Page 634«..1020..633634635636..640650..»

UC San Diego researchers receive new CIRM funding

By JoanneRUSSELL25

Public release date: 25-May-2012 [ | E-mail | Share ]

Contact: Scott LaFee slafee@ucsd.edu 619-543-6163 University of California - San Diego

Five scientists from the University of California, San Diego and its School of Medicine have been awarded almost $12 million in new grants from the California Institute for Regenerative Medicine (CIRM) to conduct stem cell-based research into regenerating spinal cord injuries, repairing gene mutations that cause amyotrophic lateral sclerosis and finding new drugs to treat heart failure and Alzheimer's disease.

The awards mark the third round of funding in CIRM's Early Translational Awards program, which supports projects that are in the initial stages of identifying drugs or cell types that could become disease therapies. More than $69 million in awards were announced yesterday, including funding for first-ever collaboratively funded research projects with China and the federal government of Australia.

"With these new awards, the agency now has 52 projects in 33 diseases at varying stages of working toward clinical trials," said Jonathan Thomas, JD, PhD and CIRM governing board chair. "Californians should take pride in being at the center of this worldwide research leading toward new cures. These projects represent the best of California stem cell science and the best international experts who, together, will bring new therapies for patients."

The five new UC San Diego awards are:

With a $1.8 million award, Lawrence Goldstein, PhD, professor in the Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute Investigator and director of the UC San Diego Stem Cell Program, and colleagues will continue their work developing new methods to find and test drug candidates for Alzheimer's disease (AD). Currently, there is no effective treatment for AD. The researchers screen novel candidates using purified human brain cells made from human reprogrammed stem cells. Already, they have discovered that these human brain cells exhibit a unique biochemical behavior that indicates early development of AD in a dish.

Mark H. Tuszynski, MD, PhD, professor of neurosciences and director of the Center for Neural Repair at UC San Diego, and colleagues seek to develop more potent stem cell-based treatments for spinal cord injuries. By combining grafts of neural stem cells with scaffolds placed at injury sites, the researchers have reported substantial progress in restoring functional improvement in impaired animal models. The new $4.6 million grant will fund work to identify the optimal human neural stem cells for preclinical development and, in an unprecedented step, test this treatment in appropriate preclinical models of spinal cord injury, providing the strongest validation for human translation.

Amyotrophic lateral sclerosis or ALS (Lou Gehrig's disease) is a progressive neurological condition that is currently incurable. Gene Yeo, PhD, assistant professor in the Department of Cellular and Molecular Medicine, and colleagues will use a $1.6 million grant to exploit recent discoveries that specific mutations in RNA-binding proteins cause neuronal dysfunction and death. They will use neurons generated from patient cells containing the mutations to identify the unique RNA "signature" of these doomed neurons and screen for drug-like compounds that bypass the mutations to correct the RNA signature to obtain healthy neurons.

Eric David Adler, MD, an associate clinical professor of medicine and cardiologist, studies heart failure, including the use of stem cells to treat it. His $1.7 million award will fund research into Danon disease, a type of inherited heart failure that frequently kills patients by their 20s. Adler and colleagues will turn stem cells created from skin cells of patients with Danon disease into heart cells, then screen hundreds of thousands of drug candidates for beneficial effects. The most promising drugs will subsequently be tested on mice with a genetic defect similar to Danon disease, with the ultimate goal of identifying a suitable candidate for human clinical trials. The research may have broader applications for other conditions with similar pathogenesis, such as cancer and Parkinson's disease.

More:
UC San Diego researchers receive new CIRM funding

To Read More: UC San Diego researchers receive new CIRM funding
categoriaUncategorized commentoComments Off on UC San Diego researchers receive new CIRM funding | dataMay 26th, 2012
Read All

UC San Diego Scientists Net $12 Million For Stem Cell Research

By daniellenierenberg

Five UC San Diego scientists have received almost $12 million combined from the California Institute for Regenerative Medicine to pay for stem cell-based research, the university announced today.

A team led by Lawrence Goldstein, of the Department of Cellular and Molecular Medicine and director of the UC San Diego Stem Cell Program, was given $1.8 million to continue looking for new methods to find and test possible medications for Alzheimer's disease, according to UCSD. They use reprogrammed stem cells in their work.

Dr. Mark Tuszynski, professor of neurosciences and director of the Center for Neural Repair, received $4.6 million to develop more potent stem cell-based treatments for spinal cord injuries.

Gene Yeo, assistant professor in the Department of Cellular and Molecular Medicine, was awarded $1.6 million to continue research into treatments for amyotrophic lateral sclerosis. His research hopes to take advantage of recent discoveries about ALS, or Lou Gehrig's disease, which center on mutations in RNA-binding proteins that cause dysfunction and death in neurons.

Dr. Eric David Adler, an associate clinical professor of medicine and cardiologist, was granted $1.7 million to screen potential drugs for Danon disease, a type of inherited heart failure that frequently kills patients by their 20s.

Yang Xu, a professor in the Division of Biological Sciences, was given $1.8 million to research the use of human embryonic stem cells to produce a renewable source of heart muscle cells that replace cells damaged or destroyed by disease, while overcoming biological resistance to new cells.

"With these new awards, the (institute) now has 52 projects in 33 diseases at varying stages of working toward clinical trials,'' said Jonathan Thomas, chairman of the CIRM governing board. "Californians should take pride in being at the center of this worldwide research leading toward new cures.''

CIRM was established in November 2004 with voter passage of the California Stem Cell Research and Cures Act. UC San Diego has received $112 million since CIRM began providing grants six years ago.

Link:
UC San Diego Scientists Net $12 Million For Stem Cell Research

To Read More: UC San Diego Scientists Net $12 Million For Stem Cell Research
categoriaUncategorized commentoComments Off on UC San Diego Scientists Net $12 Million For Stem Cell Research | dataMay 26th, 2012
Read All

Di'Anno Wants Former Iron Maiden Bandmate To Undergo Stem Cell Therapy

By daniellenierenberg

05/24/2012 . (Classic Rock) Former Iron Maiden singer Paul Di'Anno wants his ex-bandmate Clive Burr to undergo stem cell therapy, despite the costs and risks associated with the procedure.

