Page 458«..1020..457458459460..470480..»

It May Be Possible To Prevent HIV Even Without a Vaccine

By JoanneRUSSELL25

TIME Health HIV/AIDS It May Be Possible To Prevent HIV Even Without a Vaccine "We're removing the doorway that HIV uses to get into cells"

Natural immunity is the most reliable way to protect yourself from viruses, bacteria and parasites. And the best way to acquire such immunity, in most cases, is to expose your immune system to the bug in questioneither by getting infected or getting immunized.

Until now, such protection was only possible with diseases like chicken pox or polio. But now, scientists at Harvard University say that people might soon arm themselves against HIV in a similar way, but through a different method.

Chad Cowan and Derrick Rossi, both in the department of stem cell and regenerative biology at Harvard University, and their colleagues report in the journal Cell Stem Cell that they have successfully edited the genomes of blood cells to make them impervious to HIV. In order survive, HIV needs to insert its genome into that of a healthy cell, and to infect these cells, HIV latches onto a protein on their surface called CCR5. If CCR5 is mutated, however, its as if the locks have been changed and HIV no longer has the right key; it cant attach itself and the cells are protected from infection. So the scientists tried a new gene editing technique called CRISPR that allows them to precisely snip out parts of a cells genome, and they spliced out the CCR5 gene. To their surprise, the technique was relatively efficient, transforming about half of the cells they treated with CRISPR into CCR5-free, or HIV-resistant, cells.

It was stunning to us how efficient CRISPR was in doing the genome editing, says Cowan.

Scientists have previously used CRISPR to make another change in how HIV infects cells; they snipped out the HIV genes that the virus inserted into healthy cells. That process essentially returned HIV infected cells back to healthy ones.

The latest results, however, suggest that the technique may be useful even before HIV gets inside cells. CRISPR could be useful in treating HIV patients if it can replace patients own immune cells with the blockaded versions. The cells Cowan and Rossi used were blood stem cells, which give rise to the bodys entire blood and immune system. In order to work as a potential treatment for HIV, patients would provide a sample of blood stem cells from their bone marrow, which would be treated with CRISPR to remove the CCR5 gene, and these cells would be transplanted back to the patient. Since the bone marrow stem cells populate the entire blood and immune system, the patient would eventually have blood cells that were protected, or immunized, against HIV. Were removing the doorway that HIV uses to get into cells, says Cowan.

To test this idea, they are already working with another research group to see if the HIV-impervious cells can treat mice infected with HIV.

Because healthy cells would be barricaded from HIV, the process might also lead to a cure for the disease. While the results are currently being tested to treat animals already infected with HIV, it may also be possible to one day transform a persons immune cell genomes to be protected against the virus. Some people are already fortunate enough to be protected this waya small percentage of people of European ancestry have natural immunity against HIV because they have two copies of mutated CCR5. They have been well studied and so far, their CCR5 aberrations dont seem to be linked to any known health issues. They are totally normal except for the fact that they are resistant to HIV, says Cowan. Thats a heartening thing: to have a group of people who are alive today who have been studied and looked at and seem totally fine.

Thats why clinicians who research the virus and treat HIV patients are excited by the possibilities of CRISPR-aided strategies. If its possible to close the door on HIV, then it may be realistic to start thinking about closing the door on the AIDS epidemic in the near future.

Read the original:
It May Be Possible To Prevent HIV Even Without a Vaccine

To Read More: It May Be Possible To Prevent HIV Even Without a Vaccine
categoriaBone Marrow Stem Cells commentoComments Off on It May Be Possible To Prevent HIV Even Without a Vaccine | dataNovember 6th, 2014
Read All

Scientists find that SCNT derived cells and IPS cells are similar

By JoanneRUSSELL25

PUBLIC RELEASE DATE:

6-Nov-2014

Contact: David McKeon dmckeon@nyscf.org 212-365-7440 New York Stem Cell Foundation @nyscf

New York, NY (November 6, 2014) - A team led by New York Stem Cell Foundation (NYSCF) Research Institute scientists conducted a study comparing induced pluripotent stem (iPS) cells and embryonic stem cells created using somatic cell nuclear transfer (SCNT). The scientists found that the cells derived from these two methods resulted in cells with highly similar gene expression and DNA methylation patterns. Both methods also resulted in stem cells with similar amounts of DNA mutations, showing that the process of turning an adult cell into a stem cell introduces mutations independent of the specific method used. This suggests that both methods of producing stem cells need to be further investigated before determining their suitability for the development of new therapies for chronic diseases.

The NYSCF Research Institute is one of the only laboratories in the world that currently pursues all forms of stem cell research including SCNT and iPS cell techniques for creating stem cells. The lack of laboratories attempting SCNT research was one of the reasons that the NYSCF Research Institute was established in 2006.

"We do not yet know which technique will allow scientists to create the best cells for new cellular therapies," said Susan L. Solomon, NYSCF CEO and co-founder. "It is critical to pursue both SCNT and iPS cell techniques in order to accelerate research and bring new treatments to patients."

While both techniques result in pluripotent stem cells, or cells that can become any type of cell in the body, the two processes are different. SCNT consists of replacing the nucleus of a human egg cell or oocyte with the nucleus of an adult cell, resulting in human embryonic stem cells with the genetic material of the adult cell. In contrast, scientists create iPS cells by expressing a few key genes in adult cells, like a skin or blood cell, causing the cells to revert to an embryonic-like state. These differences in methods could, in principle, result in cells with different properties. Advances made earlier this year by NYSCF Research Institute scientists that showed that human embryonic stem cells could be derived using SCNT revived that debate.

"Our work shows that we now have two methods for the generation of a patient's personal stem cells, both with great potential for the development of treatments of chronic diseases. Our work will also be welcome news for the many scientists performing basic research on iPS cells. It shows that they are likely working with cells that are very similar to human embryonic stem cells, at least with regard to gene expression and DNA methylation. How the finding of mutations might affect clinical use of stem cells generated from adult cells is the subject of an ongoing debate," said Dr. Dieter Egli, NYSCF Senior Research Fellow, NYSCF - Robertson Investigator, Assistant Professor in Pediatrics & Molecular Genetics at Columbia University, and senior author on the paper.

The study, published today in Cell Stem Cell, compared cell lines derived from the same sources using the two differing techniques, specifically contrasting the frequency of genetic coding mutations seen and measuring how closely the stem cells matched the embryonic state through the analysis of DNA methylation and of gene expression patterns. The scientists showed that both methods resulted in cell types that were similar with regard to gene expression and DNA methylation patterns. This suggested that both methods were effective in turning a differentiated cell into a stem cell.

