.

They figured it out quickly at Sloan, he said recently, seated with his wife, Kathleen, in their Rutgers Place home. I kept it from Kathleen.

With this news, he became withdrawn, and his wife realized something was wrong. Mike told her what he had learned, and, as so often happens when a couple puts their heads together, they found some reason for hope: multiple myeloma is a blood disease in the bone marrow and, as such, does not metastasize.

Thats where all the action takes place, in the bone marrow, Mike said. You have to keep your chin up.

For treatment, he became part of a six-month chemotherapy clinical study. Mike was glad to be in the study, because most multiple myeloma patients go on chemotherapy for three months and then undergo a stem-cell transplant. He, however, would not.

A stem-cell transplant blows out the immune system, he said.

Kathleen, an administrative coordinator at Felician University School of Nursing, said her husband, a real estate management employee, did not break stride and never missed the commute to New York City during the clinical study.

A member of Nutley High Schools Class of 1976, Kathleen got on the computer.

When your spouse is diagnosed with an incurable cancer, you do a bit of research, she said.

She discovered the Multiple Myeloma Research Foundation website and learned it was founded 30 years earlier by a woman named Kathy Giusti, who was living with the disease.

That gave me hope, Kathleen said.

She also learned about a collaboration between MMRF and CURE Media Group called Moving Mountains for Multiple Myeloma, or MM4MM.

This collaboration promotes endurance events, undertaken by multiple myeloma patients, to places like Mount Fuji, Mount Kilimanjaro and Iceland. The treks raise money for research, as well as public awareness about the disease. A patient selected to participate in one of these exotic treks had to raise funds, but the trip itself was underwritten by Celgene, a pharmaceutical company headquartered in Summit.

Mike was interested and applied in November 2018 for a spot on a team going to Patagonia. He was interviewed and accepted on condition of raising $10,000 for MMRF research. He suggested that Kathleen accompany him, and they eventually raised $30,000 through social media and by asking friends, family and neighbors.

The online MMRF page devoted to Mikes fundraising shows a photograph of him with his arms around Kathleen and their daughter, Mary, a Class of 2020 NHS student.

In a letter featured on the page, Mike informs the reader that MMRF is one of the worlds leading private funders of myeloma research, with 10 new treatments approved by the Food and Drug Administration.

In August 2019, Mike and Kathleen were flown to Oregon to meet their teammates and to get a taste of what was in store for them in Patagonia. According to the MM4MM website: Each team is carefully selected, representing a microcosm of the myeloma community patients, caregivers, health care professionals and clinical trials managers, as well as representatives from our pharma partners, from CURE Magazine and the MMRF to emphasize the collaboration necessary to drive toward cures.

The foundation sent the group to Mount Hood, Mike said. It was the first time we met. What a great group of people. There were around 15 from all over the country, and there was one other couple, but no one else from New Jersey.

Four other multiple myeloma patients were in the group, he said. he team climbed for nine hours and then headed home.

To prepare for the trip to Patagonia, a region containing part of the Andes mountain range, Mike and Kathleen began a regime of long walks. For instance, theyd walk from Nutley to South Orange and went hiking in New Yorks Harriman State Park.

The MMRF website described the journey as one of arduous adventure: This team will traverse Patagonia crossing over glaciers, through deep valleys, and ascending challenging peaks. This is a powerful and life-changing experience, as the team overcomes challenges, pushes beyond perceived limits and honors loved ones and friends living with multiple myeloma.

For the trek, the team flew to El Calafate, Argentina. As the team embarked on different climbs, documentary filmmakers accompanied them.

The hiking was physically difficult, Mike said. We hiked in rain and incredible winds. In one particular hike, as soon as you felt the winds, you hit the ground. I was surprised nobody got hurt. Some of those slopes were pretty steep. But the scenery was unworldly, and there were condors.

Both Mike and Kathleen agreed that the most memorable sight was La Condorera, which their itinerary described as a nearly vertical massif, offering a home to one of the greatest concentrations of endangered condors in the world. A massif is a group of mountains standing apart from other mountains.

It was a difficult hike, Kathleen said. Youre ready to pass out getting to the top. But its so worth it. The panorama is a view of glaciers and condors. It was spectacular.

Mike and Kathleen returned home on Nov. 16, but there were no goodbyes at the airport. The team had grown so incredibly close that everyone felt they would be seeing each other again, a feeling grounded in the knowledge that multiple myeloma can be challenged and hopefully, one day, defeated.

Our goal in all of this is that you can have multiple myeloma and still do incredible things, Kathleen said.

Its an incentive to other patients to get out there and enjoy their lives, Mike said. And find a cure for multiple myeloma. I have a little bias. I have it.

FEATURED, MOBILE

See the original post here:
Fighting cancer with every step to Patagonia - Essex News Daily

To Read More: Fighting cancer with every step to Patagonia – Essex News Daily
categoriaBone Marrow Stem Cells commentoComments Off on Fighting cancer with every step to Patagonia – Essex News Daily | dataFebruary 2nd, 2020
Read All

6 Patients with Rare Blood Disease Doing Well after Gene Therapy Clinical Trial – Lab Manager Magazine

By daniellenierenberg

At left, image shows white blood cells (red) from one of the X-CGD clinical trial participants before gene therapy. At right, after gene therapy, white blood cells from the same patient show the presence of the chemicals (blue) needed to attack and destroy bacteria and fungus.

UCLA Broad Stem Cell Research Center/Nature Medicine

University of California - Los Angeles (UCLA) researchers are part of an international team that reported the use of a stem cell gene therapy to treat nine people with the rare, inherited blood disease known as X-linked chronic granulomatous disease, or X-CGD. Six of those patients are now in remission and have stopped other treatments. Before now, people with X-CGDwhich causes recurrent infections, prolonged hospitalizations for treatment, and a shortened lifespanhad to rely on bone marrow donations for a chance at remission.

"With this gene therapy, you can use a patient's own stem cells instead of donor cells for a transplant," said Dr. Donald Kohn, a member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA and a senior author of the new paper, published Jan. 28 in the journal Nature Medicine. "This means the cells are perfectly matched to the patient and it should be a much safer transplant, without the risks of rejection."

