Page 636«..1020..635636637638..650660..»

Pluristem stem cells save girl's life

By Sykes24Tracey

Pluristem Therapeutics Ltd. (Nasdaq:PSTI; DAX: PJT: PLTR)has announced that a seven year-old girl suffering from an aplastic bone marrow whose condition was rapidly deteriorating has seen a reversal of her condition. The improvement came due to a significant increase in her red cells, white cells and platelets following the intramuscular injection of Pluristem's PLacental eXpanded (PLX) cells. Aplastic bone marrow is a disease where the patient has no blood-forming hematopoietic stem cells in the bone marrow.

Hadassah Medical Center Bone Marrow Transplantation, Cell Therapy and Transplantation Research Center director Prof. Reuven Or said, "With her body rejecting all possible treatment, and with no other options, we finally turned to Pluristem's PLX cells, which literally saved her life. The results of this unique case indicate that PLX cells may be effective in treating other diseases that affect the bone marrow."

The patient has been hospitalized at the Hadassah Hebrew University Medical Center in Jerusalem since August 2011. Her aplastic bone marrow had been refractory to treatment. So she underwent allogeneic stem cell transplantation from a matched unrelated donor. The first transplant was unsuccessful and the patient remained with bone marrow failure. The patient underwent a second allogeneic stem cell transplantation from a second donor. The bone marrow function was very poor and the patient suffered from recurrent infections.

Two months after the patient's second bone marrow transplant, the child received PLX cells intramuscularly in two doses about one week apart. Some 10 days after the last administration of PLX cells, the patient's hematological parameters began to significantly increase, an effect that has persisted to date. The patient's general clinical status has also improved. Subsequent analysis has indicated that the PLX cells worked by stimulating the recovery of the hematopoietic stem cells contained in the second bone marrow transplant that she had received over two months earlier. Finally, after nine months of hospitalization, the child will be discharged from the hospital.

Pluristem chairman and CEO Zami Alberman said, "Pluristem is extremely happy that our PLX cells have helped this little girl. Remarkably, these beneficial effects were seen in the patient after our PLX cells were administered intramuscularly and correlate with the positive effects on the bone marrow when we administered our PLX cells intramuscularly (IM) in animals exposed to toxic levels of radiation. Pluristem now has several data points to indicate that our PLX cells may work for systemic diseases when given locally, away from the target organ, and without a need to give cells intravenously."

In February 2012, Pluristem announced the results of animal studies suggesting PLX cells can be potentially effective in treating the life threatening hematopoietic complications associated with Acute Radiation Syndrome (ARS). In these experiments, animals given PLX cells IM up to 24 hours post irradiation demonstrated a recovery of their red cells, white cells, platelets and bone marrow to almost normal levels. It was that announcement, and the significant deterioration of the patient following two bone marrow transplants, that led Prof. Or to contact Pluristem about the possible compassionate use of PLX cells to treat his young patient.

Pluristem recently received US FDA clearance to begin a Phase II clinical trial using the company's proprietary PLX-PAD cell product candidate intramuscularly for the treatment of Intermittent Claudication (IC), a subset of peripheral artery disease (PAD).

Published by Globes, Israel business news - http://www.globes-online.com - on May 9, 2012

Copyright of Globes Publisher Itonut (1983) Ltd. 2012

Go here to see the original:
Pluristem stem cells save girl's life

To Read More: Pluristem stem cells save girl's life
categoriaBone Marrow Stem Cells commentoComments Off on Pluristem stem cells save girl's life | dataMay 10th, 2012
Read All

Gene-modified stem cell transplant protects patients from toxic side effects of chemotherapy, study suggests

By Sykes24Tracey

ScienceDaily (May 9, 2012) For the first time, scientists at Fred Hutchinson Cancer Research Center have transplanted brain cancer patients' own gene-modified blood stem cells in order to protect their bone marrow against the toxic side effects of chemotherapy. Initial results of the ongoing, small clinical trial of three patients with glioblastoma showed that two patients survived longer than predicted if they had not been given the transplants, and a third patient remains alive with no disease progression almost three years after treatment.

"We found that patients were able to tolerate the chemotherapy better and without negative side effects after transplantation of the gene-modified stem cells than patients in previous studies who received the same type of chemotherapy without a transplant of gene-modified stem cells," said Hans-Peter Kiem, M.D., senior and corresponding author of the study published in the May 9 issue of Science Translational Medicine.

Kiem, a member of the Clinical Research Division at the Hutchinson Center, said that a major barrier to effective use of chemotherapy to treat cancers like glioblastoma has been the toxicity of chemotherapy drugs to other organs, primarily bone marrow. This results in decreased blood cell counts, increased susceptibility to infections and other side effects. Discontinuing or delaying treatment or reducing the chemotherapy dose is generally required, but that often results in less effective treatment.

In the current study, Kiem and colleagues focused on patients with glioblastoma, an invariably fatal cancer. Many of these patients have a gene called MGMT (O6-methylguanine-DNA-methyltransferase) that is turned on because the promoter for this gene is unmethylated. MGMT is a DNA repair enzyme that counteracts the toxic effect of some chemotherapy agents like temozolomide. Patients with such an unmethylated promoter status have a particularly poor prognosis.

A drug called benzylguanine can block the MGMT gene and make tumor cells sensitive to chemotherapy again, but when given with chemotherapy, the toxic effects of this combination are too much for bone marrow cells, which results in marrow suppression.

By giving bone marrow stem cells P140K, which is a modified version of MGMT, those cells are protected from the toxic effects of benzylguanine and chemotherapy, while the tumor cells are still sensitive to chemotherapy. "P140K can repair the damage caused by chemotherapy and is impervious to the effects of benzylguanine," Kiem said.

"This therapy is analogous to firing at both tumor cells and bone marrow cells, but giving the bone marrow cells protective shields while the tumor cells are unshielded," said Jennifer Adair, Ph.D., who shares first authorship of the study with Brian Beard, Ph.D., both members of Kiem's lab.

The three patients in this study survived an average of 22 months after receiving transplants of their own circulating blood stem cells. One, an Alaskan man, remains alive 34 months after treatment. Median survival for patients with this type of high-risk glioblastoma without a transplant is just over a year.

"Glioblastoma remains one of the most devastating cancers with a median survival of only 12 to 15 months for patients with unmethylated MGMT," said Maciej Mrugala, M.D., the lead neuro oncologist for this study.

As many as 50 percent to 60 percent of glioblastoma patients harbor such chemotherapy-resistant tumors, which makes gene-modified stem cell transplant therapy applicable to a large number of these patients. In addition, there are also other brain tumors such as neuroblastoma or other solid tumors with MGMT-mediated chemo resistance that might benefit from this approach.

