Is a loophole in stem cell law helping new therapy to thrive, or allowing dubious science?
By Dr. Matthew Watson
Life-changing results: Sandra Sharman is a private stem cell patient. Photo: Meredith O'Shea
Last week, Suzie Palmer, 44, travelled from her home in NSW to the Gold Coast for her second round of stem cell treatments for multiple sclerosis. OnTuesday morning,the wheelchair-bound poet underwent liposuction.
By 2.30pm, stem cells had been partially separated from her abdominal fat, suspended in plasma, and injected intravenously. Her doctor, Soraya Felix, is a cosmetic surgeon and molecular biologist with a sideline in regenerative medicine.
Palmer, a relentlessly upbeat and positive person, says the treatments have helped her cope better with heat, improved her mobility and flexibility and otherwise made her "feel like a normal human being". She has, she says, managed a few steps with a walker, still a long way from "running about, which is my dream".
Poster girl: Suzie Palmer is undergoing stem cell therapy for MS. Photo: Edwina Pickles
The rapidly growing stem cell industry is aglow with similarly positive testimonials, notably on behalf of practitioners who offer little documented scientific evidence of their success.
Advertisement
Suzie Palmer is literally the poster girl for stem cell tourism within Australia. You can find her smiling sweetly, along with Dr Felix, on the Facebook page of a group called the Adult Stem Cell Foundation. She is one of an unknown number of unwell Australians pinning their hopes on an unregulated industry that is now under review by the Therapeutic Goods Administration.
The TGA public consultation, which closed earlier this month, was prompted by long-standing concerns raised by Stem Cells Australia that a loophole in the regulations has allowed dozens of doctors across Australia to provide experimental treatments without the ethics committee oversight that registered clinical trials are subject to. These treatments invariably cost $10,000 and up. The loophole is this: while the use of donor stem cells in therapies is tightly regulated, the use of a patient's own stem cells is not.
Professor Martin Pera is the program leader of Stem Cells Australia, which is administered by the University of Melbourne and includes scientists from Monash University, the Walter and Eliza Hall Institute for Medical Research, the Florey Institute and the CSIRO, among others. They are engaged in a seven-year Australian Research Council project to answer the big questions about stem cells and the potential for reliable therapies.
Read more from the original source:
Is a loophole in stem cell law helping new therapy to thrive, or allowing dubious science?
Heart Disease Fact Sheet | California’s Stem Cell Agency
By daniellenierenberg
CIRM funds many projects seeking to better understand heart disease and to translate those discoveries into new therapies.
If you want to learn more about CIRM funding decisions or make a comment directly to our board, join us at a public meeting. You can find agendas for upcoming public meetings on our meetings page.
Find Out More: Stem Cell FAQ | Stem Cell Videos | What We Fund
Find clinical trials: CIRM does not track stem cell clinical trials. If you or a family member is interested in participating in a clinical trial, please visit clinicaltrials.gov to find a trial near you.
Heart disease strikes in many forms, but collectively it causes one third of all deaths in the U.S. Many forms of heart disease have a common resultcardiomyopathy. While this is commonly called congestive heart failure (CHF), it is really just the heart becoming less efficient due to any number of causes, but the most common is loss of functioning heart muscle due to the damage caused by a heart attack. An estimated 4.8 million Americans have CHF, with 400,000 new cases diagnosed each year. Half die within five years.
Numerous clinical trials are underway testing a type of stem cell found in borne marrow, called mesenchymal stem cells or MSCs, to see if they are effective in treating the form of CHF that follows a heart attack. While those trials have shown some small improvements in patients the researchers have not found that the MSCs are creating replacement heart muscle. They think the improvements may be due to the MSCs creating new blood vessels that then help make the existing heart muscle healthier, or in other ways strengthening the existing tissue.
Californias stem cell agency has numerous awards looking into heart disease (the full list is below). Most of these involve looking for ways to create stem cells that can replace the damaged heart muscle, restoring the hearts ability to efficiently pump blood around the body. Some researchers are looking to go beyond transplanting cells into the heart and are instead exploring the use of tissue engineering technologies, such as building artificial scaffolds in the lab and loading them with stem cells that, when placed in the heart, may stimulate the recovery of the muscle.
Other CIRM-funded researchers are working in the laboratory, looking at stem cells from heart disease patients to better understand the disease and even using those models to discover and test new drugs to see if they are effective in treating heart disease. Other researchers are trying to make a type of specialized heart cell called a pacemaker cell, which helps keep a proper rhythm to the hearts beat.
We also fund projects that are trying to take promising therapies out of the laboratory and closer to being tested in people. These Disease Team Awards encourage the creation of teams that have both the scientific knowledge and business skills needed to produce therapies that can get approval from the Food and Drug Administration (FDA) to be tested in people. In some cases, these awards also fund the early phase clinical trials to show that they are safe to use and, in some cases, show some signs of being effective.
This team developed a way to isolate some heart-specific stem cells that are found in adult heart muscle. They use clumps of cells called Cardiospheres to reduce scarring caused by heart attacks. Initially they used cells obtained from the patients own heart but they later developed methods to obtain the cells they need from donor organs, which allows the procedure to become an off-the-shelf-therapy, meaning it can be available when and where the patient needs it rather than having to create it new each time. The company, working with the Cedars-Sinai team, received FDA approval to begin a clinical trial in June 2012.
Read the rest here:
Heart Disease Fact Sheet | California's Stem Cell Agency
Stem cell procedures for paralysis patients
By JoanneRUSSELL25
According to the Christopher and Dana Reeve Foundation, nearly one in 50 people are living with paralysis.
Until now, there wasn't much hope.
But, a new study involving stem cells has doctors and patients excited.
Two years ago, Brenda Guerra's life changed forever.
"They told me that I went into a ditch and was ejected out of the vehicle," says Brenda.
The accident left the 26-year-old paralyzed from the waist down and confined to a wheelchair.
"I don't feel any of my lower body at all," says Brenda.
Brenda has traveled from Kansas to UC San Diego to be the first patient to participate in a ground-breaking safety trial, testing stem cells for paralysis.
