Page 435«..1020..434435436437..440450..»

A 3D-printed patch for a ‘broken’ heart – Livemint

By NEVAGiles23

This week: Biomedical engineering division, University of Minnesota

Three-dimensional or 3D printing technology, which has been around for almost three decades, routinely makes headlines. Not surprising, given that the so-called Fabbers, or personal manufacturing machines3D printers come under this categorynow not only make jewellery and toothbrushes, but also football boots, racing-car parts, custom-designed cakes, guns, human organs, houses and plane parts.

3D printing can be used to save lives too. Consider this. During a heart attack, the muscle cells of the heart do not get enough blood. Hence, they die. Our bodies cant replace these dead cells, so the body leaves a scar tissue in that area of the heart. This puts the person at risk of heart failure in the future.

A team of biomedical engineering researchers, led by the University of Minnesota (Umn.edu), has created a laser 3D-bioprinted patch to address the issue and help heal the scarred heart tissue after a heart attack. Three-dimensional bioprinting is the process of creating cell patterns in a confined space using 3D printing technologies.

The researchers successfully used this technique to incorporate stem cells (cells capable of renewing themselves through cell division, sometimes after long periods of inactivity) derived from adult human heart cells in a dish in the lab.

When the cell patch was placed on a mouse following a simulated heart attack, the researchers saw significant increase in functional capacity after just four weeks. Since the patch was made from stem cells and structural proteins (that do most of the work in cells and are required for the structure, function, and regulation of the bodys tissues and organs) belonging to the heart, it became part of the heart and was absorbed into the body, requiring no further surgeries.

The discovery, which is a major step forward in treating patients with tissue damage after a heart attack, was published on 14 April in Circulation Research, the journal published by the American Heart Association. The researchers have filed a patent for it.

The scientists insist that this research is different from previous ones in that the patch is modelled after a digital, 3D scan of the structural proteins of the heart tissue. The digital model is made into a physical structure by 3D printing, further integrating cardiac cell types derived from stem cells. Only with 3D printing of this type, explain the researchers, can we achieve the 1 micron resolution needed to mimic structures of native heart tissue.

The scientists say they are already beginning the next step to develop a larger patch that they will test on a pig heart, which is similar in size to a human heart. Of course, the real success will be known only when human trials take place.

3D printing belongs to a class of techniques known as additive manufacturing, or building objects layer by layer. The most common household 3D-printing process involves a print head, which allows for any material to be extruded or squirted through a nozzle. There are several additive processes, including selective laser sintering, direct metal-laser sintering, fused deposition modelling, stereolithography and laminated-object manufacturing. All of them differ in the way layers are deposited to create the 3D objects.

Meanwhile, the concept of 4D printing, which allows materials to self-assemble into 3D structures, and was initially proposed by Skylar Tibbits of the Massachusetts Institute of Technology (MIT) in April 2013, is also showing promise.

Lab Watch is the Lounge guide to emerging tech from around the world .

First Published: Fri, Apr 21 2017. 02 57 PM IST

Read the rest here:
A 3D-printed patch for a 'broken' heart - Livemint

To Read More: A 3D-printed patch for a ‘broken’ heart – Livemint
categoriaCardiac Stem Cells commentoComments Off on A 3D-printed patch for a ‘broken’ heart – Livemint | dataApril 21st, 2017
Read All

Multiple Sclerosis patient successfully treated with bone marrow transplant – Business Standard

By Dr. Matthew Watson

In an autologous BMT procedure, the healthy stem cells from the patient are taken out and preserved

IANS | New Delhi April 21, 2017 Last Updated at 05:00 IST

A team of doctors in New Delhi has successfully treated a 24-year-old girl suffering from Multiple Sclerosis (MS) with bone marrow transplant (BMT).

Kanika Juneja was diagnosed with MS an autoimmune disorder where the body's immune system starts attacking the protective sheet covering the nerve cells in the brain and the spinal cord.

She went through several rounds of treatments but could not be cured. Juneja got another chance at life at Fortis Healthcare where the doctors treated her with BMT.

"In an autologous BMT procedure, the healthy stem cells from the patient are taken out and preserved. Chemotherapy is then administered to reset the body's immunity and then the stem cells are injected back to rescue the person from the side effects of chemotherapy. After the surgery, the patient is kept under isolation for a few months to ensure he/she does not contract any infection," explained Dr Rahul Bhargava, Director, Clinical Hematology and Bone Marrow Transplant, Fortis Memorial Research Institute (FMRI).

Since conventional steroid injections and immune therapy are expensive and don't promise a cure, Bhargava thought of going for a BMT for Juneja.

Juneja is now actively involved in raising awareness about MS amongst the community through social media.

"I had just completed my college education when I was diagnosed with multiple sclerosis. I was lucky because I got diagnosed within a week of my symptoms and could avail treatment options faster," Juneja said.

"In this case, we have proved that bone marrow transplant can be seen as a successful alternate treatment option for multiple sclerosis patients, giving them a fresh shot at life," added Dr Simmardeep Singh Gill, Zonal Director, FMRI, in a statement.

Currently, there are 2.3 million people living with multiple sclerosis worldwide.

A team of doctors in New Delhi has successfully treated a 24-year-old girl suffering from Multiple Sclerosis (MS) with bone marrow transplant (BMT).

Kanika Juneja was diagnosed with MS an autoimmune disorder where the body's immune system starts attacking the protective sheet covering the nerve cells in the brain and the spinal cord.

