Page 470«..1020..469470471472..480490..»

Makucell(TM) Announces Key Scientific Presentations and Launch of a Large, Multicenter Use Study of Asymmtate(TM)

By JoanneRUSSELL25

To: HEALTH, MEDICAL AND NATIONAL EDITORS

SCOTTSDALE, Ariz., Feb. 21, 2012 /PRNewswire-USNewswire/ -- Makucell, Inc., a new life science company that utilizes an innovative proprietary regenerative medicine technology to address aging skin, hair and nail conditions, has presented important pre-clinical and clinical information on its proprietary molecule, Asymmtate, at the 36th Annual Hawaii Dermatology Seminar, Waikoloa, Hawaii. Asymmtate(TM) is the active key ingredient in Makucell's new topical skin care line Renewnt(TM) (pronounced "Re-new-int").

Asymmtate(TM) is a selective modulator of the Wnt (pronounced "wint") signaling pathway that encourages optimal signaling to stimulate skin stem cells to replenish themselves, keratinocytes, fibroblasts and other dermal cells, which produce collagen, elastic tissue, matrix and other substances to foster a more healthy, rejuvenated appearing skin. Renewnt(TM) will be available through aesthetic dermatology professionals in April 2012.

Mark Dahl, M.D. Makucell's, Vice President and Chief Medical Officer, presented the two scientific poster presentations. The presentation titles and conclusions are summarized below.

-- The Safety and Efficacy of Asymmtate - Asymmtate(TM) penetrates into human epidermis and dermis and remains active. Asymmtate in its cream vehicles is non-mutagenic, non-irritating, and non-sensitizing. -- Asymmtate(TM) Analog Mitigates Photoaging Effects of UVB in Mice - An analog of Asymmtate applied topically can mitigate the subsequent visible appearance of photoaging changes in mice after exposures of their skin to UVB.

In addition to the pre-clinical/clinical information presented this week, Makucell has initiated a 100 subject Use Study to evaluate the safety and efficacy of Renewnt(TM) for Hydration Day and Night Moisturizer in a real world setting. This four-week study will include 12 investigator sites across the U.S. "This large multicenter study is very important to validate aspects of clinical product performance of Asymmtate(TM) under real world conditions. The diverse geographical study sites will allow us to evaluate effects on unique skin types in different climates," said Lawrence A. Rheins, President and CEO of Makucell.

The innovative technology that resulted in the formulation of Renewnt was developed by distinguished research scientist Michael Kahn, Ph.D. and colleagues at the Eli & Edythe Broad Center for Stem Cell and Regenerative Medicine at the University of Southern California, Keck School of Medicine. "This is an exciting time for Makucell," said Makucell co-founder and inventor Michael Kahn, Ph.D. "This technology will be utilized for commercial topical applications to address the challenges of photoaging skin and other hair and nail conditions."

For media and investment inquiries please contact please contact Lawrence Rheins, lrheins@makucellinc.com or 1-855-MAKUCELL.

About Makucell

Makucell (www.makucell.com) is a new life science technology transfer company that utilizes an innovative proprietary regenerative medicine technology to address aging skin, hair and nail conditions in an entirely new way. Using a patent-pending new molecule, Asymmtate, Makucell has developed the Renewnt brand of non-prescription products that work with the skin's own stem cells to produce healthier, and more youthful appearing skin. This innovative technology was developed by researchers at the Eli & Edythe Broad Center for Stem Cell and Regenerative Medicine at the University of Southern California Keck School of Medicine. Makucell is financed through private investors and is not in receipt of government funding.

About the USC Stevens Institute for Innovation

The USC Stevens Institute for Innovation (http://stevens.usc.edu) is a university-wide resource in the Office of the Provost at the University of Southern California that helps identify, nurture, protect, and transfer to the market the most exciting innovations from USC. It also provides a central connection for industry seeking cutting-edge innovations in which to invest. As part of this role, the USC Stevens Institute manages the university's intellectual property portfolio stemming from its $560M annual research program. Furthermore, the USC Stevens Institute develops the innovator as well as innovations, through educational programs, community-building events, and showcase opportunities.

Media Contact:

Lawrence Rheinslrheins@makucellinc.com1-480-305-2061

SOURCE USC Stevens Institute for Innovation

-0-

Read more:
Makucell(TM) Announces Key Scientific Presentations and Launch of a Large, Multicenter Use Study of Asymmtate(TM)

To Read More: Makucell(TM) Announces Key Scientific Presentations and Launch of a Large, Multicenter Use Study of Asymmtate(TM)
categoriaSkin Stem Cells commentoComments Off on Makucell(TM) Announces Key Scientific Presentations and Launch of a Large, Multicenter Use Study of Asymmtate(TM) | dataFebruary 21st, 2012
Read All

Energy network within cells may be new target for cancer therapy

By Dr. Matthew Watson

Within each cell, mitochondria are constantly splitting in two, a process called fission, and merging back into one, called fusion. Before a cell can divide, the mitochondria must increase their numbers through fission and separate into two piles, one for each cell.

By reversing an imbalance of the signals that regulate fusion and fission in rapidly dividing cancer cells, researchers were able to dramatically reduce cell division, thus preventing the rapid cell proliferation that is a hallmark of cancer growth. Increasing production of the signal that promotes mitochondrial fusion caused tumors to shrink to one-third of their original size. Treatment with a molecule that inhibits fission reduced tumor size by more than half.

"We found that human lung cancer cell lines have an imbalance of signals that tilts them towards mitochondrial fission," said Stephen L. Archer, MD, the Harold Hines Jr. Professor of Medicine at the University of Chicago Medicine and senior author of the study. "By boosting the fusion signal or blocking the fission signal we were able to tip the balance the other way, reducing cancer cell growth and increasing cell death. We believe this provides a promising new approach to cancer treatment."

"This could be a potential new Achilles' heel for cancer cells," said the study's lead author, Jalees Rehman, MD, an associate professor of medicine and pharmacology at the University of Illinois at Chicago. "Many anticancer drugs target cell division. Our work shifts the focus to a distinct but necessary step: mitochondrial division. The cell division cycle comes to a halt if the mitochondria are prevented from dividing. This new therapy may be especially useful in cancers which become resistant to conventional chemotherapy that directly targets the cycle."