People with chronic granulomatous disease, or CGD, have a genetic mutation in one of five genes that help white blood cells attack and destroy bacteria and fungus using a burst of chemicals. Without this defensive chemical burst, patients with the disease are much more susceptible to infections than most people. The infections can be severe to life-threatening, including infections of the skin or bone and abscesses in organs such as lungs, liver or brain. The most common form of CGD is a subtype called X-CGD, which affects only males and is caused by a mutation in a gene found on the X-chromosome.

Other than treating infections as they occur and taking rotating courses of preventive antibiotics, the only treatment option for people with CGD is to receive a bone marrow transplant from a healthy matched donor. Bone marrow contains stem cells called hematopoietic, or blood-forming, stem cells, which produce white blood cells. Bone marrow from a healthy donor can produce functioning white blood cells that effectively ward off infection. But it can be difficult to identify a healthy matched bone marrow donor and the recovery from the transplant can have complications such as graft versus host disease, and risks of infection and transplant rejection.

"Patients can certainly get better with these bone marrow transplants, but it requires finding a matched donor and even with a match, there are risks," Kohn said. Patients must take anti-rejection drugs for six to 12 months so that their bodies don't attack the foreign bone marrow.

In the new approach, Kohn teamed up with collaborators at the United Kingdom's National Health Service, France-based Genethon, the U.S. National Institute of Allergy and Infectious Diseases at the National Institutes of Health, and Boston Children's Hospital. The researchers removed hematopoietic stem cells from X-CGD patients and modified the cells in the laboratory to correct the genetic mutation. Then, the patients' own genetically modified stem cellsnow healthy and able to produce white blood cells that can make the immune-boosting burst of chemicalswere transplanted back into their own bodies. While the approach is new in X-CGD, Kohn previously pioneered a similar stem cell gene therapy to effectively cure a form of severe combined immune deficiency (also known as bubble baby disease) in more than 50 babies.

The viral delivery system for the X-CGD gene therapy was developed and fine-tuned by professor Adrian Thrasher's team at Great Ormond Street Hospital, or GOSH, in London, who collaborated with Kohn. The patients ranged in age from 2 to 27 years old; four were treated at GOSH and five were treated in the US, including one patient at UCLA Health.

Two people in the new study died within three months of receiving the treatment due to severe infections that they had already been battling before gene therapy. The seven surviving patients were followed for 12 to 36 months after receiving the stem cell gene therapy. All remained free of new CGD-related infections, and six of the seven have been able to discontinue their usual preventive antibiotics.

"None of the patients had complications that you might normally see from donor cells and the results were as good as you'd get from a donor transplantor better," Kohn said.

An additional four patients have been treated since the new paper was written; all are currently free of new CGD-related infections and no complications have arisen.

Orchard Therapeutics, a biotechnology company of which Kohn is a scientific co-founder, acquired the rights to the X-CGD investigational gene therapy from Genethon. Orchard will work with regulators in the US and Europe to carry out a larger clinical trial to further study this innovative treatment. The aim is to apply for regulatory approval to make the treatment commercially available, Kohn said.

Kohn and his colleagues plan to develop similar treatments for the other forms of CGDcaused by four other genetic mutations that affect the same immune function as X-CGD.

"Beyond CGD, there are also other diseases caused by proteins missing in white blood cells that could be treated in similar ways," Kohn said.

More here:
6 Patients with Rare Blood Disease Doing Well after Gene Therapy Clinical Trial - Lab Manager Magazine

To Read More: 6 Patients with Rare Blood Disease Doing Well after Gene Therapy Clinical Trial – Lab Manager Magazine
categoriaSkin Stem Cells commentoComments Off on 6 Patients with Rare Blood Disease Doing Well after Gene Therapy Clinical Trial – Lab Manager Magazine | dataFebruary 2nd, 2020
Read All

Early onset Parkinsons might begin in the womb: Prevention a possibility – The New Daily

By daniellenierenberg

An intriguing experiment has led researchers to conclude that people who develop early-onset Parkinsons disease between the age of 21 and 50 may have been born with abnormal brain cells that go undetected for decades.

These disordered cells allow gradual accumulation of the -synuclein protein that forms abnormal deposits in the brain, and dysregulated lysosomal proteins that ordinarily play a role in clearing abnormal proteins from cells.

The researchers from Cedars-Sinai Medical Center say they are investigating an FDA approved skin cancer drug they believe might help correct these abnormalities before they become symptomatic.

In other words, they suggest that early-onset Parkinsons the form of the disease that Michael J. Fox was diagnosed with at the age of 29 may be treatable or even prevented. Its an astonishing claim.

To perform the study, the research team generate pluripotent stem cells master cells that can potentially produce any cell or tissue the body needs to repair itself from blood cells of three patients with young-onset Parkinsons disease.

The patients were aged 30-39 and had no known familial history of the disease and no Parkinsons disease mutations.

When generated in the laboratory, these master cells called induced pluripotent stem cells (iPSCs). In their experiment, the Cedars-Sinai researchers described this process as taking adult blood cells back in time to a primitive embryonic state.

The team used the stem cells to produce dopamine neurons from each patient and then cultured them in a dish and analysed the neurons functions.

In Parkinsons patients, brain neurons that make dopamine a neurotransmitter that works to coordinate muscle movement become impaired or die.

Our technique gave us a window back in time to see how well the dopamine neurons might have functioned from the very start of a patients life, said Dr Clive Svendsen, PhD, director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute, and the studys senior author.

According to a statement from Cedars-Sinai, the researchers detected two key abnormalities in the dopamine neurons in the dish:

Dr Svendsen said the experiment allowed the researchers to see the very first signs of young-onset Parkinsons.

It appears that dopamine neurons in these individuals may continue to mishandle alpha-synuclein over a period of 20 or 30 years, causing Parkinsons symptoms to emerge.

The investigators went further, using their iPSC to test a number of drugs that might reverse the lab-born abnormalities.

They found that that one drug, PEP005 already approved by the Food and Drug Administration for treating pre-cancers of the skin reduced the elevated levels of alpha-synuclein in both the dopamine neurons in the dish and in laboratory mice.

The drug also countered another abnormality they found in the patients dopamine neurons elevated levels of an active version of an enzyme called protein kinase C. However, the role of this enzyme version in Parkinsons is not clear.