See original here:
Gene-modified stem cell transplant protects patients from toxic side effects of chemotherapy, study suggests

To Read More: Gene-modified stem cell transplant protects patients from toxic side effects of chemotherapy, study suggests
categoriaBone Marrow Stem Cells commentoComments Off on Gene-modified stem cell transplant protects patients from toxic side effects of chemotherapy, study suggests | dataMay 10th, 2012
Read All

Gene-modified stem cell transplant protects patients from toxic side effects of chemotherapy

By raymumme

Public release date: 9-May-2012 [ | E-mail | Share ]

Contact: Dean Forbes dforbes@fhcrc.org 206-667-2896 Fred Hutchinson Cancer Research Center

SEATTLE For the first time, scientists at Fred Hutchinson Cancer Research Center have transplanted brain cancer patients' own gene-modified blood stem cells in order to protect their bone marrow against the toxic side effects of chemotherapy. Initial results of the ongoing, small clinical trial of three patients with glioblastoma showed that two patients survived longer than predicted if they had not been given the transplants, and a third patient remains alive with no disease progression almost three years after treatment.

"We found that patients were able to tolerate the chemotherapy better and without negative side effects after transplantation of the gene-modified stem cells than patients in previous studies who received the same type of chemotherapy without a transplant of gene-modified stem cells," said Hans-Peter Kiem, M.D., senior and corresponding author of the study published in the May 9 issue of Science Translational Medicine.

Kiem, a member of the Clinical Research Division at the Hutchinson Center, said that a major barrier to effective use of chemotherapy to treat cancers like glioblastoma has been the toxicity of chemotherapy drugs to other organs, primarily bone marrow. This results in decreased blood cell counts, increased susceptibility to infections and other side effects. Discontinuing or delaying treatment or reducing the chemotherapy dose is generally required, but that often results in less effective treatment.

In the current study, Kiem and colleagues focused on patients with glioblastoma, an invariably fatal cancer. Many of these patients have a gene called MGMT (O6-methylguanine-DNA-methyltransferase) that is turned on because the promoter for this gene is unmethylated. MGMT is a DNA repair enzyme that counteracts the toxic effect of some chemotherapy agents like temozolomide. Patients with such an unmethylated promoter status have a particularly poor prognosis.

A drug called benzylguanine can block the MGMT gene and make tumor cells sensitive to chemotherapy again, but when given with chemotherapy, the toxic effects of this combination are too much for bone marrow cells, which results in marrow suppression.

By giving bone marrow stem cells P140K, which is a modified version of MGMT, those cells are protected from the toxic effects of benzylguanine and chemotherapy, while the tumor cells are still sensitive to chemotherapy. "P140K can repair the damage caused by chemotherapy and is impervious to the effects of benzylguanine," Kiem said.

"This therapy is analogous to firing at both tumor cells and bone marrow cells, but giving the bone marrow cells protective shields while the tumor cells are unshielded," said Jennifer Adair, Ph.D., who shares first authorship of the study with Brian Beard, Ph.D., both members of Kiem's lab.

The three patients in this study survived an average of 22 months after receiving transplants of their own circulating blood stem cells. One, an Alaskan man, remains alive 34 months after treatment. Median survival for patients with this type of high-risk glioblastoma without a transplant is just over a year.

Read more:
Gene-modified stem cell transplant protects patients from toxic side effects of chemotherapy

To Read More: Gene-modified stem cell transplant protects patients from toxic side effects of chemotherapy
categoriaBone Marrow Stem Cells commentoComments Off on Gene-modified stem cell transplant protects patients from toxic side effects of chemotherapy | dataMay 10th, 2012
Read All

Transplanted Gene-Modified Blood Stem Cells Protect Brain Cancer Patients From Toxic Side Effects of Chemotherapy

By Sykes24Tracey

Study is first to show feasibility and efficacy of a new use for autologous stem cell transplant

Newswise SEATTLE For the first time, scientists at Fred Hutchinson Cancer Research Center have transplanted brain cancer patients own gene-modified blood stem cells in order to protect their bone marrow against the toxic side effects of chemotherapy. Initial results of the ongoing, small clinical trial of three patients with glioblastoma showed that two patients survived longer than predicted if they had not been given the transplants, and a third patient remains alive with no disease progression almost three years after treatment.

We found that patients were able to tolerate the chemotherapy better and without negative side effects after transplantation of the gene-modified stem cells than patients in previous studies who received the same type of chemotherapy without a transplant of gene-modified stem cells, said Hans-Peter Kiem, M.D., senior and corresponding author of the study published in the May 9 issue of Science Translational Medicine.

Kiem, a member of the Clinical Research Division at the Hutchinson Center, said that a major barrier to effective use of chemotherapy to treat cancers like glioblastoma has been the toxicity of chemotherapy drugs to other organs, primarily bone marrow. This results in decreased blood cell counts, increased susceptibility to infections and other side effects. Discontinuing or delaying treatment or reducing the chemotherapy dose is generally required, but that often results in less effective treatment.

In the current study, Kiem and colleagues focused on patients with glioblastoma, an invariably fatal cancer. Many of these patients have a gene called MGMT (O6-methylguanine-DNA-methyltransferase) that is turned on because the promoter for this gene is unmethylated. MGMT is a DNA repair enzyme that counteracts the toxic effect of some chemotherapy agents like temozolomide. Patients with such an unmethylated promoter status have a particularly poor prognosis.

A drug called benzylguanine can block the MGMT gene and make tumor cells sensitive to chemotherapy again, but when given with chemotherapy, the toxic effects of this combination are too much for bone marrow cells, which results in marrow suppression.

By giving bone marrow stem cells P140K, which is a modified version of MGMT, those cells are protected from the toxic effects of benzylguanine and chemotherapy, while the tumor cells are still sensitive to chemotherapy. P140K can repair the damage caused by chemotherapy and is impervious to the effects of benzylguanine, Kiem said.

This therapy is analogous to firing at both tumor cells and bone marrow cells, but giving the bone marrow cells protective shields while the tumor cells are unshielded, said Jennifer Adair, Ph.D., who shares first authorship of the study with Brian Beard, Ph.D., both members of Kiems lab.

The three patients in this study survived an average of 22 months after receiving transplants of their own circulating blood stem cells. One, an Alaskan man, remains alive 34 months after treatment. Median survival for patients with this type of high-risk glioblastoma without a transplant is just over a year.

Glioblastoma remains one of the most devastating cancers with a median survival of only 12 to 15 months for patients with unmethylated MGMT, said Maciej Mrugala, M.D., the lead neuro oncologist for this study.