She went through several rounds of treatments but could not be cured. Juneja got another chance at life at Fortis Healthcare where the doctors treated her with BMT.

"In an autologous BMT procedure, the healthy stem cells from the patient are taken out and preserved. Chemotherapy is then administered to reset the body's immunity and then the stem cells are injected back to rescue the person from the side effects of chemotherapy. After the surgery, the patient is kept under isolation for a few months to ensure he/she does not contract any infection," explained Dr Rahul Bhargava, Director, Clinical Hematology and Bone Marrow Transplant, Fortis Memorial Research Institute (FMRI).

Since conventional steroid injections and immune therapy are expensive and don't promise a cure, Bhargava thought of going for a BMT for Juneja.

Juneja is now actively involved in raising awareness about MS amongst the community through social media.

"I had just completed my college education when I was diagnosed with multiple sclerosis. I was lucky because I got diagnosed within a week of my symptoms and could avail treatment options faster," Juneja said.

"In this case, we have proved that bone marrow transplant can be seen as a successful alternate treatment option for multiple sclerosis patients, giving them a fresh shot at life," added Dr Simmardeep Singh Gill, Zonal Director, FMRI, in a statement.

Currently, there are 2.3 million people living with multiple sclerosis worldwide.

IANS

http://bsmedia.business-standard.com/_media/bs/wap/images/bs_logo_amp.png 177 22

More here:
Multiple Sclerosis patient successfully treated with bone marrow transplant - Business Standard

To Read More: Multiple Sclerosis patient successfully treated with bone marrow transplant – Business Standard
categoriaBone Marrow Stem Cells commentoComments Off on Multiple Sclerosis patient successfully treated with bone marrow transplant – Business Standard | dataApril 21st, 2017
Read All

Lungs Don’t Just Help Us Breathe They Produce Blood, Too – DOGOnews

By raymumme

Photo Credit: splice-bio.com

In your biology class, you may have learned that lungs help us breathe while bone marrow, found in flat bones such as the hip bone, produces red and white blood cells through a process called hematopoiesis. Now, a new study conducted by University of California, San Francisco (UCSF) researchers has discovered that in addition to being a crucial part of our respiratory system, lungs also play a major role in the production and storage of blood cells.

Like many medical breakthroughs, the scientists stumbled upon this discovery by accident. The team, led by Professor Mark R. Looney, was trying to observe how platelets (cells that form clots to stop bleeding) circulating in the lungs interact with the immune system in mice. To trace the cells path, the rodents had been genetically modified so that the platelets appeared a glowing green.

To the scientists' astonishment, the lungs were filled with megakaryocytes the cells responsible for producing platelets. Though experts have always known of the existence of these cells inside the lungs, the numbers had been believed to be tiny. Emma Lefranais, who co-wrote the study, says, "When we discovered this massive population of megakaryocytes that appeared to be living in the lung, we realized we had to follow this up."

Further examination revealed that the megakaryocytes in the lungs were producing over 10 million platelets, or more than half the total platelets, produced by a mouse, every hour. The researchers also noticed the large population (1 million per mouse lung) of blood stem cells (which produce red blood cells) as well as megakaryocyte progenitor cells (which generate megakaryocyte cells) on the periphery of the lungs. Looney says, To our knowledge, this is the first description of blood progenitors resident in the lung.

To investigate the significance, the scientists conducted three studies. First, they transplanted lungs from normal mice into the genetically engineered ones to see how the blood stem cells move throughout the body. By following the fluorescent cells, they discovered that megakaryocytes originate in the bone marrow but migrate to the lungs to produce platelets.

To test the practical applications of this discovery and see if it would be useful in the treatment of disorders like lung inflammation, Looneys team injected the fluorescent megakaryocyte progenitor cells into mice with low platelet counts. To their delight, the transplanted cells got to work immediately, restoring the platelet count to normal levels within a short time. What was even more encouraging is that the effect lasted for several months.

Finally, the researchers transplanted healthy lungs in which all the cells had been fluorescently tagged into mice whose bone marrow was not producing blood cells or platelets. The researchers found that the glowing green megakaryocyte progenitor cells instantly migrated from the lungs to the bone marrow, where they helped to produce platelets and other critical blood components, like neutrophils, B cells, and T cells.

While the scientists, who published their findings in the journal Nature on March 22, 2017, still need to test if human lungs are as effective, the findings are being hailed as a major breakthrough. Traci Mondoro from the US National Heart, Lung, and Blood Institute, says, "Looney and his team have disrupted some traditional ideas about the pulmonary role in platelet-related hematopoiesis, paving the way for further scientific exploration of this integrated biology."

Resources: newatlas.com, UCSF.edu

See the original post:
Lungs Don't Just Help Us Breathe They Produce Blood, Too - DOGOnews

To Read More: Lungs Don’t Just Help Us Breathe They Produce Blood, Too – DOGOnews
categoriaBone Marrow Stem Cells commentoComments Off on Lungs Don’t Just Help Us Breathe They Produce Blood, Too – DOGOnews | dataApril 21st, 2017
Read All

Preventing Graft-Versus-Host Disease in Stem Cell Transplant Recipients – Genetic Engineering & Biotechnology News (press release)

By JoanneRUSSELL25

An international group of scientists led by investigators at the Technical University of Munich (TUM) says it has discovered molecular mechanisms that might prevent the development ofgraft-versus-host disease (GVHD) in individuals receiving stem cell transplants.

During GVHD, transplanted stem cells become T lymphocytes, which are supposed to fight intruders such as bacteria. Instead, they start attacking the recipients already weakened body.