The drug PEP005 is only available in gel form and the researchers plans to investigate how it might be delivered to the brain to potentially treat or prevent young-onset Parkinsons.

In Parkinsons disease, the symptoms including slowness of movement, rigid muscles, tremors, loss of balance and impaired mood control get worse over time. In most cases, the exact cause of neuron failure is unclear, and there is no known cure.

Just about every week, a new insight into the disease is published. Last week, The New Daily reported on new research that found living less than 50 metres from a major road or less than 150 metres from a highway has been linked to significantly higher incidence of dementia and Parkinsons disease.

In 2018, we published an exciting Australian study that suggested subject to clinical testing the inflammation of the brain that causes so much of the progressive damage in Parkinsons disease (PD) could be halted by taking a single pill each day.

Both these studies might eventually prove to be correct. But its a long wait for the more than 10 million sufferers worldwide and their families.

This latest study could be a game-changer. But it could just as easily wither on the vine. Still, better to take heart than not.

Most patients are 60 or older when they are diagnosed, about 10 per cent are between 21 and 50 years old. .

Young-onset Parkinsons is especially heartbreaking because it strikes people at the prime of life, said Dr Michele Tagliati, director of the Movement Disorders Program, vice chair and professor in the Department of Neurology at Cedars-Sinai, and co-author of the study.

This exciting new research provides hope that one day we may be able to detect and take early action to prevent this disease in at-risk individuals.

Read more from the original source:
Early onset Parkinsons might begin in the womb: Prevention a possibility - The New Daily

To Read More: Early onset Parkinsons might begin in the womb: Prevention a possibility – The New Daily
categoriaSkin Stem Cells commentoComments Off on Early onset Parkinsons might begin in the womb: Prevention a possibility – The New Daily | dataFebruary 2nd, 2020
Read All

New Bedford firefighter dies of occupational cancer – SouthCoastToday.com

By daniellenierenberg

NEW BEDFORD The New Bedford Fire Department is mourning the death of one of their own.

On Monday morning Russ Horn, who worked for the department for over 30 years, died of occupational cancer, according to the president of New Bedford Firefighters Union, Billy Sylvia.

Sylvia said Horn, who was in his 50s, was forced to retire from the department after being diagnosed with multiple myeloma.

According to a patient blog on the Dana Farber Cancer Institutes website, Horn was diagnosed with cancer of plasma cells in 2014 after a minor slip at work sent him to the emergency room. There they discovered he had two broken ribs and a punctured lung as a result of the cancer already attacking his bones.

After receiving stem cell transplants and participating in clinical trials, Horn retired from the department in 2017.

Firefighters face a 1.53 times greater risk of getting multiple myeloma, according to the Firefighter Cancer Support Network.

Sylvia said he has seen a lot of cancer diagnoses among his colleagues in his 14 years as a firefighter, its adding up really quickly... its more than a handful.

We have active guys dealing with this, we have guys that are contracting it after retirement... studies show how much more susceptible we are, Sylvia said.

Its more than just the smoke theyre breathing thats putting them at risk, according to Sylvia; firefighters also can end up absorbing things through their skin and some of its coming from the gear thats supposed to protect us.

The issue is affecting firefighters across the country, Sylvia said, Were learning more and more, trying to get it under control, but theres still a lot of work that can be done.

Sylvia said Horns family has been proactive about making firefighters aware of their cancer risk and teaching them what to look for and the importance of early cancer screenings.

He was a very strong individual, both mentally and physically, Sylvia said of Horn, Eventually it just took its toll.

In 2019, Horn told Dana-Farber, Id do it all again, referring to his 30 years as a firefighter. This has been really hard, but having the guys behind me 100 percent makes it all a little easier.

Both the New Bedford Fire Department and the union have updated their profile pictures on Facebook to include a black stripe over their logos, honoring Horn.

In a post to the unions Facebook page announcing Horns passing, Sylvia said, Russ was the perfect example of what a firefighter, husband, father, and friend, that anyone could ever be. He was surrounded by his family, friends, brother and sisters firefighters throughout his fight and now beyond.

Sylvia closed the post with, We Love You Russ, Well see you again At the Big One.

On their own Facebook page the New Bedford Fire Department posted, "Our hearts are broken as we learned this morning that our retired brother, FF Russell Horn has lost his brave and courageous battle. We will never forget you and we will keep your family in our thoughts and prayers."

This story will be updated as more information becomes available.

Follow this link:
New Bedford firefighter dies of occupational cancer - SouthCoastToday.com

To Read More: New Bedford firefighter dies of occupational cancer – SouthCoastToday.com
categoriaSkin Stem Cells commentoComments Off on New Bedford firefighter dies of occupational cancer – SouthCoastToday.com | dataFebruary 2nd, 2020
Read All

Cosmetic Skin Care Market 2020: Overview, Trends, Opportunities, Impact of Drivers, Key Vendors, Types, Applications, Forecast by Focusing Companies…

By daniellenierenberg

The Cosmetic Skin Care report makes available a thoughtful overview of product specification, technology, product type and production analysis taking into account major factors such as revenue, cost, and gross margin. The report is sure to offer brilliant solution to the challenges and problems faced by industry. This business document comprises of extensive study about miscellaneous market segments and regions, emerging trends, major market drivers, challenges and opportunities in the market. This Cosmetic Skin Care business document also displays the key developments in the industry with respect to current scenario and the approaching advancements.

Global cosmetic skin care market is set to witness a substantial CAGR of 5.5% in the forecast period of 2019- 2026. The report contains data of the base year 2018 and historic year 2017. Increasing self-consciousness among population and rising demand for anti- aging skin care products are the factor for the market growth.