The researchers found that the mitochondrial networks within several different lung cancer cell lines were highly fragmented, compared to normal lung cells. Cancer cells had low levels of mitofusin-2 (Mfn-2), a protein that promotes fusion by tethering adjacent mitochondria, and high levels of dynamin-related protein (Drp-1), which initiates fission by encircling the organelle and squeezing it into two discrete fragments. The Drp-1 in cancer cells also tended to be in its most active form.

The researchers tested several ways to enhance fusion and restore the mitochondrial network, both in cell culture and in animal models. They used gene therapy to increase the expression of Mfn-2, injected a small molecule (mdivi-1) that inhibits Drp-1, and used genetic techniques to block the production of Drp-1. All three interventions markedly reduced mitochondrial fragmentation, increased networking and reduced cancer cell growth.

Although the authors identify mitochondrial fission and Drp-1 activation as a potential therapeutic target in lung cancer, "this is not a cure," Archer emphasized. The treatment drastically reduced tumor size but the tumors did not completely disappear. They continued to use high levels of glucose as fuel, a hallmark of cancer metabolism that can be seen on PET scans. "This remnant could be either a central cluster of cancer stem cells," Archer said, "or an inflammatory response, the immune system infiltrating the tumor."

"Inhibiting mitochondrial fission", Archer said, "did not show any significant toxicity in mice or rats, so we are quite optimistic that our findings can lead to the development of novel, clinically feasible therapies."

The substances used to block fusion are commercially available for research purposes, but they have not been tested in humans. Mdivi-1 has been used in animals to prevent kidney injury.

Although the focus on mitochondria is fairly new to cancer biologists—despite a flurry of interest in the 1920s stimulated by the German Nobel Prize laureate Otto Warburg—this organelle has long been a central focus for physicians and scientists interested in muscle biology, especially cardiac muscle.

Archer, a cardiologist, specializes in pulmonary hypertension. In this disorder, as in cancer, excessive cellular growth causes disease. The death of his cousin and close friend from lung cancer made him start thinking about the connections. Rehman is a German scientist and became interested in studying mitochondria after reading some of the historical Warburg papers in German.

The fact that two cardiologists, Archer and Rehman, decided to study cancer and collaborated with a team of basic scientists, a cancer physician and a pathologist is "an indicator of how interconnected modern biomedical research has become," Rehman said.

Provided by University of Chicago Medical Center

Read more here:
Energy network within cells may be new target for cancer therapy

To Read More: Energy network within cells may be new target for cancer therapy
categoriaUncategorized commentoComments Off on Energy network within cells may be new target for cancer therapy | dataFebruary 21st, 2012
Read All

Celling Biosciences Sponsors 7th Annual Stem Cell Summit

By daniellenierenberg

AUSTIN, Texas, Feb. 21, 2012 /PRNewswire/ -- Celling Biosciences announces a sponsorship of the 7th Annual Stem Cell Summit being held on February 21st at Bridgewaters New York in New York City. The Stem Cell Summit is consistently the premiere venue for the world's leaders in regenerative medicine to network and promote next generation technologies and cell therapies.

The meeting will feature more than 30 thought leaders in stem cell therapy including Dr. Kenneth Pettine of the Orthopedic Stem Cell Institute in Loveland, Colorado.  Dr. Pettine has teamed up with Celling Biosciences' SpineSmith Division to present "Adult Stem Cell Therapy for Orthopedic and Spine Conditions Resulting from Injury or Aging."  Dr. Pettine has become an innovator in the regenerative cell therapy market and believes "regenerative therapies will become the next standard of care in treating many orthopedic conditions." 

Following the Stem Cell Summit, Dr. Pettine will be presenting a discussion on regenerative therapies to the trainers and medical staff attending this year's NFL combine.  The NFL has recently gained attention from Peyton Manning going oversees to receive a cell therapy treatment for his cervical spine condition.  Dr. Pettine envisions a day when these professional athletes stop going to foreign countries to receive medical treatment.

The Orthopedic Stem Cell Institute provides state-of-the-art regenerative cell therapy using Celling Biosciences' ART 21 system. The ART 21 system processes bone marrow from the patient at the point of care to consistently produce a concentrate of regenerative cells with high yields of mononuclear stem cells in less than 15 minutes.  Celling Biosciences provides the cell separation systems along with the biomaterials and devices necessary to recreate the environment to promote healing. 

Kevin Dunworth, founder of Celling Biosciences, believes regenerative cell therapy has more to do with creating the optimal environment then just providing cells.  "We believe autologous cell therapy is a viable solution but physicians need to understand that these cells require the necessary substrate for delivery and the proper techniques for retrieval.  Our focus has been on providing not only cell separation technologies, medical devices and biomaterials but also the registered nurses to deliver the service so physicians can have the most consistent, reliable and predictable regenerative cell therapy for their patients."

Contact:
Tracy Gladden
Communications Manager
Tgladden@spinesmithusa.com
512-637-2050

About Celling Biosciences
Celling Biosciences, works closely with surgeons, scientists and engineers to research and develop innovative technologies in the field of regenerative medicine. http://www.cellingbiosciences.com and http://www.spinesmithusa.com

Read more here:
Celling Biosciences Sponsors 7th Annual Stem Cell Summit

To Read More: Celling Biosciences Sponsors 7th Annual Stem Cell Summit
categoriaUncategorized commentoComments Off on Celling Biosciences Sponsors 7th Annual Stem Cell Summit | dataFebruary 21st, 2012
Read All

VistaGen Therapeutics Engages MissionIR as Its Investor Relations Advisor

By raymumme

ATLANTA, GA--(Marketwire -02/21/12)- VistaGen Therapeutics, Inc. (OTC.BB: VSTA.OB - News) (OTCQB: VSTA.OB - News), a biotechnology company applying stem cell technology for drug rescue and cell therapy, has retained MissionIR, a national investor relations consulting firm, to develop and implement a strategic investor relations campaign. Through a network of investor-oriented online websites and full suite of investor awareness services, MissionIR broadens the influence of publicly traded companies and enhances their ability to attract growth capital and improve shareholder value.

"VistaGen's work with human stem cell technology is groundbreaking," said Sherri Snyder, Director of Marketing at MissionIR. "The company's versatile platform, Human Clinical Trials in a Test Tube™, provides clinically relevant predictions of potential heart toxicity of new drug candidates long before they are ever tested on humans. Guided by a management team with decades of experience, VistaGen's stem cell technology can potentially save billions of dollars in the healthcare industry while recapturing prior R&D investment in once-promising new drug candidates."