Researchers from TUM and theMemorial Sloan Kettering Cancer Center published a study ("RIG-I/MAVS and STING Signaling Promote Gut Integrity during Irradiation- and Immune-Mediated Tissue Injury")in Science Translational Medicine that provides details on how to prevent the development of GVHD.

The attacks by the T cells primarily affect the skin, liver, and, in particular, the gastrointestinal tract. The intestine is believed to be the key organ where GVHD starts. The drug treatment and radiation involved in stem cell transplants damage epithelial cells, which form part of the intestinal mucosal layer. Stress signals emitted by the dying epithelial cells and the arrival of intestinal bacteria in the previously germ-free areas of the gut due to the loss of the epithelium trigger the activation of aggressive donor T cells.

"If the epithelium could be protected or quickly restored, the risk of an immune response would be much lower," says Hendrik Poeck, M.D., Ph.D., who, along with Tobias Haas, M.D., heads a research group at the third medical clinic of TUM's Klinikum rechts der Isar. "Up to now, however, there have been very few treatment strategies that seek to regenerate the epithelium."

The scientists working with Dr. Poeck studied two proteins produced naturally in the body and known for their role in fighting bacteria and viruses: RIG-I (retinoic acid-inducible gene I) and STING (stimulator of interferon genes). "We were able to demonstrate for the first time that both of them can also be used to bring about a regenerative effect," notes Julius Fischer, first author of the study.

Both proteins are part of signal chains that cause type I interferon (IFN-I) to be produced. IFN-I triggers many different immune responses, but can also speed up the replacement of epithelial cells.

The RIG-I signal pathway can be deliberately stimulated using triphosphate-RNA (3pRNA). Poeck and his team were able to demonstrate in mice that 3pRNA can indeed protect the epithelial cells. Timing is critical. Measurable protection was only seen when the 3pRNA was administered exactly 1 day before the start of radiation and drug treatment.

"We assume that after just 1 day of treatment, there would no longer be enough intact epithelial cells in the gut for the RIG-I/IFN signal path to function," explains Haas. Although fewer activated T cells were generated after a treatment with 3pRNA, the positive effect of the leukemia therapy was not reduced to a measurable degree.

Both RIG-I agonists, such as 3pRNA, and STING agonists are currently in clinical development. The research points to a wide range of potential applications, especially in the treatment of tumors.

"Our study shows that regenerative processes can also be triggered through selective activation of these signal paths," adds Poeck. "It thus appears quite possible that these selective agonists will be administered in the future to patients who are candidates for allogeneic stem cell transplants. However, further studies will be needed to learn how they actually work before applications in human medicine are possible."

Original post:
Preventing Graft-Versus-Host Disease in Stem Cell Transplant Recipients - Genetic Engineering & Biotechnology News (press release)

To Read More: Preventing Graft-Versus-Host Disease in Stem Cell Transplant Recipients – Genetic Engineering & Biotechnology News (press release)
categoriaSkin Stem Cells commentoComments Off on Preventing Graft-Versus-Host Disease in Stem Cell Transplant Recipients – Genetic Engineering & Biotechnology News (press release) | dataApril 21st, 2017
Read All

Identical Twins; Not-so-identical Stem Cells – Technology Networks

By NEVAGiles23


Technology Networks
Identical Twins; Not-so-identical Stem Cells
Technology Networks
Salk scientists and collaborators have shed light on a longstanding question about what leads to variation in stem cells by comparing induced pluripotent stem cells (iPSCs) derived from identical twins. Even iPSCs made from the cells of twins, they ...

and more »

Continue reading here:
Identical Twins; Not-so-identical Stem Cells - Technology Networks

To Read More: Identical Twins; Not-so-identical Stem Cells – Technology Networks
categoriaSkin Stem Cells commentoComments Off on Identical Twins; Not-so-identical Stem Cells – Technology Networks | dataApril 21st, 2017
Read All

Study overturns seminal research about the developing nervous system – Science Daily

By NEVAGiles23


Science Daily
Study overturns seminal research about the developing nervous system
Science Daily
New research by scientists at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA overturns a long-standing paradigm about how axons -- thread-like projections that connect cells in the nervous system -- grow during ...

and more »

Original post:
Study overturns seminal research about the developing nervous system - Science Daily

To Read More: Study overturns seminal research about the developing nervous system – Science Daily
categoriaSpinal Cord Stem Cells commentoComments Off on Study overturns seminal research about the developing nervous system – Science Daily | dataApril 20th, 2017
Read All

24-year-old treated for multiple sclerosis – The Hindu

By JoanneRUSSELL25


Zee News
24-year-old treated for multiple sclerosis
The Hindu
Kanika was diagnosed with multiple sclerosis, a disorder where the body's immune system starts attacking the protective sheet covering the nerve cells in the brain and spinal cord. After going through several rounds of treatments, ... Dr. Rahul ...
Multiple Sclerosis patient successfully treated with bone marrow transplantBusiness Standard
Diagnosed with multiple sclerosis, girl fights back | The Indian ExpressThe Indian Express
Doctors successfully treat 24-year-old girl MS patient with bone marrow transplantZee News

all 4 news articles »

Originally posted here:
24-year-old treated for multiple sclerosis - The Hindu

To Read More: 24-year-old treated for multiple sclerosis – The Hindu
categoriaSpinal Cord Stem Cells commentoComments Off on 24-year-old treated for multiple sclerosis – The Hindu | dataApril 20th, 2017
Read All

3D-printed Patch Can Help Mend a ‘Broken’ Heart – Technology Networks

By NEVAGiles23


Technology Networks
3D-printed Patch Can Help Mend a 'Broken' Heart
Technology Networks
The digital model is made into a physical structure by 3D printing with proteins native to the heart and further integrating cardiac cell types derived from stem cells. Only with 3D printing of this type can we achieve one micron resolution needed to ...