See the article here:
Transplanted Gene-Modified Blood Stem Cells Protect Brain Cancer Patients From Toxic Side Effects of Chemotherapy

To Read More: Transplanted Gene-Modified Blood Stem Cells Protect Brain Cancer Patients From Toxic Side Effects of Chemotherapy
categoriaBone Marrow Stem Cells commentoComments Off on Transplanted Gene-Modified Blood Stem Cells Protect Brain Cancer Patients From Toxic Side Effects of Chemotherapy | dataMay 10th, 2012
Read All

Treatment with Ixmyelocel-T Shown to Improve Outcomes in Heart Failure Patients

By Sykes24Tracey

LAS VEGAS, May 10, 2012 /PRNewswire/ -- An investigational therapyderived from a patient's own bone marrow stem cells improves heart function in some patients with progressive heart failure due to dilated cardiomyopathy (DCM), according to the results of a Phase 2a study presented today as a late-breaking clinical trial at the SCAI 2012 Scientific Sessions.

Ixmyelocel-T is developed by culturing a patient's bone marrow for 12 days to increase the numbers of immune cells including macrophages and monocytes, as well as mesenchymal cells, stem cells that can differentiate into several different cell types. The resulting cell treatment is then injected into the patient's heart muscles to encourage growth of new tissue and improve inflammation.

"An increasing number of patients have progressive heart failure due to dilated cardiomyopathy, even after treatment with drug therapy and surgical intervention," said Timothy Henry, MD, FSCAI, director of research and an interventional cardiologist at the Minneapolis Heart Institute at Abbott Northwestern Hospital, and the study's principal investigator. "In this study, patients treated with ixmyelocel-T showed repair in damaged heart muscle and some reversal in heart failure symptoms."

The trial included 22 ischemic (IDCM) and non-ischemic (NIDCM) patients with a New York Heart Association (NYHA) heart failure class of III or IV, or moderate to severe heart failure, and a left ventricular ejection fraction of 30 percent or less, which is a measure of how much blood leaves the heart with each pump. Patients were randomized to receive an injection of the treatment into their heart muscles or to a control group, and were followed at 3, 6 and 12 months.

After 12 months, no procedural complications and no difference in adverse events were reported among patients who received the treatment and the control group. IDCM patients who received the cell treatment had a lower mean number of major adverse clinical events (0.33 compared to 1.67 in the control group). IDCM patients who received the treatment were more likely to see improvement in NYHA class, six-minute walking distance and ejection fraction, compared to NIDCM patients who received the treatment and those in the control group.

"Treatment with ixmyelocel-T was well-tolerated and patients who received the cell therapy showed improved symptoms after one year," said Dr. Henry. "The results provide a strong basis for a larger clinical trial of this treatment in patients with dilated cardiomyopathy."

The study was sponsored by Aastrom Biosciences.

Dr. Henry will present "Safety and Efficacy ofIxmyelocel-T, An Expanded Patient-Specific Mixed Cell Therapy, in Dilated Cardiomyopathy" on Thursday, May 10, 2012, in the Late-Breaking Clinical Trials Session beginning at 12:00 p.m. (Pacific Time).

About SCAI

Headquartered in Washington, D.C., the Society for Cardiovascular Angiography and Interventions is a 4,000-member professional organization representing invasive and interventional cardiologists in approximately 70 nations. SCAI's mission is to promote excellence in invasive and interventional cardiovascular medicine through physician education and representation, and advancement of quality standards to enhance patient care. SCAI's patient education program, Seconds Count, offers comprehensive information about cardiovascular disease. For more information about SCAI and Seconds Count, visit http://www.scai.org or http://www.SecondsCount.org.

Read the original here:
Treatment with Ixmyelocel-T Shown to Improve Outcomes in Heart Failure Patients

To Read More: Treatment with Ixmyelocel-T Shown to Improve Outcomes in Heart Failure Patients
categoriaBone Marrow Stem Cells commentoComments Off on Treatment with Ixmyelocel-T Shown to Improve Outcomes in Heart Failure Patients | dataMay 10th, 2012
Read All

Stem cells boost brain tumor treatments for some patients, study finds

By Sykes24Tracey

(CBS News) Patients with brain cancer may face devastating side effects from chemotherapy, but a new study offers a possible solution: stem cells.

Yearly dental X-rays raise brain tumor risk, study finds

Memorial Hermann hospital in Houston to live tweet brain tumor surgery

The stem cells form a shield of sorts against the toxic side effects from chemo, according to the researchers behind the study. It was a small trial that involved only three patients with glioblastoma, the most aggressive and common form of a malignant brain tumor that's usually fatal.

Two of the patients survived longer than predicted with help from the stem cell treatment - an average of 22 months - and a third man from Alaska remains alive today with no disease progression almost three years following treatment.

How does it work?

Many patients with the deadly form of brain cancer possess a gene called MGMT. The MGMT gene is typically turned on and counters the effects from some chemotherapy agents, such as temozolomide, rendering them less effective. As such, people with such a gene often have a particularly poor prognosis.

A drug called benzylguanine can block the MGMT gene, thus making tumors more receptive to chemotherapy, but the combination of the drug and chemo are often too toxic for healthy bone marrow cells.

That's where the new stem cell treatment comes in. By combining bone marrow stem cells with a modified version of MGMT in the form of the new treatment, patients' cells were protected from the toxic effects of the cancer drugs and chemotherapy while keeping the tumor cells targeted.

"This therapy is analogous to firing at both tumor cells and bone marrow cells, but giving the bone marrow cells protective shields while the tumor cells are unshielded," study author Dr. Jennifer Adair, a researcher at the Fred Hutchinson Cancer Research Center in Seattle, said in a news release.

Read more:
Stem cells boost brain tumor treatments for some patients, study finds

To Read More: Stem cells boost brain tumor treatments for some patients, study finds
categoriaBone Marrow Stem Cells commentoComments Off on Stem cells boost brain tumor treatments for some patients, study finds | dataMay 10th, 2012
Read All

Compassionate Use of Pluristem's PLX Cells Saves the Life of a Child After Bone Marrow Transplantation Failure

By Dr. Matthew Watson

HAIFA, Israel, May 9, 2012 (GLOBE NEWSWIRE) -- Pluristem Therapeutics, Inc. (Nasdaq:PSTI - News) (TASE:PLTR) today announced that a seven year-old girl suffering from an aplastic bone marrow whose condition was rapidly deteriorating is now experiencing a reversal of her condition with a significant increase in her red cells, white cells and platelets following the intramuscular injection of the company's PLacental eXpanded (PLX) cells. Aplastic bone marrow is a disease where the patient has no blood-forming hematopoietic stem cells in the bone marrow.