The scientists also showed that cells derived using both SCNT and iPS techniques showed similar numbers of genetic coding mutations, implying that neither technique is superior in that regard. A similar number of changes in DNA methylation at imprinted genes (genes that are methylated differentially at the maternal versus the paternal allele) were also found. It is important to note that both types of techniques led to cells that had more of these aberrations than embryonic stem cells derived from an unfertilized human oocyte, or than embryonic stem cells derived from leftover IVF embryos. These findings suggest that a small number of defects are inherent to the generation of stem cells from adult differentiated cells and occur regardless of the method used.

More here:
Scientists find that SCNT derived cells and IPS cells are similar

To Read More: Scientists find that SCNT derived cells and IPS cells are similar
categoriaSkin Stem Cells commentoComments Off on Scientists find that SCNT derived cells and IPS cells are similar | dataNovember 6th, 2014
Read All

Scientists create Parkinson's disease in a dish

By Dr. Matthew Watson

PUBLIC RELEASE DATE:

6-Nov-2014

Contact: David McKeon dmckeon@nyscf.org 212-365-7440 New York Stem Cell Foundation @nyscf

New York, NY (November 6, 2014) - A team of scientists led by The New York Stem Cell Foundation (NYSCF) Research Institute successfully created a human stem cell disease model of Parkinson's disease in a dish. Studying a pair of identical (monozygotic) twins, one affected and one unaffected with Parkinson's disease, another unrelated Parkinson's patient, and four healthy control subjects, the scientists were able to observe key features of the disease in the laboratory, specifically differences in the patients' neurons' ability to produce dopamine, the molecule that is deficient in Parkinson's disease. In addition, the scientists also identified a potential strategy for developing novel therapies for Parkinson's disease.

Attributed to a combination of genetic and nongenetic factors, Parkinson's disease has no completely effective therapy or cure. Parkinson's disease is moderately heritable, but the mechanisms of this inheritance are not well understood. While genetic forms of the disease exist, sporadic forms are far more common.

"The unique scenario of identical twins, one with this disease and one without, allowed our scientists an unprecedented look into the mechanisms of Parkinson's disease," said Susan L. Solomon, NYSCF Chief Executive Officer. "Advanced stem cell research techniques allow us to push the boundaries of science and see what actually goes wrong at the cellular level, step by step during the disease process."

DNA mutations resulting in the production of a specific enzyme called glucocerebrosidase (GBA) have been linked to a five-fold greater risk of developing Parkinson's disease; however, only 30% of individuals with this mutation have been shown to develop Parkinson's disease by the age of 80. This discordance suggests that multiple factors contribute to the development of Parkinson's disease, including both genetic and non-genetic factors. To date, there has been no appropriate model to identify and test multiple triggers leading to the onset of the disease.

In this study, published today in Cell Reports, a set of identical twins, both with a GBA mutation, provided a unique opportunity to evaluate and dissect the genetic and non-genetic contributions to the development of Parkinson's disease in one twin, and the lack of disease in the other. The scientists made induced pluripotent stem (iPS) cells from skin samples from both twins to generate a cellular model of Parkinson's in a dish, recapitulating key features of the disease, specifically the accumulation of -synuclein and dopamine deficiency.

Upon analyzing the cell models, the scientists found that the dopamine-producing neurons from both twins had reduced GBA enzymatic activity, elevated -synuclein protein levels, and a reduced capacity to synthesize and release dopamine. In comparison to his unaffected brother, the neurons generated from the affected twin produced less dopamine, had higher levels of an enzyme called monoamine oxidase B (MAO-B), and poor ability to connect with each other. Treating the neurons with molecules that lowered the activity of MAO-B together with overexpressed GBA normalized -synuclein and dopamine levels in the cell models. This suggests that a combination therapy for the affected twin may be possible by simultaneously targeting these two enzymes.

"The subject of Parkinson's disease discordant twins gave us an incredible opportunity to utilize stem cell models of disease in a dish to unlock some of the biological mechanisms of disease," said Dr. Scott Noggle, NYSCF Vice President, Stem Cell Research and The NYSCF - Charles Evans Senior Research Fellow for Alzheimer's Disease. "Working with these various different groups and scientists added to the depth and value of the research and we hope our findings will be applicable to other Parkinson's disease patients and other neurodegenerative disorders."

Go here to read the rest:
Scientists create Parkinson's disease in a dish

To Read More: Scientists create Parkinson's disease in a dish
categoriaIPS Cell Therapy commentoComments Off on Scientists create Parkinson's disease in a dish | dataNovember 6th, 2014
Read All

Direct generation of neural stem cells could enable transplantation therapy

By JoanneRUSSELL25

45 minutes ago by Nicole Giese Rura

Induced neural stem cells (iNSCs) created from adult cells hold promise for therapeutic transplantation, but their potential in this capacity has been limited by failed efforts to maintain such cells in the desirable multi-potent NSC state without continuous expression of the transcription factors used initially to reprogram them.

Now, Whitehead Institute scientists have created iNSCs that remain in the multi-potent state without ongoing expression of reprogramming factors. This allows the iNSCs to divide repeatedly to generate cells in quantities sufficient for therapy.

"Therapeutically, it's important to make neural stem cells because they can self-renew and make lots of cells," says Whitehead Institute Founding Member Rudolf Jaenisch, who is also a professor of biology at MIT. "If you just make mature neurons, which has been done by others, you never get enough cells."

To make iNSCs via direct lineage conversion researchers use viruses to insert a cocktail of transcription factors into the genome of mouse adult skin cells. A drug triggers these transcription factors to turn on genes active in neural stem cells. This direct conversion, known as transdifferentiation, bypasses the step of pushing the cells first through an embryonic stem-cell-like state.

In previous research, iNSCs remained addicted to the drug and reprogramming transcription factors; if either the drug or the factors was removed, the cells revert to skin cells.

"If the reprogramming factors are still active, it's horrible for the cells," says John Cassady, a scientist in Jaenisch's lab. "The cells would be unable to differentiate and the resulting cells would not be therapeutically useful."

In a paper published online this week in the current issue of the journal Stem Cell Reports, Cassady and other Whitehead scientists describe how they prevented the cells' relapse without keeping the reprogramming factors active. First, the cells were grown in a special medium that selects for neural stem cells. Then, the drug is removed. Instead of reverting into skin cells, the iNSCs remain in a multi-potent state that can differentiate into neurons and glia cells. Cassady also refined the reprogramming cocktail to contain eight transcription factors, which produces iNSCs that are transcriptionally and epigenetically similar to mouse neural stem cells.

Cassady notes that a random sample of skin cells can contain neural precursor cells, which can more easily make the transition to iNSCs. To eliminate the possibility that his method might actually rely on cells having this sort of "head start", Cassady converted fully mature immune system cells called B-lymphocytes, which have a very specific genetic marker, to iNSCs. The resulting cells had the profile of their new identity as iNSCs, yet retained their B-lymphocyte genetic marker, showing that Cassady's method could indeed convert non-neural cells to iNSCs.