Read the rest here:
3D-printed Patch Can Help Mend a 'Broken' Heart - Technology Networks

To Read More: 3D-printed Patch Can Help Mend a ‘Broken’ Heart – Technology Networks
categoriaCardiac Stem Cells commentoComments Off on 3D-printed Patch Can Help Mend a ‘Broken’ Heart – Technology Networks | dataApril 20th, 2017
Read All

3D-printed Patch Can Help Mend a ‘Broken’ Heart | Technology … – Technology Networks

By Dr. Matthew Watson

A team of biomedical engineering researchers has created a revolutionary 3D-bioprinted patch that can help heal scarred heart tissue after a heart attack. Two of the researchers involved are biomedical engineering Associate Professor Brenda Ogle (right) and Ph.D. student Molly Kupfer (left). Credit: Patrick OLeary, University of Minnesota

A team of biomedical engineering researchers, led by the University of Minnesota, has created a revolutionary 3D-bioprinted patch that can help heal scarred heart tissue after a heart attack. The discovery is a major step forward in treating patients with tissue damage after a heart attack.

See Also:How 3D Printing Could Revolutionise Organ Transplantation

According to the American Heart Association, heart disease is the No. 1 cause of death in the U.S. killing more than 360,000 people a year. During a heart attack, a person loses blood flow to the heart muscle and that causes cells to die. Our bodies cant replace those heart muscle cells so the body forms scar tissue in that area of the heart, which puts the person at risk for compromised heart function and future heart failure.

In this study, researchers from the University of Minnesota-Twin Cities, University of Wisconsin-Madison, and University of Alabama-Birmingham used laser-based 3D-bioprinting techniques to incorporate stem cells derived from adult human heart cells on a matrix that began to grow and beat synchronously in a dish in the lab.

Watch a video of the cells beating on the patch.

When the cell patch was placed on a mouse following a simulated heart attack, the researchers saw significant increase in functional capacity after just four weeks. Since the patch was made from cells and structural proteins native to the heart, it became part of the heart and absorbed into the body, requiring no further surgeries.

This is a significant step forward in treating the No. 1 cause of death in the U.S., said Brenda Ogle, an associate professor of biomedical engineering at the University of Minnesota. We feel that we could scale this up to repair hearts of larger animals and possibly even humans within the next several years.

Related:Synthetic Cardiac Stem Cells Developed

Ogle said that this research is different from previous research in that the patch is modeled after a digital, three-dimensional scan of the structural proteins of native heart tissue. The digital model is made into a physical structure by 3D printing with proteins native to the heart and further integrating cardiac cell types derived from stem cells. Only with 3D printing of this type can we achieve one micron resolution needed to mimic structures of native heart tissue.

We were quite surprised by how well it worked given the complexity of the heart, Ogle said. We were encouraged to see that the cells had aligned in the scaffold and showed a continuous wave of electrical signal that moved across the patch.

Ogle said they are already beginning the next step to develop a larger patch that they would test on a pig heart, which is similar in size to a human heart.

The research was funded by the National Science Foundation, National Institutes of Health, University of Minnesota Lillehei Heart Institute, and University of Minnesota Institute for Engineering in Medicine.

This article has been republished frommaterialsprovided by University of Minnesota. Note: material may have been edited for length and content. For further information, please contact the cited source.

Reference:

Gao, L., Kupfer, M. E., Jung, J. P., Yang, L., Zhang, P., Sie, Y. D., . . . Zhang, J. (2017). Myocardial Tissue Engineering With Cells Derived From Human-Induced Pluripotent Stem Cells and a Native-Like, High-Resolution, 3-Dimensionally Printed ScaffoldNovelty and Significance. Circulation Research, 120(8), 1318-1325. doi:10.1161/circresaha.116.310277

Read this article:
3D-printed Patch Can Help Mend a 'Broken' Heart | Technology ... - Technology Networks

To Read More: 3D-printed Patch Can Help Mend a ‘Broken’ Heart | Technology … – Technology Networks
categoriaCardiac Stem Cells commentoComments Off on 3D-printed Patch Can Help Mend a ‘Broken’ Heart | Technology … – Technology Networks | dataApril 20th, 2017
Read All

Surprise – Lungs Make Blood, Too – Newsmax

By Sykes24Tracey

Scientists at the University of California San Francisco have discovered a new function of lungs: They make blood which leads to a new wellspring of stem cells as well.

The astonishing breakthrough comes courtesy of refinement to microscopic video imaging that allows researchers to probe individual cells within blood vessels of a living host's lungs in this case, mice lungs.

The findings have far-reaching implications for human study: Researchers were surprised to find that not only did the lungs produce more blood cells, they did so in volumes that indicated more than half of all platelets in circulation critical for clotting are produced by the lungs.

The significance for the blood stem cells also was compelling. The newly discovered pool of stem cells is capable of restoring blood production when bone marrow stem cells are depleted. This could lead to novel approaches to treating leukemia, a cancer of white blood cells that crowds out red blood cells, and bone cancer, which destroys the body's ability to manufacture red blood cells.

