Page 496«..1020..495496497498..510520..»

First test of pluripotent stem cell therapy in monkeys is a success

By Dr. Matthew Watson

PUBLIC RELEASE DATE:

15-May-2014

Contact: Mary Beth O'Leary moleary@cell.com 617-397-2802 Cell Press

Researchers have shown for the first time in an animal that is more closely related to humans that it is possible to make new bone from stem-cell-like induced pluripotent stem cells (iPSCs) made from an individual animal's own skin cells. The study in monkeys reported in the Cell Press journal Cell Reports on May 15th also shows that there is some risk that those iPSCs could seed tumors, but that unfortunate outcome appears to be less likely than studies in immune-compromised mice would suggest.

"We have been able to design an animal model for testing of pluripotent stem cell therapies using the rhesus macaque, a small monkey that is readily available and has been validated as being closely related physiologically to humans," said Cynthia Dunbar of the National Heart, Lung, and Blood Institute. "We have used this model to demonstrate that tumor formation of a type called a 'teratoma' from undifferentiated autologous iPSCs does occur; however, tumor formation is very slow and requires large numbers of iPSCs given under very hospitable conditions. We have also shown that new bone can be produced from autologous iPSCs, as a model for their possible clinical application."

Autologous refers to the fact that the iPSCs capable of producing any tissue typein this case bonewere derived from the very individual that later received them. That means that use of these cells in tissue repair would not require long-term or possibly toxic immune suppression drugs to prevent rejection.

The researchers first used a standard recipe to reprogram skin cells taken from rhesus macaques. They then coaxed those cells to form first pluripotent stem cells and then cells that have the potential to act more specifically as bone progenitors. Those progenitor cells were then seeded onto ceramic scaffolds that are already in use by reconstructive surgeons attempting to fill in or rebuild bone. And, it worked; the monkeys grew new bone.

Importantly, the researchers report that no teratoma structures developed in monkeys that had received the bone "stem cells." In other experiments, undifferentiated iPSCs did form teratomas in a dose-dependent manner.

The researchers say that therapies based on this approach could be particularly beneficial for people with large congenital bone defects or other traumatic injuries. Although bone replacement is an unlikely "first in human" use for stem cell therapies given that the condition it treats is not life threatening, the findings in a primate are an essential step on the path toward regenerative clinical medicine.

"A large animal preclinical model for the development of pluripotent or other high-risk/high-reward generative cell therapies is absolutely required to address issues of tissue integration or homing, risk of tumor formation, and immunogenicity," Dunbar said. "The testing of human-derived cells in vitro or in profoundly immunodeficient mice simply cannot model these crucial preclinical safety and efficiency issues."

Read the rest here:
First test of pluripotent stem cell therapy in monkeys is a success

To Read More: First test of pluripotent stem cell therapy in monkeys is a success
categoriaUncategorized commentoComments Off on First test of pluripotent stem cell therapy in monkeys is a success | dataMay 15th, 2014
Read All

Stem cell therapy shows promise for MS in mouse model

By NEVAGiles23

PUBLIC RELEASE DATE:

15-May-2014

Contact: Mika Ono mikaono@scripps.ed 858-784-2052 Scripps Research Institute

LA JOLLA, CAMay 15, 2014Mice crippled by an autoimmune disease similar to multiple sclerosis (MS) regained the ability to walk and run after a team of researchers led by scientists at The Scripps Research Institute (TSRI), University of Utah and University of California (UC), Irvine implanted human stem cells into their injured spinal cords.

Remarkably, the mice recovered even after their bodies rejected the human stem cells. "When we implanted the human cells into mice that were paralyzed, they got up and started walking a couple of weeks later, and they completely recovered over the next several months," said study co-leader Jeanne Loring, a professor of developmental neurobiology at TSRI.

Thomas Lane, an immunologist at the University of Utah who co-led the study with Loring, said he had never seen anything like it. "We've been studying mouse stem cells for a long time, but we never saw the clinical improvement that occurred with the human cells that Dr. Loring's lab provided," said Lane, who began the study at UC Irvine.

The mice's dramatic recovery, which is reported online ahead of print by the journal Stem Cell Reports, could lead to new ways to treat multiple sclerosis in humans.

"This is a great step forward in the development of new therapies for stopping disease progression and promoting repair for MS patients," said co-author Craig Walsh, a UC Irvine immunologist.

Stem Cell Therapy for MS

MS is an autoimmune disease of the brain and spinal cord that affects more than a half-million people in North America and Europe, and more than two million worldwide. In MS, immune cells known as T cells invade the upper spinal cord and brain, causing inflammation and ultimately the loss of an insulating coating on nerve fibers called myelin. Affected nerve fibers lose their ability to transmit electrical signals efficiently, and this can eventually lead to symptoms such as limb weakness, numbness and tingling, fatigue, vision problems, slurred speech, memory difficulties and depression.

Read more:
Stem cell therapy shows promise for MS in mouse model

To Read More: Stem cell therapy shows promise for MS in mouse model
categoriaUncategorized commentoComments Off on Stem cell therapy shows promise for MS in mouse model | dataMay 15th, 2014
Read All

Stem Cells & Spinal Cord Injuries

By JoanneRUSSELL25

Stem cell therapy can be defined as a part of a group of new techniques, or technologies that rely on replacing diseased or dysfunctional cells with healthy, functioning ones. These new techniques are being applied experimentally to a wide range of human disorders, including many types of cancer, neurological diseases such as Parkinson's disease and ALS (Lou Gehrig's disease), spinal cord injuries, and diabetes.

Coalition for the Advancement of Medical Research The Coalition for the Advancement of Medical Research (CAMR) is comprised of nationally-recognized patient organizations, universities, scientific societies, foundations, and individuals with life-threatening illnesses and disorders, advocating for the advancement of breakthrough research and technologies in regenerative medicine - including stem cell research and somatic cell nuclear transfer - in order to cure disease and alleviate suffering.

Portraits of Hope Volunteer group of patients and their families and friends who believe that stem cell research has the potential to save the lives of those afflicted by many medical conditions, including spinal cord injury. Purpose is to show the faces and recount the stories of people who have such illnesses and present these "portraits" to federal and state legislators in request for government support.

Go here to see the original:
Stem Cells & Spinal Cord Injuries

To Read More: Stem Cells & Spinal Cord Injuries
categoriaSpinal Cord Stem Cells commentoComments Off on Stem Cells & Spinal Cord Injuries | dataMay 15th, 2014
Read All

Newborns a hope for spinal injuries

By raymumme

Content by UTS

UTS researchers are experimenting with spinal cord tissue.

It all started at a symposium five years ago. Catherine Gorrie, an expert in spinal cord injury, was listening to a presentation about the differences between the developing brains of children and the mature ones of adults when she had an aah-haa moment.

I began to wonder if there is something in the spines of children that could be manipulated for repair, says Dr Gorrie, a neuroscientist at the University of Technology, Sydney (UTS). It made sense. Dr Gorrie already knew that the more adaptable, or plastic, spinal cords of infants responded more efficiently to injury than did those of adults.