Although promising, all of the work to date has been conducted in mouse cells. According to Cassady, researchers should next test this protocol in human cells to see if it can successfully produce the cell populations necessary for therapeutic use.

See the article here:
Direct generation of neural stem cells could enable transplantation therapy

To Read More: Direct generation of neural stem cells could enable transplantation therapy
categoriaIPS Cell Therapy commentoComments Off on Direct generation of neural stem cells could enable transplantation therapy | dataNovember 6th, 2014
Read All

Stem cell transplants may help reduce seizures, study says

By Dr. Matthew Watson

New research from McLean Hospital and the Harvard Stem Cell Institute has shown that stem cell therapy reduces seizures in mice.

Researchers used an animal model to transplant seizure-inhibiting, human embryonic stem cell-derived neurons into the brains of mice that had a common form of epilepsy. Half of the mice that received the transplanted neurons no longer had seizures, while the other half experienced a significant drop in seizure frequency.

The transplanted neurons integrated into the mouse brains and began to receive neuronal activity. The neurons then released GABA, an inhibitory response that reversed the electrical hyperactivity that causes seizure.

Previous studies showed increasing inhibition in the epileptic brain can help control the seizure and also a lot of anti-epilepsy drugs are mimicking this GABA, so many of them worked by binding to the GABA receptor inhibitor neuron, researcher Sangmi Chung, associate professor of psychiatry at Harvard, told FoxNews.com.

Researchers initially set out to test the functionality of human neurons, but later decided to test their effect on epilepsy because it is such a devastating disease. About 30 percent of people do not respond to seizure drugs and one out of 26 people will be affected by seizures in their lifetime, Chung said.

Over 65 million people worldwide are affected by epileptic seizures, which can cause convulsions, loss of consciousness and other neurological symptoms. Patients are treated with anti-seizure drugs, and may choose to have a portion of their brain removed.

Because mouse cells mature more quickly than human cells within weeks instead of years its unclear how long a stem cell transplant in a human would take before becoming effective, Chung noted.

If we compare it with the mouse [model], we believe it will be years, not weeks, she said.

However, the study found that, even without full maturation, the cells integrated into the epileptic mouse brains, receive signals and release GABA, therefore preventing seizures.

I think its really good news in terms of transplantation even maturing, not fully mature [cells] still work, Chung said.

Read more:
Stem cell transplants may help reduce seizures, study says

To Read More: Stem cell transplants may help reduce seizures, study says
categoriaUncategorized commentoComments Off on Stem cell transplants may help reduce seizures, study says | dataNovember 6th, 2014
Read All

donga.com[English donga]

By Sykes24Tracey

Korean stem cells regenerate coach Hiddinks worn-out knee cartilage NOVEMBER 06, 2014 03:02 Korean stem cells regenerate coach Hiddinks worn-out knee cartilage . NOVEMBER 06, 2014 03:02. . Guus Hiddink, the legendary soccer coach who led the Korean national team to the semifinals at the 2002 World Cup Korea-Japan, has been reborn as a figure symbolizing excellence of Korean stem cell treatment. Hiddink, who was suffering from severe arthritis, had his knee cartilage almost completely worn out. Rejecting recommendations to take artificial joint surgery by hospitals in the U.S. and Germany, Hiddink chose to take stem cell treatment in Korea. He started treatment in January this year, and was declared as having fully recovered from the illness 10 months later.

The treatment that gave coach Hiddink a second life is Cartistem, which is made from cord blood stem cells. Cartistem, which was developed by Medipost, a bio venture firm, received product licensure as treatment for knee cartilage that has been damaged due to degenerative conditions and repeated injuries from the Korea Food and Drug Ministry in January 2012. It was the first to receive licensure among stem cell treatments in the world. The treatment is undergoing clinical trials in the U.S. to acquire licensure from the Food and Drug Administration. Despite a highly costly price that is not covered by the national health insurance system, the treatment has been used in more than 1,600 patients thus far.

Stem cell treatments developed in Korea include Hearticellgram, a treatment for cardiac infarction, and Cupistem, a treatment for fistulous opening (a disease that causes holes in tissue between rectums and anus), as well as Cartistem. Hearticellgram and Cupistem use stem cells from tissues of the patients own body. Umbilical cord stem cells and autologous stem cells do not derive from human eggs and hence are free from controversy of bioethics. They are results of steadfast research and investment in stem cells by Korean biotech firms.

In tune with the aging society and a growing number of people with chronic diseases, the bio industry is considered a cash cow industry of the future. Notably, the stem cell sector that treats abnormal bodily organs is the most promising field. Not only bio powerhouses such as the U.S., Japan and the European Union but also China have jumped into the industry. As research on induced pluripotent stem cells (iPS) won the Nobel Prize in physiology and medicine recently, countries worldwide are having mounting interest in the field. The Korean government should create an environment to enable Korean biotech firms to take a leap forward in the global market, by providing generous support for investment and putting in place prompt and predictable licensure and approval process.

The treatment that gave coach Hiddink a second life is Cartistem, which is made from cord blood stem cells. Cartistem, which was developed by Medipost, a bio venture firm, received product licensure as treatment for knee cartilage that has been damaged due to degenerative conditions and repeated injuries from the Korea Food and Drug Ministry in January 2012. It was the first to receive licensure among stem cell treatments in the world. The treatment is undergoing clinical trials in the U.S. to acquire licensure from the Food and Drug Administration. Despite a highly costly price that is not covered by the national health insurance system, the treatment has been used in more than 1,600 patients thus far.

Stem cell treatments developed in Korea include Hearticellgram, a treatment for cardiac infarction, and Cupistem, a treatment for fistulous opening (a disease that causes holes in tissue between rectums and anus), as well as Cartistem. Hearticellgram and Cupistem use stem cells from tissues of the patients own body. Umbilical cord stem cells and autologous stem cells do not derive from human eggs and hence are free from controversy of bioethics. They are results of steadfast research and investment in stem cells by Korean biotech firms.

In tune with the aging society and a growing number of people with chronic diseases, the bio industry is considered a cash cow industry of the future. Notably, the stem cell sector that treats abnormal bodily organs is the most promising field. Not only bio powerhouses such as the U.S., Japan and the European Union but also China have jumped into the industry. As research on induced pluripotent stem cells (iPS) won the Nobel Prize in physiology and medicine recently, countries worldwide are having mounting interest in the field. The Korean government should create an environment to enable Korean biotech firms to take a leap forward in the global market, by providing generous support for investment and putting in place prompt and predictable licensure and approval process.