This finding definitely suggests a more sophisticated view of the lungs that theyre not just for respiration but also a key partner in formation of crucial aspects of the blood, said pulmonologist Mark R. Looney, a professor of medicine and of laboratory medicine at the University of California, and the research's senior author. What weve observed here in mice strongly suggests the lung may play a key role in blood formation in humans as well. The report was published online at Nature.com.

The new imaging approach allowed scientists to examine interactions between the immune system and platelets in the lungs. While following the interactions, they discovered a surprisingly large population of cells that produce platelets called megakaryocytes. Though these cells were observed in the lungs previously it was generally though that they exist primarily in bone marrow.

Researchers were baffled and more detailed imaging followed. Once they zeroed in on these cells, they soon realized that they not only took up residence in the lungs, they also were producing 10 million platelets per hour there evidence that more than half of platelet production actually occurs in the lungs (in the mice models).

To be able to track blood stem cells and blood production, researchers transplanted donor lungs to mice with fluorescent-dye-tinted megakaryocytes. They followed the fluorescent cells as they traveled to the new lungs.

In another experiment, scientists wanted to determine if lungs that already had these platelet producers imbedded would spur platelet production in mice with low platelet counts, so they transplanted lungs with fluorescent-tinted megakaryocytes into mice predetermined to have low platelet counts. The transplanted lungs quickly sprung into action and restored normal platelet levels.

In yet another experiment, researchers transplanted healthy lungs with all cells fluorescently tinted into mice without bone marrow blood stem cells. The fluorescent marker cells quickly traveled to the damaged bone marrow and began production of myriad cells including T cells, which are key immune cells.

The exact mechanism behind the bone marrow-lung blood production is not yet known. Its possible that the lung is an ideal bioreactor for platelet production because of the mechanical force of the blood, or perhaps because of some molecular signaling we dont yet know about, said Guadalupe Ortiz-Muoz, a postdoctoral researcher and the researchs co-author. But more research is sure to follow.

Now medical scientists and researchers can zero in on proving in human models that blood components stem cells key among them travel more freely than previously though, which could lead ultimately to advances in treatment options for various blood disorders.

2017 NewsmaxHealth. All rights reserved.

The rest is here:
Surprise - Lungs Make Blood, Too - Newsmax

To Read More: Surprise – Lungs Make Blood, Too – Newsmax
categoriaBone Marrow Stem Cells commentoComments Off on Surprise – Lungs Make Blood, Too – Newsmax | dataApril 20th, 2017
Read All

David Steenblock, D.O., Uses Stem Cells and Other Therapies for Stroke Patients – GlobeNewswire (press release)

By raymumme

April 20, 2017 07:00 ET | Source: David Steenblock, D.O. Inc.

SAN CLEMENTE, Calif., April 20, 2017 (GLOBE NEWSWIRE) -- David Steenblock, an osteopathic physician based in San Clemente, CA, uses stem cells and other therapies to achieve significant and improved lifestyle outcomes for many stroke patients.

Many of our cases have demonstrated improved mobility for stroke victims who received stem cell therapy, along with other therapies, including chelation and hyperbaric oxygen, says Dr. Steenblock.

One patient who suffered a stroke several years ago, came to Dr. Steenblocks clinic to undergo the full stroke program. This included EDTA chelation, a procedure that removes heavy metals from the blood, and hyperbaric oxygen therapy, along with stem cells from his bone marrow to effect healing and restoration.

After having the bone marrow stem cells, the patients eyesight improved, and both of his knees, which hadnt been working well, were back to functioning almost normally. In addition, his hip joint went back to normal function and he believes his balance when walking has improved tremendously.

The EDTA Chelation Therapy, a treatment used to remove heavy metals from the blood, was used with hyperbaric oxygen, which can lead to significant neurologic improvements for stroke patients.

Dr. David Steenblock is a leading-edge physician in many fields of medicine, from stroke care, to acute brain trauma, to generative and cell-based medicine in the treatment of ALS, Cerebral Palsy and other chronic and degenerative diseases. For more information about Dr. Steenblocks work in stem cell therapies, visit http://www.stemcellmd.org

Related Articles

David Steenblock, D.O. Inc.

San Clemente, California, UNITED STATES

David Steenblock, D.O. Inc. Logo

LOGO URL | Copy the link below

Formats available:

Here is the original post:
David Steenblock, D.O., Uses Stem Cells and Other Therapies for Stroke Patients - GlobeNewswire (press release)

To Read More: David Steenblock, D.O., Uses Stem Cells and Other Therapies for Stroke Patients – GlobeNewswire (press release)
categoriaBone Marrow Stem Cells commentoComments Off on David Steenblock, D.O., Uses Stem Cells and Other Therapies for Stroke Patients – GlobeNewswire (press release) | dataApril 20th, 2017
Read All

Chronic Myeloproliferative Neoplasms Treatment (Fact Sheet) – Oncology Nurse Advisor

By LizaAVILA


Oncology Nurse Advisor
Chronic Myeloproliferative Neoplasms Treatment (Fact Sheet)
Oncology Nurse Advisor
Myeloproliferative neoplasms are a group of diseases in which the bone marrow makes too many red blood cells, white blood cells, or platelets. Normally, the bone marrow makes blood stem cells (immature cells) that become mature blood cells over time.

and more »

The rest is here:
Chronic Myeloproliferative Neoplasms Treatment (Fact Sheet) - Oncology Nurse Advisor

To Read More: Chronic Myeloproliferative Neoplasms Treatment (Fact Sheet) – Oncology Nurse Advisor
categoriaBone Marrow Stem Cells commentoComments Off on Chronic Myeloproliferative Neoplasms Treatment (Fact Sheet) – Oncology Nurse Advisor | dataApril 20th, 2017
Read All

Cellogica Launches Their Updated and More User-Friendly Website … – Yahoo Finance

By Dr. Matthew Watson

The New Cellogica Website Features In-Depth Information about the Skin Care Product, which Includes Stem Cell Technology

LOS ANGELES, CA / ACCESSWIRE / April 20, 2017 / The founders of Cellogica, a top line of skincare products that utilize stem cells and other innovative ingredients, are pleased to announce the re-launch of their website, Cellogica.com.