If she could tease out the factors that encouraged generic cells, so-called stem cells, in the spines of newborns to become new nerve cells, neurones, Dr Gorrie reasoned that it should be possible to mimic the process and help repair spinal cord injuries in people of all ages. That would be incredibly important because, to date, there is no cure for spinal cord injury and no proven drug treatment.

The most effective treatments available involve the surgical stabilisation of the spinal column and extensive physical therapy to provide some functional improvement, Dr Gorrie says. There is nothing else.

Advertisement

In Australia, about 10,000 people live with spinal cord injury and 300-400 new cases emerge every year. Most injuries are a result of car accidents, sporting activities or severe falls.

Childhood spinal cord injury is frequently the result of tumours that compress the spine, crushing neurones which transmit signals to and from the brain.

As the notion of exploiting the biomechanical properties of infant spinal cords took shape in her mind, Dr Gorrie pulled together a team of UTS researchers: Dr Matt Padula, Dr Hui Chen and doctoral students Thomas Cawsey and Yilin Mao.

Go here to see the original:
Newborns a hope for spinal injuries

To Read More: Newborns a hope for spinal injuries
categoriaSpinal Cord Stem Cells commentoComments Off on Newborns a hope for spinal injuries | dataMay 15th, 2014
Read All

Bone Marrow Stem Cells – Dr. Steenblock- Regenerative Medicine

By NEVAGiles23

Bone Marrow Stem Cells

Dr. Steenblock performing a bone marrow stem cell treatment

The latest discovery in the world of natural medical therapies is STEM CELLS!

You have within you a powerful set of tools to repair your body and keep you healthy. The future of medicine is NOT better drugs but better use and application of your bodys own stem cells. As of now stem cell-rich tissue can be extracted from your hip with virtually no discomfort and used to help restore your body. This opens up an exciting new horizon in terms of preventing and treating disease and tackling the symptoms of aging if not aging itself. Already, patients are returning to Dr. Steenblock for additional bone marrow treatments because they are seeing that their gray or white hair is turning back to its original color. Their skin not infrequently looks younger too and they report having more energy and less arthritic aches and pains!

Over the past six years, Dr. Steenblock and his medical team have done over 2,000 bone marrow procedures with much success. Contrary to the conventional painful methods used, he and his colleagues have developed an almost painless approach to extract bone marrow and the hidden trove of stem cells contained within. Using the patients own bone marrow rather than someone elses has totally eliminated the risk of graft versus host disease and the need for toxic chemotherapy to suppress the immune system. Since Dr. Steenblock is merely transferring stem cells from a persons bones into their blood stream there is never an allergic or rejection type of reaction since these are the patients own cells. The results have at times been phenomenal especially for those under 40 and for those who are really physically fit and walk or run a lot every day. The stronger an individuals bones are the better the bone marrow stem cells are. Even children that are paralyzed and who do not put weight on their legs are generally not going to have good results unless add another facet is added to their treatment. For those people who do not walk much, are not physically fit and who are older than 40, Dr. Steenblock generally recommends that they undergo five successive daily injections of a natural bone marrow mobilizer called Neupogen (Filgrastim) beginning 19 days before they come to his office for their bone marrow treatment(s). The ideal treatment for anyone with a complicated health issue is to first have certain tests done to determine if they have any problems that could interfere with the treatments success. These tests include standard blood tests for anemia, hormones, metabolism, infections, autoimmunity, inflammation and special tests for heavy metal poisons and intestinal infections and infestations. If problems are discovered with these tests then the underlying problem should be corrected before beginning the process of using the Neupogen and the scheduling of the bone marrow treatment(s). The word marrows is pleural intentionally because a person in general has a better result if more stem cells are given. By having two bone marrow procedures on successive days an individual will double the number of stem cells they receive. For example, if a 60 year old sedentary person comes in and does only one bone marrow treatment Dr. Steenblock will generally extract about 400 milliliters of stem cell-rich bone marrow (buffy coat after centrifugation) which is put directly back into the blood stream by intravenous means. The number of active, healthy stem cells in this simple procedure may only be 100 million and these in general will not be as healthy or as active as they will be if the patient first has any known or potential impediments to their post-infusion activity eliminated and they are given the 5 daily injections of Neupogen. When a person comes to the clinic 14 days after their last Neupogen injection, that same 400 ml of bone marrow will have somewhere between 500 and 1000 million stem cells and then if they repeat the process the next day they will get another 500-1000 million stem cells. By this combination of eradicating infections, correcting other problems discovered using our testing, and then using Neupogen followed by two bone marrow treatments patients will be receiving well over a billion stem cells.

Benefits of Bone Marrow Stem Cells

What is the secret behind the successes Dr. Steenblock has seen with the bone marrow treatments? While bone marrow transplants have been done for the past 50 years for cancer patients and those with blood disorders, the whole bone marrow procedure done by Dr. Steenblock is different because it is so SIMPLE! He uses a persons own bone marrow and instead of isolating one type of stem cell, he takes and uses the whole raw bone marrow which contains a rich variety of stem and progenitor cells. In fact, bone marrow is rich in two different types of stem cells: One type turns into blood cells, blood vessels, and cells of the immune system and are called hematopoietic stem cells (heme meaning blood-related). The other type of stem cell is the support (stromal or mesenchymal) stem cell that produces bone, fat, tendons, skin, muscles and connective tissue. Recent research shows that these hematopoietic and the support stem cells are also able to divide into all types of brain cells, including glial cells (white matter) and neurons (gray matter). The bone marrow also contains retinal progenitor cells and several patients have actually commented on how their vision improved as a side benefit of their bone marrow procedure. These two type of stem cells work better together in a ratio of one hematopoietic to 4 to 8 support (stromal or mesenchymal) stem cells which is the ratio found normally in most peoples bone marrow.

In regard to its anti-aging effects, the bone marrow contains primitive progenitor cells that are associated with the early development of the fetus. These primitive cells reside dormant deep inside each of our bones and sport a virginal profile from early development in that these stem cells are generally resting and not active. This inactivity protects them from chemicals or stresses that induce mutations such as occurs in those bone marrow stem cells that are located in the more superficial areas of the bone which are constantly making red and white blood cells. When these primitive, more pure cells are released into a persons system, there can be a revitalization of the body that physiologically sets the clock back in-a-way since these stem cells get into all parts of the body and produce more growth factors than would otherwise be possible. It is this increase in growth factors that induces the regenerative processes. For those that can afford it Dr. Steenblock uses growth factors oriented toward improving the organs that are diseased. For example, if a patients chief problem is their lungs then he may suggest some lung growth factors to be taken right along with the Neupogen and then continued for 6 weeks to help push the stem cells into becoming more like lung tissue cells.

Bottom line: Bone marrow stem cells have the potential to repair damaged tissues and organs. Whether a person wants an anti-aging treatment or needs the procedure to repair damage in joints, liver, kidneys, heart or brain, bone marrow transplants is an efficient and sure way to flood their body with stem cells.