"We are directly injecting the stem cells into the spine," says Dr. Joseph Ciacci, a neurosurgeon at UC San Diego.
The stem cells come from fetal spinal cords. The idea is when they're transplanted they will develop into new neurons and bridge the gap created by the injury by replacing severed or lost nerve connections. They did that in animals and doctors are hoping for similar results in humans. The ultimate goal: to help people like Brenda walk again.
Read more:
Stem cell procedures for paralysis patients
Clinical trial uses patients' own cells for treatment after bone marrow transplant
By NEVAGiles23
Children's Healthcare of Atlanta and Winship Cancer Institute target graft-versus-host-disease through immune cell therapy
An innovative clinical trial using the science of "personalized" cellular therapy has begun enrolling children and adults suffering from graft-versus-host-disease (GVHD), a life-threatening complication of bone marrow transplantation in which donor immune lymphocytes attack the organs of the bone marrow transplant recipient.
Bone marrow transplantation is performed in some patients with cancers of the blood or bone marrow, including multiple myeloma and leukemia, as well as in some patients with sickle cell disease, thallesemia, aplastic anemia and inherited immune deficiency.
Physician-researchers at the Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Winship Cancer Institute of Emory University will harvest bone marrow cells from children and adults (12 to 65 years) with GVHD. Those cells will be used to manufacture large numbers of personalized autologous marrow mesenchymal stromal cells in the Emory Personalized Immunotherapy Center (EPIC), a dedicated pharmaceutical grade facility located within Emory University Hospital.
By infusing large doses of these personalized bone marrow cells into bone marrow transplant recipients, the physician-researchers aim to target sites of inflammation, potentially reducing GVHD in the intestine, liver and skin and limiting long-term organ damage.
Muna Qayed, MD, MSc. a pediatric hematologist-oncologist at the Aflac Cancer Center at Children's and an assistant professor at Emory School of Medicine, will lead the clinical trial, which is offered only in Atlanta and is supported by CURE Childhood Cancer.
"For patients with GVHD who do not respond to first line therapy, there is no reliable cure, and GVHD can be life threatening or a life-long disabling condition," says Dr. Qayed, "But we hope that through our clinical research, we will be able to significantly impact the course of this disease."
"This trial represents one of the most innovative clinical trials to arise from the growing partnership between the Hematology & Medical Oncology and Pediatrics departments at Emory School of Medicine, Emory Healthcare, and Children's Healthcare of Atlanta," says William (Bill) G. Woods, MD, director of the Aflac Cancer Center.
Blood and bone marrow cells have been used for more than a quarter century to treat life-threatening hematological conditions and are now used in established therapies worldwide. The current clinical trial will use mesenchymal stromal cells from the bone marrow. These cells have been studied more recently for treatment of a wide array of diseases, including autoimmune diseases.
"The beginning of this clinical trial is the culmination of two years' of collaborative effort by a terrific multidisciplinary team at Emory Healthcare, Children's Healthcare of Atlanta and the Aflac Cancer Center," says Edmund Waller, MD, director of Winship's Bone Marrow and Stem Cell Transplant Program and investigator on this trial.
More here:
Clinical trial uses patients' own cells for treatment after bone marrow transplant
Kentucky Fan Gets Life-Saving Stem Cell Donation From Univ. of Wisconsin Student
By JoanneRUSSELL25
This Saturday when the University of Kentucky basketball team faces off with the University of Wisconsin in the NCAA tournament semi-finals, die-hard Kentucky fan Scott Logdon may think twice about rooting against the Wisconsin Badgers.
Nearly two years ago, Logdon was given a life-saving donation of stem cells that helped combat his acute myeloid leukemia. The donor of those cells turned out to be 22-year-old Chris Wirz, a student at the University of Wisconsin.
Logdon, 44, learned the identity of his donor last April, more than a year after the stem cell treatment and just days after the University of Kentucky squeaked past the University of Wisconsin at the NCAA semi-finals with a score of 74 to 73.
Logdon remembers feeling mixed emotions when the Kentucky wildcats won. Later, when he found out about his donor, he joked, That must have been the Badger blood in me.
Courtesy Angela Logdon
PHOTO: Chris Wirz gave life saving stem cells to Scott Logdon, who was suffering from leukemia.
Logdons ordeal started in the fall of 2012, when he was diagnosed with acute myeloid leukemia after mistaking early symptoms for strep throat. Logdon said his doctors told him chemotherapy could only keep the cancer at bay. A full stem cell transplant would be needed to cure him of the deadly disease.
Logdons doctors hoped one of his two siblings might be a match, but neither was able to donate. Longons family and community rallied in the small town of Saldasia, Kentucky, and registered over 120 people who would be willing to donate stem cells or bone marrow.
But no one who registered was a good match for Logdon.
[The doctors] went to the national bone marrow registry to try and find the match, the father of four said. I had to go back to the hospital every 30 days [for] maintenance chemo; it was a very long wait.
Read the original:
Kentucky Fan Gets Life-Saving Stem Cell Donation From Univ. of Wisconsin Student
Northwestern Medicine Investigates Using Stem Cells to Save Limbs from Amputation
By NEVAGiles23
CHICAGO, April 2, 2015 /PRNewswire-USNewswire/ --After surgery failed to relieve extreme pain caused by peripheral artery disease in her right leg, Denise Hopkins-Glover was facing a bleak outlook she might never walk again.
"They said they had done everything they could and the only option was amputation of the right leg from the knee down," she said.
Undeterred, Hopkins-Glover chose to participate in an investigational trial at Northwestern Medicine called the MOBILE Study, which makes use of a device called the MarrowStim PAD Kit. In the trial, a randomized group of patients receive injections of their own stem cells retrieved through a bone marrow extraction to try to restore blood flow to the leg.
"MarrowStim offers a new approach for patients with a grim prognosis," said principal investigator Melina Kibbe, MD, a vascular surgeon at Northwestern Memorial Hospital and Edward G. Elcock Professor of Surgical Research at Northwestern University Feinberg School of Medicine. "We're pleased to be part of this national trial to see if there might be a significant chance of improving treatment for patients with few choices left for treatment."