To check out the recently revised website, which is now easier than ever to navigate and features updated information about Cellogica, please visit http://www.cellogica.com at any time.

As a company spokesperson noted, Cellogica's "Two Secrets of Youth" involve the use of stem cell technology and also its MAC-5 Complex, which includes five ingredients that may help the skin look as young as possible. Rather than merely repairing the skin, Cellogica may actually help stop the loss of existing skin stem cells, as well as prevent premature aging.

Cellogica features a day cream, a non-greasy and light product which is designed to protect and enhance the skin and provide it with a natural barrier to the damaging UV rays of the sun and harsh weather. It also includes a night cream that works as the user sleeps by naturally repairing, restoring and regenerating the skin.

As the spokesperson noted, because skin stem cells are responsible for regenerating new and healthy skin cells, the founders of Cellogica were inspired to create a skin care cream that contains stem cells.

"Our revolutionary Stem Cell Technology is derived from strains of rare Swiss apples (Malus Domestica) and the Alpine Rose (Rhododentron Ferrugineum)," the spokesperson said, adding that together, these two very powerful stem cell extracts may allow for the regeneration of new skin stem cells, prevent the loss of existing skin stem cells, and increase the skin's barrier function.

"They may protect and repair the skin and combat against chronological aging, thus leading to fresh, healthy and vibrant looking skin."

The MAC-5 Complex is the other key component to Cellogica's ability to help improve the appearance of the skin. The proprietary combination includes Syn-Coll, which is an aqueous unpreserved glycerin-based solution that was developed to reduce wrinkles, as well as stimulate collagen synthesis. The other four ingredients in the MAC-5 Complex are RonaFlair LDP, hyaluronic acid, Syn-Ake, and Kojic acid, which may help eliminate blotchy skin while evening out the skin tone.

About Cellogica:

Cellogica is a premiere skincare line utilizing newly discovered stem cells to stop and reverse the physical signs of aging. To learn more about the product, please visit their website, http://www.cellogica.com.

Contact:

Darryl Burke admin@rocketfactor.com (949) 555-2861

SOURCE: Power Americas Minerals Corp.

Read the original post:
Cellogica Launches Their Updated and More User-Friendly Website ... - Yahoo Finance

To Read More: Cellogica Launches Their Updated and More User-Friendly Website … – Yahoo Finance
categoriaSkin Stem Cells commentoComments Off on Cellogica Launches Their Updated and More User-Friendly Website … – Yahoo Finance | dataApril 20th, 2017
Read All

Skin 2 Skin Care Anti-Sagging Renewal Serum – Truth In Aging

By daniellenierenberg

Size: 1.8 oz (50 ml)

Skin 2 Skin Care Anti-Sagging Renewal Serum is a highly-concentrated lifting serum created to restore a tighter, more youthful appearance. On application, the silky serum immediately improves the texture and feel of the skin while complex peptides and stem cells work over time to diminish the appearance of sagging and wrinkles. It provides essential nourishment that helps skin act and appear younger. After a month of use, Marta, the founder of Truth In Aging, reported firmer and more lifted skin, especially around the cheeks and jawline.

Anti-Sagging Renewal Serum features two advanced peptide complexes. Syn-Coll (Palmitoyl Tripeptide-5) has been shown to help reduce the appearance of any lip and nasal labial lines while improving facial definition. Syn-Tacks (Palmitoyl Dipeptide-5 and Palmitoyl Dipeptide-6 Diaminohydroxybutyate) supports the epidermis and stimulates collagen, laminin and elastin. In addition, green tea stem cell extract is used for its powerful ability to renew the skin. This formula is free of parabens, petroleum, mineral oil, paraffin, phthalates, sulfates, PABA, synthetic color and fragrance. Apply it to the face and neck for stronger, sag-resistant skin.

Tested for 30 days and recommended by Marta:

When I chatted to Skin 2 Skin founder Ken Simpson about Anti-Sagging Renewal Serum ($73), he went out of his way to point out that it contains dimethicone, adding that while he appreciates that some in the Truth In Aging community wont like this, the ingredient does wonders for scars. It didnt put me off when testing this serum, and I am most impressed with the results.

This serum can certainly be added to our arsenal of firming creams. I found that my skin looked a little lifted, especially around the jawline and lower cheeks. Overall, my skin is firmer and softer. As a bonus, as promised by Ken, I found that an odd little callused scar which appeared one day about a year ago on the site of a blemish, is much reduced. Nothing had helped in the past. Good job, Skin 2 Skin.

One of the things I like about this creamy-textured serum, is that the ingredients list doesnt take an everything-but-the-kitchen-sink approach. It is tightly focused on two very good peptide complexes, green tea stem cells and the aforementioned silicone.