"We are pleased to bring MissionIR on board as our external investor relations partner," said Shawn Singh, VistaGen's Chief Executive Officer. "The crucial work our company is doing can fundamentally change the way medicine is developed. Paired with MissionIR's global presence and sound investor relations programs, we can further grow our shareholder base and accelerate internal initiatives already in place to bring our stem cell technology platform to the forefront of drug development."

About MissionIR

MissionIR is committed to connecting the investment community with companies that have great potential and a strong dedication to building shareholder value. Through a full suite of investor relations and consultancy services, we help public companies develop and execute a strategic investor awareness plan as we've done for hundreds of others. Whether it's capital raising, increasing awareness among the financial community, or enhancing corporate communications, we offer a variety of solutions to meet the objectives of our clients.

For more information, visit http://www.MissionIR.com

About VistaGen Therapeutics

VistaGen is a biotechnology company applying human pluripotent stem cell technology for drug rescue and cell therapy. VistaGen's drug rescue activities combine its human pluripotent stem cell technology platform, Human Clinical Trials in a Test Tube™, with modern medicinal chemistry to generate new chemical variants of once-promising small-molecule drug candidates. These are once-promising drug candidates discontinued by pharmaceutical companies during development due to heart toxicity, despite positive efficacy data demonstrating their potential therapeutic and commercial benefits. VistaGen uses its pluripotent stem cell technology to generate early indications, or predictions, of how humans will ultimately respond to new drug candidates before they are ever tested in humans.

Additionally, VistaGen's small molecule drug candidate, AV-101, is in Phase 1b development for treatment of neuropathic pain. Neuropathic pain, a serious and chronic condition causing pain after an injury or disease of the peripheral or central nervous system, affects approximately 1.8 million people in the U.S. alone. VistaGen plans to initiate Phase 2 clinical development of AV-101 in the fourth quarter of 2012. VistaGen is also exploring opportunities to leverage its current Phase 1 clinical program to enable additional Phase 2 clinical studies of AV-101 for epilepsy, Parkinson's disease and depression. To date, VistaGen has been awarded over $8.5 million from the NIH for development of AV-101.

Visit VistaGen at http://www.VistaGen.com, follow VistaGen at http://www.twitter.com/VistaGen or view VistaGen's Facebook page at http://www.facebook.com/VistaGen.

Read the original post:
VistaGen Therapeutics Engages MissionIR as Its Investor Relations Advisor

To Read More: VistaGen Therapeutics Engages MissionIR as Its Investor Relations Advisor
categoriaUncategorized commentoComments Off on VistaGen Therapeutics Engages MissionIR as Its Investor Relations Advisor | dataFebruary 21st, 2012
Read All

Panamanian-US Scientific Research Supports Using Fat Stem Cells to Treat Rheumatoid Arthritis

By NEVAGiles23

A Panamanian-led, multidisciplinary research team has published the first description of non-expanded fat stem cells in the treatment of rheumatoid arthritis patients. "Autologous Stromal Vascular Fraction Therapy for Rheumatoid Arthritis: Rationale and Clinical Safety," which appears in the January publication of the International Archives of Medicine, followed 13 rheumatoid arthritis patients who were treated with their own fat-derived stem cells.

Dallas, TX (PRWEB) February 21, 2012

A Panamanian-led, multidisciplinary research team has published the first description of non-expanded fat stem cells in the treatment of rheumatoid arthritis patients. "Autologous Stromal Vascular Fraction Therapy for Rheumatoid Arthritis: Rationale and Clinical Safety," which appears in the January publication of the International Archives of Medicine, followed 13 rheumatoid arthritis patients who were treated with their own fat-derived stem cells.

Treating arthritis with fat-derived stem cells has become commonplace in veterinary medicine over the past five years with over 7,000 horses and dogs treated by publication contributor Vet-Stem, a San Diego-based company. The objective of the joint Panamanian-US study was to determine feasibility of translating Vet-Stem's successful animal results into human patients.

Observing no treatment associated adverse reactions after one year, the team concluded that its protocol should be studied further to determine efficacy in the treatment of rheumatoid arthritis. Their publication details the rationale for the use of fat derived stem cells in treatment of autoimmune conditions and is freely available at: http://www.intarchmed.com/content/pdf/1755-7682-5-5.pdf

“Key to advancement of any medical protocol is transparent disclosure of rationale, treatment procedures and outcomes to the research community in a peer-reviewed and IRB-compliant manner,” said Dr. Jorge Paz Rodriguez, Medical Director of the Stem Cell Institute and research team leader. “While we have previously published case studies on the use of fat stem cells in multiple sclerosis patients, and one rheumatoid arthritis patient, this is the first time that comprehensive follow-up has been completed for a larger cohort of patients,” he added.

An important distinction that separates this particular approach from those which are being explored by several international investigators is that the fat stem cells were not grown in a laboratory, affording a substantially higher level of safety and protocol practicality.

“This work signifies Panama's emergence into the burgeoning field of translational medicine,” commented Dr. Ruben Berrocal Timmons, the Panamanian Secretary of Science and publication co-author. “We are proud to have attracted and collaborated with internationally-renowned stem cell clinical researchers such as Dr. Michael Murphy and Dr. Keith March from the Indiana University School of Medicine Center for Vascular Biology and Medicine, Dr. Boris Minev from the University of California, San Diego Moores Cancer Center, Dr. Chien Shing Chen from Loma Linda University Behavioral Medicine Center and Dr. Bob Harman from Vet-Stem. By leveraging their vast, collective clinical experience with Panamanian scientific infrastructure and know-how, we are striving to develop effective, internationally recognized stem cell procedures that will be accepted the world over.”

The treatment procedure involves a mini-liposuction, collection of the fat's cellular component, processing to obtain a population of cells that includes stem cells, freezing the cells in preparation for quality control, and subsequent re-administration of the cells into patients.

The Panamanian-US group has previously shown that there is a specific type of T cell, called the T regulatory cell, associated with fat stem cells, which is capable of suppressing pathological immunity. Their current theory, which is described in detail in the publication: http://www.ncbi.nlm.nih.gov/pubmed/20537320, is that the T regulatory component of the fat is capable of slowing down or suppressing the “autoimmune” reaction, while the stem cell component causes formation of new tissue to replace the damaged joints.

About the Stem Cell Institute

Founded in 2006 on the principles of providing unbiased, scientifically-sound treatment options, the Stem Cell Institute has matured into the world’s leading adult stem cell therapy and research center. In close collaboration with universities and physicians world-wide, the institute’s doctors treat carefully selected patients with spinal cord injury, osteoarthritis, heart disease, multiple sclerosis, rheumatoid arthritis and other autoimmune diseases. Doctors at The Stem Cell Institute have treated over 1000 patients to-date.