See the original post:
donga.com[English donga]

To Read More: donga.com[English donga]
categoriaCardiac Stem Cells commentoComments Off on donga.com[English donga] | dataNovember 5th, 2014
Read All

Stem cells help doctors restore womans smile, regenerating bone to hold dental implants

By NEVAGiles23

Durham, NC (PRWEB) November 05, 2014

Half of all traumatic injuries to the face result in a loss of teeth and the surrounding tissue and bone that once supported them, which in turn makes these types of injuries very debilitating and difficult to treat. But in a new study published in the latest issue of STEM CELLS Translational Medicine, doctors at the University of Michigan School of Dentistry (UMSoD), Ann Arbor, have found a new way to regenerate a patients jawbone through the use of stem cells.

The procedure, done under local anesthesia, significantly speeds up the healing time relative to that of traditional bone grafting while allowing a patient to experience only a minimal amount of pain.

Part of a larger clinical trial, the findings highlighted in this issue focus on a 45-year-old woman missing seven front teeth plus 75 percent of the bone that once supported them, the result of a blow to her face five years earlier. She was left with severe functional and cosmetic deficiencies, since the missing bone made it impossible for her to have dental implant-based teeth replacements.

Darnell Kaigler, DDS, MS, PhD, an assistant professor of dentistry in the Department of Periodontics and Oral Medicine, was a lead member of the study team. "In small jawbone defects of the mouth created after teeth were extracted, we have placed gelatin sponges populated with stem cells into these areas to successfully grow bone."

Since the sponge material is soft, it does not work in larger areas. Thus, he and his team of researchers decided to try b-tricalcium phosphate (b-TCP) as a scaffold upon which to place the cells instead. "For treating larger jawbone defects, it is important to have a scaffold material that is rigid and more stable to support bone growth," he explained.

They then placed the b-TCP scaffold, which had been seeded with a mixed population of bone marrow-derived autologous stem and progenitor cells 30 minutes prior to treatment at room temperature, into the defective area of the patients mouth during a procedure that requires only local anesthesia. Four months later, 80 percent of her missing jawbone had been regenerated, allowing them to proceed with placing oral implants that supported a dental prosthesis to once again give her a complete set of teeth.

Study team member Sharon Aronovich, DMD, FRCD(C), a clinical assistant professor of dentistry in the Department of Oral and Maxillofacial Surgery at the UMSoD, said, I am very grateful to all the patients and researchers that participated in this study. Thanks to everyone's efforts, we are one step closer to providing patients with a minimally invasive option for implant-based tooth replacement.

As the first report to describe a cell therapy for craniofacial trauma reconstruction, this research serves as the foundation for expanded studies using this approach, said Anthony Atala, M.D., Editor-in-Chief of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine.

###

See the original post here:
Stem cells help doctors restore womans smile, regenerating bone to hold dental implants

To Read More: Stem cells help doctors restore womans smile, regenerating bone to hold dental implants
categoriaBone Marrow Stem Cells commentoComments Off on Stem cells help doctors restore womans smile, regenerating bone to hold dental implants | dataNovember 5th, 2014
Read All

Global Stem Cells Group to Hold Practical, Hands-on Training Course on Adipose-derived Stem Cell Harvesting, Isolation …

By NEVAGiles23

Miami, FL (PRWEB) November 05, 2014

Global Stem Cells Group, its subsidiary Stem Cell Training, Inc. and Dr. J. Victor Garcia have announced plans to conduct the Adipose Derived Harvesting, Isolation and Re-integration Training Course in Barcelona, Spain Nov. 22-23. 2014.

The two-day, hands-on intensive training course, which will be conducted by Garcia, was developed for physicians and high-level practitioners to learn techniques in harvesting and reintegrating stem cells derived from adipose tissue and bone marrow. The objective of the training is to bridge the gap between bench science in the laboratory and the doctors office by teaching effective, in-office regenerative medicine techniques.

For more information, visit the Stem Cell Training, Inc. website, email info(at)stemcelltraining(dot)net, or call 305-224-1858.

About Global Stem Cells Group:

Global Stem Cells Group, Inc. is the parent company of six wholly owned operating companies dedicated entirely to stem cell research, training, products and solutions. Founded in 2012, the company combines dedicated researchers, physician and patient educators and solution providers with the shared goal of meeting the growing worldwide need for leading edge stem cell treatments and solutions.

With a singular focus on this exciting new area of medical research, Global Stem Cells Group and its subsidiaries are uniquely positioned to become global leaders in cellular medicine.

Global Stem Cells Groups corporate mission is to make the promise of stem cell medicine a reality for patients around the world. With each of GSCGs six operating companies focused on a separate research-based mission, the result is a global network of state-of-the-art stem cell treatments.

About Stem Cell Training, Inc.:

Stem Cell Training, Inc. is a multi-disciplinary company offering coursework and training in 35 cities worldwide. Coursework offered focuses on minimally invasive techniques for harvesting stem cells from adipose tissue, bone marrow and platelet-rich plasma. By equipping physicians with these techniques, the goal is to enable them to return to their practices, better able to apply these techniques in patient treatments.

More here:
Global Stem Cells Group to Hold Practical, Hands-on Training Course on Adipose-derived Stem Cell Harvesting, Isolation ...

To Read More: Global Stem Cells Group to Hold Practical, Hands-on Training Course on Adipose-derived Stem Cell Harvesting, Isolation …
categoriaUncategorized commentoComments Off on Global Stem Cells Group to Hold Practical, Hands-on Training Course on Adipose-derived Stem Cell Harvesting, Isolation … | dataNovember 5th, 2014
Read All

Okyanos Treats First Patients with Cell Therapy

By NEVAGiles23

Freeport, Grand Bahama (PRWEB) November 05, 2014

Okyanos is the first to receive regulatory approval from the National Stem Cell Ethics Committee (NSEC) to provide adult stem cell therapy in its new state-of-the-art facility and has now begun treating patients. The licensing includes approval for cardiac cell therapy, as well as cell therapy for tissue ischemia, autoimmune diseases, and other chronic neurological and orthopedic conditions. The licensing criteria requires that approved protocols be supported by peer-reviewed papers showing substantial evidence of safety and efficacy.

"As the leader in cell therapy, Okyanos is very proud to bring a new standard of care and a better quality of life to patients who are looking for new options for unmet healthcare needs. said Matt Feshbach, CEO and co-founder of Okyanos. Adipose (fat)- derived stem and regenerative cells (ADRCs) are known to restore blood flow, modulate the immune system, reduce inflammation and prevent further cell death after a wound, helping the body begin the process of healing itself.