Global Cosmetic Skin Care Market By Product (Anti-Aging Cosmetic Products, Skin Whitening Cosmetic Products, Sensitive Skin Care Products, Anti-Acne Products, Dry Skin Care Products, Warts Removal Products, Infant Skin Care Products, Anti-Scars Solution Products, Mole Removal Products, Multi Utility Products), Application (Flakiness Reduction, Stem Cells Protection against UV, Rehydrate the skins surface, Minimize wrinkles, Increase the viscosity of Aqueous, Others), Gender (Men, Women), Distribution Channel (Online, Departmental Stores and Convenience Stores, Pharmacies, Supermarket, Others), Geography (North America, Europe, Asia-Pacific, South America, Middle East and Africa) Industry Trends and Forecast to 2026 ;

Complete report on Global Cosmetic Skin Care Market Research Report 2019-2026 spread across 350 Pages, profiling Top companies and supports with tables and figures

Market Definition: Global Cosmetic Skin Care Market

Cosmetic skin care is a variety of products which are used to improve the skins appearance and alleviate skin conditions. It consists different products such as anti- aging cosmetic products, sensitive skin care products, anti- scar solution products, warts removal products, infant skin care products and other. They contain various ingredients which are beneficial for the skin such as phytochemicals, vitamins, essential oils, and other. Their main function is to make the skin healthy and repair the skin damages.

Key Questions Answered in Global Cosmetic Skin Care Market Report:-Our Report offers:-

Top Key Players:

Market Drivers:

Market Restraints:

Key Developments in the Market:

Customize report of Global Cosmetic Skin Care Market as per customers requirement also available.Market Segmentations:Global Cosmetic Skin Care Market is segmented on the basis of

Market Segmentations in Details:By Product

By Application

By Gender

By Distribution Channel

By GeographyNorth America

Europe

Asia-Pacific

South America

Middle East & Africa

Competitive Analysis: Global Cosmetic Skin Care Market

Global cosmetic skin care market is highly fragmented and the major players have used various strategies such as new product launches, expansions, agreements, joint ventures, partnerships, acquisitions, and others to increase their footprints in this market. The report includes market shares of cosmetic skin care market for Global, Europe, North America, Asia-Pacific, South America and Middle East & Africa.

About Data Bridge Market Research:Data Bridge Market Researchset forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.Contact:Data Bridge Market ResearchTel: +1-888-387-2818Email:corporatesales@databridgemarketresearch.com

Go here to see the original:
Cosmetic Skin Care Market 2020: Overview, Trends, Opportunities, Impact of Drivers, Key Vendors, Types, Applications, Forecast by Focusing Companies...

To Read More: Cosmetic Skin Care Market 2020: Overview, Trends, Opportunities, Impact of Drivers, Key Vendors, Types, Applications, Forecast by Focusing Companies…
categoriaSkin Stem Cells commentoComments Off on Cosmetic Skin Care Market 2020: Overview, Trends, Opportunities, Impact of Drivers, Key Vendors, Types, Applications, Forecast by Focusing Companies… | dataFebruary 2nd, 2020
Read All

Coronavirus is similar to SARS and causes infection through a heart regulating enzyme: Study – International Business Times, Singapore Edition

By daniellenierenberg

Comparing between SARS, MERS and 2019-nCOv

The Wuhan coronavirus or novel 2019 nCoV, has spread like a wildfire across China and reached the shores of 22 countries as of now. In a bid to stem the spread of the disease, countries have resorted to various preventive and arresting measures. Many laboratories are in the process of formulating a vaccine. However, combating this new pathogen is proving to be a global challenge.

A new study by researchers from the University of Minnesota suggests that understanding the Severe acute respiratory syndrome virus (SARS) or SARS-CoV, which caused global panic in 2002-2003 may help combat the new coronavirus.

After a structural study that lasted for ten years, the researchers have been able to demonstrate the manner of interaction between the SARS-CoV and animals, and human hosts that lead to infection in them. The scientists suggest that the mechanism of infection of the Wuhan coronavirus exhibits similarities to the SARS-CoV, which also is a coronavirus.

Using the data and information acquired from multiple strains of SARS-CoV from diverse hosts from different years, and studying the angiotensin-converting enzyme-2 (ACE2) receptors from various species of host animals, the scientists modelled predictions for the Wuhan coronavirus. Normally, the enzyme is associated with the regulation of cardiac functions. However, both these viruses have been found to gain entry into healthy cells by using ACE2.

"Our structural analyses confidently predict that the Wuhan coronavirus uses ACE2 as its host receptor," the researchers wrote in the study. They state that various other structural details of the new coronavirus are consistent with the ability of the SARS-CoV to recognise the ACE2 receptors to infect the cells, playing a determining role in transmission from hosts to human beings, and human to human.

The researchers also stressed that a single mutation has the ability to increase the potency with which the virus can infect humans. "Alarmingly, our data predict that a single mutation [at a specific spot in the genome] could significantly enhance [the Wuhan coronavirus's] ability to bind with human ACE2," they stated in the study.

It is because of this danger that the evolution of the Wuhan virus among patients must be monitored closely to spot novel mutations in its genomes, the scientists add. This continuous examination may help predict the possibility of an outbreak that could be far more serious than the ones being witnessed the authors stress.

"One of the long -term goals of our previous structural studies on SARS -CoV was to build an atomic -level iterative framework of virus-receptor interactions that facilitate epidemic surveillance, predict species-specific receptor usage and identify potential animal hosts and likely animal models of human diseases," highlighted the authors.

They conclude that this study provides translational and public health research communities with a reiterative framework that may help provide predictive insights enabling the better understanding and counter of the novel 2019 -nCoV.

Read the rest here:
Coronavirus is similar to SARS and causes infection through a heart regulating enzyme: Study - International Business Times, Singapore Edition

To Read More: Coronavirus is similar to SARS and causes infection through a heart regulating enzyme: Study – International Business Times, Singapore Edition
categoriaCardiac Stem Cells commentoComments Off on Coronavirus is similar to SARS and causes infection through a heart regulating enzyme: Study – International Business Times, Singapore Edition | dataFebruary 2nd, 2020
Read All

Team based at Osaka University carries out world’s first transplant of heart cells generated from iPS cells – Medical Herald

By daniellenierenberg

A team based at Osaka University has conducted the first ever transplant of cardiac muscle cells generated from iPS cells, around the globe, in a clinical trial initiated physician.

A professor in the universitys cardiovascular surgery unit, Yoshiki Sawa, together with his colleagues at the university, in a clinical procedure to verify the efficiency and security of the therapy with the help of induced pluripotent stem cells, intend to transplant heart muscle cell sheets over the time of 3 years into 10 individuals undergoing severe heart malfunction a result of ischemic cardiomyopathy.

The team conducted, the present month, an operation on an individual, in an attempt to take a first step into the project. This operation was successful. The individual has now been moved to a general ward.