For more information on stem cell therapy:

Stem Cell Institute Web Site: http://www.cellmedicine.com

Facebook: http://www.facebook.com/stemcellinstitute

Blogger: http://www.adult-stem-cell-therapy.blogspot.com

Stem Cell Institute

Via Israel & Calle 66

Pacifica Plaza Office #2A

San Francisco, Panama

Republic of Panama

Phone: +1 800 980-STEM (7836) (USA Toll-free) +1 954 636-3390 (from outside USA)

Fax: +1 866 775-3951 (USA Toll-free) +1 775 887-1194 (from outside USA)

###

Jay Lenner
jdlenner@cellmedicine.com
1-800-980-7836
Email Information

Read more from the original source:
Panamanian-US Scientific Research Supports Using Fat Stem Cells to Treat Rheumatoid Arthritis

To Read More: Panamanian-US Scientific Research Supports Using Fat Stem Cells to Treat Rheumatoid Arthritis
categoriaSpinal Cord Stem Cells commentoComments Off on Panamanian-US Scientific Research Supports Using Fat Stem Cells to Treat Rheumatoid Arthritis | dataFebruary 21st, 2012
Read All

E'shee Clinical Esthetic Launches High-Tech Skin Serum

By Dr. Matthew Watson

PHILADELPHIA, Feb. 21, 2012 /PRNewswire/ -- E'shee Clinical Esthetic announced this week a new addition to its product line of skin serums – Elixir of Life KI Therapy Serum – designed to deliver ultimate skin rejuvenation.

This new skin care product is based on a combination of stem cell and infra-red nano technology. It is the most potent skin care formula that combines gene therapy (FGF 1 peptide) and Far Infrared Powder (FIR) to rejuvenate and restore the beauty of damaged or aging skin.

This new Elixir of Life Serum helps to activate the body's stem cells to repair damaged tissue and skin regeneration.

"Results are proven. The FGF-1 peptide – the stem cell activator – helps to increase new skin cell growth at least 10-20 times faster than with other skin care products," says Nataly Giter, founder, E'shee Clinical Esthetic.

Elixir of Life is ideal for people with circulation problems due to external factors such as pollution, and physical problems due to illness, medications or smoking. It works to repair dark circles and broken capillaries; delays the overall skin aging process through skin repair and re-growth; and also works to properly heal and repair scar tissue.

People of all ages – men and women – will see physical results within 30 days. Skin will be healthier and firmer with a smoother and more even skin tone. 

"Ultimately, this new product helps to restore blood flow; aids with toxin removal; repairs broken capillaries; and reverses skin damage. We are very excited to offer this to anyone wishing to dramatically improve their skin care," says Giter. 

About E'shee Clinical Esthetic:

E'shee was launched in 2009 by Nataly Giter, a hands-on skin care professional with more than 20 years of experience. Through research and practical experience, she learned about the most effective ingredients for advanced skin care and became associated with Dr. Chiu, a professor from Ohio University and the first global pioneer to clone the human FGF 1 gene.

Together with Dr. Chiu and their combined connections to industry professionals, they utilized FGF 1 to create an extraordinary anti-aging product line, using 99 percent pure FGF 1 peptide - the best quality available outside of the human body.

For more information on E'shee Clinical Esthetic, visit: http://www.esheeesthetic.com or http://www.esheeesthetic.com/wordpress/.

* Photo 300dpi download for media: Send2Press.com/mediaboom/12-0221-eshee_300dpi.jpg
* Photo Caption:  Elixir of Life Serum.

This release was issued on behalf of the above organization by Send2Press(R), a unit of Neotrope(R). http://www.Send2Press.com

Read more:
E'shee Clinical Esthetic Launches High-Tech Skin Serum

To Read More: E'shee Clinical Esthetic Launches High-Tech Skin Serum
categoriaSkin Stem Cells commentoComments Off on E'shee Clinical Esthetic Launches High-Tech Skin Serum | dataFebruary 21st, 2012
Read All

Pathfinder Presents Preliminary Data on New Regenerative Approach to Diabetes Treatment

By LizaAVILA

CAMBRIDGE, Mass., Feb. 21, 2012 (GLOBE NEWSWIRE) -- Pathfinder Cell Therapy, Inc. ("Pathfinder," or "the Company") (OTCQB:PFND.PK - News), a biotechnology company focused on the treatment of diabetes and other diseases characterized by organ-specific cell damage, today presented preliminary data highlighting the potential of the Company's unique cell-based therapy for treating diabetes at the 7th Annual New York Stem Cell Summit. Richard L. Franklin, M.D., Ph.D., Founder, CEO and President of Pathfinder, provided an overview of the Company's Pathfinder Cell ("PC") technology, and presented preclinical evidence demonstrating how treatment with PCs was able to reverse the symptoms of diabetes in two different mouse models.

Pathfinder Cells are a newly identified non-stem cell mammalian cell type that has the ability to stimulate regeneration of damaged tissue without being incorporated into the new tissue. In today's presentation, Dr. Franklin showed how recent experiments performed using a non-obese diabetic (NOD) mouse strain were supportive of earlier data that demonstrated complete reversal of diabetes in mice. The earlier results, which used a drug-induced diabetic mouse model, were published in Rejuvenation Research1. Though preliminary, the recent results are encouraging because the NOD mouse model is widely used and highly regarded as being predictive of human type-1 diabetes.

In three separate experiments using this model, 30-50% of the mice treated with PCs at the onset of diabetes returned to normal blood glucose levels. Of the mice that responded well to treatment, the effects tended to be long lasting, up to two months in some cases after just two doses. These results, which were generated by intravenous injection of PC's derived from rat pancreatic tissue, further demonstrate the remarkable ability of Pathfinder Cells to elicit their positive effect regardless of the organ, or even species, of origin.

"We are very encouraged by these preclinical results using NOD mice. This model is the gold standard for type-1 diabetes and the fact that recent experiments mirror what we've seen in previous models may be highly significant," stated Dr. Franklin. "We have many questions to answer about how PCs act in the body, but we believe, based on previous experiments, that PCs may stimulate regeneration of damaged islet cells that produce insulin. The current NOD mouse data also suggest that PCs may have an effect in modulating the auto-immune process in type 1 diabetes. We continue to conduct experiments aimed at elucidating the optimal dosing and other factors that may be responsible for producing a robust and long-lasting response, as this will be critical as we start to think about how PCs may be used in treating human diabetes."