Hopkins-Glover, a 55-year-old grandmother of two, suffers from peripheral artery disease (PAD), a condition affecting 20 percent of Americans where cholesterol and fatty plaque pool in blood vessels, restricting blood flow to the limbs. In its most severe form, PAD causes critical limb ischemia (CLI), which can cause pain in resting legs, sores or ulcers that don't heal, thickening of the toenails and gangrene, which can eventually lead to amputation.
The Chicago resident worked as a phlebotomist before her PAD worsened, and had to stop working because she could no longer walk or stand for extended stretches of time.
"I can walk only a certain distance before the circulation stops getting to certain parts of the body," she said. "It feels like a terrible leg cramp, like a jabbing, stabbing pain."
During the procedure, patients are put under general anesthesia as bone marrow is harvested through a needle from the hip. The bone marrow is loaded into the MarrowStim PAD Kit, an investigational device, where it is processed in a centrifuge. This spinning separates the marrow into different layers, with one of the layers containing the stem cells. Immediately following the separation, the stem cells are injected in 40 different spots on the affected limb, delivering concentrated bone marrow in each one. The entire procedure takes about 90 minutes. Patients follow up with investigators at different intervals in the year following the injections.
Karen Ho, MD, a Northwestern Medicine vascular surgeon who is also an investigator on the trial, said the exact reason the bone marrow injections might help chronic limb ischemia is still a mystery.
"Nobody really knows the exact mechanism," said Dr. Ho, who is also an assistant professor in vascular surgery at Feinberg. "The idea is that it might improve or enhance new blood vessels in the calf."
Read the original post:
Northwestern Medicine Investigates Using Stem Cells to Save Limbs from Amputation
iPSC model helps to better understand genetic lung/liver disease
By LizaAVILA
Using patient-derived stem cells known as induced pluripotent stem cells (iPSC) to study the genetic lung/liver disease called alpha-1 antitrypsin (AAT) deficiency, researchers have for the first time created a disease signature that may help explain how abnormal protein leads to liver disease.
The study, which appears in Stem Cell Reports, also found that liver cells derived from AAT deficient iPSCs are more sensitive to drugs that cause liver toxicity than liver cells derived from normal iPSCs. This finding may ultimately lead to new treatments for the condition.
IPSC's are derived from the donated skin or blood cells of adults and, with the reactivation of four genes, are reprogrammed back to an embryonic stem cell-like state. Like embryonic stem cells, iPSC can be differentiated toward any cell type in the body, but they do not require the use of embryos. Alpha-1 antitrypsin deficiency is a common genetic cause of both liver and lung disease affecting an estimated 3.4 million people worldwide.
Researchers from the Center for Regenerative Medicine (CReM) at Boston University and Boston Medical Center (BMC) worked for several years in collaboration with Dr. Paul Gadue and his group from Children's Hospital of Philadelphia to create iPSC from patients with and without AAT deficiency. They then exposed these cells to certain growth factors in-vitro to cause them to turn into liver-like cells, in a process that mimics embryonic development. Then the researchers studied these "iPSC-hepatic cells" and found the diseased cells secrete AAT protein more slowly than normal cells. This finding demonstrated that the iPSC model recapitulates a critical aspect of the disease as it occurs in patients. AAT deficiency is caused by a mutation of a single DNA base. Correcting this single base back to the normal sequence fixed the abnormal secretion.
"We found that these corrected cells had a normal secretion kinetic when compared with their diseased, parental cells that are otherwise genetically identical except for this single DNA base," explained lead author Andrew A. Wilson, MD, assistant professor of medicine at Boston University School of Medicine and Director of the Alpha-1 Center at Bu and BMC.
They also found the diseased (AAT deficient) iPSC-liver cells were more sensitive to certain drugs (experience increased toxicity) than those from normal individuals. "This is important because it suggests that the livers of actual patients with this disease might be more sensitive in the same way," said Wilson, who is also a physician in pulmonary, critical care and allergy medicine at BMC.
According to Wilson, while some patients are often advised by their physicians to avoid these types of drugs, these recommendations are not based on solid scientific evidence. "This approach might now be used to generate that sort of evidence to guide clinical decisions," he added.
The researchers believe that studies using patient-derived stem cells will allow them to better understand how patients with AAT deficiency develop liver disease. "We hope that the insights we gain from these studies will result in the discovery of new potential treatments for affected patients in the near future," said Wilson.
Story Source:
The above story is based on materials provided by Boston University Medical Center. Note: Materials may be edited for content and length.
Continued here:
iPSC model helps to better understand genetic lung/liver disease
Researchers produce iPSC model to better understand genetic lung/liver disease
By JoanneRUSSELL25
(Boston)--Using patient-derived stem cells known as induced pluripotent stem cells (iPSC) to study the genetic lung/liver disease called alpha-1 antitrypsin (AAT) deficiency, researchers have for the first time created a disease signature that may help explain how abnormal protein leads to liver disease.
The study, which appears in Stem Cell Reports, also found that liver cells derived from AAT deficient iPSCs are more sensitive to drugs that cause liver toxicity than liver cells derived from normal iPSCs. This finding may ultimately lead to new treatments for the condition.
IPSC's are derived from the donated skin or blood cells of adults and, with the reactivation of four genes, are reprogrammed back to an embryonic stem cell-like state. Like embryonic stem cells, iPSC can be differentiated toward any cell type in the body, but they do not require the use of embryos. Alpha-1 antitrypsin deficiency is a common genetic cause of both liver and lung disease affecting an estimated 3.4 million people worldwide.