Read the original:
Bone Marrow Stem Cells - Dr. Steenblock- Regenerative Medicine

To Read More: Bone Marrow Stem Cells – Dr. Steenblock- Regenerative Medicine
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Stem Cells – Dr. Steenblock- Regenerative Medicine | dataMay 15th, 2014
Read All

Stem Cells to The Rescue: Repairing The Hearts

By Dr. Matthew Watson

FRESNO, Calif. (KFSN) --

"Grace is what's carried me through this," Minch told Ivanhoe.

Ten years ago, at just 49, the choir singer and her husband were told she would need a quadruple bypass.

"Now we are at the point where my heart is severely damaged and nothing is really helping," Minch said.

Doctors said a heart transplant was her only option, but she'll soon find out if she'll be accepted into a new trial that could use her own stem cells to help repair the once thought irreversible damage, "or even create new blood vessels within areas of the heart that have been damaged," Jon George, MD, Interventional Cardiologist, Temple University School of Medicine, told Ivanhoe.

First, stem cells are taken from a patient's bone marrow. Then using a special catheter and 3D mapping tool, the cells are injected directly into the damaged tissue.

"We have results from animal data that show blood vessels regrow in the patients that actually get stem cell therapy," Dr. George said.

It's a possible answer to Debbie's prayers.

Temple University Hospital is currently pre-screening patients for the trial. For more information, call 215-707-5340.

------

Read the original here:
Stem Cells to The Rescue: Repairing The Hearts

To Read More: Stem Cells to The Rescue: Repairing The Hearts
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cells to The Rescue: Repairing The Hearts | dataMay 15th, 2014
Read All

Stem Cells Make Heart Disease-on-a-Chip

By Dr. Matthew Watson

Harvard scientists have merged stem cell and organ-on-a-chip technologies to grow, for the first time, functioning human heart tissue carrying an inherited cardiovascular disease. The research appears to be a big step forward for personalized medicine because it is working proof that a chunk of tissue containing a patient's specific genetic disorder can be replicated in the laboratory.

The work, published in May 2014 in Nature Medicine, is the result of a collaborative effort bringing together scientists from the Harvard Stem Cell Institute, the Wyss Institute for Biologically Inspired Engineering, Boston Children's Hospital, the Harvard School of Engineering and Applied Sciences, and Harvard Medical School. It combines the organs-on-chips expertise of Kevin Kit Parker, PhD, and stem cell and clinical insights by William Pu, MD.

A release from Harvard explains that using their interdisciplinary approach, the investigators modeled the cardiovascular disease Barth syndrome, a rare X-linked cardiac disorder caused by mutation of a single gene called Tafazzin, or TAZ. The disorder, which is currently untreatable, primarily appears in boys, and is associated with a number of symptoms affecting heart and skeletal muscle function.

The researchers took skin cells from two Barth syndrome patients, and manipulated the cells to become stem cells that carried these patients' TAZ mutations. Instead of using the stem cells to generate single heart cells in a dish, the cells were grown on chips lined with human extracellular matrix proteins that mimic their natural environment, tricking the cells into joining together as they would if they were forming a diseased human heart. The engineered diseased tissue contracted very weakly, as would the heart muscle seen in Barth syndrome patients. The investigators then used genome editinga technique pioneered by Harvard collaborator George Church, PhDto mutate TAZ in normal cells, confirming that this mutation is sufficient to cause weak contraction in the engineered tissue. On the other hand, delivering the TAZ gene product to diseased tissue in the laboratory corrected the contractile defect, creating the first tissue-based model of correction of a genetic heart disease. The release quotes Parker as saying, "You don't really understand the meaning of a single cell's genetic mutation until you build a huge chunk of organ and see how it functions or doesn't function. In the case of the cells grown out of patients with Barth syndrome, we saw much weaker contractions and irregular tissue assembly. Being able to model the disease from a single cell all the way up to heart tissue, I think that's a big advance."

Furthermore, the scientists discovered that the TAZ mutation works in such a way to disrupt the normal activity of mitochondria, often called the power plants of the cell for their role in making energy. However, the mutation didn't seem to affect overall energy supply of the cells. In what could be a newly identified function for mitochondria, the researchers describe a direct link between mitochondrial function and a heart cell's ability to build itself in a way that allows it to contract. "The TAZ mutation makes Barth syndrome cells produce an excess amount of reactive oxygen species or ROSa normal byproduct of cellular metabolism released by mitochondriawhich had not been recognized as an important part of this disease," said Pu, who cares for patients with the disorder. "We showed that, at least in the laboratory, if you quench the excessive ROS production then you can restore contractile function," Pu added. "Now, whether that can be achieved in an animal model or a patient is a different story, but if that could be done, it would suggest a new therapeutic angle." His team is now trying to translate this finding by doing ROS therapy and gene replacement therapy in animal models of Barth syndrome to see if anything could potentially help human patients. At the same time, the scientists are using their human 'heart disease-on-a-chip' as a testing platform for drugs that are potentially under trial or already approved that might be useful to treat the disorder.

"We tried to thread multiple needles at once and it certainly paid off," Parker said. "I feel that the technology that we've got arms industry and university-based researchers with the tools they need to go after this disease." Both Parker and Pu, who first talked about collaborating at a 2012 Stockholm conference, credit their partnership and scientific consilience for the success of this research. Parker asserted that the 'organs-on-chips' technology that has been a flagship of his lab only worked so fast and well because of the high quality of Pu's patient-derived cardiac cells. "When we first got those cells down on the chip, Megan, one of the joint first authors, texted me 'this is working,'" he recalled. "We thought we'd have a much harder fight." "When I'm asked what's unique about being at Harvard, I always bring up this story," Pu said. "The diverse set of people and cutting-edge technology available at Harvard certainly made this study possible." The researchers also involved in this work include: Joint first authors Gang Wang, MD, of Boston Children's Hospital, and Megan McCain, PhD, who earned her degree at the Harvard School of Engineering and Applied Sciences and is now an assistant professor at the University of Southern California. Amy Roberts, MD, of Boston Children's Hospital, and Richard Kelley, MD, PhD, at the Kennedy Krieger Institute provided patient data and samples, and Frdric Vaz, PhD, and his team at the Academic Medical Center in the Netherlands conducted additional analyses. Technical protocols were shared by Kenneth Chien, MD, PhD, at the Karolinska Institutet.

Kevin Kit Parker, PhD, is the Tarr Family Professor of Bioengineering and Applied Physics in Harvard's School of Engineering and Applied Sciences, a Core Faculty member of the Wyss Institute for Biologically Inspired Engineering, and a Principal Faculty member of the Harvard Stem Cell Institute. William Pu, MD, is an Associate Professor at Harvard Medical School, a member of the Department of Cardiology at Boston Children's Hospital, and an Affiliated Faculty member of the Harvard Stem Cell Institute. George Church, PhD, is a Professor of Genetics at Harvard Medical School and a Core Faculty member of the Wyss Institute of Biologically Inspired Engineering. The work was supported by the Barth Syndrome Foundation, Boston Children's Hospital, the National Institutes of Health, and charitable donations from Edward Marram, Karen Carpenter, and Gail Federici Smith.