"With her body rejecting all possible treatment -- and with no other options -- we finally turned to Pluristem's PLX cells, which literally saved her life," said Professor Reuven Or, Director of Bone Marrow Transplantation, Cell Therapy and Transplantation Research Center at Hadassah Medical Center and the child's physician. "The results of this unique case indicate that PLX cells may be effective in treating other diseases that affect the bone marrow."

The patient has been hospitalized at the Hadassah Hebrew University Medical Center, Jerusalem since August 2011. Her aplastic bone marrow had been refractory to treatment and, therefore, she underwent allogeneic stem cell transplantation from a matched unrelated donor. The first transplant was unsuccessful and the patient remained with bone marrow failure. Therefore, the patient underwent a second allogeneic stem cell transplantation from a second donor. Unfortunately, the bone marrow function was very poor and the patient suffered from recurrent infections. Approximately two months after the patient's second bone marrow transplant, the child received PLX cells intramuscularly in two doses approximately one week apart. Approximately 10 days after the last administration of PLX cells, the patient's hematological parameters began to significantly increase, an effect that has persisted to date. Additionally, the patient's general clinical status has improved. Subsequent analysis has indicated that the PLX cells worked by stimulating the recovery of the hematopoietic stem cells contained in the second bone marrow transplant that she had received over two months earlier. Finally, after nine months of hospitalization, the child will be discharged from the hospital.

"Pluristem is extremely happy that our PLX cells have helped this little girl," said Zami Aberman, Chairman and CEO of Pluristem. "Remarkably, these beneficial effects were seen in the patient after our PLX cells were administered intramuscularly and correlates with the positive effects on the bone marrow when we administered our PLX cells intramuscularly (IM) in animals exposed to toxic levels of radiation. Pluristem now has several data points to indicate that our PLX cells may work for systemic diseases when given locally, away from the target organ, and without a need to give cells intravenously."

In February 2012, Pluristem announced the results of animal studies suggesting PLX cells can be potentially effective in treating the life threatening hematopoietic complications associated with Acute Radiation Syndrome (ARS). In these experiments, animals given PLX cells IM up to 24 hours post irradiation demonstrated a recovery of their red cells, white cells, platelets and bone marrow to almost normal levels. It was that announcement, and the significant deterioration of the patient following two bone marrow transplants, that led Professor Reuven Or to contact Pluristem about the possible compassionate use of PLX cells to treat his young patient.

Pluristem recently received U.S. FDA Clearance to begin a Phase II clinical trial using the company's proprietary PLX-PAD cell product candidate intramuscularly for the treatment of Intermittent Claudication (IC), a subset of peripheral artery disease (PAD). In April, the Company was awarded a $3.1 Million grant by the Israeli Government, which will be used to help fund R&D and clinical trials.

About Pluristem Therapeutics Inc.

Pluristem Therapeutics Inc. (Nasdaq:PSTI - News) (TASE:PLTR) is a leading developer of placenta-based cell therapies. The Company's patented PLX (PLacental eXpanded) cells are a drug delivery platform that releases a cocktail of therapeutic proteins in response to a host of local and systemic inflammatory and ischemic diseases. PLX cells are grown using the company's proprietary 3D micro-environmental technology and are an "off-the-shelf" product that requires no tissue matching prior to administration. Pluristem is focusing on the use of PLX cells administered locally to treat systemic diseases and potentially obviating the need to use the intravenous route.

Data from two phase I/II studies indicate that Pluristem's first PLX product candidate, PLX-PAD, is safe and potentially effective for the treatment of end stage peripheral artery disease when given locally. Additionally, Pluristem is developing PLX-PAD for cardiac ischemia, PLX-BMP for Acute Radiation Exposure, Bone Marrow Transplant Failure and Chemotherapy induced Bone Marrow Aplasia, PLX-ORTHO for orthopedic indications and PLX-PAH for Pulmonary Hypertension in collaboration with United Therapeutics. Pluristem's pre-clinical animal models have demonstrated PLX cells are also potentially effective in other inflammatory/ischemic indications, including diastolic heart failure, inflammatory bowel disease, neuropathic pain and pulmonary fibrosis.

Pluristem has a strong patent portfolio, GMP certified manufacturing and research facilities as well as strategic relationships with major research institutions.

Read the original post:
Compassionate Use of Pluristem's PLX Cells Saves the Life of a Child After Bone Marrow Transplantation Failure

To Read More: Compassionate Use of Pluristem's PLX Cells Saves the Life of a Child After Bone Marrow Transplantation Failure
categoriaBone Marrow Stem Cells commentoComments Off on Compassionate Use of Pluristem's PLX Cells Saves the Life of a Child After Bone Marrow Transplantation Failure | dataMay 10th, 2012
Read All

Stem cell collaboration could set stage for company’s growth

By Sykes24Tracey

A stem cell breakthrough at UCLA could mark a big step for a biopharmaceutical company to use its proprietary technology to forge partnerships with pharmaceutical companies and other research institutions.

Fibrocell Sciences technology isolates, purifies and multiplies a patients fibroblast cells, connective skin cells that make collagen. In a research collaboration with the company, UCLA used the technology to isolate, identify and increase the number of different skin cell types, which lead to two rare adult stem cell-like subpopulations being identified in adult human skin SSEA3-expressing regeneration-associated cells associated with skin regeneration after injuries and mesenchymal adult stem cells.

The findings could have broad applications for personalized medicine. Currently, adult stem cells are derived from adipose tissue and bone marrow. Using mesenchymal stem cells would be less invasive and could be more efficient. Mesenchymal stem cells are being used in research to develop osteoblasts, or bone cells; chondrocytes, or cartilage cells; and adipocytes, or fat cells.

David Pernock, the chairman and CEO of Fibrocell, said the move could mark a significant step in the companys growth.

Follow this link:
Stem cell collaboration could set stage for company’s growth

To Read More: Stem cell collaboration could set stage for company’s growth
categoriaSkin Stem Cells commentoComments Off on Stem cell collaboration could set stage for company’s growth | dataMay 10th, 2012
Read All

International Stem Cell Corporation Announces New Stem Cell Manufacturing Technologies to Support its Therapeutic …

By LizaAVILA

CARLSBAD, Calif.--(BUSINESS WIRE)--

International Stem Cell Corporation (OTCBB: ISCO.OB - News) http://www.internationalstemcell.com today announced that the Company has developed new technologies to commercialize the use of human parthenogenetic stem cells (hpSC) to treat human diseases. The methods announced today are capable of producing populations of stem cells and their therapeutically valuable derivatives not only to a higher level of purity but also at a cost that is approximately several times lower than previously reported techniques.