Researchers from the Center for Regenerative Medicine (CReM) at Boston University and Boston Medical Center (BMC) worked for several years in collaboration with Dr. Paul Gadue and his group from Children's Hospital of Philadelphia to create iPSC from patients with and without AAT deficiency. They then exposed these cells to certain growth factors in-vitro to cause them to turn into liver-like cells, in a process that mimics embryonic development. Then the researchers studied these "iPSC-hepatic cells" and found the diseased cells secrete AAT protein more slowly than normal cells. This finding demonstrated that the iPSC model recapitulates a critical aspect of the disease as it occurs in patients. AAT deficiency is caused by a mutation of a single DNA base. Correcting this single base back to the normal sequence fixed the abnormal secretion.
"We found that these corrected cells had a normal secretion kinetic when compared with their diseased, parental cells that are otherwise genetically identical except for this single DNA base," explained lead author Andrew A. Wilson, MD, assistant professor of medicine at Boston University School of Medicine and Director of the Alpha-1 Center at Bu and BMC.
They also found the diseased (AAT deficient) iPSC-liver cells were more sensitive to certain drugs (experience increased toxicity) than those from normal individuals. "This is important because it suggests that the livers of actual patients with this disease might be more sensitive in the same way," said Wilson, who is also a physician in pulmonary, critical care and allergy medicine at BMC.
According to Wilson, while some patients are often advised by their physicians to avoid these types of drugs, these recommendations are not based on solid scientific evidence. "This approach might now be used to generate that sort of evidence to guide clinical decisions," he added.
The researchers believe that studies using patient-derived stem cells will allow them to better understand how patients with AAT deficiency develop liver disease. "We hope that the insights we gain from these studies will result in the discovery of new potential treatments for affected patients in the near future," said Wilson.
###
Funding was provided by an ARRA stimulus grant (1RC2HL101535-01) awarded by the National Institutes of Health (NIH) to Boston University School of Medicine, Boston Medical Center and the Children's Hospital of Philadelphia. Additional funding was provided by K08 HL103771, FAMRI 062572_YCSA, an Alpha-1 Foundation Research Grant and a Boston University Department of Medicine Career Investment Award. Additional grants from NIH 1R01HL095993 and 1R01HL108678 and an ARC award from the Evans Center for Interdisciplinary Research at Boston University supported this work.
See the article here:
Researchers produce iPSC model to better understand genetic lung/liver disease
'Open' stem cell chromosomes reveal new possibilities for diabetes
By LizaAVILA
Researchers map chromosomal changes that must take place before stem cells can be used to produce pancreatic and liver cells
IMAGE:These are pancreatic cells derived from embryonic stem cells. view more
Credit: UC San Diego School of Medicine
Stem cells hold great promise for treating a number of diseases, in part because they have the unique ability to differentiate, specializing into any one of the hundreds of cell types that comprise the human body. Harnessing this potential, though, is difficult. In some cases, it takes up to seven carefully orchestrated steps of adding certain growth factors at specific times to coax stem cells into the desired cell type. Even then, cells of the intestine, liver and pancreas are notoriously difficult to produce from stem cells. Writing in Cell Stem Cell April 2, researchers at University of California, San Diego School of Medicine have discovered why.
It turns out that the chromosomes in laboratory stem cells open slowly over time, in the same sequence that occurs during embryonic development. It isn't until certain chromosomal regions have acquired the "open" state that they are able to respond to added growth factors and become liver or pancreatic cells. This new understanding, say researchers, will help spur advancements in stem cell research and the development of new cell therapies for diseases of the liver and pancreas, such as type 1 diabetes.
"Our ability to generate liver and pancreatic cells from stem cells has fallen behind the advances we've made for other cell types," said Maike Sander, MD, professor of pediatrics and cellular and molecular medicine and director of the Pediatric Diabetes Research Center at UC San Diego. "So we haven't yet been able to do things like test new drugs on stem cell-derived liver and pancreatic cells. What we have learned is that if we want to make specific cells from stem cells, we need ways to predict how those cells and their chromosomes will respond to the growth factors."
Sander led the study, together with co-senior author Bing Ren, PhD, professor of cellular and molecular medicine at UC San Diego and Ludwig Cancer Research member.
Chromosomes are the structures formed by tightly wound and packed DNA. Humans have 46 chromosomes - 23 inherited from each parent. Sander, Ren and their teams first made maps of chromosomal modifications over time, as embryonic stem cells differentiated through several different developmental intermediates on their way to becoming pancreatic and liver cells. Then, in analyzing these maps, they discovered links between the accessibility (openness) of certain regions of the chromosome and what they call developmental competence - the ability of the cell to respond to triggers like added growth factors.
"We're also finding that these chromosomal regions that need to open before a stem cell can fully differentiate are linked to regions where there are variations in certain disease states," Sander says.
In other words, if a person were to inherit a genetic variation in one of these chromosomal regions and his or her chromosome didn't open up at exactly the right time, he or she could hypothetically be more susceptible to a disease affecting that cell type. Sander's team is now working to further investigate what role, if any, these chromosomal regions and their variations play in diabetes.
Read more:
'Open' stem cell chromosomes reveal new possibilities for diabetes
Induced Pluripotent Stem Cell (iPSC) Industry Complete Report 2015 – 2016
By Dr. Matthew Watson
DALLAS, April 2, 2015 /PRNewswire/ --
Lifescienceindustryresearch.com adds "Complete 2015-16 Induced Pluripotent Stem Cell (iPSC) Industry Report" in its store. Recent months have seen the first iPSC clinical trial in humans, creation of the world's largest iPSC Biobank, major funding awards, a historic challenge to the "Yamanaka Patent", a Supreme Court ruling affecting industry patent rights, the announcement of an iPSC cellular therapy clinic scheduled to open in 2019, and much more. Furthermore, iPSC patent dominance continues to cluster in specific geographic regions, while clinical trial and scientific publication trends give clear indicators of what may happen in the industry in 2015 and beyond.
Is it worth it to get informed about rapidly-evolving market conditions and identify key industry trends that will give an advantage over the competition?
BrowsetheReportComplete 2015-16 Induced Pluripotent Stem Cell (iPSC) Industry Reportathttp://www.lifescienceindustryresearch.com/complete-2013-14-induced-pl ....