More:
Stem Cells Make Heart Disease-on-a-Chip

To Read More: Stem Cells Make Heart Disease-on-a-Chip
categoriaSkin Stem Cells commentoComments Off on Stem Cells Make Heart Disease-on-a-Chip | dataMay 15th, 2014
Read All

BioTime Announces First Quarter 2014 Results and Recent Developments

By Sykes24Tracey

BioTimes efforts in the first quarter of 2014 were focused on advancing near-term products through clinical trials while also preparing certain novel stem cell-based therapeutics for clinical trials later this year. Enrollment in three diagnostic clinical studies has remained rapid, with completion expected later in 2014. Following the successful safety trial of ReneviaTM, we have made rapid progress in preparing for the pivotal ReneviaTM trial during the second half of the year, said Michael D. West, Ph.D., BioTimes Chief Executive Officer. At our subsidiary Asterias Biotherapeutics, we have been preparing to initiate a new Phase 1/2a clinical trial of OPC1 for the treatment of spinal cord injury in 2014, pending clearance from the FDA, and also preparing our VAC2 cancer vaccine for a potential clinical trial. Also in the quarter, BioTimes subsidiary Cell Cure Neurosciences Ltd. advanced preclinical development of OpRegen for a planned IND filing in 2014 for the treatment of age-related macular degeneration.

We have continued to develop our subsidiaries businesses, commented Dr. West. Shares of the Series A common stock of our subsidiary Asterias Biotherapeutics, Inc. are now scheduled to begin trading publicly this summer following Gerons distribution of those shares to its stockholders, for which a record date of May 28th has been set. We were also pleased to recently announce that LifeMap Solutions, Inc., a newly organized subsidiary of our LifeMap Sciences, Inc., has entered into an agreement with a major medical center to create innovative mobile health (mHealth) products powered by biomedical and other personal big data.

As the industry leader in regenerative medicine with over 600 patents and patent applications worldwide, BioTime and its subsidiaries have assembled a broad array of strategically important regenerative medicine technologies and assets for the development of therapeutic and diagnostic products, Dr. West continued. Our expenditure levels were higher than usual during the fourth quarter and the recently ended first quarter, but our recent progress in streamlining our workforce through shared core resources among our subsidiaries should reduce our cash burn rate and optimize value for our shareholders during this exciting time in the companys history. We would like to thank our long-term investors for their continued support and our collaborators at leading academic medical institutions for their help in advancing our products toward our goal of helping patients who have serious unmet medical needs.

First Quarter and Recent Highlighted Corporate Accomplishments

Financial Results

Revenue

For the quarter ended March 31, 2014, on a consolidated basis, total revenue was $1.1 million, up $0.5 million from $0.6 million for the same period one year ago. The increase in first quarter revenue is primarily attributable to grant income awarded to BioTimes subsidiary Cell Cure Neurosciences Ltd. from Israels Office of the Chief Scientist.

Expenses

Operating expenses for the three months ended March 31, 2014 were $12.1 million, compared to expenses of $8.8 million for the same period of 2013. The increase in operating expenses is primarily attributable to an increase in staffing and the expansion of research and development efforts of Asterias and the amortization expense of intangible assets recorded in connection with the Geron stem cell asset acquisition in October 2013.

Net Loss

See the rest here:
BioTime Announces First Quarter 2014 Results and Recent Developments

To Read More: BioTime Announces First Quarter 2014 Results and Recent Developments
categoriaIPS Cell Therapy commentoComments Off on BioTime Announces First Quarter 2014 Results and Recent Developments | dataMay 15th, 2014
Read All

Regeneus’ stem cell therapy a treatment option for …

By LizaAVILA

Regeneus Limited regeneus.com.au Full Regeneus Limited profile here

Regeneus Limited (ASX:RGS) is a regenerative medicine company that develops and commercialises proprietary technologies for the preparation of point-of-care and off-the-shelf cell therapies.

Regeneus' stem cell therapy a treatment option for neuropathic pain

Regeneus (ASX: RGS) is investigating the use of its HiQCell stem cell therapy for treating neuropathic pain, extending its use beyond treating musculoskeletal conditions, such as osteoarthritis.

This is after the publication of a paper in the Journal of Pain Research describing safety and early efficacy data for the use of HiQCell in patients suffering from persistent, severe and intolerable pain in the face and dental region.

Neuropathic pain affects up to 6% of the population.

This new study confirms that the therapy appears to offer a viable new treatment option. Regeneus Clinical Development Director Dr Richard Lilischkis said that to date the pioneering work of HiQCell has focused on the treatment of musculoskeletal conditions, such as osteoarthritis.

Following extensive research and development, we are working with our medical specialist partners to offer a therapeutic treatment option for patients suffering with neuropathic pain, he added.

We look forward to continuing offering stem cell clinical treatment options with North Shore Specialist Day Hospital to deliver high quality outcomes for patients.

Regeneus will continue to explore pain more generally and how HiQCell could be applied to other indications.

Read the original here:
Regeneus' stem cell therapy a treatment option for ...

To Read More: Regeneus’ stem cell therapy a treatment option for …
categoriaUncategorized commentoComments Off on Regeneus’ stem cell therapy a treatment option for … | dataMay 15th, 2014
Read All

Neil Riordan, PhD Presents at American Academy of Anti-Aging Medicine's 22nd Annual World Congress on Anti-Aging …

By NEVAGiles23

Orlando, FL (PRWEB) May 13, 2014

Neil Riordan, PhD will Present Umbilical Cord Mesenchymal Stem Cells (MSC) in the Treatment of Autoimmune Diseases at the 22nd Annual World Congress on Anti-Aging, Regenerative and Aesthetic Medicine at the Gaylord Palms Hotel in Orlando, Florida as part of the Specialty Workshop: Stem Cells in Anti-Aging Medicine: An Update.

The primary focus of this workshop is to teach medical professionals how to successfully incorporate stem cell treatments into their practices. Expert faculty will cover stem cell theory and clinical trial research for all aspects of regenerative medicine as well as stem cell treatment marketing.

Dr. Riordan will discuss: Allogeneic mesenchymal stem cells mechanisms of immune modulating activities; the importance of MSC placement for clinical effect; human clinical trials demonstrating efficacy; alternative routes of MSC delivery; dose and frequency; and clinical safety of MSC.

The conference will be held from May 15 17, 2014 at the Gaylord Palms Hotel in Orlando, Florida. For more information, please visit http://www.a4m.com/anti-aging-conference-orlando-2014-may.html.