It is predicted that the cells on the degradable sheets which attach to the hearts surface will grow and eliminate a protein which has the power to regenerate blood vessels and advance cardiac function. Already, the iPS cells have been stored after being taken from the blood cells of healthy donors.

Every sheet that goes on the hearts surface is 4 to 5 centimeters in width, and 0.1 millimeter in thickness.

The team from Osaka University will be observing the patient throughout the year.

At a news conference, Yoshiki Sawa expressed his hopes of the transplant becoming the medical technology that succeeds in saving as many individuals as it can, since he has come across many lives that he was unable to save.

On Monday, the universitys researchers stated how they chose to carry out a clinical trial in a clinical researchs stead so they could gain timely approval from the health ministry for clinical applications.

Excerpt from:
Team based at Osaka University carries out world's first transplant of heart cells generated from iPS cells - Medical Herald

To Read More: Team based at Osaka University carries out world’s first transplant of heart cells generated from iPS cells – Medical Herald
categoriaIPS Cell Therapy commentoComments Off on Team based at Osaka University carries out world’s first transplant of heart cells generated from iPS cells – Medical Herald | dataJanuary 31st, 2020
Read All

Cytovia’s CAR NK Alliance With NYSCF, UCSF Aims to Overcome Negative Side Effects of CAR T Drugs – Precision Oncology News

By daniellenierenberg

NEW YORK Last month, Cytovia Therapeutics unveiled two partnerships in succession: one with the New York Stem Cell Foundation, and one with Justin Eyquem's laboratory at the University of California, San Francisco. These partnerships, which contain a three-year research agreement between the three institutions, will support Cytovia's foray into developing natural killer (NK) cell-based therapies for cancer.

Premium Access gives you: Full site access Interest-based email alerts Access to archives Never miss another important industry story.

Try Premium Access now.

You may already have institutional access!

Check if I qualify.

Already a Precision Oncology News or 360Dx or GenomeWeb Premium member?Login Now.

*Before your trial expires, well put together a custom quote with your long-term premium options.

Go here to see the original:
Cytovia's CAR NK Alliance With NYSCF, UCSF Aims to Overcome Negative Side Effects of CAR T Drugs - Precision Oncology News

To Read More: Cytovia’s CAR NK Alliance With NYSCF, UCSF Aims to Overcome Negative Side Effects of CAR T Drugs – Precision Oncology News
categoriaSkin Stem Cells commentoComments Off on Cytovia’s CAR NK Alliance With NYSCF, UCSF Aims to Overcome Negative Side Effects of CAR T Drugs – Precision Oncology News | dataJanuary 31st, 2020
Read All

Can Parkinsons be prevented as it stealthily develops? – Big Think

By daniellenierenberg

Parkinson's disease comes with slowness, rigidity, tremors, and loss of balance due to an insufficiency of the dopamine that coordinates muscle movement. This disease, of which the rate of diagnosis is rising, occurs when the neurons responsible for producing dopamine malfunction or die. About 500,000 Americans are diagnosed with Parkinson's each year.

Most of the time, Parkinson's disease is a condition of the elderly, diagnosed in people 60 and older. However, about 10% of the time, it's detected in people between 21 and 50. "Young-onset Parkinson's is especially heartbreaking because it strikes people at the prime of life," says Michele Tagliati, an author of a new study from Cedars-Sinai.

The study of brain cells from Parkinson's younger victims has found that the misbehaving neurons are present long before diagnosis typically taking some 20 or 30 years to produce detectable symptoms and may even be present prior to birth. The revelation raises hope for combatting Parkinson's because there's already an approved drug that can mitigate the damage done by the troublemaking neurons before the disease ever appears.

The research is published in the journal Nature Medicine.

Image source: Kateryna Kon/Shutterstock

The authors' investigation began with an examination of neurons based on cells from young-onset Parkinson's (YOPD) patients who had no known mutations. From the cells, induced pluripotent stem cells (iPSCs) were generated and differentiated into dishes containing cultures of dopamine neurons. Senior study author Clive Svendsen says, "Our technique gave us a window back in time to see how well the dopamine neurons might have functioned from the very start of a patient's life."

The scientists observed lysosomes within the YOPD neurons malfunctioning. Since lysosomes are counted on as "trash cans" for unnecessary or depleted proteins, the castoff chemicals began to pile up. In particular, substantial accumulations of soluble -synuclein, a protein implicated in different types of Parkinson's, were seen.

Says Svendsen, "What we are seeing using this new model are the very first signs of young-onset Parkinson's,"revealing that, "It appears that dopamine neurons in these individuals may continue to mishandle -synuclein over a period of 20 or 30 years, causing Parkinson's symptoms to emerge."

The researchers also saw unexpectedly high levels of the enzyme protein kinase C in its active form, though what that has to do with Parkinson's, if anything, is unknown.

Image source: sruilk/Shutterstock

The researchers tested a number of drugs on the cultures to see if any might address the observed accumulations of -synuclein. (They performed parallel tests of laboratory mice.) One drug, PEP005, which is already approved by the FDA for treating skin pre-cancers, did effectively reduce the -synuclein buildup, both in the iPSCs and the mice.

Since PEP005 is currently administered in gel form for treating skin, the researchers are now exploring how the drug might be modified so it can be delivered directly to the brain. The team also plans follow-on research to see if their findings apply equally to forms of Parkinson's beyond YOPD.

Related Articles Around the Web

Read more from the original source:
Can Parkinsons be prevented as it stealthily develops? - Big Think

To Read More: Can Parkinsons be prevented as it stealthily develops? – Big Think
categoriaSkin Stem Cells commentoComments Off on Can Parkinsons be prevented as it stealthily develops? – Big Think | dataJanuary 31st, 2020
Read All

Umbilical Cord Blood Banking Market 2020 Global Analysis By CBR Systems, Inc., Cordlife., StemCyte India Therapeutics And Others – Dagoretti News

By daniellenierenberg

Get Sample Copy Of[emailprotected]https://www.theinsightpartners.com/sample/TIPHE100001334/

The Global Umbilical Cord Blood Banking Market Analysis to 2025 is a specialized and in-depth study of the medical device industry with a focus on the global market trend. The report aims to provide an overview of global umbilical cord blood banking market with detailed market segmentation by product, application, end users, and geography. The global umbilical cord blood banking market is expected to witness high growth during the forecast period. The report provides key statistics on the market status of the leading market players and offers key trends and opportunities in the market.Some of the key players influencing the market are

The report also includes the profiles of key umbilical cord blood banking manufacturing companies along with their SWOT analysis and market strategies. In addition, the report focuses on leading industry players with information such as company profiles, products and services offered, financial information of last 3 years, key development in past five years.