In his presentation today, Dr. Franklin also provided further insight into the mechanism of action of PCs, based on recent animal experiments. It was observed previously that PCs produce microvesicles, which are known to play a role in intercellular communication, but through mechanisms that are poorly understood. In a recent experiment, Pathfinder was able to isolate these microvesicles from the PCs and treat animals directly with an injection containing microvesicles only. Remarkably, both PC- and microvesicle-treated mice exhibited similar reductions in blood glucose compared to controls using the same drug-induced diabetes mouse model. This suggests, not only that the microvesicles produced by PCs are central to the mechanism of action, but that the microvesicles alone appear to be sufficient to produce the full effect.

Dr. Franklin commented, "If confirmed, this finding could have a significant positive impact on the future of PC-based therapy. Due to the relatively small amount of material contained within the microvesicles, determining the specific factor(s) that are responsible for regenerating damaged tissue could be more straightforward than we first anticipated, bringing us closer to understanding the mechanism of action. There may also be a number of potential manufacturing and storage benefits to using microvesicles versus PCs that will be interesting to explore in parallel as we work to advance this innovative new therapeutic approach closer to human clinical development."

The New York Stem Cell Summit brings together cell therapy company executives, researchers, investors and physicians to explore investment opportunities in cell therapy research and innovation. More information can be found at http://www.stemcellsummit.com.

Presentation details Event: 7th Annual New York Stem Cell Summit Date: Tuesday, February 21, 2012 Place: Bridgewaters New York, 11 Fulton Street, New York, NY Time: 3:35 pm ET

About Pathfinder

Pathfinder is developing a novel cell-based therapy and has generated encouraging preclinical data in models of diabetes, renal disease, myocardial infarction, and critical limb ischemia, a severe form of peripheral vascular disease. Leveraging its internal discovery of Pathfinder Cells ("PCs") Pathfinder is pioneering a new field in regenerative medicine.

PCs are a newly identified mammalian cell type present in very low quantities in a variety of organs, including the kidney, liver, pancreas, lymph nodes, myometrium, bone marrow and blood. Early studies indicate that PCs stimulate regeneration of damaged tissues without the cells themselves being incorporated into the newly generated tissue. Based on testing to date, the cells appear to be "immune privileged," and their effects appear to be independent of the tissue source of PCs. For more information please visit: http://www.pathfindercelltherapy.com.

FORWARD LOOKING STATEMENTS

This press release contains forward-looking statements. You should be aware that our actual results could differ materially from those contained in the forward-looking statements, which are based on management's current expectations and are subject to a number of risks and uncertainties, including, but not limited to, our inability to obtain additional required financing; costs and delays in the development and/or FDA approval, or the failure to obtain such approval, of our product candidates; uncertainties or differences in interpretation in clinical trial results, if any; our inability to maintain or enter into, and the risks resulting from our dependence upon, collaboration or contractual arrangements necessary for the development, manufacture, commercialization, marketing, sales and distribution of any products; competitive factors; our inability to protect our patents or proprietary rights and obtain necessary rights to third party patents and intellectual property to operate our business; our inability to operate our business without infringing the patents and proprietary rights of others; general economic conditions; the failure of any products to gain market acceptance; technological changes; and government regulation. We do not intend to update any of these factors or to publicly announce the results of any revisions to these forward-looking statements.

1Karen Stevenson, Daxin Chen, Alan MacIntyre, Liane M McGlynn, Paul Montague, Rawiya Charif, Murali Subramaniam, W.D. George, Anthony P. Payne, R. Wayne Davies, Anthony Dorling, and Paul G. Shiels. Rejuvenation Research. April 2011, 14(2): 163-171. doi:10.1089/rej.2010.1099

See the original post:
Pathfinder Presents Preliminary Data on New Regenerative Approach to Diabetes Treatment

To Read More: Pathfinder Presents Preliminary Data on New Regenerative Approach to Diabetes Treatment
categoriaUncategorized commentoComments Off on Pathfinder Presents Preliminary Data on New Regenerative Approach to Diabetes Treatment | dataFebruary 21st, 2012
Read All

Stem cells becoming heart cells – Video

By LizaAVILA

27-01-2012 00:12 Mouse embryonic stem cells were coaxed into becoming heart cells. Protocol adapted from Maltsev et al 1993. The cells can be seen beating under low magnification. Sweet!

See original here:
Stem cells becoming heart cells - Video

To Read More: Stem cells becoming heart cells – Video
categoriaCardiac Stem Cells commentoComments Off on Stem cells becoming heart cells – Video | dataFebruary 21st, 2012
Read All

Stem Cell Study in Mice Offers Hope for Treating Heart Attack Patients – Video

By Dr. Matthew Watson

08-02-2012 01:41 A UCSF stem cell study conducted in mice suggests a novel strategy for treating damaged cardiac tissue in patients following a heart attack. The approach potentially could improve cardiac function, minimize scar size, lead to the development of new blood vessels -- and avoid the risk of tissue rejection. In the investigation, reported online in the journal PLoS ONE, the researchers isolated and characterized a novel type of cardiac stem cell from the heart tissue of middle-aged mice following a heart attack. Then, in one experiment, they placed the cells in the culture dish and showed they had the ability to differentiate into cardiomyocytes, or "beating heart cells," as well as endothelial cells and smooth muscle cells, all of which make up the heart. In another, they made copies, or "clones," of the cells and engrafted them in the tissue of the mice who had had the heart attacks. The cells induced angiogenesis, or blood vessel growth, or differentiated, or specialized, into endothelial and smooth muscle cells, improving cardiac function. Because the cells were transplanted back into the mice from which they originated, the body did not reject them.