ISCOs research team has developed a new method to derive high-purity populations of neural stem cells (NSC) from hpSC and further differentiate them into dopaminergic neurons. This method is capable of generating sufficient quantities of neuronal cells for ISCOs pre-clinical and clinical studies and is highly efficient as it requires substantially less time and labor in addition to using fewer costly materials than traditional methods. ISCOs technologies make possible the creation of billions of neuronal cells necessary for conducting such studies from a small batch of stem cells.

ISCO has also announced today that it has developed a new high-throughput cell culture method for growing human parthenogenetic stem cells (hpSC) in large quantities. This new technique is easily scalable and can produce the quantities of cGMP grade hpSC necessary for commercial and therapeutic applications.

One of the most challenging issues in commercializing stem cell based treatments is creating high-purity populations of stem cell derivatives at a reasonable cost. I believe the new methods we have developed solve this important problem and help position us for future clinical studies, says Dr. Ruslan Semechkin, Vice President, R&D.

About International Stem Cell Corporation

International Stem Cell Corporation is focused on the therapeutic applications of human parthenogenetic stem cells (hpSCs) and the development and commercialization of cell-based research and cosmetic products. ISCO's core technology, parthenogenesis, results in the creation of pluripotent human stem cells from unfertilized oocytes (eggs). hpSCs avoid ethical issues associated with the use or destruction of viable human embryos. ISCO scientists have created the first parthenogenic, homozygous stem cell line that can be a source of therapeutic cells for hundreds of millions of individuals of differing genders, ages and racial background with minimal immune rejection after transplantation. hpSCs offer the potential to create the first true stem cell bank, UniStemCell. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology, and stem cell-based skin care products through its subsidiary Lifeline Skin Care (www.lifelineskincare.com). More information is available at http://www.internationalstemcell.com or follow us on Twitter @intlstemcell.

To receive ongoing corporate communications, please click on the following link: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0.

Forward-looking Statements

Statements pertaining to anticipated developments, the potential benefits of research programs and new manufacturing technologies, and other opportunities for the company and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates,") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products and technologies regulatory approvals, need and ability to obtain future capital, application of capital resources among competing uses, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the company's business, particularly those mentioned in the cautionary statements found in the company's Securities and Exchange Commission filings. The company disclaims any intent or obligation to update forward-looking statements.

Visit link:
International Stem Cell Corporation Announces New Stem Cell Manufacturing Technologies to Support its Therapeutic ...

To Read More: International Stem Cell Corporation Announces New Stem Cell Manufacturing Technologies to Support its Therapeutic …
categoriaSkin Stem Cells commentoComments Off on International Stem Cell Corporation Announces New Stem Cell Manufacturing Technologies to Support its Therapeutic … | dataMay 10th, 2012
Read All

NY medical schools chart progress with stem cells

By LizaAVILA

ALBANY, N.Y. Almost halfway through a $600 million state program supporting stem cell research, eight medical schools around New York are reporting progress on projects such as replicating liver cells and eradicating leukemia cells.

Only on msnbc.com

A new report from Associated Medical Schools of New York updates work at the institutions where hundreds of researchers are starting to unravel causes and potential treatments for conditions ranging from autism to heart disease and cancer. Stem cells are self-renewing and have the ability to develop into other types of cells.

The Mount Sinai School of Medicine reported finding a method to transform human skin cells into stem cells and turned differentiated human stem cells into heart cells. Those findings are expected to result in better understanding of how heart disease develops and allow initial testing of new treatments on stem cells before they are used on human subjects.

Dr. Ihor Lemischka, director of the Black Family Stem Cell Institute at Mount Sinai, said recreating heart cells in a dish from a patient with LEOPARD Syndrome, a disease caused by a genetic mutation, has opened ongoing avenues for researching the disease and screening potential drugs.

"It was a major achievement," Lemischka said. The initial work was reported in June 2010 in the journal Nature.

The shared research facility at Mount Sinai supports the work at 80 different labs, Lemischka said.

The Empire State Stem Cell Program was intended to fund projects in early stages, including those that initially have been unable to get federal or private funding. Grants have also been used for capital projects like renovating labs and establishing new stem cell centers.

The Albert Einstein College of Medicine reported replicating liver cells that could help reduce the need for liver transplants using live donors and cadavers.

Dr. Allen Spiegel said 12 new researchers have been hired with state funding at the Bronx school, which also lists anemia, brain disorders, heart disease and obesity among its stem cell research subjects.

Go here to see the original:
NY medical schools chart progress with stem cells

To Read More: NY medical schools chart progress with stem cells
categoriaSkin Stem Cells commentoComments Off on NY medical schools chart progress with stem cells | dataMay 10th, 2012
Read All

Boston scientists grow lung tissue from cystic fibrosis patients’ skin cells

By JoanneRUSSELL25

By Carolyn Y. Johnson, Globe Staff

Two teams of Boston scientists have developed new ways to turn stem cells into different types of lung tissue, surmounting a major hurdle for scientists trying to harness the power of stem cell biology to study and develop treatments for major lung diseases.

One team then used skin cells from cystic fibrosis patients to create embryonic-like stem cells, then working in lab dishes used those cells to grow tissue that lines the airways and contains a defect responsible for the rare, fatal disease. The technique -- essentially a recipe for growing such lung tissue -- could provide a powerful platform to screen drugs and study the biology of the disease.

Growing lung tissue in the laboratory has long been a goal of stem cell scientists, but has been more technically difficult than growing other types of tissues, such as brain cells or heart cells. Such lung tissue is valuable because it could be used to screen potential drugs and more closely probe the problems that underlie diseases such as asthma, emphysema, and rare genetic diseases. Such techniques may also one day help researchers grow replacement tissues and devise ways to restore or repair injured lung tissue.

A team led by Massachusetts General Hospital researchers created lung tissue from a patient with the genetic mutation that most commonly underlies cystic fibrosis and researchers hope the technique will also be a powerful tool to study other diseases that affect the airway tissue, such as asthma and lung cancer. The other team, led by Boston University School of Medicine scientists, was able to derive cells that form the delicate air sacs of the lung from mouse embryonic stem cells. The team is hoping to refine the recipe for making the cells so that they can be used to derive lung tissue from a bank of 100 stem cell lines of patients with lung disease. Both papers were published Thursday in the journal Cell Stem Cell.

Vertex Pharmaceuticals, a Cambridge biotechnology company, earlier this year received approval for Kalydeco -- the first drug to directly target the underlying cause of cystic fibrosis. That compound was discovered by screening massive numbers of potential drugs against cells engineered to carry the same defect that underlies cystic fibrosis.