Syn-tacks is a combination of two synthetic peptides. According to the manufacturer, they interact with the most relevant protein structures of the dermal-epidermal junction and stimulates a broad spectrum of things responsible for youthful skin laminin V, collagen types IV, VII and XVII and integrin all at once. For example, collagen IV activity is increased by a whopping 190 percent, according to the manufacturer.

Syn-Coll is a peptide molecule that works in two ways. First, it boosts collagen by mimicking the bodys own mechanism to activate transforming growth factor beta, TGF- (Tissue Growth Factor), a key element in the synthesis of collagen. It also protects collagen from degradation through the inhibition of matrix metalloproteinases (MMP).

My objection to silicone in skincare is that it has been a stalwart of department store beauty brands for decades, used to impart a superficial silkiness to the skin and inexpensively bulk up the formula. However, Skin 2 Skin has consciously introduced it here to help soften and reduce scars and blemishes. As I mentioned earlier in this review, I can attest to this working. Independent research has demonstrated that

silicone increases hydration of stratum corneum, helping to regulate fibroblast production and reduction in collagen production. The result is a softer and flatter scar.

As always with Skin 2 Skin, this is a highly effective formula that does what it sets out to do and contains no nasties. For those looking to achieve firmer, more velvety skin, this is definitely on the must try list.

Got Questions? Contact Us

Read more:
Skin 2 Skin Care Anti-Sagging Renewal Serum - Truth In Aging

To Read More: Skin 2 Skin Care Anti-Sagging Renewal Serum – Truth In Aging
categoriaSkin Stem Cells commentoComments Off on Skin 2 Skin Care Anti-Sagging Renewal Serum – Truth In Aging | dataApril 20th, 2017
Read All

Brain Organoid Created from Stem Cells – Technology Networks

By JoanneRUSSELL25

Based on human stem cells derived from skin samples, researchers from the University of Luxembourg succeeded in obtaining tiny three-dimensional cultures of cerebral tissue whose behavior is similar to the human midbrain. Credit: scienceRELATIONS / University of Luxembourg

The most complex organ in humans is the brain. Due to its complexity and, of course, for ethical reasons, it is extremely difficult to do scientific experiments on it ones that could help us to understand neurodegenerative diseases like Parkinsons, for example. Scientists at the Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg have now succeeded in turning human stem cells derived from skin samples into tiny, three-dimensional, brain-like cultures that behave very similarly to cells in the human midbrain.

Related:Sophisticated 'mini-brains' add to evidence of Zika's toll on fetal cortex

In the researchers petri dishes, different cell types develop, connect into a network, exchange signals and produce metabolic products typical of the active brain. Our cell cultures open new doors to brain research, says Prof. Dr. Jens Schwamborn, in whose LCSB research group Developmental and Cellular Biology the research work was done. We can now use them to study the causes of Parkinsons disease and how it could possibly be effectively treated. The team publishes its results in the prestigious scientific journal Stem Cell Reports.

The human midbrain is of particular interest to Parkinsons researchers: it is the seat of the tissue structure known medically as thesubstantia nigra. Here, nerve cells specifically dopaminergic neurons produce the messenger dopamine. Dopamine is needed to maintain smooth body movements. If the dopaminergic neurons die off, then the person affected develops tremors and muscle rigidity, the distinctive symptoms of Parkinsons disease. For ethical reasons, researchers cannot take cells from thesubstantia nigrato study them. Research groups around the world are therefore working on cultivating three-dimensional structures of the midbrain in petri dishes. The LCSB team led by stem cell researcher Jens Schwamborn is one such group.

Brain-like tissue for research

The LCSB scientists worked with so-called induced pluripotent stem cells stem cells that cannot produce a complete organism, but which can be transformed into all cell types of the human body. The procedures required for converting the stem cells into brain cells were developed by Anna Monzel as part of her doctoral thesis, which she is doing in Schwamborns group. I had to develop a special, precisely defined cocktail of growth factors and a certain treatment method for the stem cells, so that they would differentiate in the desired direction, Monzel describes her approach. To do this, she was able to draw on extensive preparatory work that had been done in Schwamborns team the years before. The pluripotent stem cells in the petri dishes multiplied and spread out into a three-dimensional supporting structure producing tissue-like cell cultures.

See also:Bioengineers create functional 3D brain-like tissue

Our subsequent examination of these artificial tissue samples revealed that various cell types characteristic of the midbrain had developed, says Jens Schwamborn. The cells can transmit and process signals. We were even able to detect dopaminergic cells just like in the midbrain. This fact makes the LCSB scientists results of extraordinary interest to Parkinsons researchers worldwide, as Schwamborn stresses: On our new cell cultures, we can study the mechanisms that lead to Parkinsons much better than was ever the case before. We can test what effects environmental impacts such as pollutants have on the onset of the disease, whether there are new active agents that could possibly relieve the symptoms of Parkinsons or whether the disease could even be cured from its very cause. We will be performing such investigations next.

Samples of human origin

The development of the brain-like tissue cultures not only opens doors to new research approaches. It can also help to reduce the amount of animal testing in brain research. The cell cultures in the petri dishes are of human origin, and in some aspects resemble human brains more than the brains of lab animals such as rats or mice do. Therefore, the structures of human brains and its modes of function can be modelled in different ways than it is possible in animals. There are also attractive economic opportunities in our approach, Jens Schwamborn explains: The production of tissue cultures is highly elaborate. In the scope of our spin-off Braingineering Technologies Sarl, we will be developing technologies by which we can provide the cultures for a fee to other labs or the pharmaceutical industry for their research.