Adult stem cell therapy has emerged as a new treatment alternative for those who want to live a more normal life but are restricted in these activities due to their medical conditions. Just 50 miles from the US shore, Okyanos cell therapy is available to patients with severe heart disease including coronary artery disease (CAD) and congestive heart failure (CHF) as well as patients with auto-immune diseases, orthopedic, neurological and urological conditions. Okyanos cell therapy is performed in their new state-of-the-art facility built to exceed U.S. surgical center standards.

With the regulatory and licensing approvals for adult stem cell therapy, Okyanos is the first to treat patients with cell therapy for severe heart disease and other unmet medical conditions based on a combination of internationally approved cell processing technology, technical papers, clinical trials and in-clinic use which provide the basis for a new standard of care.

Patients can contact Okyanos at http://www.okyanos.com or by calling toll free at 1-855-659-2667.

About Okyanos: (Oh key AH nos) Based in Freeport, Grand Bahama, Okyanos brings a new standard of care and a better quality of life to patients with coronary artery disease, tissue ischemia, autoimmune diseases, and other chronic neurological and orthopedic conditions. Okyanos Cell Therapy utilizes a unique blend of stem and regenerative cells derived from patients own adipose (fat) tissue which helps improve blood flow, moderate destructive immune response and prevent further cell death. Okyanos is fully licensed under the Bahamas Stem Cell Therapy and Research Act and adheres to U.S. surgical center standards. The literary name Okyanos, the Greek god of the river Okyanos, symbolizes restoration of blood flow.

View post:
Okyanos Treats First Patients with Cell Therapy

To Read More: Okyanos Treats First Patients with Cell Therapy
categoriaUncategorized commentoComments Off on Okyanos Treats First Patients with Cell Therapy | dataNovember 5th, 2014
Read All

Researchers reconstruct early stages of embryo development

By Dr. Matthew Watson

16 hours ago

Researchers at the University of Cambridge have managed to reconstruct the early stage of mammalian development using embryonic stem cells, showing that a critical mass of cells not too few, but not too many is needed for the cells to being self-organising into the correct structure for an embryo to form.

All organisms develop from embryos: a cell divides generating many cells. In the early stages of this process, all cells look alike and tend to aggregate into a featureless structure, more often than not a ball. Then, the cells begin to 'specialise' into different types of cell and space out asymmetrically, forming an axis which begins to provide a structure for the embryo to develop along.

In animal embryos this stage is followed by a process known as gastrulation: a choreographed movement of the cells that, using the initial axis as a reference, positions the head and the tail, the front and the back. During the process, the cells begin to forum three distinct layers: the endoderm, mesoderm and ectoderm, determining which tissues or organs the cells will then develop into.

Professor Alfonso Martinez-Arias from the Department of Genetics at the University of Cambridge, who led the research, says: "Gastrulation was described by biologist Professor Lewis Wolpert as being 'truly the most important event in your life' because it creates the blueprint of an organism. Axis formation and gastrulation are the two central processes that initiate the development of an organism and are inextricably associated with the embryo. We have managed to recreate this for the first time in the lab."

This video is not supported by your browser at this time.

Professor Martinez-Arias and colleagues, supported by the European Research Council and the Wellcome Trust, have reconstructed these early stages of development using mouse embryonic stem cells. Embryonic stem cells, discovered in the Department of Genetics in the 1980s (for which Sir Martin Evans was awarded the Nobel Prize in Physiology or Medicine 2007), have become an important tool for developmental biology, understanding disease, and in regenerative medicine due to the ability to give rise to all cell types in culture. Over the last few years, they have been used to 'grow' organs including the eye and the cerebral cortex; surprisingly, these structures develop without an axis.

In research published today in the journal Development, the researchers report a way to coax cells to reorganize in the manner that they do in an embryo, creating an axis and undergoing movements and organisations that mimic the process of gastrulation. Over the years researchers have been making aggregates of embryonic stem cells to obtain certain cell types, for example red blood cells. However, these aggregates lack structure and the different cell types emerge in a disorganised fashion. This is the first time that researchers have been able to elicit axis formation, spatial organisation and gastrulation-like movements from aggregates of embryonic stem cells.

The researchers show that if the number of cells aggregated initially is similar to that of a mouse embryo, the cells generate a single axis and this serves as a template for a sequence of events that mimics those of the early embryo. By manipulating the signals that the cells see at a particular time, the researchers were able to influence what type of cell they become and how they are organised. In one of the experiments, for example, activation of a particular signal at the correct time elicits the appearance of the mesoderm, endoderm and ectoderm the precursors of all cell types with a spatial organization similar to that of an embryo.

Using this experimental system, the researchers were able to generate the early stages of a spinal cord, which they showed forms as part of the process of gastrulation. This finding complements previous research from the University of Edinburgh and the National Institute for Medical Research which showed that embryonic stem cells can be coaxed into this spinal cord cells; however, the Cambridge researchers showed that the in the embryo-like aggregates, the structural organization is more robust and allows for the polarised growth of the tissue.

Read the rest here:
Researchers reconstruct early stages of embryo development

To Read More: Researchers reconstruct early stages of embryo development
categoriaSpinal Cord Stem Cells commentoComments Off on Researchers reconstruct early stages of embryo development | dataNovember 4th, 2014
Read All

Shaping up: Researchers reconstruct early stages of embryo development

By raymumme

PUBLIC RELEASE DATE:

4-Nov-2014

Contact: Craig Brierley craig.brierley@admin.cam.ac.uk 44-012-237-66205 University of Cambridge @Cambridge_Uni

Researchers at the University of Cambridge have managed to reconstruct the early stage of mammalian development using embryonic stem cells, showing that a critical mass of cells not too few, but not too many is needed for the cells to being self-organising into the correct structure for an embryo to form.

All organisms develop from embryos: a cell divides generating many cells. In the early stages of this process, all cells look alike and tend to aggregate into a featureless structure, more often than not a ball. Then, the cells begin to 'specialise' into different types of cell and space out asymmetrically, forming an axis which begins to provide a structure for the embryo to develop along.

In animal embryos this stage is followed by a process known as gastrulation: a choreographed movement of the cells that, using the initial axis as a reference, positions the head and the tail, the front and the back. During the process, the cells begin to forum three distinct layers: the endoderm, mesoderm and ectoderm, determining which tissues or organs the cells will then develop into.

Professor Alfonso Martinez-Arias from the Department of Genetics at the University of Cambridge, who led the research, says: "Gastrulation was described by biologist Professor Lewis Wolpert as being 'truly the most important event in your life' because it creates the blueprint of an organism. Axis formation and gastrulation are the two central processes that initiate the development of an organism and are inextricably associated with the embryo. We have managed to recreate this for the first time in the lab."