About Neil Riordan PhD

Dr. Riordan is the founder and chairman of Medistem Panama, Inc., (MPI) a leading stem cell laboratory and research facility located in the Technology Park at the prestigious City of Knowledge in Panama City, Panama. Founded in 2007, MPI stands at the forefront of applied research on adult stem cells for several chronic diseases. MPI's stem cell laboratory is ISO 9001 certified and fully licensed by the Panamanian Ministry of Health. Dr. Riordan is the founder of Stem Cell Institute (SCI) in Panama City, Panama (est. 2007).

Under the umbrella of MPI subsidiary Translational Biosciences, MPI and SCI are currently conducting five IRB-approved clinical trials in Panama for multiple sclerosis, rheumatoid arthritis and osteoarthritis using human umbilical cord-derived mesenchymal stem cells, mesenchymal trophic factors and stromal vascular fraction. Additional trials for spinal cord injury, autism and cerebral palsy are slated to commence in 2014 upon IRB approval.

Dr. Riordan is an accomplished inventor listed on more than 25 patent families, including 11 issued patents. He is credited with a number of novel discoveries in the field of cancer research since the mid-1990s when he collaborated with his father Dr. Hugh Riordan on the effects of high-dose intravenous vitamin C on cancer cells and the tumor microenvironment. This pioneering study on vitamin Cs preferential toxicity to cancer cells notably led to a 1997 patent grant for the treatment of cancer with vitamin C. In 2010, Dr. Riordan received another patent for a new cellular cancer vaccine.

Dr. Riordan is also the founder of Aidan Products, which provides health care professionals with quality nutraceuticals including Stem-Kine, the only nutritional supplement that is clinically proven to increase the amount of circulating stem cells in the body for an extended period of time. Stem-Kine is currently sold in 35 countries.

The rest is here:
Neil Riordan, PhD Presents at American Academy of Anti-Aging Medicine's 22nd Annual World Congress on Anti-Aging ...

To Read More: Neil Riordan, PhD Presents at American Academy of Anti-Aging Medicine's 22nd Annual World Congress on Anti-Aging …
categoriaSpinal Cord Stem Cells commentoComments Off on Neil Riordan, PhD Presents at American Academy of Anti-Aging Medicine's 22nd Annual World Congress on Anti-Aging … | dataMay 13th, 2014
Read All

Stem cell technology points to early indicators of schizophrenia

By NEVAGiles23

Using new stem cell technology, scientists at the Salk Institute have shown that neurons generated from the skin cells of people with schizophrenia behave strangely in early developmental stages, providing a hint as to ways to detect and potentially treat the disease early.

The findings of the study, published online in April's Molecular Psychiatry, support the theory that the neurological dysfunction that eventually causes schizophrenia may begin in the brains of babies still in the womb.

"This study aims to investigate the earliest detectable changes in the brain that lead to schizophrenia," says Fred H. Gage, Salk professor of genetics. "We were surprised at how early in the developmental process that defects in neural function could be detected."

Currently, over 1.1 percent of the world's population has schizophrenia, with an estimated three million cases in the United States alone. The economic cost is high: in 2002, Americans spent nearly $63 billion on treatment and managing disability. The emotional cost is higher still: 10 percent of those with schizophrenia are driven to commit suicide by the burden of coping with the disease.

Although schizophrenia is a devastating disease, scientists still know very little about its underlying causes, and it is still unknown which cells in the brain are affected and how. Previously, scientists had only been able to study schizophrenia by examining the brains of patients after death, but age, stress, medication or drug abuse had often altered or damaged the brains of these patients, making it difficult to pinpoint the disease's origins.

The Salk scientists were able to avoid this hurdle by using stem cell technologies. They took skin cells from patients, coaxed the cells to revert back to an earlier stem cell form and then prompted them to grow into very early-stage neurons (dubbed neural progenitor cells or NPCs). These NPCs are similar to the cells in the brain of a developing fetus.

The researchers generated NPCs from the skin cells of four patients with schizophrenia and six people without the disease. They tested the cells in two types of assays: in one test, they looked at how far the cells moved and interacted with particular surfaces; in the other test, they looked at stress in the cells by imaging mitochondria, which are tiny organelles that generate energy for the cells.

On both tests, the Salk team found that NPCs from people with schizophrenia differed in significant ways from those taken from unaffected people.

In particular, cells predisposed to schizophrenia showed unusual activity in two major classes of proteins: those involved in adhesion and connectivity, and those involved in oxidative stress. Neural cells from patients with schizophrenia tended to have aberrant migration (which may result in the poor connectivity seen later in the brain) and increased levels of oxidative stress (which can lead to cell death).

These findings are consistent with a prevailing theory that events occurring during pregnancy can contribute to schizophrenia, even though the disease doesn't manifest until early adulthood. Past studies suggest that mothers who experience infection, malnutrition or extreme stress during pregnancy are at a higher risk of having children with schizophrenia. The reason for this is unknown, but both genetic and environmental factors likely play a role.

Excerpt from:
Stem cell technology points to early indicators of schizophrenia

To Read More: Stem cell technology points to early indicators of schizophrenia
categoriaSkin Stem Cells commentoComments Off on Stem cell technology points to early indicators of schizophrenia | dataMay 13th, 2014
Read All

New Stem Cell Research Points to Early Indicators of Schizophrenia

By Dr. Matthew Watson

Contact Information

Available for logged-in reporters only

Newswise LA JOLLAUsing new stem cell technology, scientists at the Salk Institute have shown that neurons generated from the skin cells of people with schizophrenia behave strangely in early developmental stages, providing a hint as to ways to detect and potentially treat the disease early.

The findings of the study, published online in April's Molecular Psychiatry, support the theory that the neurological dysfunction that eventually causes schizophrenia may begin in the brains of babies still in the womb.

"This study aims to investigate the earliest detectable changes in the brain that lead to schizophrenia," says Fred H. Gage, Salk professor of genetics. "We were surprised at how early in the developmental process that defects in neural function could be detected."

Currently, over 1.1 percent of the world's population has schizophrenia, with an estimated three million cases in the United States alone. The economic cost is high: in 2002, Americans spent nearly $63 billion on treatment and managing disability. The emotional cost is higher still: 10 percent of those with schizophrenia are driven to commit suicide by the burden of coping with the disease.

Although schizophrenia is a devastating disease, scientists still know very little about its underlying causes, and it is still unknown which cells in the brain are affected and how. Previously, scientists had only been able to study schizophrenia by examining the brains of patients after death, but age, stress, medication or drug abuse had often altered or damaged the brains of these patients, making it difficult to pinpoint the disease's origins.

The Salk scientists were able to avoid this hurdle by using stem cell technologies. They took skin cells from patients, coaxed the cells to revert back to an earlier stem cell form and then prompted them to grow into very early-stage neurons (dubbed neural progenitor cells or NPCs). These NPCs are similar to the cells in the brain of a developing fetus.

The researchers generated NPCs from the skin cells of four patients with schizophrenia and six people without the disease. They tested the cells in two types of assays: in one test, they looked at how far the cells moved and interacted with particular surfaces; in the other test, they looked at stress in the cells by imaging mitochondria, which are tiny organelles that generate energy for the cells.