The report provides a detailed overview of the industry including both qualitative and quantitative information. It provides overview and forecast of the global umbilical cord blood banking market based on product, application, and end users. It also provides market size and forecast till 2025 for overall Umbilical cord blood banking market with respect to five major regions, namely; North America, Europe, Asia-Pacific (APAC), Middle East and Africa (MEA) and South & Central America. The market by each region is later sub-segmented by respective countries and segments. The report covers analysis and forecast of 13 counties globally along with current trend and opportunities prevailing in the region.

North America holds the largest share for umbilical cord blood banking market. This largest share of the region can be attributed to increasing prevalence of chronic diseases and rising awareness about importance of cord blood. However, Asia Pacific is the fastest growing region in the umbilical cord blood banking market over the forecast period. Although the region currently holds a nominal share in the global market, it offers enormous growth potential owing to vast improvement in health care reforms and increasing awareness of stem cell banking in selected countries of Asia Pacific, such as India, China, and Japan.

The report analyzes factors affecting market from both demand and supply side and further evaluates market dynamics effecting the market during the forecast period i.e., drivers, restraints, opportunities, and future trend. The report also provides exhaustive PEST analysis for all five regions namely; North America, Europe, APAC, MEA and South & Central America after evaluating political, economic, social and technological factors effecting the umbilical cord blood banking market in these regions.

Click For More Discount[emailprotected]https://www.theinsightpartners.com/buy/TIPHE100001334/

About Us:

The Insight Partners is a one stop industry research provider of actionable intelligence. We help our clients in getting solutions to their research requirements through our syndicated and consulting research services.

We are committed to providing highest quality research and consulting services to our customers. We help our clients understand key market trends, identify opportunities, and make informed decisions by providing market research solutions at an affordable cost.

Contact us:

The Insight partners,

Phone: +1-646-491-9876

Email:[emailprotected]

Original post:
Umbilical Cord Blood Banking Market 2020 Global Analysis By CBR Systems, Inc., Cordlife., StemCyte India Therapeutics And Others - Dagoretti News

To Read More: Umbilical Cord Blood Banking Market 2020 Global Analysis By CBR Systems, Inc., Cordlife., StemCyte India Therapeutics And Others – Dagoretti News
categoriaBone Marrow Stem Cells commentoComments Off on Umbilical Cord Blood Banking Market 2020 Global Analysis By CBR Systems, Inc., Cordlife., StemCyte India Therapeutics And Others – Dagoretti News | dataJanuary 31st, 2020
Read All

Cardio Round-up: Nanoparticles and Stem Cells in the Spotlight – DocWire News

By daniellenierenberg

This weeks Round-up looks to the future, as nanoparticles and stem cell-derived cardiac muscle cells get a closer look. More good news for lovers of yogurt, and a smelly but effective treatment for atherosclerosis as well.

Using stem cells extracted from the patients own blood and skin cells, this Japanese research team completed the first-in-human transplant of cardiac muscle cells derived from pluripotent stem cells. The team achieved this by reprogramming them, reverting them to their embryonic-like pluripotent initial state. I hope that (the transplant) will become a medical technology that will save as many people as possible, as Ive seen many lives that I couldnt save, Yoshiki Sawa, a professor in the Osaka University cardiovascular surgery unit, said in apress report.

Stem Cell-Derived Heart Muscle Transplanted Into Human for First Time: Researchers

Like something from a sci-fi horror novel, this team of researcher examined the role that nanoparticles that eat dead cells and stabilize atherosclerotic plaque may be able to play in the future of atherosclerosis treatment. We found we could stimulate the macrophages to selectively eat dead and dying cells these inflammatory cells are precursor cells toatherosclerosis that are part of the cause of heart attacks, one of the authors said in press release. We could deliver a small molecule inside the macrophages to tell them to begin eating again. The authors noted that after a single-cell RNA sequencing analysis, they observed that the prophagocytic nanotubes decreased inflammatory gene expression linked to cytokine and chemokine pathways in lesional macrophages, thereby treating the cell from the inside out.

Are Nanoparticles Potential Gamechangers for Treating Clogged Arteries?

In this large analysis of more than 120,000 individuals, the authors reported multivariable-adjusted hazard ratios (95% CI for all) for mortality were reduced in regular (more than four servings per week) consumers of yogurt, and there was an inverse relationship between regular consumption and cancer mortality as well as cardiovascular-related mortality in women. In our study, regular yogurt consumption was related to lower mortality risk among women, the authors wrote. Given that no clear doseresponse relation was apparent, this result must be interpreted with caution.

Yogurt Consumption Associated with Reduced Mortality Risk (Plus a Caveat)

This research teamlooked human microphages and compared them to dying cells in a dish. They observed that macrophages reclaim arginine and other amino acids when they eat dead cells, and then use an enzyme to convert arginine to putrescine. The putrescine, in return, activates a protein (Rac1) that causes the macrophage to eat more dead cells, suggesting to the authors that the problem of atherosclerosis may be, in part, a problem of putrescine. The findings, according to the accompanying press release, suggest that the compound could be use to potentially treat conditions with chronic inflammation, such as Alzheimers disease.

The Nose Knows: Pungent Compound Associated with Improvements in Atherosclerotic Plaque

Read more:
Cardio Round-up: Nanoparticles and Stem Cells in the Spotlight - DocWire News

To Read More: Cardio Round-up: Nanoparticles and Stem Cells in the Spotlight – DocWire News
categoriaCardiac Stem Cells commentoComments Off on Cardio Round-up: Nanoparticles and Stem Cells in the Spotlight – DocWire News | dataJanuary 31st, 2020
Read All

Space might be the perfect place to grow human organs – Popular Science

By daniellenierenberg

Three-dimensional printers have now assembled candy, clothing, and even mouse ovaries. But in the next decade, specialized bioprinters could begin to build functioning human organs in space. It turns out, the minimal gravity conditions in space may provide a more ideal environment for building organs than gravity-heavy Earth.