Read the original post:
Stem Cell Study in Mice Offers Hope for Treating Heart Attack Patients - Video

To Read More: Stem Cell Study in Mice Offers Hope for Treating Heart Attack Patients – Video
categoriaCardiac Stem Cells commentoComments Off on Stem Cell Study in Mice Offers Hope for Treating Heart Attack Patients – Video | dataFebruary 21st, 2012
Read All

5. Stem Cells for Cardiac Repair | Mini Med School – Video

By daniellenierenberg

08-02-2012 18:24 (October 25, 2011) Associate Professor at the Stanford School of Medicine, Joseph Wu explores how stem cells may be used in the future to repair hearts that have failed. This course is a single-quarter, focused follow-up to the the yearlong Mini Med School that occurred in 2009-10. The course focuses on diseases of the heart and cardiovascular system. The course is sponsored by Stanford Continuing Studies and the Stanford Medical School. Stanford University http://www.stanford.edu Stanford Continuing Studies http:///continuingstudies.stanford.edu/ Stanford University School of Medicine med.stanford.edu Stanford University Channel on YouTube: http://www.youtube.com

Follow this link:
5. Stem Cells for Cardiac Repair | Mini Med School - Video

To Read More: 5. Stem Cells for Cardiac Repair | Mini Med School – Video
categoriaCardiac Stem Cells commentoComments Off on 5. Stem Cells for Cardiac Repair | Mini Med School – Video | dataFebruary 21st, 2012
Read All

4. Bioengineering Cardiovascular Tools | Mini Med School – Video

By raymumme

08-02-2012 18:45 (October 18, 2011) Associate Professor of Mechanical Engineering Beth Pruitt discusses his work in human embryonic stem-cell-derived cardiac myosites and future opportunities to use heart cells for regenerative therapy. This course is a single-quarter, focused follow-up to the the yearlong Mini Med School that occurred in 2009-10. The course focuses on diseases of the heart and cardiovascular system. The course is sponsored by Stanford Continuing Studies and the Stanford Medical School. Stanford University http://www.stanford.edu Stanford Continuing Studies http://www.continuingstudies.stanford.edu Stanford University School of Medicine http://www.med.stanford.edu Stanford University Channel on YouTube: http://www.youtube.com

Read more:
4. Bioengineering Cardiovascular Tools | Mini Med School - Video

To Read More: 4. Bioengineering Cardiovascular Tools | Mini Med School – Video
categoriaCardiac Stem Cells commentoComments Off on 4. Bioengineering Cardiovascular Tools | Mini Med School – Video | dataFebruary 21st, 2012
Read All

Bone marrow stem cells versus cord blood stem cells : Prof.Dr. Virginia – Video

By Dr. Matthew Watson

09-01-2012 06:07 Bone marrow stem cells versus cord blood stem cells : Prof.Dr. Virginia

More:
Bone marrow stem cells versus cord blood stem cells : Prof.Dr. Virginia - Video

To Read More: Bone marrow stem cells versus cord blood stem cells : Prof.Dr. Virginia – Video
categoriaBone Marrow Stem Cells commentoComments Off on Bone marrow stem cells versus cord blood stem cells : Prof.Dr. Virginia – Video | dataFebruary 21st, 2012
Read All

PBSC vs. BONE MARROW DONATION – Video

By raymumme

10-01-2012 19:46 If you match a patient you will be asked to donate stem cells from either your bloodstream or bone marrow. Learn how it's done by watching this video.

Read the original here:
PBSC vs. BONE MARROW DONATION - Video

To Read More: PBSC vs. BONE MARROW DONATION – Video
categoriaBone Marrow Stem Cells commentoComments Off on PBSC vs. BONE MARROW DONATION – Video | dataFebruary 21st, 2012
Read All

The Use of Guided Bone Marrow Nucleated Cell Fraction Injections – Ronald W. Hanson, Jr., MD – Video

By LizaAVILA

31-01-2012 13:21 Ronald W. Hanson, Jr., MD lectures at the 11th Clinical Applications for Age Management Medicine in November 2011, in Las Vegas, Nevada This focused conference track cocentrated on regenerative and cell-based medicine continue to grow in use by physicians across the world. From platelet rich plasma to culture expanded stem cells, the need for information about the applications of these therapies to treat patients has never been greater. This track will focus on the latest developments in cell-based medicine with speakers who are driving the research and using these technologies as part of their everyday practice of medicine. For more information contact conference@agemed.org Visit our website at agemed.org

The rest is here:
The Use of Guided Bone Marrow Nucleated Cell Fraction Injections - Ronald W. Hanson, Jr., MD - Video

To Read More: The Use of Guided Bone Marrow Nucleated Cell Fraction Injections – Ronald W. Hanson, Jr., MD – Video
categoriaBone Marrow Stem Cells commentoComments Off on The Use of Guided Bone Marrow Nucleated Cell Fraction Injections – Ronald W. Hanson, Jr., MD – Video | dataFebruary 21st, 2012
Read All

Bone Marrow Extraction Procedure to Harvest Stem Cells | MetroMD Los Angeles – Video

By daniellenierenberg

05-02-2012 05:11 Dr. Martin of MetroMD performs a bone marrow extraction procedure to harvest stem cells. The extracted bone marrow will be centrifuged to separate targeted stem cells and re-injected into the patient's injured joints. Questions? Please call the MetroMD Institute of Regenerative Medicine at (323) 285-5300 or email us at info@MetroMD.net. MetroMD.net

Read the rest here:
Bone Marrow Extraction Procedure to Harvest Stem Cells | MetroMD Los Angeles - Video

To Read More: Bone Marrow Extraction Procedure to Harvest Stem Cells | MetroMD Los Angeles – Video
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Extraction Procedure to Harvest Stem Cells | MetroMD Los Angeles – Video | dataFebruary 21st, 2012
Read All

What Is The Best Source for Stem Cells- Bone Marrow or Fat Tissue? | MetroMD Los Angeles – Video

By LizaAVILA

05-02-2012 11:27 MetroMD.net Dr. Martin explains why bone marrow is a better source than fat tissue for viable stem cells in your own body. Questions? Please call the MetroMD Institute of Regenerative Medicine at (323) 285-5300 or email us at info@MetroMD.net. Los Angeles

See the original post:
What Is The Best Source for Stem Cells- Bone Marrow or Fat Tissue? | MetroMD Los Angeles - Video

To Read More: What Is The Best Source for Stem Cells- Bone Marrow or Fat Tissue? | MetroMD Los Angeles – Video
categoriaBone Marrow Stem Cells commentoComments Off on What Is The Best Source for Stem Cells- Bone Marrow or Fat Tissue? | MetroMD Los Angeles – Video | dataFebruary 21st, 2012
Read All

Dr Newman Exposes The Truth about Adult Stem Cells – Video

By JoanneRUSSELL25

18-01-2012 23:09 NewHopeForAging.info - Beverly Hills Plastic Surgeon, Dr. Nathan Newman reveals the truth about the Adult Stem Cell Technology...and the ONLY product on the market with it Luminesce, by Jeunesse. Order it at: NewHope.JeunesseGlobal.com or call 561.779.0000

Continued here:
Dr Newman Exposes The Truth about Adult Stem Cells - Video

To Read More: Dr Newman Exposes The Truth about Adult Stem Cells – Video
categoriaSkin Stem Cells commentoComments Off on Dr Newman Exposes The Truth about Adult Stem Cells – Video | dataFebruary 21st, 2012
Read All

Adult Stem Cell Treatments for COPD – Real patient results, USA Stem Cells – Marian H. Testimonial – Video

By JoanneRUSSELL25

20-12-2011 08:50 If you would like more information please call us Toll Free at 877-578-7908. Or visit our website at http://www.usastemcells.com Or click here to have a Free Phone Constultation with Dr. Matthew Burks usastemcells.com Real patient testimonials for USA Stem Cells. Adult stem cell therapy for COPD, Emphysema, and Pulmonary fibrosis.