On both tests, the Salk team found that NPCs from people with schizophrenia differed in significant ways from those taken from unaffected people.

See more here:
New Stem Cell Research Points to Early Indicators of Schizophrenia

To Read More: New Stem Cell Research Points to Early Indicators of Schizophrenia
categoriaSkin Stem Cells commentoComments Off on New Stem Cell Research Points to Early Indicators of Schizophrenia | dataMay 13th, 2014
Read All

Cancer Stem Cells Under the Microscope at Albert Einstein College of Medicine Symposium

By LizaAVILA

Contact Information

Available for logged-in reporters only

Newswise May 13, 2014 (BRONX, NY) Healthy stem cells work to restore or repair the bodys tissues, but cancer stem cells have a more nefarious mission: to spawn malignant tumors. Cancer stem cells were discovered a decade ago, but their origins and identity remain largely unknown.

Today, the Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research at Albert Einstein College of Medicine of Yeshiva University hosted its second Stem Cell Symposium, focusing on cancer stem cells. Leading scientists from the U.S., Canada and Belgium discussed the latest advances in the field and highlighted the challenges of translating this knowledge into targeted cancer treatments.

These exceptional scientists are pioneers in the field and have made enormous contributions to our understanding of the biology of stem cells and cancer, said Paul Frenette, M.D., director and chair of Einsteins Stem Cell Institute and professor of medicine and of cell biology. Hopefully this symposium will spark productive dialogues and collaborations among the researchers who attend.

The presenters were:

Cancer Stem Cells and Malignant Progression, Robert A. Weinberg, Ph.D., Daniel K. Daniel K. Ludwig Professor for Cancer Research Director, Ludwig Center of the Massachusetts Institute of Technology; Member, Whitehead Institute for Biomedical Research Towards Unification of Cancer Stem Cell and Clonal Evolution Models of Intratumoral Heterogeneity, John Dick, Ph.D., Canada Research Chair in Stem Cell Biology and senior scientist, Princess Margaret Cancer Center, University Health Network; professor of molecular genetics, University of Toronto Normal and Neoplastic Stem Cells, Irving L. Weissman, M.D., Director, Institute for Stem Cell Biology and Regenerative Medicine and Director, Stanford Ludwig Center for Cancer Stem Cell Research and Medicine; Professor of Pathology and Developmental Biology, Stanford University School of Medicine Cell Fate Decisions During Tumor Formation, Leonard I. Zon, M.D., Grousbeck Professor of Pediatric Medicine, Director, Stem Cell Research Program, Howard Hughes Medical Institute/Boston Children's Hospital, Harvard Medical School Skin Stem Cells in Silence, Action and Cancer, Elaine Fuchs, Ph.D., Rebecca C. Lancefield Professor, Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute/The Rockefeller University Mechanism Regulating Stemness in Skin Cancer, Cdric Blanpain, M.D., Ph.D., professor of stem cell and developmental biology, WELBIO, Interdisciplinary Research Institute, Universit Libre de Bruxelles Mouse Models of Malignant GBM: Cancer Stem Cells and Beyond, Luis F. Parada, Ph.D., professor and chairman, Diana K and Richard C. Strauss Distinguished Chair in Developmental Biology; Director, Kent Waldrep Foundation Center for Basic Neuroscience Research; Southwestern Ball Distinguished Chair in Nerve Regeneration Research, University of Texas Southwestern Medical Center

***

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nations premier centers for research, medical education and clinical investigation. During the 2013-2014 academic year, Einstein is home to 734 M.D., 236 Ph.D. students, 106 students in the combined M.D./Ph.D. program, and 353 postdoctoral research fellows. The College of Medicine has more than 2,000 full-time faculty members located on the main campus and at its clinical affiliates. In 2013, Einstein received more than $155 million in awards from the National Institutes of Health (NIH). This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Its partnership with Montefiore Medical Center the University Hospital and academic medical center for Einstein, advances clinical and translational research to accelerate the pace at which new discoveries become the treatments and therapies that benefit patients. Through its extensive affiliation network involving Montefiore, Jacobi Medical CenterEinsteins founding hospital, and five other hospital systems in the Bronx, Manhattan, Long Island and Brooklyn, Einstein runs one of the largest residency and fellowship training programs in the medical and dental professions in the United States. For more information, please visit http://www.einstein.yu.edu, read our blog, follow us on Twitter, like us on Facebook, and view us on YouTube.

See the rest here:
Cancer Stem Cells Under the Microscope at Albert Einstein College of Medicine Symposium

To Read More: Cancer Stem Cells Under the Microscope at Albert Einstein College of Medicine Symposium
categoriaUncategorized commentoComments Off on Cancer Stem Cells Under the Microscope at Albert Einstein College of Medicine Symposium | dataMay 13th, 2014
Read All

Stem cell research offers new hope

By daniellenierenberg

May 14, 2014, 4 a.m.

STEM cell therapy is the great frontier of todays medical research.

STEM cell therapy is the great frontier of todays medical research.

While still in its infancy, stem cell technology has already moved from being a promising idea to delivering life-saving treatment for conditions such as leukaemia.

Last week about 70 people gathered at the Mid City Motel, Warrnambool, to hear about the advances from one of Australias leading researchers.

Stem cell researcher, Professor Graham Jenkin.

Professor Graham Jenkin, of the department of obstetrics and gynaecology at Monash University, is researching the use of stem cells harvested from umbilical cord blood to treat babies at risk of developing cerebral palsy as the result of oxygen deprivation during birth.

The event was hosted by the Warrnambool branch of the Inner Wheel Club as part of a national fund-raising program by the organisation.

Professor Jenkin, deputy director of The Ritchie Centre, said treating infants deprived of oxygen with cord blood stem cells was showing promising results in preventing the brain damage that leads to cerebral palsy.

We are looking at treating infants within a 24-hour window after birth, Professor Jenkin said. We would be aiming for treatment after about six hours if possible, which is about as soon as the stem cells can be harvested.

See the original post here:
Stem cell research offers new hope

To Read More: Stem cell research offers new hope
categoriaUncategorized commentoComments Off on Stem cell research offers new hope | dataMay 13th, 2014
Read All

Stem cell and 'organ-on-a-chip' merger step forward for personalized meds

By Sykes24Tracey

Home > News > technology-news

Washington, May 12 : Researchers have merged stem cell and 'organ-on-a-chip' technologies to grow, for the first time, functioning human heart tissue carrying an inherited cardiovascular disease.

The research appears to be a big step forward for personalized medicine, as it is working proof that a chunk of tissue containing a patient's specific genetic disorder can be replicated in the laboratory.

Using their interdisciplinary approach, the investigators modeled the cardiovascular disease Barth syndrome, a rare X-linked cardiac disorder caused by mutation of a single gene called Tafazzin, or TAZ. The disorder, which is currently untreatable, primarily appears in boys, and is associated with a number of symptoms affecting heart and skeletal muscle function.