Induced pluripotent stem cells represent a promising tool for use in the reversal and repair of many previously incurable diseases. The cell type represents one of the most promising advances discovered within the field of stem cell research during the past decade, making this a valuable industry report for both companies and investors to claim in order to optimally position themselves to sell iPSC products. To profit from this lucrative and rapidly expanding market, you need to understand your key strengths relative to the competition, intelligently position your products to fill gaps in the market place, and take advantage of crucial iPSC trends.
Report Applications
This global strategic report is produced for: Management of Stem Cell Product Companies, Management of Stem Cell Therapy Companies, Stem Cell Industry Investors
It is designed to increase your efficiency and effectiveness in:
Four Primary Areas of Commercialization
There are currently four major areas of commercialization for induced pluripotent stem cells, as described below:
Read the original post:
Induced Pluripotent Stem Cell (iPSC) Industry Complete Report 2015 - 2016
3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels
By raymumme
Damage to neural tissue is typically permanent and causes lasting disability in patients, but a new approach has recently been discovered that holds incredible potential to reconstruct neural tissue at high resolution in three dimensions. Research recently published in the Journal of Neural Engineering demonstrated a method for embedding scaffolding of patterned nanofibers within three-dimensional (3D) hydrogel structures, and it was shown that neurite outgrowth from neurons in the hydrogel followed the nanofiber scaffolding by tracking directly along the nanofibers, particularly when the nanofibers were coated with a type of cell adhesion molecule called laminin. It was also shown that the coated nanofibers significantly enhanced the length of growing neurites, and that the type of hydrogel could significantly affect the extent to which the neurites tracked the nanofibers.
"Neural stem cells hold incredible potential for restoring damaged cells in the nervous system, and 3D reconstruction of neural tissue is essential for replicating the complex anatomical structure and function of the brain and spinal cord," said Dr. McMurtrey, author of the study and director of the research institute that led this work. "So it was thought that the combination of induced neuronal cells with micropatterned biomaterials might enable unique advantages in 3D cultures, and this research showed that not only can neuronal cells be cultured in 3D conformations, but the direction and pattern of neurite outgrowth can be guided and controlled using relatively simple combinations of structural cues and biochemical signaling factors."
The next step will be replicating more complex structures using a patient's own induced stem cells to reconstruct damaged or diseased sites in the nervous system. These 3D reconstructions can then be used to implant into the damaged areas of neural tissue to help reconstruct specific neuroanatomical structures and integrate with the proper neural circuitry in order to restore function. Successful restoration of function would require training of the new neural circuitry over time, but by selecting the proper neurons and forming them into native architecture, implanted neural stem cells would have a much higher chance of providing successful outcomes. The scaffolding and hydrogel materials are biocompatible and biodegradable, and the hydrogels can also help to maintain the microstructure of implanted cells and prevent them from washing away in the cerebrospinal fluid that surrounds the brain and spinal cord.
McMurtrey also noted that by making these site-specific reconstructions of neural tissue, not only can neural architecture be rebuilt, but researchers can also make models for studying disease mechanisms and developmental processes just by using skin cells that are induced into pluripotent stem cells and into neurons from patients with a variety of diseases and conditions. "The 3D constructs enable a realistic replication of the innate cellular environment and also enable study of diseased human neurons without needing to biopsy neurons from affected patients and without needing to make animal models that can fail to replicate the full array of features seen in humans," said McMurtrey.
The ability to engineer neural tissue from stem cells and biomaterials holds great potential for regenerative medicine. The combination of stem cells, functionalized hydrogel architecture, and patterned and functionalized nanofiber scaffolding enables the formation of unique 3D tissue constructs, and these engineered constructs offer important applications in brain and spinal cord tissue that has been damaged by trauma, stroke, or degeneration. In particular, this work may one day help in the restoration of functional neuroanatomical pathways and structures at sites of spinal cord injury, traumatic brain injury, tumor resection, stroke, or neurodegenerative diseases of Parkinson's, Huntington's, Alzheimer's, or amyotrophic lateral sclerosis.
###
The work was carried out at the University of Oxford and the Institute of Neural Regeneration & Tissue Engineering, a non-profit charitable research organization.
Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.
See the article here:
3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels
Local innovation repairs holes in the heart
By daniellenierenberg
CardioCel has been initially well received with surgeons in Australia and overseas. Photo: Geoff Fisher
For 10 years researchers at Admedus worked day and night trying to work out how to improve soft tissue repair in the human body.
And with the vital help of CSIRO they have been to develop CardioCel, a life-saving heart patch for the repair and reconstruction of cardiovascular defects.
According to the Children's Heart Foundation, congenital heart disease occurs in one out of 100 births and in at least half of those cases surgery is required and a patch is needed. They state it is the leading cause of birth defect related deaths.
Research undertaken with CSIRO investigated new, potentially ground-breaking applications for CardioCel. The research focused on using stem cells. It found the heart patch has the potential to deliver stem cells and help tissue heal better than other existing products, when used for cardiac repair.
Advertisement
Derived from animal tissue, the CardioCel patch is engineered over 14 days.
"The first unique feature of this product is that it doesn't calcify in young patients," Professor Leon Neethling, Admedus technical director and heart researcher says.
The flexible patch works like human tissue to cover holes in the heart thereby eliminating the need for repeat surgery.
"In the cardiac repair field it has long been recognised that strong, flexible, biocompatible and calcification-resistant tissue scaffolds would be ideal tissues for repair of heart defects," Admedus' chief operating officer Dr Julian Chick, says.
The rest is here:
Local innovation repairs holes in the heart
Anticancer drug can spur immune system to fight infection
By JoanneRUSSELL25
Low doses of the anti-cancer drug imatinib can spur the bone marrow to produce more innate immune cells to fight against bacterial infections, Emory researchers have found.
The results were published March 30, 2015 in the journal PLOS Pathogens.
The findings suggest imatinib, known commercially as Gleevec , or related drugs could help doctors treat a wide variety of infections, including those that are resistant to antibiotics, or in patients who have weakened immune systems. The research was performed in mice and on human bone marrow cells in vitro, but provides information on how to dose imatinib for new clinical applications.