We had to use engineered cells, and certainly using more native human cells ... would be potentially beneficial, said Dr. Frederick Van Goor, head of biology for Vertexs cystic fibrosis research program. We had to rely on donor tissue obtained from patients with cystic fibrosis, and its a bit more challenging, because the number of donor lungs you can get and the number of cells you can derive from there are more limited.

Van Goor said it was too soon to say whether the company would use the new technology in screening, but noted that the tests the company had used to determine whether a drug was likely to work against the disease had, in some cases, given scientists false leads. Some molecules that worked on the engineered cells did not work in the complicated biology of the lung.

Its a significant event for the lung field, said Dr. Thiennu Vu, associate professor of medicine at the University of California San Francisco, who was not involved in the research. She added that much work remains before such cells could be used to repair or replace damaged tissue, and even before such cells would necessarily be useful for drug screening. It will be important, she said, to refine the recipe to ensure that the technique yields pure populations of the specific types of functional lung cells.

In the competitive world of science, where credit for being the first to do something is crucially important, the two research teams accomplishments are an unusual example of competitors turning into collaborators -- forging a relationship that both teams felt helped speed up progress.

See original here:
Boston scientists grow lung tissue from cystic fibrosis patients’ skin cells

To Read More: Boston scientists grow lung tissue from cystic fibrosis patients’ skin cells
categoriaSkin Stem Cells commentoComments Off on Boston scientists grow lung tissue from cystic fibrosis patients’ skin cells | dataMay 10th, 2012
Read All

Julio C. Voltarelli, Pioneer in Cell Transplantation, Dies at 63

By daniellenierenberg

Dr. Julio C. Voltarelli, who made a significant impact in cell transplantation, dies at 63

Distinguished Brazilian professor pioneered bone marrow transplantation

Newswise Tampa, Fla. (May. 9th , 2012) Julio C. Voltarelli, MD, PhD, professor at the Ribeiro Preto School of Medicine at the University of So Paulo, Brazil, died March 21, 2012 at the age of 63. Dr. Voltarelli, who was on the editorial board of the Cell Transplantation journal, published by Cognizant Communication Corporation, and an important factor in the journals success, was a distinguished stem cell researcher and head of the bone marrow transplantation unit at the Ribeiro Preto School of Medicine.

Dr. Voltarelli had a significant impact on Brazilian stem cell transplantation science, said Dr. Maria C. O. Rodrigues, Dr. Voltarellis longtime colleague. He was driven to bring the benefits of the newest cellular therapies to those with ALS, MS and type 1 diabetes. His efforts and dedication will be greatly missed.

Dr. Voltarelli, a graduate of the Ribeiro Preto School of Medicine, served post-doctoral fellowships at the University of California San Francisco, the Fred Hutchinson Cancer Research Center in Seattle, and the Scripps Research Institute in San Diego. He returned to Brazil in 1992 and started a highly ranked bone marrow transplantation program at the Ribeiro Preto School of Medicine. In 2002, Dr. Voltarelli initiated the schools research efforts in stem cell transplantation for autoimmune diseases, later focusing on diabetes, graft-versus-host disease and sickle cell anemia.

At the time of his death, Dr. Voltarelli, in addition to serving as head of the bone marrow transplantation unit, also served as research coordinator for the Center for Cellular Therapy at the So Paulo Research Foundation and the National Institute of Science and Technology in Stem Cells and Cell Therapy. He was recently elected president of the Brazilian Society of Bone Marrow Transplantation.

His publications included the first books on stem cell transplantation and clinical immunology written in Portuguese. He also founded the Brazilian Society of Stem Cell Transplantation.

His colleagues in Brazil called his lifelong contributions priceless and remembered him for his leadership skills, vision, and sense of humor.

# The Coeditor-in-chiefs for CELL TRANSPLANTATION are at the Center for Neuropsychiatry, China Medical University Hospital, TaiChung, Taiwan, and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, Shinn-Zong Lin, MD, PhD at shinnzong@yahoo.com.tw or Camillo Ricordi, MD at ricordi@miami.edu or David Eve, PhD at celltransplantation@gmail.com #

News release by Florida Science Communications http://www.sciencescribe.net

See the article here:
Julio C. Voltarelli, Pioneer in Cell Transplantation, Dies at 63

To Read More: Julio C. Voltarelli, Pioneer in Cell Transplantation, Dies at 63
categoriaUncategorized commentoComments Off on Julio C. Voltarelli, Pioneer in Cell Transplantation, Dies at 63 | dataMay 10th, 2012
Read All

Regenerative medicine: Could the ways animals regenerate hair and feathers help restore human fingers and toes?

By daniellenierenberg

ScienceDaily (May 10, 2012) This summer's action film, "The Amazing Spider-Man," is another match-up between the superhero and his nemesis the Lizard. Moviegoers and comic book fans alike will recall that the villain, AKA Dr. Curt Connors, was a surgeon who, after losing an arm, experimented with cell generation and reptilian DNA and was eventually able to grow back his missing limb.

The latest issue of the journal Physiology contains a review article that looks at possible routes that unlock cellular regeneration in general, and the principles by which hair and feathers regenerate themselves in particular.

The authors apply what is currently known about regenerative biology to the emerging field of regenerative medicine, which is being transformed from fantasy to reality.

Review Article

While the concept of regenerative medicine is relatively new, animals are well known to remake their hair and feathers regularly by normal regenerative physiological processes. In their review, the authors focus on (1) how extrafollicular environments can regulate hair and feather stem cell activities and (2) how different configurations of stem cells can shape organ forms in different body regions to fulfill changing physiological needs.

The review outlines previous research on the role of normal regeneration of hair and feathers throughout the lifespan of various birds and mammals. The researchers include what is currently known about the mechanism behind this re-growth, as well as what gaps still exist in the knowledge base and remain ripe for future research.

The review examines dozens of papers on normal "physiological regeneration" -- the re-growth that happens over the course of an animal's life and not in response to an injury. This regeneration takes place to accommodate different stages in an animal's life (e.g., replacing downy chick feathers with an adult chicken's, or replacing the fine facial hair of a young boy with the budding beard of an adolescent), or in response to various environmental conditions (e.g., cats shedding a thick winter coat in the summer heat but re-growing it when the seasons change again, or snowshoe hares switching from brown in the summer to white in the winter for camouflage).

These changes seem to respond both to internal cues such as physiology of the hair follicle itself, or external cues such as the environment, but the mechanisms behind these normal alterations are largely unknown. Stem cells inside the follicle prompt hair and feather regeneration, but researchers are still unsure how to guide those cells to form the shape, size, and orientation of these "skin appendages" so that controlled re-growth is possible. Additionally, scientists are still unsure how to re-grow hair on skin in people after severe injuries that lead to scar tissue.