Burr, the drummer with Maiden from 1979 until 1982, has been in a wheelchair as a result of multiple sclerosis, which has been attacking his nervous system since before he was diagnosed in 2002.

MS reduces the ability of the brain and spinal cord to communicate with each other, resulting in a wide range of potentially severe symptoms. The cause is unknown and there is no cure; but in 2009 researchers made the first breakthrough in reversing symptoms through stem cell therapy.

Di'Anno tells Talking Metal Pirate Radio Burr's condition is "not very good at all." He had a lot to say, read it here.

Classic Rock Magazine is an official news provider for antiMusic.com. Copyright Classic Rock Magazine- Excerpted here with permission.

antiMUSIC News featured on RockNews.info and Yahoo News

...end

Originally posted here:
Di'Anno Wants Former Iron Maiden Bandmate To Undergo Stem Cell Therapy

To Read More: Di'Anno Wants Former Iron Maiden Bandmate To Undergo Stem Cell Therapy
categoriaUncategorized commentoComments Off on Di'Anno Wants Former Iron Maiden Bandmate To Undergo Stem Cell Therapy | dataMay 26th, 2012
Read All

City of Hope Receives $5 Million Grant to Develop T Cell Treatment Targeting Brain Tumor Stem Cells

By LizaAVILA

DUARTE, Calif.--(BUSINESS WIRE)--

City of Hope was granted a $5,217,004 early translational research award by the California Institute for Regenerative Medicine (CIRM) to support the development of a T cell-based immunotherapy that re-directs a patients own immune response against glioma stem cells. City of Hope has been awarded more than $49.7 million in grant support from CIRM since awards were first announced in 2006.

City of Hope is a pioneer in T cell immunotherapy research, helping to develop genetically modified T cells as a treatment for cancer. This strategy, termed adoptive T cell therapy, focuses on redirecting a patients immune system to specifically target tumor cells, and has the potential to become a promising new approach for treatment of cancer.

In this research, we are genetically engineering a central memory T cell that targets proteins expressed by glioma stem cells, said Stephen J. Forman, M.D., Francis and Kathleen McNamara Distinguished Chair in Hematology and Hematopoietic Cell Transplantation and director of the T Cell Immunotherapy Research Laboratory. Central memory T cells have the potential to establish a persistent, lifelong immunity to help prevent brain tumors from recurring.

The American Cancer Society estimates that more than 22,000 people in the U.S. will be diagnosed with a brain tumor this year, and 13,700 will die from the disease. Glioma is a type of brain tumor that is often difficult to treat and is prone to recurrence. Currently, less than 20 percent of patients with malignant gliomas are living five years after their diagnosis. This poor prognosis is largely due to the persistence of tumor-initiating cancer stem cells, a population of malignant cells similar to normal stem cells in that they are able to reproduce themselves indefinitely. These glioma stem cells are highly resistant to chemotherapy and radiation treatments, making them capable of re-establishing new tumors.

Researchers at City of Hope previously have identified several proteins as potential prime targets for the development of cancer immunotherapies, such as interleukin 13 receptor alpha 2, a receptor found on the surface of glioma cells, and CD19, a protein that is active in lymphoma and leukemia cells. Both investigational therapies are currently in phase I clinical trials. Forman is the principal investigator for the newly granted study which will develop a T cell that targets different proteins expressed by glioma stem cells. Christine Brown, Ph.D., associate research professor, serves as co-principal investigator, and Michael Barish, Ph.D., chair of the Department of Neurosciences, and Behnam Badie, M.D., director of the Brain Tumor Program, serve as co-investigators on the project.

Because cancer stem cells are heterogeneous, our proposed therapy will target multiple antigens to cast as wide a net as possible over this malignant stem cell population, said Brown.

While in this effort, we are targeting a neurological cancer, our approach will lead to future studies targeting other cancers, including those that metastasize to the brain, added Barish.

The CIRM grant will help us to build a targeted T cell therapy against glioma that can offer lasting protection, determine the best way to deliver the treatment, establish an efficient process to manufacture these T cells for treatment, and get approval for a human clinical trial, said Badie.

City of Hope is also a collaborative partner providing process development, stem cell-derived cell products and regulatory affairs support in two other CIRM-funded projects that received early translational research grants. Larry Couture, Ph.D., senior vice president of City of Hopes Sylvia R. & Isador A. Deutch Center for Applied Technology Development and director of the Center for Biomedicine & Genetics, is working with Stanford University and Childrens Hospital of Orange County Research Institute on their respective projects.

Read the rest here:
City of Hope Receives $5 Million Grant to Develop T Cell Treatment Targeting Brain Tumor Stem Cells

To Read More: City of Hope Receives $5 Million Grant to Develop T Cell Treatment Targeting Brain Tumor Stem Cells
categoriaUncategorized commentoComments Off on City of Hope Receives $5 Million Grant to Develop T Cell Treatment Targeting Brain Tumor Stem Cells | dataMay 26th, 2012
Read All

Stem Cells Curb Chronic Pain in Mice

By NEVAGiles23

May 23, 2012 12:00pm

Replacing dead or dysfunctional nerve cells with new, healthy ones derived from stem cells eases chronic pain in mice, a new study found.

Researchers from the University of California, San Francisco coaxed mouse embryonic stem cells into becoming mature nerve cells that could bridge gaps in the circuitry that triggers neuropathic pain.

One of the major causes of neuropathic pain is the loss of inhibitory control at the level of the spinal cord because of nerve loss or dysfunction, said study author Allan Basbaum, chairman of UCSFs department of anatomy. The idea was to replace or repopulate the spinal cord cells that provide that inhibition.