"We think that low doses of imatinib are mimicking 'emergency hematopoiesis,' a normal early response to infection," says senior author Daniel Kalman, PhD, professor of pathology and laboratory medicine at Emory University School of Medicine.
Imatinib, is an example of a "targeted therapy" against certain types of cancer. It,blocks tyrosine kinase enzymes, which are dysregulated in cancers such as chronic myelogenous leukemia and gastrointestinal stromal tumors.
Imatinib also inhibits normal forms of these enzymes that are found in healthy cells. Several pathogens - both bacteria and viruses - exploit these enzymes as they transit into, through, or out of human cells. Researchers have previously found that imatinib or related drugs can inhibit infection of cells by pathogens that are very different from each other, including tuberculosis bacteria and Ebola virus.
In the new PLOS Pathogens paper, Emory investigators show that imatinib can push the immune system to combat a variety of bacteria, even those that do not exploit Abl enzymes. The drug does so by stimulating the bone marrow to make more neutrophils and macrophages, immune cells that are important for resisting bacterial infection.
"This was surprising because there are reports that imatinib can be immunosuppressive in some patients," Kalman says. "Our data suggest that at sub-clinical doses, imatinib can stimulate bone marrow stem cells to produce several types of myeloid cells, such as neutrophils and macrophages, and trigger their exodus from the bone marrow. However, higher doses appear to inhibit this process."
The authors note that imatinib appears to stimulate several types of white blood cells, which may provide a limit on inflammation, rather than increasing neutrophils only, which can be harmful. The authors go on to suggest that imatinib or related drugs may be useful in treating a variety of infections in patients whose immune system is compromised, such as those receiving chemotherapy for cancer.
###
Original post:
Anticancer drug can spur immune system to fight infection
Blood ties: Ky. basketball fan gets Wisconsin assist
By Dr. Matthew Watson
Scott Logdon is a die-hard University of Kentucky basketball fan, but he can't deny he's got some Wisconsin blood in him -- literally.
When the father of four was being treated for high-risk leukemia at UK in 2013, 20-year-old University of Wisconsin student Chris Wirz anonymously donated bone marrow stem cells to him. The two men first spoke just after the Wildcats bested the Badgers during last year's NCAA Final Four, and basketball was a frequent topic of conversation as their friendship grew.
While each will be rooting for his own team during this Saturday's Final Four rematch, both say they have a soft spot for the other team.
"I've stayed true to UK," said Logdon, 44, of Salvisa, Ky. "But when I talked to Chris for the first time I told him, 'That's why I felt so bad when we beat you: I've got Badger blood in me!"'
Wirz, who lives three blocks from where the Badgers play, hopes Wisconsin wins this year, and has even predicted an upset in his basketball bracket. "Who doesn't want to root for the underdog?" he said.
But he plans to send a text of congratulations if Logdon's team wins -- since their connection is much deeper than basketball rivalry.
"We're literally working off the same immune system," said Wirz, now 22 and a University of Wisconsin senior. "This has been one of the most emotionally overwhelming experiences of my life, realizing how important he is to his family and his community and seeing the hole that would've been left by him."
A dire diagnosis
Logdon, chief deputy at Woodford County Detention Center in Versailles, Ky., and a youth minister in his church, recalled playing basketball with teenagers just a few nights before going to the doctor for what his wife, Angela, initially thought was strep.
But tests showed he had acute myeloid leukemia, a blood cancer estimated by the American Cancer Society to have stricken 18,860 Americans last year and killed about 10,460, mostly adults.
Excerpt from:
Blood ties: Ky. basketball fan gets Wisconsin assist
Can Cells From a Babys Foreskin Give You Youthful Skin?
By raymumme
That's the promise of a high-end new facial treatment.
In a tiny room inside an Upper East Side dermatologist's office, I'm attempting to regain my youth. Or, at the very least, look better. I've come to try the HydraFacial, a multistep treatment that promises to erase wrinkles, reverse sun damage, lighten dark spots, and prevent acne. All of these transformations come from one key innovation using stem cells from an infant's foreskin to trick skin into behaving young again.
Why foreskin? Dr. Gail Naughton, a leader in regenerative science she developed technology to growhuman tissues and organs outside the body explains it this way: When we're born, our skin is in its best shape. Our cells naturally secrete proteins known as growth factors "that keep the cells healthy and stimulate them to divide," Naughton says. As we age, our cells divide at a slower rate, which contribute to the telltale signs of aging, like wrinkles and loss of firmness and luminosity. Growth factors captured from the donated foreskin of a baby (just one can generate over a million treatments) are at their peak ability in promoting rapid cell turnover. Applied topically, they spur adult skin cells to regenerate. This is said to have a smoothing effect on the skin.
I'm here to see if the process actually works specifically, on my nasolabial folds, the hereditary creases that stretch from my nose to my mouth. I'm told that three HydraFacial treatments will smooth the creases into near invisibility.
There are five parts to the HydraFacial. My skin is first wiped clean with a cleanser and then treated with a salicylic-and-glycolic-acid peel using a giant machine that looks like a cousin of R2D2. This is the HydraFacial machine, a fully equipped device with tiny suction tubes as arms and bottles of facial-treatment mixtures attached at the belly.
The salicylicand glycolic acids, like micro sandblasters, sweep away dead cells lingering on the surface of skin. The chemicals are a lightweight goop that feels cool on my face. Zahra, my esthetician, keeps asking me if I feel any tingling on my skin. I don't but she tells me that most people feel a slight burning sensation at this point. Must be my thick skin.
Next up is the extraction step. The tube that deposited the peel now works in reverse and becomes a micro vacuum cleaner. Blackheads and flaky skin are swept up in what feel (and looks) like the suction tube from a dentist's chair. It's an odd but not unpleasant feeling. I can actually see tiny deposits of my skin now swirling around in the extraction cup. Gross, but also kind of cool.
After my pores are cleared, a blend of skin-nourishing antioxidants and hydrating hyaluronic acid is smeared over my face. Here's where the foreskin extracts come in they're smeared on, too. The growth factors from the foreskin stem cells don't feel different than any other serum as the esthetician applies them to my face.