Importance of the Findings

The reviewed studies suggest that while researchers are making headway in understanding how and why hair and feathers regenerate after normal loss or in response to different life stages, much still remains unknown. This missing knowledge could hold valuable clues to learning how to regenerate much more complicated and valuable structures after loss to injury, such as fingers and toes.

Read more from the original source:
Regenerative medicine: Could the ways animals regenerate hair and feathers help restore human fingers and toes?

To Read More: Regenerative medicine: Could the ways animals regenerate hair and feathers help restore human fingers and toes?
categoriaUncategorized commentoComments Off on Regenerative medicine: Could the ways animals regenerate hair and feathers help restore human fingers and toes? | dataMay 10th, 2012
Read All

Study Identifies Cell Subtypes For Potential Personalized Cellular Therapies

By Sykes24Tracey

Connie K. Ho for RedOrbit.com

A new study by researchers at the University of California, Los Angeles (UCLA) has discovered two adult stem cell-like subpopulations in adult human skin.

The findings allow for further research to be done in the area of personalized medicine and patient-specific cellular therapies.

The study, using technology from Fibrocell Science, allowed the researchers to identify and confirm two types of cells in human skin cell cultures; the possible source of stem cell-like subpopulations from skin biopsies would be faster to perform, painless, and less invasive than current extractions from adipose tissues and bone marrow.

The research, featured in the inaugural issue of BioResearch Open Access, discusses two subtypes of cells. BioResearch Open Access is a bimonthly, peer-reviewed journal. It features scientific topics like biochemistry, bioengineering, gene therapy, genetics, microbiology, neuroscience, regenerative medicine, stem cells, systems biology, tissue engineering and biomaterials, and virology.

Being able to identify two sub-populations of rare, viable and functional cells that behave like stem cells from within the skin is an important finding because both cell types have the potential to be investigated for diverse clinical applications, commented Dr. James A. Bryne, lead author of the report.

Brynes research, first at Stanford University then at UCLA, focused on reprogramming beginnings of cells from animals and then humans. A graduate of Cambridge University, Bryne studied the intra- and inter-species of epigenetic reprogramming. His work also highlighted how primate embryonic stem cells could be derived from somatic cell nuclear transfers.

The study published in BioResearch Open Access confirmed previous research that identified a rare population of cells in adult human skin that had a marker called stage-specific embryonic antigen 3 (SSEA3). Bryne and his colleagues found that there was an increase in the amount of SSEA3 expressing cells after injury to the human skin. It showed that the SSEA3 biomarker could be used to help identify and isolate cells with tissue-regenerative traits.

Finding these rare adult stem cell-like subpopulations in human skin is an exciting discovery and provides the first step towards purifying and expanding these cells to clinically relevant numbers for application to a variety of potential personalized cellular therapies for osteoarthritis, bone loss, injury and/or damage to human skin as well as many other diseases, remarked Bryne, an Assistant Professor of Molecular and Medical Pharmacology at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Bryne and his team used Fibrocell technology to collect cells from skin samples, cultured the cells in the lab, and purified them by fluorescence-activated cell sorting (FACS). The FACS tagged suspended cells with fluorescent markers for undifferentiated stem cells. The researchers were able to separate the rare cell subpopulations from other kinds of cells.

Originally posted here:
Study Identifies Cell Subtypes For Potential Personalized Cellular Therapies

To Read More: Study Identifies Cell Subtypes For Potential Personalized Cellular Therapies
categoriaUncategorized commentoComments Off on Study Identifies Cell Subtypes For Potential Personalized Cellular Therapies | dataMay 10th, 2012
Read All

New England Journal of Medicine Reports on Three Phase III REVLIMID® (lenalidomide) Trials in Patients with Newly …

By LizaAVILA

BOUDRY, Switzerland--(BUSINESS WIRE)--

Celgene International Srl, a subsidiary of Celgene Corporation (NASDAQ: CELG - News), today announced that results from three phase III studies evaluating the use of continuous REVLIMID (lenalidomide) treatment in newly diagnosed multiple myeloma (MM) patients or maintenance treatment with lenalidomide following autologous stem cell transplant were published online in the May 10, 2012 edition of the New England Journal of Medicine. All three publications highlight the expanding body of clinical evidence supporting lenalidomide treatment in these areas.

Continuous Lenalidomide Therapy (non-transplant eligible population):

The first article highlights a Celgene-sponsored study of continuous lenalidomide treatment in elderly patients newly diagnosed with multiple myeloma.

Continuous Lenalidomide Treatment for Newly Diagnosed Multiple Myeloma (MM-015)

This double-blind, phase III, multicenter, randomized study conducted by Celgene compared melphalanprednisonelenalidomide induction followed by lenalidomide maintenance (MPR-R), with melphalanprednisonelenalidomide (MPR), or melphalanprednisone (MP) followed by placebo in 459 patients aged 65 years with newly-diagnosed myeloma who were not eligible for autologous stem-cell transplant.

http://www.nejm.org/doi/full/10.1056/NEJMoa1112704

Post-transplant maintenance

The two additional articles published in the edition highlighted cooperative group studies that evaluated the use of lenalidomide maintenance following autologous stem cell transplant (ASCT).

In each of the studies, one funded by the National Cancer Institute and conducted by the Cancer and Leukemia Group B (CALGB) and one by the Intergroupe Francophone du Myelome (IFM), maintenance treatment with lenalidomide following ASCT resulted in delayed time to disease progression or death compared to placebo.

See the original post:
New England Journal of Medicine Reports on Three Phase III REVLIMID® (lenalidomide) Trials in Patients with Newly ...

To Read More: New England Journal of Medicine Reports on Three Phase III REVLIMID® (lenalidomide) Trials in Patients with Newly …
categoriaUncategorized commentoComments Off on New England Journal of Medicine Reports on Three Phase III REVLIMID® (lenalidomide) Trials in Patients with Newly … | dataMay 10th, 2012
Read All

Pluristem stem cell therapy saves a patient, shares jump

By Dr. Matthew Watson

Wed May 9, 2012 3:35pm BST

(Reuters) - Pluristem Therapeutics Inc said a 7-year old girl suffering from a bone marrow disease experienced a reversal of her condition after receiving its experimental stem cell therapy, sending the Israeli company's shares up 32 percent.

The girl, suffering from aplastic bone marrow in which the patient has no blood-forming stem cells, had a significant rise in her red cells, white cells and platelets following an injection of Pluristem's therapy -- PLacental eXpanded cells.