The same stem cells, destined to become inhibitory neurons that dampen the signals that cause pain, were previously shown to improve symptoms in a mouse model of epilepsy, Basbaum said. The question was whether we could take the exact same cells and put them in the spinal cord.

Before injecting the cells into the spinal cords of mice with neuropathic pain, the researchers labeled them with a fluorescent tracer to track the connections they made.

We were able to show how these cells integrate beautifully, Basbaum said, describingthe waythe transplanted cells looked and behaved like the mouses own.

Not only did the cells set up shop in the spinal cord, sending and receiving signals through a complex network of neurons, they also eased the neuropathic pain.

In four weeks, the animals condition completely disappeared, Basbaum said, adding that transplanted control cells that lacked the inhibitory properties of the stem-cell-derived neurons failed to ease the pain.

The clinical significance is that we think were actually modifying the disease, not just treating the symptoms, Basbaum said, adding that drugs currently used to ease neuropathic pain fail to treat the underlying problem. Instead of taking a drug to suppress the pain, were trying to normalize the circuit that was damaged by the disease or the injury. The cells repopulate, they integrate, and basically they treat the disease.

See the original post:
Stem Cells Curb Chronic Pain in Mice

To Read More: Stem Cells Curb Chronic Pain in Mice
categoriaSpinal Cord Stem Cells commentoComments Off on Stem Cells Curb Chronic Pain in Mice | dataMay 24th, 2012
Read All

How damaged hearts could be healed by growing stem cells

By LizaAVILA

By Jenny Hope

PUBLISHED: 18:09 EST, 22 May 2012 | UPDATED: 01:35 EST, 23 May 2012

Scientists claim they can rejuvenate broken hearts using skin cells that have been turned into heart muscle cells.

New research opens up the prospect of reprogramming cells taken from heart failure patients that would not be rejected by their bodies.

It is the first time that stem cells taken from the skin of elderly and diseased patients - who are most likely to need such treatment - have been transformed into heart cells.

New developments: The research opens up the prospect of reprogramming cells taken from heart failure patients that would not be rejected by their bodies

Previously skin cells taken from young and healthy people have been transformed into heart muscle cells.

But researchers from Israel warn that clinical trials could be a decade away, as more work in the laboratory and major investment are needed.

The research is the latest advance in stem cell therapy where the intention is to infused repair cells directly into the scarred heart muscle of patients suffering debilitating symptoms such as breathlessness and fatigue.

See original here:
How damaged hearts could be healed by growing stem cells

To Read More: How damaged hearts could be healed by growing stem cells
categoriaCardiac Stem Cells commentoComments Off on How damaged hearts could be healed by growing stem cells | dataMay 24th, 2012
Read All

Could Stem Cells Cure MS?

By JoanneRUSSELL25

A growth factor isolated from human stem cells shows promising results in a mouse model of multiple sclerosis.

Human mesenchymal stem cells (hMSCs) have become a popular potential therapy for numerous autoimmune and neurological disorders. But while these bone marrow-derived stem cells have been studied in great detail in the dish, scientists know little about how they modulate the immune system and promote tissue repair in living organisms.

Now, one research team has uncovered a molecular mechanism by which hMSCs promote recovery in a mouse model of multiple sclerosis (MS).

According to research, published online Sunday (May 20) in Nature Neuroscience, a growth factor produced by hMSCs fights MS in two ways: blocking a destructive autoimmune response and repairing neuronal damage. The finding could help advance ongoing clinical trials testing hMSCs as a therapy for MS.

The researchers have identified a unique factor that has surprisingly potent activity mediating neuron repair, said Jacques Galipeau, a cell therapy researcher at Emory University in Atlanta, Georgia, who was not involved in the research. The magnitude of the effect on a mouse model of MS is a big deal.

MS is an autoimmune disease in which the immune system attacks myelin sheaths that surround and protect nerve cells. The attack leaves nerves exposed and unable to send signals to the brain and back, resulting in the loss of motor skills, coordination, vision, and cognitive abilities. There is no cure for MS, and most current therapies work to simply suppress the immune system, preventing further neuronal damage. None have demonstrated an ability to also repair damaged myelin and promote recovery.

In 2009, Robert Miller and colleagues at Case Western Reserve University in Cleveland, Ohio, demonstrated that hMSCs dramatically reversed the symptoms of multiple sclerosis in a mouse model of the disorder. The animals got better, recalled Miller. The team hypothesized that the stem cells suppress the immune response and promote remyelination.

But Miller wanted to know exactly what the cells were doing. To find out, his team isolated the medium on which the hMSCs were grown to determine if the cells or something they secreted was responsible for the observed recovery. The medium alone was enough to induce recovery in mice, pointing to the latter.

To find out exactly which molecule or molecules in the medium were responsible, the researchers separated the proteins in the fluid based on the molecular weight and injected each isolate into mice exhibiting symptoms of MS. The mid-weight solution, of proteins with masses between 50 and 100 kilodaltons (kDa), caused recovery. That eliminated a huge number of potential candidates, said Miller.

The researchers then narrowed the field again with a literature search for a molecule that fit their criteria: secreted by hMSCs, 50-100 kDa in size, and involved in tissue repair. They identified hepatocyte growth factor (HGF), a cytokine made by mesenchymal cells that has been shown to promote tissue regeneration and cell survival in numerous experiments. Sure enough, HGF alone was enough to promote recovery in the MS mouse models, and blocking the receptor for HGF in those mice blocked recovery. The team also demonstrated that HGF suppresses immune responses in vivo and accelerates remyelination of neurons in vitro. Finally, they saw that HGF causes remyelination in rats with a lesion on their spinal cord.

See original here:
Could Stem Cells Cure MS?