The final step of the facial is a quick, light therapy session, where a blue and red LED light targets oily skin, fine lines, and hyperpigmentation. In all, the entire facial lasts 30 minutes and induces not the faintest trace of redness or irritation.
Of course when it comes to facials, the proof is in the mirror. My skin glows in a way that I thought only Jennifer Lopez could glow. Fresh from the facial, I saunter into a photo shoot wearing no makeup because my confidence is at Beyonc levels. My nasolabial folds are still visible, although a bit less pronounced now. (Presumably, two more treatments would help even more.) And a part of me feels like a Disney evil queen, draining youth from a newborn for a few weeks of a restored complexion. Is this the future of facials? And if so, is it wrong that I want more?
Go here to read the rest:
Can Cells From a Babys Foreskin Give You Youthful Skin?
Orthopedic Stem Cell Therapy for Arthritic Joint Pain – Video
By JoanneRUSSELL25
Orthopedic Stem Cell Therapy for Arthritic Joint Pain
Dr. Sergio Viroslav, board certified orthopedic surgeon and joint replacement specialist with The San Antonio Orthopaedic Group, appeared on Great Day SA on March 30th, 2015 to discuss the...
By: The San Antonio Orthopaedic Group
Go here to see the original:
Orthopedic Stem Cell Therapy for Arthritic Joint Pain - Video
Can PRP and Stem Cell Therapy Help You? | Orlando Orthopaedic Center – Video
By daniellenierenberg
Can PRP and Stem Cell Therapy Help You? | Orlando Orthopaedic Center
How can PRP and stem cell therapy help you heal? Orlando Orthopaedic Center #39;s Dr. Matthew R. Willey explains. For more visit http://www.OrlandoOrtho.com.
By: OrlandoOrtho
Read more:
Can PRP and Stem Cell Therapy Help You? | Orlando Orthopaedic Center - Video
Coalition Duchenne Launches Youtube Interview Series 'Making a Difference in Duchenne'
By NEVAGiles23
Newport Beach, California (PRWEB) March 31, 2015
Newport Beach based charity Coalition Duchenne has launched an interview series titled Making a Difference in Duchenne on its Youtube channel (https://www.youtube.com/user/CoalitionDuchenne) focused on individuals making a difference in Duchenne muscular dystrophy research, care, awareness, and education.
The first interview features Dr. Eduardo Marbn MD, PhD, director of the Cedars-Sinai Heart Institute in Los Angeles, talking about cardiac derived stem cells. Dr. Marbn was featured in a November 2011 Economist article Repairing Broken Hearts, read by Coalition Duchenne founder and executive director Catherine Jayasuriya. She lobbied for a focus on Duchenne because cardiac scarring severely compromises the life span of those with the disease. Coalition Duchenne funded successful research applying Marbns stem cell technology to Duchenne. The approach has been clinically proven to mitigate scarring cause by heart attacks. In Marbns therapy, human heart tissue is used to grow specialized heart stem cells, which are injected back into the patients heart.
We need to focus on changing the course of the disease. We lose many young men to cardiac issues. We hope that working with cardiac stem cells is one way we will eventually change that outcome, said Jayasuriya.
The second interview in the Making a Difference in Duchenne series features actor Cody Saintgnue, who plays Brett Talbot in MTVs Teen Wolf. Saintgnue has a unique relationship with Duchenne. He played a young man with muscular dystrophy in his break out role on House MD in 2009. Saintgnue talks about his experience learning to mimic the physicality of a young man with Duchenne, as well as the inspiration he draws from the way those young men overcome many obstacles to live happy, fulfilling lives.
Upcoming interviews will feature: Professor Rachelle Crosbie-Watson from the University of California, Los Angeles, who teaches the first university course focused entirely on Duchenne; Dr. Ron Victor, a Cedars-Sinai cardiologist and researcher looking at the benefits of Cialis and Viagra for Duchenne cardiomyopathy; and, Scotty Bob Morgan, a daredevil wingsuit pilot, who has raised awareness worldwide about Duchenne, flying a specially made Coalition Duchenne wingsuit.
About Duchenne muscular dystrophy: Duchenne muscular dystrophy is a progressive muscle wasting disease. It is the most common fatal disease that affects children. Duchenne occurs in 1 in 3,500 male births, across all races, cultures and countries. Duchenne is caused by a defect in the gene that codes for the protein dystrophin. This is a vital protein that helps connect the muscle fiber to the cell membranes. Without dystrophin, the muscle cells become unstable, are weakened and lose their functionality. Life expectancy ranges from the mid teenage years to the mid 20s. Their minds are unaffected.
About Coalition Duchenne: Jayasuriya founded Coalition Duchenne in 2010 (http://www.coalitionduchenne.org) to raise global awareness for Duchenne muscular dystrophy, to fund research and to find a cure for Duchenne. Coalition Duchenne is a 501c3 non-profit corporation.
Read more:
Coalition Duchenne Launches Youtube Interview Series 'Making a Difference in Duchenne'
Premature aging of stem cell telomeres, not inflammation, linked to emphysema
By JoanneRUSSELL25
Lung diseases like emphysema and pulmonary fibrosis are common among people with malfunctioning telomeres, the "caps" or ends of chromosomes. Now, researchers from Johns Hopkins say they have discovered what goes wrong and why.
Mary Armanios, M.D., an associate professor of oncology at the Johns Hopkins University School of Medicine., and her colleagues report that some stem cells vital to lung cell oxygenation undergo premature aging -- and stop dividing and proliferating -- when their telomeres are defective. The stem cells are those in the alveoli, the tiny air exchange sacs where blood takes up oxygen.
In studies of these isolated stem cells and in mice, Armanios' team discovered that dormant or senescent stem cells send out signals that recruit immune molecules to the lungs and cause the severe inflammation that is also a hallmark of emphysema and related lung diseases.