See the original post here:
Adult Stem Cell Treatments for COPD - Real patient results, USA Stem Cells - Marian H. Testimonial - Video

To Read More: Adult Stem Cell Treatments for COPD – Real patient results, USA Stem Cells – Marian H. Testimonial – Video
categoriaUncategorized commentoComments Off on Adult Stem Cell Treatments for COPD – Real patient results, USA Stem Cells – Marian H. Testimonial – Video | dataFebruary 21st, 2012
Read All

LifeNet Health is Presenting at the 7th Annual Stem Cell Summit in New York on February 21, 2012

By NEVAGiles23

To: HEALTH AND NATIONAL EDITORS

VIRGINIA BEACH, Va., Feb. 20, 2012 /PRNewswire-USNewswire/ -- Rony Thomas, President and CEO of LifeNet Health, is presenting at the 7th Annual Stem Cell Summit in New York City on February 21, 2012. Mr. Thomas will be presenting on LifeNet Health's broad offerings of current and future regenerative biologic-based products. Mr. Thomas will also focus on the multiple new capabilities and technology platforms of the LifeNet Health Institute of Regenerative Medicine.

(Photo: http://photos.prnewswire.com/prnh/20120220/DC55479)

"The use of a variety of forms of donated tissues has worked for decades to save lives and restore health in many surgical disciplines. Now we are on the cusp of developing cellular therapies, tissue engineering and new medical applications for allografts to treat disease and assist in the development of lifesaving drugs. The opening of the LifeNet Health Institute of Regenerative Medicine this year will signal our commitment to future development in the cellular therapies arena," stated Mr. Thomas. Thomas will further focus on two new areas of development; Human Basement Membranes in zeno-free culture of consented Human mRNA Reprogrammed Induced Pluripotent Stem Cells and Induced Pluripotent Stem Cells (iPSc) derived using non-integrating mRNA reprogramming technology from fully consented queryable human donor banked system.

Mr. Thomas was also recently invited to and attended a White House Summit to discuss ways in which technology and innovation can drive employment opportunities for Virginia, where LifeNet Health and the Institute are located. The meeting of key CEOs with the Obama Administration was to gain insight and input on the job market and technology as a driver to local, state, and national economies. Thomas stated, "Our foray into regenerative medicine should not only impact our state and local economy, but provide medical benefits to patients and drug companies across the globe."

The annual Stem Cell Summit brings key leaders in the medical, scientific and business innovators in this growing space of technology and regenerative medicine. LifeNet Health is pleased to be joining the Summit for the first time in 2012 as they look for key partnerships and collaboration in the discovery of cell-based therapies for a broad spectrum of medical applications in orthopedics, trauma, dental, craniomaxillofacial (CMF), plastics, and cardiovascular surgery.

LifeNet Health helps to save lives and restore health for thousands of patients each year. We are the world's most trusted provider of transplant solutions, from organ procurement to new innovations in bio-implant technologies and cellular therapies--a leader in the field of regenerative medicine, while always honoring the donors and healthcare professionals that allow the healing process.

The LifeNet Health Institute of Regenerative Medicine is a division of LifeNet Health located in Virginia Beach, Virginia. The Institute's labs will be expanding as new facilities are under construction and planned to be completed in the fall of 2012. Once completed and fully functional, the Institute will house over 50 medical, scientific, and research staff members. The focus will be on the science of developing regenerative medicine products for patients all over the world, and will serve as a global center of excellence for research and development focused on cellular therapies, tissue engineering, and new medical applications for allografts to maximize the gift of donation.

SOURCE LifeNet Health

-0-

See the rest here:
LifeNet Health is Presenting at the 7th Annual Stem Cell Summit in New York on February 21, 2012

To Read More: LifeNet Health is Presenting at the 7th Annual Stem Cell Summit in New York on February 21, 2012
categoriaUncategorized commentoComments Off on LifeNet Health is Presenting at the 7th Annual Stem Cell Summit in New York on February 21, 2012 | dataFebruary 20th, 2012
Read All

Stem-cell scientists find right chemistry

By LizaAVILA

The day – Valentine’s Day, as it happened – began in a whirl of coffee cups, bustling dogs and homework, then a brisk walk around the block – in other words, business as usual for a UC Irvine couple who are a high-profile science team engaged in cutting-edge stem-cell research.

Brian Cummings and Aileen Anderson, whose stem-cell treatment for spinal cord injury is being tested on patients in Switzerland, say their office – only a short walk from their home on the UCI campus – has a family feel as well.

At UCI’s recently constructed Stem Cell Research Center, they supervise a crew of young students and technicians whose bond with their mentors is so close that they call themselves the “Andermings.”

“I suppose it’s like having an orphanage,” Cummings joked as he prepared for the day ahead.

It would include a lengthy meeting with the Andermings on how best to grow human embryonic stem cells without animal-cell contamination, a critique of a doctoral candidate’s presentation of potentially significant new findings and a session with Alzheimer’s researchers at an institute called UCI MIND.

But first, Cummings, Anderson and their two dogs – Chesapeake and Indiana – had to get the couple’s 6-year-old daughter, Camryn, to school.

After Camryn finished her homework (completed strategically a day in advance, leaving more time for afternoon play), they took the long way round to the Montessori school, also easy walking distance from their home.

Along the way, they encountered another faculty couple, from the German department, and their dog. They stopped with Camryn, giggling as the dogs rolled and tumbled on a neighbor’s lawn.

•••

Cummings, 47, and Anderson, 45, together since they were both undergrads at the University of Illinois, say living and working with each other comes naturally.