To Read More: Could Stem Cells Cure MS?
categoriaBone Marrow Stem Cells commentoComments Off on Could Stem Cells Cure MS? | dataMay 24th, 2012
Read All

UM: Stem-Cell-Growing Surface Enables Bone Repair

By Sykes24Tracey

On a special surface that could help advance stem cell therapies, UM researchers have turned human skin cells into adult-derived stem cells, coaxed them into bone cells and then transplanted them into holes in the skulls of mice. The cells produced four times as much new bone growth as in the mice without the extra bone cells. In this pink-stained image, the black outline partially encloses the new bone growth in the skull. Image credit: Villa-Diaz, L.G., Brown, S.E., Liu, Y. Ross, A.M., Lahann, J.M., Krebsbach, P.H., University of Michigan

ANN ARBOR University of Michigan researchers have proven that a special surface, free of biological contaminants, allows adult-derived stem cells to thrive and transform into multiple cell types. Their success brings stem cell therapies another step closer.

To prove the cells regenerative powers, bone cells grown on this surface were then transplanted into holes in the skulls of mice, producing four times as much new bone growth as in the mice without the extra bone cells.

An embryos cells really can be anything they want to be when they grow up: organs, nerves, skin, bone, any type of human cell. Adult-derived induced stem cells can do this and better. Because the source cells can come from the patient, they are perfectly compatible for medical treatments.

In order to make them, Paul Krebsbach, professor of biological and materials sciences at the UM School of Dentistry, said, We turn back the clock, in a way. Were taking a specialized adult cell and genetically reprogramming it, so it behaves like a more primitive cell.

Specifically, they turn human skin cells into stem cells. Less than five years after the discovery of this method, researchers still dont know precisely how it works, but the process involves adding proteins that can turn genes on and off to the adult cells.

Before stem cells can be used to make repairs in the body, they must be grown and directed into becoming the desired cell type. Researchers typically use surfaces of animal cells and proteins for stem cell habitats, but these gels are expensive to make, and batches vary depending on the individual animal.

You dont really know whats in there, said Joerg Lahann associate professor of chemical engineering and biomedical engineering.

For example, he said that human cells are often grown over mouse cells, but they can go a little native, beginning to produce some mouse proteins that may invite an attack by a patients immune system.

The polymer gel created by Lahann and his colleagues in 2010 avoids these problems because researchers are able to control all of the gels ingredients and how they combine.

Read this article:
UM: Stem-Cell-Growing Surface Enables Bone Repair

To Read More: UM: Stem-Cell-Growing Surface Enables Bone Repair
categoriaBone Marrow Stem Cells commentoComments Off on UM: Stem-Cell-Growing Surface Enables Bone Repair | dataMay 24th, 2012
Read All

Bone Repair Via Stem-cell-growing Surface

By NEVAGiles23

May 24, 2012

Connie K. Ho for RedOrbit.com

Technology is rapidly progressing and so is research related to stem cells.

Researchers from the University of Michigan recently announced that they found a special surface without biological contaminants that can help adult-derived stem cells to grow and change into different cell types. The findings, published in the journal Stem Cells, are considered a breakthrough in stem cell research.

In the study, scientists grew bone cells on the surface and then transplanted the cells to the skulls of mice to look at the cells regenerative powers. The results showed that the cells produced four times as much new bone growth in mice without the help of extra bone cells. The importance of these adult-derived induced stem cells is that they come from the patient and these cells are compatible for medical treatments.

We turn back the clock, in a way. Were taking a specialized adult cell and genetically reprogramming it, so it behaves like a more primitive cell, commented Paul Krebsbach, professor of biological and materials sciences at the U-M School of Dentistry, on the process of stem cell creation.

In the project, researchers examined how human skin cells are turned into stem cells and, even though they are not exactly sure as to how the process works, how it involves the addition of proteins that can signal the genes to turn on and off to the adult cells. Prior to being used to repair parts of the body, the stem cells are grown and directed to become a specific cell type. Researchers were able to use the surface of the animal cells and proteins for stem cell habitats, but saw that the amount of cells produced could vary by animal.

You dont really know whats in there, noted Joerg Lahann, associate professor of chemical engineering and biomedical engineering.

One difficulty researchers have encountered in the past is the fact that human cells and animals cells can sometimes mix. However, the polymer gel made by Lahann and his fellow researchers helped avoid this problem. Researchers were able to gain better control over the gels ingredients and how they were combined.

Its basically the ease of a plastic dish, Lahann said. There is no biological contamination that could potentially influence your human stem cells.

Go here to see the original:
Bone Repair Via Stem-cell-growing Surface

To Read More: Bone Repair Via Stem-cell-growing Surface
categoriaBone Marrow Stem Cells commentoComments Off on Bone Repair Via Stem-cell-growing Surface | dataMay 24th, 2012
Read All

Human Skin Cells Turned Into Healthy Heart Muscle

By Sykes24Tracey

Scientists on Wednesday reported that they have for the first time taken skin cells from heart attacks patients and turned them into healthy heart tissue that could hopefully be used to one day repair damaged heart muscle.

The healthy, beating heart tissue was grown successfully in the lab from human-induced pluripotent stem cells (hiPSCs), and while scientists said they were not safe enough to put back into human patients, they appeared to work well with other cells when implanted into rats. HiPSCs are a recently discovered source far less controversial than use of embryonic stem cells. And, because the transplanted hiPSCs come from the individual, it could resolve the problems seen with tissue and organ rejection.

While the technique has shown promise in rats, the scientists say there are numerous obstacles to overcome and it could take up to ten years or longer before clinical trials could be available for humans. Even so, it is a significant advance in the quest for replacement cell therapy for heart failure patients.

More people are surviving following a heart attack than ever before and therefore the number of people living with a damaged heart and heart failure is increasing, Nicholas Mills, a consultant cardiologist at Edinburgh University, told The Guardian. Unfortunately, the body has only very limited capacity to repair the heart following a heart attack. There is therefore an urgent need to develop effective and safe treatments to regenerate the heart.

Recent research has shown that hiPSCs could be derived from young and healthy people and are capable of transforming into heart cells. However, researchers have not been able to obtain those cells from elderly and diseased patients. And until now, researchers have not been able to show that heart cells created from hiPSCs could integrate with existing heart tissue.