If successful, space-printed organs could help to shorten transplant waitlists and even eliminate organ rejection. Though they still have a long way to go, researchers at the International Space Station (ISS) hope to eventually assemble organs from adult human cells, including stem cells.

The medical field has only recently embraced 3D printing in general, particularly in biomedical fields like regenerative medicine and prosthetics. So far, these printers have produced early versions of blood vessels, bones, and different types of living tissue by churning out repeated layers of bioinka substance comprised of living human cells and other tissue thats meant to mimic the natural environment that surrounds growing organs.

Recently, researchers are finding that Earth might not be the best environment for growing freestanding organs. Because gravity is constantly pushing down on these delicate structures as they grow, researchers must surround the tissues in scaffolding, which can often debilitate the delicate veins and blood vessels and prevent the soon-to-be organs from growing and functioning properly. Within microgravity, however, soft tissues hold their shape naturally, without the need for surrounding supportan observation thats driven researchers to space.

And one manufacturing lab based in Indiana thinks its tech could play a key role in space. The 3D BioFabrication Facility (BFF) is a specialized 3D printer that uses bioink to build layers several times thinner than human hair. It cost about $7 million to build and employs the smallest print tips in existence.

The brainchild of spaceflight equipment developer Techshot and 3D printer manufacturer nScrypt, the BFF headed to the ISS in July 2019 aboard the SpaceX CRS-18.

Currently, the project focuses on building increasingly thick artificial cardiac tissue and delivering it back to Earth. Once the printed cardiac tissue reaches a certain thickness, it gets harder for researchers to ensure that a printed structures layers effectively grow into one another. Ultimately, though, theyd like the organs to arrive here fully formed.

Printed organs would eventually require vasculature and nerve endings to work properly, though that technology doesnt yet exist.

The next stagetesting heart patches under microscopes and within animalscould span over the next four years. As for whole organs, Techshot claims it plans to begin production after 2025. For now, the project is still in its infancy.

If you were to look at what we printed, it looks very modest, says Techshot vice president of corporate advancement Rich Boling. Its just a cuboid-type shape, this rectangular box. Were just trying to get cells to grow one layer into the next.

Cooking organs like pancakes

Compare the manufacturing process to cooking pancakes, Boling says. The space crew first creates a custom bioink pancake mix with the cells sent from Earth, which they load with syringe-like tools into the BFF.

Researchers then insert a cassette into the BFF containing a bioreactora system that mimics the normal bodily functions essential for growing healthy tissue, like providing nutrients and flushing out waste.

Approximately 200 miles below in Greenville, Indiana, Techshot engineers connect with ISS astronauts on a NASA-enabled secure digital pathway. The linkup allows Techshot to remotely command BFF functions like pump pressure, internal temperature, lighting, and print speed.

Next, the actual printing process occurs within the bioreactor and can take anywhere from moments to hours, depending on the shapes complexity. In the final production step, the cell-culturing ADvanced Space Experiment Processor (ADSEP) cooks the theoretical pancake; essentially, the ADSEP toughens up the printed tissue for its journey back to earth. This step could take anywhere from 12 to 45 days for different tissue types. When completed and hardened, the structure heads home.

The researchers have gone through three testing processes so far, each one getting more exact. This March, theyll begin the third round of experiments.

The bioprinter space race

The BFF lab is the sole team developing this specific type of microgravity bioprinter, Boling says. Theyre not the only ones looking to print human organs in space, though.

A Russian project has also entered the bioprinting space race, however their technique highly differs. Unlike the BFFs bioink layering method, Russian biotechnology laboratory 3D Bioprinting Solutions uses magnetic nanoparticles to produce tissue. An electromagnet creates a magnetic field in which levitating tissue forms the desired structuretechnology that appears ripped from the pages of a sci-fi novel.

After their bioprinter fell victim to an October 2018 spacecraft crash, 3D Bioprinting Solutions rebounded; the team now collaborates with US and Israeli researchers at the ISS. Last month, their crew created the first space-bioprinted bone tissue. Similar to the US project, 3D Bioprinting Solutions aims to manufacture functioning human tissues and organs for transplantation and general repair.

Just because we have the technology to do it, should we do it?

If the 3D BioFabrication Facility prospers in printing working human organs, theyd be subject to thorough regulation here on Earth. The US approval process is stringent for any drug, Rich Boling says, posing a challenge for this unprecedented invention. Techshot predicts at least 10 years for space-printed organs to achieve legal approval, though its an inexact estimate.

Along with regulatory acceptance, human tissue printed in microgravity may encounter societal pushback.

Each country maintains varying laws related to medical transplants. Yet as bioengineering advances into the the final frontier, the international scientific research community may need to shape new guidelines for collaboration among the stars.

As the commercialization of low-Earth orbit continues to ramp up in the next few years, it is certainly true that were going to have to take a very close look at the regulations that apply to that, says International Space Station U.S. National Laboratory interim chief scientist Michael Roberts. And some of those regulations are going to stray into questions related to ethics: Just because we have the technology to do it, should we do it?

Niki Vermeulen, a University of Edinburgh science technology and innovation studies lecturer, has researched the social implications of 3D bioprinting experiments. Like any Earth-bound project, she urges scientists not to get peoples hopes up too early in the process; individuals seeking organ transplants could read about the BFF online and think it could soon be ready to meet their needs.

The most important thing now, I think, is expectation management, Vermeulen says. Because its really quite difficult to do this, and of course we really dont know if its going to work. If it did, it would be amazing.

Another main issue is cost. Like other cutting-edge biotechnology innovations, the organs could also pose a major affordability challenge, she says. Techshot claims that a single space-printed organ could actually cost less than one from a human donor, since some people must pay for a lifetime of anti-rejection meds and/or multiple transplants. Theres currently no telling how long the BFF process would actually take, however, compared to the conventional donor route.

Plus, theres potential health risks for recipients: Techshot chief scientist Eugene Boland says cell manipulation always presents a possibility of genetic mutation. Modified stem cells can potentially cause cancer in recipients, for example.