Professor Martinez-Arias and colleagues, supported by the European Research Council and the Wellcome Trust, have reconstructed these early stages of development using mouse embryonic stem cells. Embryonic stem cells, discovered in the Department of Genetics in the 1980s (for which Sir Martin Evans was awarded the Nobel Prize in Physiology or Medicine 2007), have become an important tool for developmental biology, understanding disease, and in regenerative medicine due to the ability to give rise to all cell types in culture. Over the last few years, they have been used to 'grow' organs including the eye and the cerebral cortex; surprisingly, these structures develop without an axis.

In research published today in the journal Development, the researchers report a way to coax cells to reorganize in the manner that they do in an embryo, creating an axis and undergoing movements and organisations that mimic the process of gastrulation. Over the years researchers have been making aggregates of embryonic stem cells to obtain certain cell types, for example red blood cells. However, these aggregates lack structure and the different cell types emerge in a disorganised fashion. This is the first time that researchers have been able to elicit axis formation, spatial organisation and gastrulation-like movements from aggregates of embryonic stem cells.

The researchers show that if the number of cells aggregated initially is similar to that of a mouse embryo, the cells generate a single axis and this serves as a template for a sequence of events that mimics those of the early embryo. By manipulating the signals that the cells see at a particular time, the researchers were able to influence what type of cell they become and how they are organised. In one of the experiments, for example, activation of a particular signal at the correct time elicits the appearance of the mesoderm, endoderm and ectoderm the precursors of all cell types with a spatial organization similar to that of an embryo.

Original post:
Shaping up: Researchers reconstruct early stages of embryo development

To Read More: Shaping up: Researchers reconstruct early stages of embryo development
categoriaSpinal Cord Stem Cells commentoComments Off on Shaping up: Researchers reconstruct early stages of embryo development | dataNovember 4th, 2014
Read All

Family honors child's memory through bone marrow registry and stem cell donation

By NEVAGiles23

Mark and Mindy Ammons lost their 2-year-old son, Christopher, in 1988 to neuroblastoma, an aggressive childhood cancer. In 2009, Mindy Ammons donated her own stem cells to a woman with cancer. And this weekend, the family's youngest son will prepare a bone marrow donor registry in memory of his oldest brother as an Eagle Scout project.

Family photo

Bone marrow donation is close to the heart for the Ammons family of Provo.

Mark and Mindy Ammons lost their 2-year-old son, Christopher, in 1988 to neuroblastoma, an aggressive childhood cancer. In 2009, Mindy Ammons donated her own stem cells to a woman with cancer. And this weekend, the familys youngest son will lead a bone marrow registry drive as an Eagle Scout project in memory of his oldest brother.

We are in the unique position of having been on both sides of the process, Mindy Ammons said.

In the "Be The Match" flier created for the project, Will Ammons, 13, explains that Christophers only chance of survival was a bone marrow transplant, but sadly, no one in our family was a match, so he had to be his own donor.

Christopher underwent treatment at the UCLA Medical Center where, after five days of chemotherapy, three days of full-body radiation and then surgery, he received his own marrow as a transplant. He died two weeks into the process, just shy of his third birthday.

Over the years, the Ammonses talked about this experience with their children and stayed informed on treatment advances. When it came time for their second oldest son, Jon, to do his Eagle Scout project, he didn't just want to do something to check off on a list. He wanted a meaningful project.

He wanted to do something that would make a difference and was cancer-related," Mindy Ammons said.

They discussed raising money for cancer research but decided that would be like dropping a coin in a well, she said.

See the rest here:
Family honors child's memory through bone marrow registry and stem cell donation

To Read More: Family honors child's memory through bone marrow registry and stem cell donation
categoriaBone Marrow Stem Cells commentoComments Off on Family honors child's memory through bone marrow registry and stem cell donation | dataNovember 4th, 2014
Read All

Family saves lives through bone marrow registry and stem cell donation

By Dr. Matthew Watson

Mark and Mindy Ammons lost their 2-year-old son, Christopher, in 1988 to neuroblastoma, an aggressive childhood cancer. In 2009, Mindy Ammons donated her own stem cells to a woman with cancer. And this weekend, the family's youngest son will prepare a bone marrow donor registry in memory of his oldest brother as an Eagle Scout project.

Family photo

Bone marrow donation is close to the heart for the Ammons family of Provo.

Mark and Mindy Ammons lost their 2-year-old son, Christopher, in 1988 to neuroblastoma, an aggressive childhood cancer. In 2009, Mindy Ammons donated her own stem cells to a woman with cancer. And this weekend, the familys youngest son will lead a bone marrow registry drive as an Eagle Scout project in memory of his oldest brother.

We are in the unique position of having been on both sides of the process, Mindy Ammons said.

In the "Be The Match" flier created for the project, Will Ammons, 13, explains that Christophers only chance of survival was a bone marrow transplant, but sadly, no one in our family was a match, so he had to be his own donor.

Christopher underwent treatment at the UCLA Medical Center where, after five days of chemotherapy, three days of full-body radiation and then surgery, he received his own marrow as a transplant. He died two weeks into the process, just shy of his third birthday.

Over the years, the Ammonses talked about this experience with their children and stayed informed on treatment advances. When it came time for their second oldest son, Jon, to do his Eagle Scout project, he didn't just want to do something to check off on a list. He wanted a meaningful project.

He wanted to do something that would make a difference and was cancer-related," Mindy Ammons said.

They discussed raising money for cancer research but decided that would be like dropping a coin in a well, she said.

Read the original:
Family saves lives through bone marrow registry and stem cell donation

To Read More: Family saves lives through bone marrow registry and stem cell donation
categoriaBone Marrow Stem Cells commentoComments Off on Family saves lives through bone marrow registry and stem cell donation | dataNovember 4th, 2014
Read All

BioTimes Subsidiary Cell Cure Neurosciences Receives FDA Authorization to Initiate Phase I/IIa Trial of Embryonic …

By Sykes24Tracey

OpRegen consists of animal product-free retinal pigment epithelial (RPE) cells with high purity and potency that were derived from human embryonic stem cells (hESCs). Cell Cure will conduct the trial in Israel where OpRegen will be transplanted as a single dose into the subretinal space of the eye to test the safety and efficacy of the product. Patient enrollment is expected to begin in 2014 following approval of the trial by the Israel Ministry of Health.