What is new and exciting about our research is that we have shown that its possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young the equivalent to the stage of his heart cells when he was just born, said lead researcher Professor Lior Gepstein, of Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology and Rambam Medical Center in Haifa, Israel.

For their study, published in the European Heart Journal, Limor Zwi-Dantsis, a PhD student in the Sohnis Research Laboratory, Gepstein and colleagues took skin cells from two male heart failure patients (ages 51 and 61) and reprogrammed them with three genes (Sox2, Klf4 and Oct4), followed by a small molecule (valproic acid) to the cell nucleus.

The team also used an alternative strategy that involved a virus that delivered reprogramming information to the cell nucleus but which was capable of being removed afterward to avoid insertional oncogenesis.

Using these methods, the hiPSCs were able to differentiate to become cardiomyocytes (heart muscle cells) just as effectively as hiPSCs that had been developed from healthy, young volunteers. The researchers were then able to make cardiomyocytes develop into heart muscle tissue, which they cultured together with pre-existing cardiac tissue. The tissues were beating together within 48 hours, said the researchers.

The researchers transplanted the new tissue into the hearts of healthy rats and found that the grafted tissue started to establish connections with the cells in the host tissue.

Read more:
Human Skin Cells Turned Into Healthy Heart Muscle

To Read More: Human Skin Cells Turned Into Healthy Heart Muscle
categoriaSkin Stem Cells commentoComments Off on Human Skin Cells Turned Into Healthy Heart Muscle | dataMay 24th, 2012
Read All

Scientists Turn Skin Cells into Healthy Heart Cells

By raymumme

Dr. John D. Cunningham / Getty Images

In a medical first, scientists in Haifa, Israel, took skin cells from two heart failure patients and reprogrammed them into stem cells that generated healthy, beating heart muscle cells in the lab. Though human testing is likely a decade off, the hope is that such cells can be used to help people with heart failure repair their damaged hearts with their own skin cells.

In the current study, scientists first mixed the newly developed heart cells with pre-existing heart tissue within days, the cells were beating together. The heart tissue was then transplanted into rats, where it integrated with the rats healthy heart cells.

What is new and exciting about our research is that we have shown that its possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young the equivalent to the stage of his heart cells when he was just born, says lead researcherDr. Lior Gepstein, a senior clinical electrophysiologist at Rambam Medical Center in Israel, said in a statement.

The researchers were pleased to find that the cells made from the two heart failure patients, ages 51 and 61, generated heart muscle cells that were just as effective as those developed from healthy, young controls.

(MORE: Study During Beijing Olympics Shows How Pollution Harms the Heart)

If the technology works in human hearts, it could potentially prevent problems of immune rejection, since the cells would be the patients own. It would also avoid the moral issues surrounding the use of embryonic stem cells, since such reprogrammed stem cells or human induced pluripotent stem (iPS) cells do not use embryos.

But its still too early to predict whether the procedure could be successful humans. The new study involved cells from only two patients and were transplanted only into healthy animals. The authors note that human clinical trials are likely at least five or 10 years away. Further, creating iPS cells is not an easy or efficient process; its not clear whether enough cells could be made quickly enough to repair the broad-scale damage that occurs after a heart attack.

Reprogramming skin cells to become stem cells also introduces the potential for the cells to grow out of control and become cancerous. The Israeli researchers took additional steps removing certain transcription factors and viral factors to reduce the risk of cancer. But these hurdles would have to be revisited if the technique is tested in human patients.

This is an interesting paper, but very early and its really important for patients that the promise of such a technique is not oversold, John Martin, a professor of cardiovascular medicine at University College London, told Reuters.The chances of translation are slim and if it does work it would take around 15 years to come to clinic.

Continued here:
Scientists Turn Skin Cells into Healthy Heart Cells

To Read More: Scientists Turn Skin Cells into Healthy Heart Cells
categoriaSkin Stem Cells commentoComments Off on Scientists Turn Skin Cells into Healthy Heart Cells | dataMay 24th, 2012
Read All

Scientists convert skin cells into full functioning heart cells

By Sykes24Tracey

In the first procedure of its kind, skin cells taken from patients suffering from heart failure were reprogrammed and changed into heart muscle cells. Not only were the transformed cells healthy, but they were also transplanted into the hearts of rats and were able to integrate with the existing heart tissue.

Published in the European Heart Journal, the research examined the use of human-induced pluripotent stem cells (hiPSCs) to treat damaged hearts. HiPSCs are cells that are derived from other cells in a persons body.

We were able to show [in earlier studies] that you can take these hiPSCS from healthy heart patients and coax them into bonafide heart cells, lead author Lior Gepstein, professor of medicine (cardiology) and physiology at the Technion-Israel Institute of Technology and Rambam Medical Center in Haifa, Israel, told FoxNews.com. The question we asked in this study was whether you can do the same from an elderly individual that had suffered from advance heart failure.

Because hiPSCs are derived from the person in need of the stem cells, they could potentially help to bypass the painful process of rejection that many transplant patients go through. According to Gepstein, if this process is perfected, it could lead to much more localized treatments.

When there is significant damage from a heart attack, or with heart failure, where the heart doesnt pump enough blood into circulation, patients usually need a heart transplant, Gepstein said. But perhaps in the future, we can take a small sample of skin and convert them into stem cells specific to that patient. Then we can only replace the area with scar tissue rather than replace the dying heart.

In order to transform the skin cells into hiPSCs, Gepstein and his colleagues gave them a reprogramming cocktail, which involved delivering three genes (Sox2, Klf4 and Oct4), followed by a small molecule called valproic acid, to the nucleus of the cell.

This process turned the skin cells into heart muscle cells, or cardiomyocytes, which the researchers were able to subsequently turn into heart muscle tissue by culturing them together with cardiac tissue.

We converted the cells back into a state that resembles their early state in the embryo, Gepstein said. So they highly resemble the patients cells at the time they were born. When you give them proper conditions, they can become any type of cell in the body.