“People say, ‘Do I need a break from her?’ ” Cummings said as he wrangled the dogs.

“More people say, ‘Do you need a break from him?’ ” Anderson replied.

Later, the conversation transitions into a science meeting as the two take the 20-minute walk past UCI’s Ecological Preserve and into the Sue and Bill Gross Stem Cell Research Center. The energy-efficient building, with an open design to encourage chance meetings among scientists, houses a roster of high-powered researchers as well as their experimental subjects: rodents.

The center was seeded by $27 million in state stem-cell funding and $10 million from donors Bill and Sue Gross. The building was completed in 2010.

Now, researchers working there cultivate lines of human embryonic stem cells that can grow into a variety of cell types, from brain cells to liver and heart cells.

The ability to coax stem cells into many forms – and with it the potential to treat Alzheimer’s, paralysis and a long list of diseases – is fueling an explosion of research around the nation and across the state.

Anderson and Cummings showed that their stem-cell treatment, using cells derived from aborted fetuses, allowed partially paralyzed rats to walk again. The rat’s recovery was revealed in a dramatic before-and-after video.

So far, the human trial of the treatment in Switzerland is showing no ill effects on patients, Cummings said.

But stem-cell research is buffeted by political controversy, funding uncertainties and, sometimes, attacks by stem-cell research opponents.

The trial of the treatment developed by Cummings and Anderson with their collaborators, StemCells Inc., was the first of its kind in the world when it was announced in 2010.

In some ways, that made the family – and their team – a target.

Concerns about possible intruders prompted the couple to place a camera at their front door. Cummings’ tires have been slashed, he said, though he doesn’t know if that was the work of people who oppose the harvesting of human embryonic stem cells, animal-rights activists (angered by experiments on rodents) or perhaps a disgruntled student.

At the moment, Cummings and Anderson are running five research programs and leading 17 researchers. All of it is funded by $2.2 million in grants, much of it from California Institute for Regenerative Medicine, or CIRM.

Created by voter initiative – Proposition 71 in 2004 – CIRM is California’s $3 billion answer to federal restrictions on funding for stem-cell research. Those restrictions were started by the Bush administration and eased, but not eliminated, under President Obama.

Cummings said opposition to their research is based, in part, on incorrect assumptions.

A big one is that the research involves the destruction of embryos. In reality, they work with balls of cells created at an earlier stage of human development, called blastocysts – a distinction many opponents do not draw.

“Embryonic stem cells don’t come from embryos,” he said. “And they never have.”

The raw material comes from fertility clinics and otherwise would be discarded.

Cummings says those who say that such research is immoral have it wrong.

“The argument is backward,” he said. “It’s immoral to throw away this stuff and not use it to help someone.”

••

During their meeting with the Andermings, project leader Hal Nguyen described the group’s plan to grow a series of stem-cell cultures and check a compelling question: Is some of a stem cell’s transformation guided by the microscopic environment in which it dwells, or is it entirely dictated by the cell’s internal workings?

“The plan is in the email,” Nguyen told Anderson.

“Dude, I have 400 emails,” Anderson said.

The group’s task was meant to answer a classic nature-nurture question, Anderson said. In this case, “nature” is the DNA coding in the stem cell itself, while “nurture” is the cellular environment, with all its floating nutrients and chemical signals.

“Will that environment, the extrinsic factor, trump anything the cell can do?” Anderson had wondered earlier. “Or is the intrinsic programming of the cell the principal determinant? Is that the main driving factor?”

Cummings stood by in the tiny meeting room while the researchers batted around their questions and answers. He said Anderson, a spinal cord specialist, was the expert in this arena, though he couldn’t help piping in during a discussion of the medium in which the cells would be grown.

“You’re comparing two different medias, too?” Cummings asked.

“We all know what we’re talking about,” Anderson told him. “Don’t interrupt.”

Then it was on to a larger, mostly empty meeting room where Sheri Peterson, a doctoral candidate, wanted to test her presentation on Cummings and Anderson.

Her eventual target is an advancement committee that will determine her future. The presentation will be crucial in her quest for a Ph.D.

Peterson ran through an array of slides projected on a large screen to reveal her findings. Inflammation of damaged tissue being regenerated in rats, she said, might be eased or worsened simply by manipulating proteins surrounding the regenerating cells.

Again, the topic was in Anderson’s wheelhouse.

“My notes said, ‘Nicely done,’ ” Cummings told Peterson.

“He’s not an aficionado,” Anderson said.

The husband-and-wife researchers then provided her with a detailed, slide-by-slide critique.

•••

Cummings’ expertise centers on traumatic brain injury. But he also is an expert at the complex task of marshaling grant funding. On his office wall, a whiteboard densely covered with writing tells the story: Cummings must police incoming and outgoing grants like an air traffic controller, timing the grants and the work they fund to match years of employment for graduate students and staff members.

The grants come and go over months and years, and so do the students and staff. Get the timing wrong, and you might have funding with no researchers, or researchers with nothing to do.

“At UCI, I’m like a small-business owner,” Cummings said.

Over a hasty lunch in his office (cold sandwiches grabbed during a trip, with Anderson, to a nearby campus snack shop), Cummings spoke of the merging of home and office life.

Writing up grant requests takes up both researchers’ time. Often, as they write, Camryn is playing in the background, whether at home or at the office. And research collaborators can show up wanting to conduct interviews at any time, holidays included.

“I did draw a line in the sand at Christmas Eve,” Anderson said.

Cummings knows such stress has driven other husband-and-wife teams into open conflict. But that just isn’t his and Anderson’s style. In fact, he said, keeping a scientific perspective, even at home, might help keep things calm.

“There’s no need to be yelling and shouting at each other because we don’t think that way,” he said. “You’re supposed to believe nothing until you prove it.”

That doesn’t mean they don’t differ, sometimes strongly, over scientific details.

“They don’t always agree with each other, and that’s good,” said Brittany Greer, an intern in their lab and an Anderming.

Nurturing the students and young scientists is part of the pleasure of doing science for both halves of the research couple, Anderson said.

“You start to look at this crowd of people as your second family,” she said. “They’re your kids. That is fun and rewarding for sure.”

Continue reading here:
Stem-cell scientists find right chemistry

To Read More: Stem-cell scientists find right chemistry
categoriaSpinal Cord Stem Cells commentoComments Off on Stem-cell scientists find right chemistry | dataFebruary 19th, 2012
Read All

Page 470«..1020..469470471472..480490..»