About the OpRegenClinical Trial

Cell Cures Phase I/IIa clinical trial is a dose escalation safety and preliminary efficacy study of hESC-derived Retinal Pigment Epithelial (RPE) cells transplanted subretinally in patients with advanced dry-form AMD called geographic atrophy. The open-label, single center, nonrandomized trial will evaluate three different dose regimens of 50,000 to 500,000 cells. A total of 15 patients will be enrolled. The patients will be 55 years of age and older, with non-neovascular (dry-AMD) who have funduscopic findings of GA in the macula with absence of additional concomitant ocular disorders. The eye most affected by the disease will be treated with the contralateral eye being the control. Following transplantation, the patients will be followed for 12 months at specified intervals, to evaluate the safety and tolerability of OpRegen. A secondary objective of the clinical trial will be to examine the ability of transplanted OpRegen to engraft, survive, and induce changes in visual acuity. In addition to thorough characterization of visual function, a battery of defined ophthalmic imaging modalities will be used to quantify structural changes and rate of GA expansion. The study will be performed at Hadassah Ein Kerem Medical Center in Jerusalem, Israel.

The FDAs acceptance of our IND for the Phase I/IIa trial of OpRegen is a significant milestone for our company, and in the broader development of therapies based on human embryonic stem cells for the treatment of major diseases, said Benjamin Reubinoff, MD, PhD, Chief Scientific Officer of Cell Cure and Chairman of Obstetrics and Gynecology and Director of the Hadassah Human Embryonic Stem Cell Research Center at Hadassah Medical Center, Jerusalem, Israel. We look forward to initiating this first-of-its-kind study, and to continuing the clinical development of OpRegen.

Cell Cures Phase I/IIa study of OpRegen has been designed to provide preliminary, objective functional and structural data on the ability of hESC-RPE cell transplantation to slow the progression of geographic atrophy, in addition to safety data, added Prof. Eyal Banin, Head of the Center for Retinal and Macular Degenerations at the Department of Ophthalmology of Hadassah University Medical Center, Jerusalem, Israel who together with Prof. Reubinoff helped develop this novel treatment over the last decade. We are truly excited that this unique, hESC-based therapy will finally be tested in patients with dry-AMD which severely impacts the quality of life of the elderly, and for which no approved therapy yet exists, Dr. Banin stated.

Information about the trial will be made available at ClinicalTrials.gov website of the National Institutes of Health http://www.clinicaltrials.gov/ct2/home. Additional information will be made available on Cell Cures website at http://www.cellcureneurosciences.com/.

About Age-Related Macular Degeneration

Age-related macular degeneration (AMD) is one of the major diseases of aging and is the leading eye disease responsible for visual impairment of older persons in the US, Europe and Australia. AMD affects the macula, which is the part of the retina responsible for sharp, central vision that is important for facial recognition, reading and driving. There are two forms of AMD. The dry form (dry-AMD) advances slowly and painlessly but may progress to geographic atrophy (GA) in which RPE cells and photoreceptors degenerate and are lost. Once the atrophy involves the fovea (the center of the macula), patients lose their central vision and may develop legal blindness. There are about 1.6 million new cases of dry-AMD in the US annually, and as yet there is no effective treatment for this condition. The yearly economic loss to the gross domestic product in the United States from dry-AMD has been estimated to be $24.4 billion. The market opportunity for a treatment for GA has been estimated at over $5 billion globally. About 10% of patients with dry-AMD develop wet (or neovascular) AMD, the second main form of this disease, which usually manifests acutely and can lead to severe visual loss in a matter of weeks. Wet-AMD can be treated with currently marketed VEGF inhibitors. However, such products typically require frequent repeated injections in the eye, and patients often continue to suffer from continued progression of the underlying dry-AMD disease process. Current annual sales of VEGF inhibitors for the treatment of the wet form of AMD are estimated to be about $7 billion worldwide.

The root cause of the larger problem of dry-AMD is believed to be the dysfunction of RPE cells. Therefore, one of the most exciting new therapeutic strategies for dry-AMD is the transplantation of healthy young RPE cells to support and replace those lost with age. Pluripotent stem cells, such as hESCs, can potentially provide a means of manufacturing such healthy RPE cells on an industrial scale.

About OpRegen

More:
BioTimes Subsidiary Cell Cure Neurosciences Receives FDA Authorization to Initiate Phase I/IIa Trial of Embryonic ...

To Read More: BioTimes Subsidiary Cell Cure Neurosciences Receives FDA Authorization to Initiate Phase I/IIa Trial of Embryonic …
categoriaIPS Cell Therapy commentoComments Off on BioTimes Subsidiary Cell Cure Neurosciences Receives FDA Authorization to Initiate Phase I/IIa Trial of Embryonic … | dataNovember 4th, 2014
Read All

Global Stem Cells Group Named Exclusive Distributor for Adistem and Adilyfe Companies and Product Lines

By NEVAGiles23

MIAMI (PRWEB) November 04, 2014

Global Stem Cells Group, Inc. has been named exclusive distributor for Adistem medical solutions, and Adilyfe, a new regenerative medicine products company founded by Adistem Ltd. Scientific Founder Vasilis Paspaliaris, M.D. in Melbourne, Australia and set to launch in early 2015. Paspaliaris made the announcement at the First International Symposium on Stem Cells and Regenerative Medicine held in Buenos Aires, Argentina Oct. 2-4 and hosted by Global Stem Cells Group.

Adistem-Adilyfe will manufacture a group of products for use in stem cell treatments, therapies and training through the Adimarket Division of the Global Stem Cells Group. The timing is perfect for GSCGs current expansion into Latin American countries including Colombia, Costa Rica, Chile, Mexico and Peru, according to Global Stem Cells Group CEO Benito Novas.

Vasilis, an accomplished biotech scientist, stem cell researcher and pharmaceutical consultant joined the Global Stem Cells Group Scientific Advisory Board, part of the Regenestem Network.

As always, Dr. Paspaliaris brings excellence to stem cell research, Novas says. His work has already proven critical to improving the quality of life for a range of chronically ill patients all over the world.

We are honored to be representing Adistem and AdiLyfe products in Latin America; we consider the opportunity a strategic commitment to world class stem cell research.

Vasilis says he knew Global Stem Cells Group would be the only choice to represent Adistem and AdiLyfe in Latin America.

We are proud of our relationship with Global Stem Cells Group, we couldnt ask for better partners, Vasilis says.

To learn more about the Global Stem Cells Group, visit the website at http://www.stemcellsgroup.com, email bnovas(at)stemcellsgroup(dot)com, or call 305.224.1858.

About Global Stem Cell Group:

View original post here:
Global Stem Cells Group Named Exclusive Distributor for Adistem and Adilyfe Companies and Product Lines

To Read More: Global Stem Cells Group Named Exclusive Distributor for Adistem and Adilyfe Companies and Product Lines
categoriaUncategorized commentoComments Off on Global Stem Cells Group Named Exclusive Distributor for Adistem and Adilyfe Companies and Product Lines | dataNovember 4th, 2014
Read All

Stem Cell Therapy || Heart Failure || Stem Cell Treatment …

By NEVAGiles23

Heart Disease

With respect to the heart, stem cells have the ability to not only home into the damaged areas but also to initiate a cascade of biological events which both culminate in healing of the heart muscle. For example, animal studies have demonstrated that stem cell therapy will cause new muscle cells to be formed through stimulation of dormant stem cells that are already inside the heart muscle. In these studies, the administered stem cell also transformed into new heart muscle cells.