This area of study has advanced very rapidly, Gepstein added. You can take almost any type of adult cells - hair follicles, blood cells, etc. - and reprogram them to make hiPSCS cells. Skin cells are the easiest way to do it, and you dont need a lot of them.

Once the tissue had formed, it was transplanted into the hearts of healthy rats, where it successfully grafted and integrated with the existing tissue.

See the rest here:
Scientists convert skin cells into full functioning heart cells

To Read More: Scientists convert skin cells into full functioning heart cells
categoriaSkin Stem Cells commentoComments Off on Scientists convert skin cells into full functioning heart cells | dataMay 24th, 2012
Read All

Can Stem Cells Repair Heart Tissue?

By daniellenierenberg

People who suffer from heart failure could someday be able to use their own skin stem cells to regenerate their damaged heart tissue, according to a new Israeli study.

Researchers took stem cells from the skin of two patients with heart failure and genetically programmed them to become new heart muscle cells. They then transplanted the new cells into healthy rats and found that the cells integrated with cardiac tissue that already existed.

The study, published in European Heart Journal, marks the first time ever that scientists could use skin cells from people with heart failure and transform damaged heart tissue this way.

The newly generated cells turned out to be similar to embryonic stem cells, which can potentially be programmed to grow into any type of cell.

"What is new and exciting about our research is that we have shown that it's possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young the equivalent to the stage of his heart cells when he was just born," Dr. Lior Gepstein, lead researcher and a senior clinical electrophysiologist at Rambam Medical Center in Haifa, Israel, said in a news release.

The findings open up the possibility, the authors wrote, that people can use their own skin cells to repair their damaged hearts, which could prevent the problems associated with using embryonic stem cells.

"This approach has a number of attractive features," said Dr. Tom Povsic, an interventional cardiologist at Duke University Medical Center. "We can get the cells that you start with from the patient himself or herself. It avoids the ethical dilemma associated with embryonic stem cells and it removes the possibility of rejection of foreign stem cells by the immune system." Povsic was not involved with the Israeli study.

Another advantage of using skin cells is that other types of cells taken from patients themselves, such as bone marrow cells, could potentially lead to the development of unhealthy tissue.

"If a patient is already sick with heart disease, one of the reasons it may develop is that stem cells weren't able to repair the heart the way they should," Povsic added. Skin cells, he explained, are generally healthy.

"It is very exciting and very interesting, but we are far away from taking this to patients," said Dr. Marrick Kukin, director of the Heart Failure Program at St. Luke's-Roosevelt Hospital who was also not involved in the Israeli study.

Read the original:
Can Stem Cells Repair Heart Tissue?

To Read More: Can Stem Cells Repair Heart Tissue?
categoriaSkin Stem Cells commentoComments Off on Can Stem Cells Repair Heart Tissue? | dataMay 24th, 2012
Read All

Scientists Turn Skin Cells Into Cardiac Cells to Help Failing Hearts

By raymumme

WEDNESDAY, May 23 (HealthDay News) -- In a medical science first, researchers turned skin cells from heart failure patients into heart muscle cells that may then be used to fix damaged cardiac tissue.

The researchers said the achievement -- done initially with rats -- opens up the prospect of using heart failure patients' own stem cells -- a form of cell called human-induced pluripotent stem cells (hiPSCs) -- to repair damaged hearts. And since the reprogrammed stem cells would originate with the patient, their immune systems would not reject the cells as foreign, the researchers explained.

They added, however, that many obstacles must be overcome before it would be possible to use hiPSCs in humans this way, and any clinical trial would be at least five to 10 years away.

"We have shown that it's possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young -- the equivalent to the stage of his heart cells when he was just born," study leader Lior Gepstein said in a European Heart Journal news release. The study's findings are scheduled for online publication in the journal May 23.

Gepstein is professor of medicine (cardiology) and physiology at the Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine at the Technion Israel Institute of Technology and Rambam Medical Center in Haifa, Israel.

One expert in the United States applauded the achievement.

"The ability to source a patient's own skin cells and transform them into heart muscle is truly revolutionary," said Dr. Gregory Fontana, chairman of cardiothoracic surgery at Lenox Hill Hospital in New York City.

The results are "another step toward the treatment of heart failure with stem cells," he said. "Although further work is needed, this work represents another step closer to the clinic."

In the study, the researchers retrieved skin cells from two male heart failure patients, ages 51 and 61, and then reprogrammed them in the lab to develop into heart muscle tissue, which was then blended with pre-existing heart tissue. Within 24 to 48 hours, the tissues were beating together.

The new tissue was transplanted into healthy rat hearts and started to establish connections with the cells of the rat hearts. Success in animal experiments does not necessarily translate to success in humans, however.

Link:
Scientists Turn Skin Cells Into Cardiac Cells to Help Failing Hearts

To Read More: Scientists Turn Skin Cells Into Cardiac Cells to Help Failing Hearts
categoriaSkin Stem Cells commentoComments Off on Scientists Turn Skin Cells Into Cardiac Cells to Help Failing Hearts | dataMay 24th, 2012
Read All

Skin cells transformed into beating heart tissue, fueling heart failure treatment hopes

By NEVAGiles23

(CBS News) A new study of patients with heart failure found a novel treatment approach might reverse the damage that has long been considered irreversible: Fixing their damaged hearts using stem cells derived by their own skin cells.

Stem cells heal heart attack scars, regrow healthy muscle Stem cells cure heart failure? What "breakthrough" study shows

In what scientists are calling a first, skin cells were taken from heart failure patients and transformed into stem cells, which were then turned into heart muscle cells capable of beating - albeit in a petri dish.

The treatment approach has scientists buzzing because it avoids the risk of possible immune system rejection from transplanting "foreign" stem cells, since the cells came from patients' own bodies.

"What is new and exciting about our research is that we have shown that it's possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young - the equivalent to the stage of his heart cells when he was just born," the study's author Professor Lior Gepstein, professor of cardiology and physiology at the Technion-Israel Institute of Technology in Haifa, said in a news release.