The team is now working to define and minimize any dangers, he says. The BFF experiment adheres to the FDAs specific regulations for human cells, tissues, and cellular and tissue-based products.

Researchers on the ground now hope to perfect human cell manipulation: Over 100 US clinical trials presently test cultured autologous human cells, and several hundred test cultured stem cells with multiple origins.

What comes next

After the next round of printing tests this March, Techshot will share the bioprinter with companies and research institutions looking to print materials like cartilage, bone, and liver tissue. Theyre currently preparing the bioprinter for these additional uses, Boling says, which could advance health care as a whole.

To speed things up for space crews, Techshot is now building a cell factory that produces multiple cell types in orbit. This technology could cut down the number of cell deliveries between Earth and space.

The ISS has taken in plenty of commercial ventures in recent years, Michael Roberts says, and its getting crowded up there. Space-based experiments ramped up between 40 and 50 years ago, though until recently they mostly prioritized satellite communications and remote observation technology. Since then, satellites have shrunk from bus-sized to smaller than a shoebox.

Roberts has witnessed the scientific areas of interest broaden over the past decade to include medicine. Organizations like the National Institutes of Health are now looking to space to improve treatments, and everything from large pharmaceutical companies to small-scale startups want in.

Theyve got something stuck on every surface up there, he says.

As the ISS runs out of space and exterior attachment points, Roberts predicts that commercial ventures will build new facilities built for specific activities like manufacturing and plant growth. He sees it as a good opportunity for further innovation, since the ISS was originally designed for far more general purposes.

Space, as a whole, may start to look quite different from the first exploration age.

Baby boomers may remember glimpsing at a grainy, black-and-white moon landing five decades ago. Within the same lifetime, they could potentially observe the introduction of space-printed organs.

Read more:
Space might be the perfect place to grow human organs - Popular Science

To Read More: Space might be the perfect place to grow human organs – Popular Science
categoriaCardiac Stem Cells commentoComments Off on Space might be the perfect place to grow human organs – Popular Science | dataJanuary 31st, 2020
Read All

First pain treatment using human stem cells developed – THE WEEK

By daniellenierenberg

Scientists have developed the first treatment for pain using human stem cells, which provides lasting relief in mice in a single treatment, without side effects. If the treatment is successful in humans, it could be a major breakthrough in the development of new non-opioid, and non-addictive pain management, the researchers said.

"Nerve injury can lead to devastating neuropathic pain and for the majority of patients there are no effective therapies," said Greg Neely, an associate professor at the University of Sydney in Australia.

"This breakthrough means for some of these patients, we could make pain-killing transplants from their own cells, and the cells can then reverse the underlying cause of pain," Neely said in a statement.

The study, published in the journal Pain, used human induced pluripotent stem cells (iPSCs) derived from bone marrow to make pain-killing cells in the lab.

The iPSCs are cells which can develop into many different cell types in the body during early life, and growth.

The researchers then put the cells into the spinal cord of mice with serious neuropathic pain, caused by damage or disease affecting the nervous system.

"Remarkably, the stem-cell neurons promoted lasting pain relief without side effects," said study co-author Leslie Caron.

"It means transplant therapy could be an effective and long-lasting treatment for neuropathic pain. It is very exciting," Caron said.

Because the researchers can pick where to put the pain-killing neurons, they can target only the parts of the body that are in pain.

"This means our approach can have fewer side effects," said John Manion, a PhD student and lead author of research paper.

The stem cells used were derived from adult blood samples, the researchers noted.

Their next step will be to perform extensive safety tests in rodents and pigs.

They will then move to human patients suffering chronic pain within the next five years.

See original here:
First pain treatment using human stem cells developed - THE WEEK

To Read More: First pain treatment using human stem cells developed – THE WEEK
categoriaSpinal Cord Stem Cells commentoComments Off on First pain treatment using human stem cells developed – THE WEEK | dataJanuary 31st, 2020
Read All

Spinal injury researchers find a sweet spot for stem cell injections – New Atlas

By daniellenierenberg

As they do in many areas of medicine, stem cells hold great potential in treating injured spinal cords, but getting them where they need to go is a delicate undertaking. Scientists at the University of California San Diego (UCSD) are now reporting a breakthrough in this area, demonstrating a new injection technique in mice they say can deliver far larger doses of stem cells and avoid some of the dangers of current approaches.

The research focuses on the use of a type of stem cell known as a neural precursor cell, which can differentiate into different types of neural cells and hold great potential in repairing damaged spines. Currently, these are directly injected into the primary cord of nerve fibers called the spinal parenchyma.

As such, there is an inherent risk of (further) spinal tissue injury or intraparechymal bleeding, says Martin Marsala, professor in the Department of Anesthesiology at UCSD School of Medicine.

In experiments on rodents, Marsala and his team have demonstrated a safer and less invasive approach. The scientists instead injected the stem cells in between a protective layer around the spine called the pial membrane and the superficial layers of the spinal cord, a region known as the spinal subpial space.

This injection technique allows the delivery of high cell numbers from a single injection, says Marsala. Cells with proliferative properties, such as glial progenitors, then migrate into the spinal parenchyma and populate over time in multiple spinal segments as well as the brain stem. Injected cells acquire the functional properties consistent with surrounding host cells.

Following these promising early results, the scientists are hopeful that stem cells injected in this way could one day greatly accelerate healing and improve the strength of cell-replacement therapies for several spinal neurodegenerative disorders, including spinal traumatic injury, amyotrophic lateral sclerosis and multiple sclerosis. But first will come experiments on larger animal models closer to the human anatomy in size, which will help them fine tune their technique for the best results.

The goal is to define the optimal cell dosing and timing of cell delivery after spinal injury, which is associated with the best treatment effect, says Marsala.

The research was published in the journal Stem Cells Translational Medicine.

Source: University of California San Diego

Read this article:
Spinal injury researchers find a sweet spot for stem cell injections - New Atlas

To Read More: Spinal injury researchers find a sweet spot for stem cell injections – New Atlas
categoriaSpinal Cord Stem Cells commentoComments Off on Spinal injury researchers find a sweet spot for stem cell injections – New Atlas | dataJanuary 31st, 2020
Read All

Page 154«..1020..153154155156..160170..»


Copyright :: 2024