Until now, Armanios says, researchers and clinicians have thought that "inflammation alone is what drives these lung diseases and have based therapy on anti-inflammatory drugs for the last 30 years."
But the new discoveries, reported March 30 in Proceedings of the National Academy of Sciences, suggest instead that "if it's premature aging of the stem cells driving this, nothing will really get better if you don't fix that problem," Armanios says.
Acknowledging that there are no current ways to treat or replace damaged lung stem cells, Armanios says that knowing the source of the problem can redirect research efforts. "It's a new challenge that begins with the questions of whether we take on the effort to fix this defect in the cells, or try to replace the cells," she adds.
Armanios and her team say their study also found that this telomere-driven defect leaves mice extremely vulnerable to anticancer drugs like bleomycin or busulfan that are toxic to the lungs. The drugs and infectious agents like viruses kill off the cells that line the lung's air sacs. In cases of telomere dysfunction, Armanios explains, the lung stem cells can't divide and replenish these destroyed cells.
When the researchers gave these drugs to 11 mice with the lung stem cell defect, all became severely ill and died within a month.
This finding could shed light on why "sometimes people with short telomeres may have no signs of pulmonary disease whatsoever, but when they're exposed to an acute infection or to certain drugs, they develop respiratory failure," says Armanios. "We don't think anyone has ever before linked this phenomenon to stem cell failure or senescence."
In their study, the researchers genetically engineered mice to have a telomere defect that impaired the telomeres in just the lung stem cells in the alveolar epithelium, the layer of cells that lines the air sacs. "In bone marrow or other compartments, when stem cells have short telomeres, or when they age, they just die out," Armanios says. "But we found that instead, these alveolar cells just linger in the senescent stage."
Continued here:
Premature aging of stem cell telomeres, not inflammation, linked to emphysema
The Irvine Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in Costa Mesa and Sherman Oaks …
By Sykes24Tracey
Costa Mesa and Sherman Oaks, California (PRWEB) March 31, 2015
The Irvine Stem Cell Treatment Center announces a series of free public seminars on the use of adult stem cells for various degenerative and inflammatory conditions. They will be provided by Dr. Thomas A. Gionis, Surgeon-in-Chief.
The seminars will be held on Wednesday, April 8, 2015, at 11:00 am, 1:00 pm and 3:00 pm at Ayres Hotel & Suites Costa Mesa/Newport Beach, 325 Bristol Street, Costa Mesa, CA 92626; and Wednesday, April 22, 2015, at 11:00 am, 1:00 pm and 3:00 pm at Hampton Inn, 5638 Sepulveda Blvd., Sherman Oaks, CA 91411. Please RSVP at (949) 679-3889.
The Irvine Stem Cell Treatment Center (Irvine and Westlake), along with sister affiliates, the Miami Stem Cell Treatment Center (Miami; Boca Raton; Orlando; The Villages; Sarasota, Florida) and the Manhattan Regenerative Medicine Medical Group (Manhattan, New York), abide by approved investigational protocols using adult adipose derived stem cells (ADSCs) which can be deployed to improve patients quality of life for a number of chronic, degenerative and inflammatory conditions and diseases. ADSCs are taken from the patients own adipose (fat) tissue (found within a cellular mixture called stromal vascular fraction (SVF)). ADSCs are exceptionally abundant in adipose tissue. The adipose tissue is obtained from the patient during a 15 minute mini-liposuction performed under local anesthesia in the doctors office. SVF is a protein-rich solution containing mononuclear cell lines (predominantly adult autologous mesenchymal stem cells), macrophage cells, endothelial cells, red blood cells, and important Growth Factors that facilitate the stem cell process and promote their activity.
ADSCs are the bodys natural healing cells - they are recruited by chemical signals emitted by damaged tissues to repair and regenerate the bodys injured cells. The Irvine Stem Cell Treatment Center only uses Adult Autologous Stem Cells from a persons own fat No embryonic stem cells are used; and No bone marrow stem cells are used. Current areas of study include: Emphysema, COPD, Asthma, Heart Failure, Heart Attack, Parkinsons Disease, Stroke, Traumatic Brain Injury, Lou Gehrigs Disease, Multiple Sclerosis, Lupus, Rheumatoid Arthritis, Crohns Disease, Muscular Dystrophy, Inflammatory Myopathies, and Degenerative Orthopedic Joint Conditions (Knee, Shoulder, Hip, Spine). For more information, or if someone thinks they may be a candidate for one of the adult stem cell protocols offered by the Irvine Stem Cell Treatment Center, they may contact Dr. Gionis directly at (949) 679-3889, or see a complete list of the Centers study areas at: http://www.IrvineStemCellsUSA.com.
Also, you can listen and call into our new radio show, The Stem Cell Show, hosted by Dr. Gionis on TalkRadio 790 AM KABC, Sundays @ 4pm PST, or worldwide on KABC.com ("Listen Live" at 4pm PST) or the KABC app available on the App Store or Google Play.
About the Irvine Stem Cell Treatment Center: The Irvine Stem Cell Treatment Center, along with sister affiliates, the Miami Stem Cell Treatment Center and the Manhattan Regenerative Medicine Medical Group, is an affiliate of the California Stem Cell Treatment Center / Cell Surgical Network (CSN); we are located in Irvine and Westlake, California. We provide care for people suffering from diseases that may be alleviated by access to adult stem cell based regenerative treatment. We utilize a fat transfer surgical technology to isolate and implant the patients own stem cells from a small quantity of fat harvested by a mini-liposuction on the same day. The investigational protocols utilized by the Irvine Stem Cell Treatment Center have been reviewed and approved by an IRB (Institutional Review Board) which is registered with the U.S. Department of Health, Office of Human Research Protection (OHRP); and our studies are registered with Clinicaltrials.gov, a service of the U.S. National Institutes of Health (NIH). For more information, visit our websites: http://www.IrvineStemCellsUSA.com, http://www.MiamiStemCellsUSA.com, or http://www.NYStemCellsUSA.com; http://www.TheStemCellShow.com.
The rest is here:
The Irvine Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in Costa Mesa and Sherman Oaks ...