The researchers took skin cells from two Barth syndrome patients, and manipulated the cells to become stem cells that carried these patients' TAZ mutations. Instead of using the stem cells to generate single heart cells in a dish, the cells were grown on chips lined with human extracellular matrix proteins that mimic their natural environment, tricking the cells into joining together as they would if they were forming a diseased human heart.

The engineered diseased tissue contracted very weakly, as would the heart muscle seen in Barth syndrome patients.

The investigators then used genome editinga technique pioneered by Harvard collaborator George Church, PhDto mutate TAZ in normal cells, confirming that this mutation is sufficient to cause weak contraction in the engineered tissue.

On the other hand, delivering the TAZ gene product to diseased tissue in the laboratory corrected the contractile defect, creating the first tissue-based model of correction of a genetic heart disease.

Furthermore, the scientists discovered that the TAZ mutation works in such a way to disrupt the normal activity of mitochondria, often called the power plants of the cell for their role in making energy.

However, the mutation didn't seem to affect overall energy supply of the cells. In what could be a newly identified function for mitochondria, the researchers describe a direct link between mitochondrial function and a heart cell's ability to build itself in a way that allows it to contract.

Read the original:
Stem cell and 'organ-on-a-chip' merger step forward for personalized meds

To Read More: Stem cell and 'organ-on-a-chip' merger step forward for personalized meds
categoriaCardiac Stem Cells commentoComments Off on Stem cell and 'organ-on-a-chip' merger step forward for personalized meds | dataMay 13th, 2014
Read All

STEMCELL Technologies Inc. Launches Novel Cell Culture Medium to Advance Research on Mouse Mesenchymal Stem and …

By Sykes24Tracey

Vancouver, British Columbia (PRWEB) May 12, 2014

STEMCELL Technologies Inc. has just released NEW MesenCult Proliferation Kit with MesenPure (Mouse), a novel cell culture medium to advance research on mouse mesenchymal stem and progenitor cells (MSCs).

When added to MesenCult medium, MesenPure supplement enriches mouse bone marrow- or compact bone-derived MSC cultures by reducing the number of hematopoietic cells. Culturing with MesenPure eliminates the time-intensive serial passaging steps and frequent cell culture medium changes normally required to decrease the unwanted hematopoietic cell population typically present in MSC cultures. Cultures treated with MesenPure appear homogeneous and mostly devoid of hematopoietic cells as early as passage zero and also contain increased numbers of mesenchymal stem cells that display more robust differentiation.

This easy-to-use and versatile kit, may save researchers from having to wait several weeks for homogeneous MSC cultures, explains Dr. Arthur Sampaio, Senior Scientist at STEMCELL Technologies. But, I think the greatest advantage to using MesenPure may be the ability to use lower-passage cultures. It has been shown that over time, extended passaging can bring about detrimental changes to MSCs, such as a loss of phenotype, senescence, and a decrease in the homing ability and differentiation potential of the cells. By using the MesenCult Proliferation Kit with MesenPure, researchers will be able to study lower passage mouse MSCs, increasing their ability to evaluate the true potential of these cells.

For more information or to request a free sample, please visit http://www.stemcell.com/freemesenpure.

Read the original:
STEMCELL Technologies Inc. Launches Novel Cell Culture Medium to Advance Research on Mouse Mesenchymal Stem and ...

To Read More: STEMCELL Technologies Inc. Launches Novel Cell Culture Medium to Advance Research on Mouse Mesenchymal Stem and …
categoriaBone Marrow Stem Cells commentoComments Off on STEMCELL Technologies Inc. Launches Novel Cell Culture Medium to Advance Research on Mouse Mesenchymal Stem and … | dataMay 13th, 2014
Read All

'Heart Disease-On-A-Chip' Made From Patient Stem Cells

By daniellenierenberg

Image Caption: Researchers use modified RNA transfection to correct genetic dysfunction in heart stem cells derived from Barth syndrome patients. The series of images show how inserting modified RNA into diseased cells causes the cells to produce functioning versions of the TAZ protein (first image: in green) that correctly localize in the mitochondria (second image: in red). When the images are merged to demonstrate this localization, green overlaps with red, giving the third image a yellow color. Credit: Gang Wang and William Pu/Boston Children's Hospital

[ Watch The Video: Cardiac Tissue Contractile Strength Differences Shown Using Heart-On-A-Chip ]

Harvard University

Harvard scientists have merged stem cell and organ-on-a-chip technologies to grow, for the first time, functioning human heart tissue carrying an inherited cardiovascular disease. The research appears to be a big step forward for personalized medicine, as it is working proof that a chunk of tissue containing a patients specific genetic disorder can be replicated in the laboratory.

The work, published in Nature Medicine, is the result of a collaborative effort bringing together scientists from the Harvard Stem Cell Institute, the Wyss Institute for Biologically Inspired Engineering, Boston Childrens Hospital, the Harvard School of Engineering and Applied Sciences, and Harvard Medical School. It combines the organs-on-chips expertise of Kevin Kit Parker, PhD, and stem cell and clinical insights by William Pu, MD.

Using their interdisciplinary approach, the investigators modeled the cardiovascular disease Barth syndrome, a rare X-linked cardiac disorder caused by mutation of a single gene called Tafazzin, or TAZ. The disorder, which is currently untreatable, primarily appears in boys, and is associated with a number of symptoms affecting heart and skeletal muscle function.

The researchers took skin cells from two Barth syndrome patients, and manipulated the cells to become stem cells that carried these patients TAZ mutations. Instead of using the stem cells to generate single heart cells in a dish, the cells were grown on chips lined with human extracellular matrix proteins that mimic their natural environment, tricking the cells into joining together as they would if they were forming a diseased human heart. The engineered diseased tissue contracted very weakly, as would the heart muscle seen in Barth syndrome patients.

The investigators then used genome editinga technique pioneered by Harvard collaborator George Church, PhDto mutate TAZ in normal cells, confirming that this mutation is sufficient to cause weak contraction in the engineered tissue. On the other hand, delivering the TAZ gene product to diseased tissue in the laboratory corrected the contractile defect, creating the first tissue-based model of correction of a genetic heart disease.

You dont really understand the meaning of a single cells genetic mutation until you build a huge chunk of organ and see how it functions or doesnt function, said Parker, who has spent over a decade working on organs-on-chips technology. In the case of the cells grown out of patients with Barth syndrome, we saw much weaker contractions and irregular tissue assembly. Being able to model the disease from a single cell all the way up to heart tissue, I think thats a big advance.

Furthermore, the scientists discovered that the TAZ mutation works in such a way to disrupt the normal activity of mitochondria, often called the power plants of the cell for their role in making energy. However, the mutation didnt seem to affect overall energy supply of the cells. In what could be a newly identified function for mitochondria, the researchers describe a direct link between mitochondrial function and a heart cells ability to build itself in a way that allows it to contract.