"The results of this unique case indicate that PLX cells may be effective in treating other diseases that affect the bone marrow," Reuven Or, the child's physician at Hadassah Medical Center, was quoted in a statement by Pluristem.

Last September, the company said animal studies showed that the therapy had the potential to treat blood tissue complications related with acute radiation syndrome, commonly called radiation sickness.

Last month, the U.S. health regulators gave a go ahead to the company to start a mid-stage trial of the therapy for treating Intermittent Claudication -- a subset of peripheral artery disease.

Pluristem shares, which have gained 5 percent since receiving the FDA nod for the mid-stage trial, were up 15 percent at $2.70 in morning trade on the Nasdaq. They touched a high of $3.10 earlier.

(Reporting by Esha Dey in Bangalore; Editing by Gopakumar Warrier)

Read the original post:
Pluristem stem cell therapy saves a patient, shares jump

To Read More: Pluristem stem cell therapy saves a patient, shares jump
categoriaUncategorized commentoComments Off on Pluristem stem cell therapy saves a patient, shares jump | dataMay 10th, 2012
Read All

Iranian researcher helps treating muscular dystrophy using stem cells

By daniellenierenberg

Source: ISNA, Tehran

Iranian researcher and lecturer Radbod Darabi jointly with his collogues from the University of Minnesota's Lillehei Heart Institute have effectively treated muscular dystrophy in mice using human stem cells derived from a new process which for the first time makes the production of human muscle cells from stem cells efficient and effective.

Radbod Darabi, MD, PhD with Rita Perlingeiro, PhD. (Credit: Image courtesy of University of Minnesota Academic Health Center)

The research outlines the strategy for the development of a rapidly dividing population of muscle-forming cells derived from induced pluripotent (iPS) cells.

IPS cells have all of the potential of embryonic stem (ES) cells, but are derived by reprogramming skin cells. They can be patient-specific, which renders them unlikely to be rejected, and do not involve the destruction of embryos.

This is the first time that human stem cells have been shown to be effective in the treatment of muscular dystrophy.

According to the researchers, there has been a significant lag in translating studies using mouse stem cells into therapeutically relevant studies involving human stem cells.

This lag has dramatically limited the development of cell therapies or clinical trials for human patients.

The latest research from the University of Minnesota provides the proof-of-principle for treating muscular dystrophy with human iPS cells, setting the stage for future human clinical trials.

As the researchers noted one of the biggest barriers to the development of cell-based therapies for neuromuscular disorders like muscular dystrophy has been obtaining sufficient muscle progenitor cells to produce a therapeutically effective response.

Read the rest here:
Iranian researcher helps treating muscular dystrophy using stem cells

To Read More: Iranian researcher helps treating muscular dystrophy using stem cells
categoriaSkin Stem Cells commentoComments Off on Iranian researcher helps treating muscular dystrophy using stem cells | dataMay 7th, 2012
Read All

Single cell triggers fibroid uterine tumor

By Sykes24Tracey

CHICAGO, May 5 (UPI) -- U.S. researchers say they've identified the molecular trigger of fibroid uterine tumors -- a single stem cell develops a mutation and grows uncontrollably.

Dr. Serdar Bulun, the chairman of obstetrics and gynecology at Northwestern University Feinberg School of Medicine and Northwestern Memorial Hospital, said the single cell activates other cells to join its frenzied expansion.

"It loses its way and goes wild," Bulun said in a statement. "No one knew how these came about before. The stem cells make up only 1.5 percent of the cells in the tumor, yet they are the essential drivers of its growth."

Dr. Masanori Ono, a post-doctoral student in Bulun's laboratory who was the study's lead author, said the stem cell that initiated the tumor carries a mutation called MED12.

Recently, mutations in the MED12 gene have been reported in the majority of uterine fibroid tissues. Once the mutation kicks off the abnormal expansion, the tumors grow in response to steroid hormones, particularly progesterone, Bulun said.

"Understanding how this mutation directs the tumor growth gives us a new direction to develop therapies," Bulun said in a statement.

The paper is published in the journal PLoS ONE.

See the rest here:
Single cell triggers fibroid uterine tumor

To Read More: Single cell triggers fibroid uterine tumor
categoriaUncategorized commentoComments Off on Single cell triggers fibroid uterine tumor | dataMay 7th, 2012
Read All

Complex cancer industry trial literature is too confusing for patients to understand

By Dr. Matthew Watson

By J. D. Heyes

Have you ever read something so complex and confusing that it frustrated you to
the point of distraction? Well, a new study has found that cancer trial
literature causes that kind of frustration - and may be misleading to patients
as well.

According to Prof. Mary Dixon-Woods, professor of Medical Sociology at the
University of Leicester Department of Health Sciences in Great Britain, a
number of cancer patients found information leaflets describing cancer trials
too long, too incomprehensible and too intimidating.

"These information sheets are poorly aligned with patients' information
needs and how they really make decisions about whether to join a cancer
trial," said Dixon-Woods, lead author of the research http://www.eurekalert.org/pub_releases/2012-03/uol-cti032612.php,
which was published in the international journal Sociology of Health and
Illness.

"Some patients did find them very useful, but many others paid them little
attention. They preferred to rely on discussions they had with their doctor to
make up their minds," she said. Read more…

Source:
http://feeds.feedburner.com/integratedmedicine

To Read More: Complex cancer industry trial literature is too confusing for patients to understand
categoriaIntegrative Medicine commentoComments Off on Complex cancer industry trial literature is too confusing for patients to understand | dataMay 6th, 2012
Read All

Johnson & Johnson (China) Investment Ltd. Acquires Guangzhou Bioseal … – MarketWatch (press release)

By Dr. Matthew Watson


The Star-Ledger - NJ.com
Johnson & Johnson (China) Investment Ltd. Acquires Guangzhou Bioseal ...
MarketWatch (press release)
GUANGZHOU, China, May 3, 2012 /PRNewswire via COMTEX/ -- Johnson & Johnson (China) Investment Ltd. today announced it has acquired Guangzhou Bioseal Biotechnology Co., Ltd. (Bioseal) a privately held biopharmaceutical company specializing in the design ...
Johnson & Johnson buys Chinese sealant makerBioscience Technology

all 4 news articles »

Source:
http://news.google.com/news?q=biotechnology&output=rss

To Read More: Johnson & Johnson (China) Investment Ltd. Acquires Guangzhou Bioseal … – MarketWatch (press release)
categoriaUncategorized commentoComments Off on Johnson & Johnson (China) Investment Ltd. Acquires Guangzhou Bioseal … – MarketWatch (press release) | dataMay 6th, 2012
Read All

Page 636«..1020..635636637638..650660..»


Copyright :: 2024