Just how do skin cells become heart cells? Researchers took skin cells from two male patients with heart failure, a 51 and 61-year-old, and genetically reprogrammed them by injecting a cocktail of "transcription factors" and a virus into the nucleus of the skin cell, followed by removing the virus and transcription factors that have been linked to cancerous tumor growth. The goal was to reprogram the cells into human-induced pluripotent stem cells (hiPSCs) that could help repair hearts.

"One of the obstacles to using hiPSCs clinically in humans is the potential for the cells to develop out of control and become tumours," explained Prof Gepstein in using the technique.

Once in stem cell-form, the cells differentiated in a petri dish to become heart muscle cells called cardiomyocytes, which the researchers then combined with heart tissue and cultured them into healthy heart muscle tissue. Within 48 hours, the tissues were beating together.

"The tissue was behaving like a tiny microscopic cardiac tissue comprised of approximately 1000 cells in each beating area," Gepstein said in a statement.

The researchers then transplanted the new human tissue into rats, finding it grafted to the rat's host cardiac tissues. Their research is published in the May 22 issue of the European Heart Journal.

Link:
Skin cells transformed into beating heart tissue, fueling heart failure treatment hopes

To Read More: Skin cells transformed into beating heart tissue, fueling heart failure treatment hopes
categoriaSkin Stem Cells commentoComments Off on Skin cells transformed into beating heart tissue, fueling heart failure treatment hopes | dataMay 24th, 2012
Read All

Biostem U.S., Corporation Announces $5,000,000 Financing Agreement Through Private Placement of Stock

By NEVAGiles23

CLEARWATER, FL--(Marketwire -05/24/12)- Biostem U.S., Corporation, (HAIR.PK) (HAIR.PK) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine sciences sector, announces a $5,000,000 financing agreement through private placement of stock.

CEO, Dwight Brunoehler, announced today that the company has signed an agreement with a funder to issue 20,000,000 shares of the company's common stock in exchange for $5,000,000 in cash or 25 cents ($.25) per share. No other considerations will be granted to the funder in exchange for the cash payment.

In announcing the funding agreement, Mr. Brunoehler commented, "We consider the eagerness of the funder to acquire Biostem shares at a price above the current market to be a tribute to our proven proprietary technology to enhance hair re-growth using human stem cells. Although we anticipated funding the company through the sale of a convertible debenture, the funder insisted on being able to acquire stock at a set price now, rather than risk having to convert at higher prices later. Although Rule 144 sale restrictions usually cause private placements of stock to be executed at a discount to the market, Biostem feels that its current share price is not truly reflective of the value of its proprietary technology; as well as the fact that the technology is already being employed, and the overall size of the hair replacement marketplace. It was for this reason that the company and the funder were able to come to an agreement to price the private placement above the current share price."

About Biostem U.S., Corporation

Biostem U.S., Corporation is a fully reporting Nevada corporation with offices in Clearwater, Florida. Biostem is a technology licensing company with proprietary technology centered on providing hair re-growth using human stem cells. The company also intends to train and license selected physicians to provide Regenerative Cellular Therapy treatments to assist the body's natural approach to healing tendons, ligaments, joints and muscle injuries by using the patient's own stem cells. Biostem U.S. is seeking to expand its operations worldwide through licensing of its proprietary technology and acquisition of existing stem cell related facilities. The company's goal is to operate in the international biotech market, focusing on the rapidly growing regenerative medicine field, using ethically sourced adult stem cells to improve the quality and longevity of life for all mankind.

More information on Biostem U.S., Corporation can be obtained through http://www.biostemus.com, or by calling Fox Communications Group 310-974-6821.

Continue reading here:
Biostem U.S., Corporation Announces $5,000,000 Financing Agreement Through Private Placement of Stock

To Read More: Biostem U.S., Corporation Announces $5,000,000 Financing Agreement Through Private Placement of Stock
categoriaUncategorized commentoComments Off on Biostem U.S., Corporation Announces $5,000,000 Financing Agreement Through Private Placement of Stock | dataMay 24th, 2012
Read All

Stem cell drug approved in Canada to treat bone marrow disease

By Sykes24Tracey

Canadian regulators have approved the world's first stem cell drug.

The drug, Prochymal, will be used to treat a deadly side effect of bone marrow transplants called acute graft-versus host disease (GvHD), which occurs in children.

Acute graft-versus host disease kills about 80 percent of children affected.

Prochymal uses stem cells from healthy adult donors, with one donation able to create 10,000 doses of the drug, reported the New York Times.

The manufacturer, Maryland-based Osiris Therapeutics Inc., saw their shares climb 5.5 percent to $5.55 after losing 24 percent in the last year, reported Bloomberg.

In extended trading, stocks rose 14 percent.

The drug was approved, said Reuters, on the condition that further clinical tests are carried out.

There has been debate about the effectiveness of the drug in recent years.

Late stage clinical trials three years ago failed to show results but more recent tests have shown the drug to be relatively effective about a month into therapy.

Osiris says that it plans to seek approval from the US Food and Drug Administration this year.

Link:
Stem cell drug approved in Canada to treat bone marrow disease

To Read More: Stem cell drug approved in Canada to treat bone marrow disease
categoriaBone Marrow Stem Cells commentoComments Off on Stem cell drug approved in Canada to treat bone marrow disease | dataMay 21st, 2012
Read All

World's First Stem Cell Drug From Osiris: Approved

By daniellenierenberg

Editor's Choice Main Category: Pediatrics / Children's Health Also Included In: Stem Cell Research Article Date: 20 May 2012 - 11:00 PDT

Current ratings for: 'World's First Stem Cell Drug From Osiris: Approved'

5 (1 votes)

The decision is a historic one, as it's both the first stem cell drug going into formal use, as well as the first treatment for GvHD. The disease is a devastating breakdown occurring after a bone marrow transplant and kills around 80% of children affected, often within a matter of weeks.