Read the original:
'Heart Disease-On-A-Chip' Made From Patient Stem Cells

To Read More: 'Heart Disease-On-A-Chip' Made From Patient Stem Cells
categoriaSkin Stem Cells commentoComments Off on 'Heart Disease-On-A-Chip' Made From Patient Stem Cells | dataMay 13th, 2014
Read All

Cord Banking, Cell Therapy Helps Treat Deadly Diseases

By NEVAGiles23

SPRINGFIELD, Mo. -- A child with a life threatening disease is heart wrenching for parents. Suddenly they are faced with no easy way to get a match for stem cells that could save their child.

With cell therapy, there is a way to do that but it starts in the delivery room.

Delanie Rinne's fourth child, Ezekial, was born earlier this year and even though he'll get older; proof of that day is being stored at Core23 BioBank in Springfield.

"We decided to look into banking the cord blood because we know that this is probably our last biological child," says Rinne.

Core23 stores your child's blood, plasma or tissue from the umbilical cord to help treat 81 different diseases.

"If I had a child that has Leukemia and I was pregnant then that would be a treatment option."

Emily and Michael Perry opened the private cord bank as another option for parents.

"We see that cell therapy is surpassing bone marrow, we truly believe that it is the medicine of the future."

"Cell therapy is taking a healthy, viable cell and putting it into somebody's body to treat a disease or a condition."

The process starts in the delivery room and ends in a hydrogen tank in their lab.

Here is the original post:
Cord Banking, Cell Therapy Helps Treat Deadly Diseases

To Read More: Cord Banking, Cell Therapy Helps Treat Deadly Diseases
categoriaUncategorized commentoComments Off on Cord Banking, Cell Therapy Helps Treat Deadly Diseases | dataMay 13th, 2014
Read All

Top Beverly Hills Pain Management Doctors at BZ Pain Now Offering Stem Cell Procedures for Joint Arthritis for Pain …

By JoanneRUSSELL25

Beverly Hills, California (PRWEB) May 12, 2014

The top Beverly Hills pain management doctors at BZ Pain are now offering stem cell procedures for those with joint arthritis and pain. The outpatient regenerative medicine procedures are typically able to relieve pain and help patients avoid the need for joint replacement surgery of the shoulder, hip, knee and ankle. Call (310) 626-1526 for more information and scheduling.

Over a million joint replacement procedures are performed each year in America. These procedures should be considered an absolute last resort, since the implants are not meant to last forever. There are potential complications with joint replacement.

Therefore, stem cell procedures are an excellent option. They often help repair and regenerate damaged tissue, which is very different than what occurs with steroid injections. The stem cell procedures include options derived from amniotic fluid, fat tissue, or one's bone marrow.

Initial studies are showing the benefits of stem cell procedures for degenerative arthritis. With exceptionally low risk, there is a significant upside with the stem cell pain management therapies.

Dr. Zarrini at BZ Pain is a Double Board Certified Los Angeles pain management doctor, and is able to provide both medical and interventional therapies. The procedures do not involve any fetal tissue or embryonic stem cells. The procedures may help degenerative disease symptoms in the shoulder, hip, knee and ankle to name a few joints.

For those interested in stem cell therapy Los Angeles and Beverly Hills trusts, call BZ Pain today at (310) 626-1526.

Read the rest here:
Top Beverly Hills Pain Management Doctors at BZ Pain Now Offering Stem Cell Procedures for Joint Arthritis for Pain ...

To Read More: Top Beverly Hills Pain Management Doctors at BZ Pain Now Offering Stem Cell Procedures for Joint Arthritis for Pain …
categoriaUncategorized commentoComments Off on Top Beverly Hills Pain Management Doctors at BZ Pain Now Offering Stem Cell Procedures for Joint Arthritis for Pain … | dataMay 13th, 2014
Read All

Patient stem cells used to make 'heart disease-on-a-chip'

By NEVAGiles23

PUBLIC RELEASE DATE:

11-May-2014

Contact: Joseph Caputo joseph_caputo@harvard.edu 617-496-1491 Harvard University

Cambridge, MAHarvard scientists have merged stem cell and 'organ-on-a-chip' technologies to grow, for the first time, functioning human heart tissue carrying an inherited cardiovascular disease. The research appears to be a big step forward for personalized medicine, as it is working proof that a chunk of tissue containing a patient's specific genetic disorder can be replicated in the laboratory.

The work, published in Nature Medicine, is the result of a collaborative effort bringing together scientists from the Harvard Stem Cell Institute, the Wyss Institute for Biologically Inspired Engineering, Boston Children's Hospital, the Harvard School of Engineering and Applied Sciences, and Harvard Medical School. It combines the 'organs-on-chips' expertise of Kevin Kit Parker, PhD, and stem cell and clinical insights by William Pu, MD.

Using their interdisciplinary approach, the investigators modeled the cardiovascular disease Barth syndrome, a rare X-linked cardiac disorder caused by mutation of a single gene called Tafazzin, or TAZ. The disorder, which is currently untreatable, primarily appears in boys, and is associated with a number of symptoms affecting heart and skeletal muscle function.

The researchers took skin cells from two Barth syndrome patients, and manipulated the cells to become stem cells that carried these patients' TAZ mutations. Instead of using the stem cells to generate single heart cells in a dish, the cells were grown on chips lined with human extracellular matrix proteins that mimic their natural environment, tricking the cells into joining together as they would if they were forming a diseased human heart. The engineered diseased tissue contracted very weakly, as would the heart muscle seen in Barth syndrome patients.

The investigators then used genome editinga technique pioneered by Harvard collaborator George Church, PhDto mutate TAZ in normal cells, confirming that this mutation is sufficient to cause weak contraction in the engineered tissue. On the other hand, delivering the TAZ gene product to diseased tissue in the laboratory corrected the contractile defect, creating the first tissue-based model of correction of a genetic heart disease.

"You don't really understand the meaning of a single cell's genetic mutation until you build a huge chunk of organ and see how it functions or doesn't function," said Parker, who has spent over a decade working on 'organs-on-chips' technology. "In the case of the cells grown out of patients with Barth syndrome, we saw much weaker contractions and irregular tissue assembly. Being able to model the disease from a single cell all the way up to heart tissue, I think that's a big advance."

Furthermore, the scientists discovered that the TAZ mutation works in such a way to disrupt the normal activity of mitochondria, often called the power plants of the cell for their role in making energy. However, the mutation didn't seem to affect overall energy supply of the cells. In what could be a newly identified function for mitochondria, the researchers describe a direct link between mitochondrial function and a heart cell's ability to build itself in a way that allows it to contract.

See the original post:
Patient stem cells used to make 'heart disease-on-a-chip'

To Read More: Patient stem cells used to make 'heart disease-on-a-chip'
categoriaCardiac Stem Cells commentoComments Off on Patient stem cells used to make 'heart disease-on-a-chip' | dataMay 11th, 2014
Read All

Page 496«..1020..495496497498..510520..»


Copyright :: 2024