At Stem Cell Institute, our stem cell treatment protocol for heart failure involves administration of mesenchymal stem cells harvested from human umbilical cord tissue.

The adult stem cells used to treat heart failure at the Stem Cell Institute come from human umbilical cord tissue (allogeneic mesenchymal). These stem cells are expanded at Medistem Panamas state-of-the-art laboratory.

The mesenchymal stem cells we use are recovered from donated umbilical cords following normal, healthy births. Each mother has her medical history screened and is tested for infectious diseases. Proper consent is received from each family prior to donation.

All umbilical cord-derived stem cells are screened for infectious diseases to International Blood Bank Standards before they are cleared for use in patients.

Approximately 1 in 10 donated umbilical cords pass our rigorous screening process.

Through retrospective analysis of our cases, weve identified proteins and genes that allow us to screen several hundred umbilical cord donations to find the ones that we know are most effective. We only use these cells and we call them golden cells.

We go through a very high throughput screening process to find cells that we know have the best anti-inflammatory activity, the best immune modulating capacity, and the best ability to stimulate regeneration.

Read more here:
Stem Cell Therapy || Heart Failure || Stem Cell Treatment ...

To Read More: Stem Cell Therapy || Heart Failure || Stem Cell Treatment …
categoriaCardiac Stem Cells commentoComments Off on Stem Cell Therapy || Heart Failure || Stem Cell Treatment … | dataNovember 3rd, 2014
Read All

Stem Cell Skin Care – BlueHorizonSkinCare.com

By LizaAVILA

Blue Horizon's Special Skin Serum Stem Product Fact Sheet

Our Stem Cell Skin Care is a potent anti-aging innovation derived from non-embryonic human stem cell research. Blue Horizon International has infused medicines most promising clinical advances into this powerful skin care product.

Cytokine action, epidermal growth factors (EGFs), short and long-chained hyaluronic acid and ceramides combat the effects of aging and deliver unique skin benefits without surgery.

Our formulation is safe, having passed toxicology tests in accordance with European Union regulation 1223/2009/EC.

Patents are pending.

Our skin care is derived from what stem cell scientists call a conditioned medium. Here, human stem cells from placentas and umbilical cords condition the culture medium by releasing cytokines and other skin regenerating proteins that become available for skin repair. We stabilize the liberated cytokines, rendering them safe and accessible for aesthetic skin improvement. The conditioned medium is the base for our stem cell skin care products.

An independent skin test on twenty individuals aged 46 to 81 found a 23% reduction in skin roughness, including a decrease in the appearance of fine lines, wrinkles and scars.

Cytokines are one of todays most exciting captured biological processes, because they govern so many regenerative functions. The cytokine group of chemical regulators includes a diverse assortment of interleukins, interferons and growth factors that control anti-aging and activate the bodys immune system.

Cytokines stimulate, propagate and regulate new cell production in human skin. These messaging molecules mobilize cell division to help heal age related damage. Cytokines have powerful influence over skin texture and quality because they regulate cell shape, metabolism and migration from one location to another.

Several stem cell skin care ranges claim cytokine-style benefits. However, human stem cell cytokines are more biologically compatible with human skin than cytokine proteins from other sources.

Continued here:
Stem Cell Skin Care - BlueHorizonSkinCare.com

To Read More: Stem Cell Skin Care – BlueHorizonSkinCare.com
categoriaSkin Stem Cells commentoComments Off on Stem Cell Skin Care – BlueHorizonSkinCare.com | dataNovember 3rd, 2014
Read All

Pioneers of transplantation John Gurdon – Video

By LizaAVILA


Pioneers of transplantation John Gurdon
Interview with Sir John Gurdon, developmental biologist and forefather of stem cell medicine. The footage, produced by Figment Productions, formed part of an exhibition organised by the MRC...

By: Medical Research Council

Follow this link:
Pioneers of transplantation John Gurdon - Video

To Read More: Pioneers of transplantation John Gurdon – Video
categoriaUncategorized commentoComments Off on Pioneers of transplantation John Gurdon – Video | dataNovember 3rd, 2014
Read All

Perelman School of Medicine at the University of Pennsylvania

By Dr. Matthew Watson

Study Identifies Potential Treatment Target for Cocaine Addiction

30 Oct 2014A study led by investigators from Massachusetts General Hospital and the Perelman School of Medicine at the University of Pennsylvania has identified a potential target for therapies to treat cocaine addiction. Read more

27 Oct 2014A new effort mapping 24-hr patterns of expression for thousands of genes in 12 different mouse organs five years in the making provides important clues about how the role of timing may influence the way drugs work in the body. Read more

27 Oct 2014An all-female panel of luminaries in fields including epigenetics and stem cell biology will come together at a Penn symposium entitled Celebrating Women in Science. The Department of Cell and Developmental Biology at the Perelman School of Medicine, University of Pennsylvania, has organized the... Read more

22 Oct 2014A Penn Medicine-developed drug has received orphan status from the Food and Drug Administration (FDA) this month for the treatment of paroxysmal nocturnal hemoglobinuria (PNH), a rare, life-threatening disease that causes anemia due to destruction of red blood cells and thrombosis. Read more

22 Oct 2014Some of the most promising startup teams in healthtech will pitch their companies to an audience of several hundred investors, industry leaders and potential customers at DreamIt Health Philadelphia Demo Day on Thursday, October 30 from 9 a.m. to 2 p.m. at World Cafe Live in Philadelphia. Read more

See the original post here:
Perelman School of Medicine at the University of Pennsylvania

To Read More: Perelman School of Medicine at the University of Pennsylvania
categoriaUncategorized commentoComments Off on Perelman School of Medicine at the University of Pennsylvania | dataNovember 3rd, 2014
Read All

PURTIER LIVE STEM CELL THERAPY – Video

By raymumme


PURTIER LIVE STEM CELL THERAPY
PURTIER INTRODUCTION IN CHINESE Please contact Pearly @ +65 9338 9541 / +65 9189 7351 for more details.

By: Purtier30

Go here to read the rest:
PURTIER LIVE STEM CELL THERAPY - Video

To Read More: PURTIER LIVE STEM CELL THERAPY – Video
categoriaUncategorized commentoComments Off on PURTIER LIVE STEM CELL THERAPY – Video | dataNovember 3rd, 2014
Read All

Page 458«..1020..457458459460..470480..»


Copyright :: 2024