Andrew Daly, M.D., Clinical Associate Professor, Department of Medicine and Oncology at the University of Calgary, Canada and Principal Investigator in the phase 3 clinical program for Prochymal confirmed :

The approval process for Prochymal was implemented under Health Canada's Notice of Compliance with conditions (NOC/c) pathway. The basis of the procedure allows a new drug to come onto the market where there are unmet medical needs. The approval is granted with the provision that the drug has demonstrated risk / reward benefits in previous clinical trials and that the manufacturer agrees to undertake additional confirmatory clinical testing.

C. Randal Mills, Ph.D., President and Chief Executive Officer of Osiris confirmed his' companies happiness at being able to help conquer the disease :

Where children with GvHD are not responding to treatment with steroids, which is presumably most of them, the use of Prochymal will now be authorized. Health Canada based it's approval on previous clinical studies of the drug, in which 64% of patients showed results; the survival rate compared to historical data was drastically improved, even in patients with severe cases. Additional clinical evaluation of Prochymal now will be undertaken, including enrolling patients in a registry to discover any long term effects.

Joanne Kurtzberg, MD, Head of the Pediatric Bone Marrow Transplant Program at Duke University and Lead Investigator for Prochymal

Osiris has 48 patents protecting Prochymal, and Health Canada's have agreed to provide Prochymal with regulatory exclusivity within their territory. Canada affords eight years of exclusivity to Innovative Drugs, such as Prochymal, with an additional six-month extension because it addresses a pediatric disease. Parents, doctors and shareholders can all rest easy.

Read more from the original source:
World's First Stem Cell Drug From Osiris: Approved

To Read More: World's First Stem Cell Drug From Osiris: Approved
categoriaUncategorized commentoComments Off on World's First Stem Cell Drug From Osiris: Approved | dataMay 21st, 2012
Read All

Cellectis stem cells today proudly announces the launch of the world’s very first human iPS cell-derived hepatocyte …

By LizaAVILA

GOTHENBURG, Sweden--(BUSINESS WIRE)--

Regulatory News:

Cellectis stem cells, a Business Unit of Cellectis Group (Alternext:ALCLS.PA - News), a premier provider of stem cell derived products and technologies, today announces the launch of a human iPS derived hepatocyte product, hiPS-HEPTM.

The hiPS-HEPTM demonstrate high reproducibility, homogeneity and a long life span of stable CYP activity, making them the ideal platform for various in vitro applications including drug discovery, toxicity testing and vaccine development. The hiPS-HEP are human hepatocyte-like cells derived from human induced Pluripotent Stem (iPS) cells under strict quality controlled and ethically approved procedures.

"Due to their high relevance in various industrial applications it makes the hiPS-HEP a really promising system for research and development," said Johan Hyllner, CSO of Cellectis stem cells. "The pharmaceutical industry has a great need for better and more clinically relevant models early in the drug development process to predict hepatotoxicity, find new drug targets and develop new vaccines."

"This novel product is the fruition of Cellectis strategy to become the global market leader for stem cell-based in vitro models and related technologies. It illustrates our ambitions and the momentum of our future development in this field," said Andr Choulika, Chairman and CEO of Cellectis.

About Cellectis stem cells:

Cellectis stem cells, is a business unit within the Cellectis group and is a global leader in stem cell technology. Cellectis stem cells, created in November 2011 from Cellartis AB and Ectycell SAS, possesses broad expertise in pluripotent stem cells, including iPS cell technology, genetic engineering and specialised cells. Cellectis stem cells is developing stem cell derived products and related services for drug discovery, toxicity testing and regenerative medicine applications.

For more information visit http://www.cellartis.com and http://www.cellectis.com

About Cellectis

Here is the original post:
Cellectis stem cells today proudly announces the launch of the world’s very first human iPS cell-derived hepatocyte ...

To Read More: Cellectis stem cells today proudly announces the launch of the world’s very first human iPS cell-derived hepatocyte …
categoriaUncategorized commentoComments Off on Cellectis stem cells today proudly announces the launch of the world’s very first human iPS cell-derived hepatocyte … | dataMay 21st, 2012
Read All

Frozen cord could save a life

By Dr. Matthew Watson

Tim and Padma Vellaichamy of Parramatta have had their new born child's umbilical cord stored cryogenically for future treatment. Pictured with their as yet unnamed three week old daughter. Picture: Adam Ward Source: The Daily Telegraph

IT'S current preservation for future regeneration - and now umbilical cord tissue is going on ice in Australia for the first time.

Usually discarded after birth, umbilical tissue from newborn babies is being collected and cryogenically frozen to be used one day for regenerative and stem cell medicine. And it doesn't just have potential for the babies involved, either. Experts say stem cells could also be used for family members who are genetically compatible.

It is hoped the cells will eventually be able to be used to repair damaged tissues and organs, with researchers investigating its uses for treating diseases like multiple sclerosis, cerebral palsy and diabetes, as well as for bone and cartilage repair.

Although cord blood storage has been available for many years, Cell Care Australia has added cord tissue storage in anticipation of new discoveries in the regenerative medicine field.

Cell Care Australia medical director associate professor Mark Kirkland said the storage process - already popular in the US, Europe and Southeast Asia - was long overdue for Australian shores.

"The science is developing around the world and we're really behind the rest of the world in providing parents the option to store these cells and we thought it was about time it was brought here," he said.

"It's finding a way to take what would otherwise be waste tissue and turning it into something of potential future value for not only your child but also potentially for other family members.'

Parramatta couple Tim and Padma Vellaichamy are among the first to use the service in Australia.

Mr Vellaichamy, 31, said he heard of the technology while working as a dentist in India and decided to store their daughter's cord cell tissue after birth three weeks ago.

More:
Frozen cord could save a life

To Read More: Frozen cord could save a life
categoriaUncategorized commentoComments Off on Frozen cord could save a life | dataMay 21st, 2012
Read All

Page 634«..1020..633634635636..640650..»


Copyright :: 2024