This article has been republished frommaterialsprovided byThe University of Luxembourg. Note: material may have been edited for length and content. For further information, please contact the cited source.

Reference:

Monzel, A. S., Smits, L. M., Hemmer, K., Hachi, S., Moreno, E. L., Wuellen, T. V., . . . Schwamborn, J. C. (2017). Derivation of Human Midbrain-Specific Organoids from Neuroepithelial Stem Cells. Stem Cell Reports. doi:10.1016/j.stemcr.2017.03.010

Here is the original post:
Brain Organoid Created from Stem Cells - Technology Networks

To Read More: Brain Organoid Created from Stem Cells – Technology Networks
categoriaSkin Stem Cells commentoComments Off on Brain Organoid Created from Stem Cells – Technology Networks | dataApril 20th, 2017
Read All

Plasticell And Kings College London To Collaborate In Trials Of Blood Platelet Substitute – Clinical Leader

By Dr. Matthew Watson

Plasticell, a developer of cell therapies including hematopoietic cell replacement therapies, recently announced it has partnered with Kings College London to progress preclinical trials of its artificial blood platelet product, manufactured from pluripotent stem cells. The work is supported by a MedCity research grant which funds collaboration between leading SMEs and academics from London universities.

Over 10 million units of platelets are transfused worldwide each year in one of the most common procedures in clinical medicine. However, platelets derived from human donors can transmit infections and trigger serious immune reactions that eventually render the therapy ineffective (a condition known as alloimmune refractoriness). In addition, since platelet donations require pathogen testing and cannot be frozen for later use, supply shortages can occur under certain circumstances.

Plasticell has developed robust, cost-effective methods of producing functional platelets from human induced pluripotent stem cells (iPSCs) and has scaled these up to intermediate bioreactor level, allowing manufacture of product for pre-clinical studies. Kings College will contribute world-leading expertise and in vivo models to characterise the dynamics, lifespan, safety and efficacy of transfused platelets.

In addition to providing a more stable and safe supply of universal platelets, the use of iPS cells would allow us to create immunologically compatible matched platelets for patients suffering from alloimmune refractoriness, commented Dr Marina Tarunina, Principal Scientist leading the project at Plasticell.

The project is part of Plasticells hematopoietic cell therapy portfolio, which includes the expansion of umbilical cord- and bone- derived hematopoietic stem cells, and the manufacture of various blood cell types. Plasticell recently announced it had received Innovate UK funding for a 1.1M project to manufacture red blood cells from pluripotent stem cells, in collaboration with the University of Edinburgh.

About Plasticell Plasticell is a biotechnology company leading the use of high throughput technologies to develop stem cell therapies. The Companys therapeutic focus is in hematopoietic stem cell therapy, anaemia and thrombocytopenia, cancer immunotherapy and diabetes/obesity. Plasticells Combinatorial Cell Culture (CombiCult) platform technology, allows it to test very large numbers of cell culture variables in combinations to discover optimal laboratory protocols for the manipulation of stem cells and other cell cultures and has received a number of industry awards including the Queens Award for Enterprise in Innovation and the R&D 100 Award. For more information, visit http://www.plasticell.co.uk.

Originally posted here:
Plasticell And Kings College London To Collaborate In Trials Of Blood Platelet Substitute - Clinical Leader

To Read More: Plasticell And Kings College London To Collaborate In Trials Of Blood Platelet Substitute – Clinical Leader
categoriaIPS Cell Therapy commentoComments Off on Plasticell And Kings College London To Collaborate In Trials Of Blood Platelet Substitute – Clinical Leader | dataApril 20th, 2017
Read All

Cellular Dynamics International Signs Collaboration Agreement with Harvard Stem Cell Institute – Business Wire (press release)

By JoanneRUSSELL25

MADISON, Wis.--(BUSINESS WIRE)--Cellular Dynamics International (CDI), a FUJIFILM company and a leading developer and manufacturer of induced pluripotent stem cells (iPS), today announced it has signed a collaboration agreement with the Harvard Stem Cell Institute (HSCI), a novel network of stem cell scientists that extends from the University to its affiliated hospitals and the biomedical industry. The objective of the new partnership is to increase the availability of iPS cells and services to the HSCI network and the research community at large.

CDI is honored and excited to partner with Harvard Stem Cell Institute, one of the worlds most prestigious research organizations, said Dr. Bruce Novich, Division President-CNBD for FUJIFILM Holdings America Corporation and Executive Vice President and General Manager of Life Science Business Division for CDI. Our goal is to make iPS cells and technology more accessible so that researchers across disciplines and the various institutions of HSCI can better pursue the promise of stem cell science and regenerative medicine.

Under the terms of the agreement, CDI will collaborate with HSCIs iPS Core Facility by providing iPSC technology support to the stem cell community. In addition, CDI will offer critical iPSC technology elements which may accelerate iPSC based science, technology and applications.

About Cellular Dynamics International:

Cellular Dynamics International (CDI), a FUJIFILM company, is a leading developer and supplier of human cells used in drug discovery, toxicity testing, and regenerative medicine applications. Leveraging technology that can be used to create induced pluripotent stem cells (iPSCs) and differentiated tissue-specific cells from any individual, CDI is committed to advancing life science research and transforming the therapeutic development process in order to fundamentally improve human health. The companys inventoried iCell products and donor-specific MyCell Products are available in the quantity, quality, purity, and reproducibility required for drug and cell therapy development. For more information please visitwww.cellulardynamics.com.

About Fujifilm

FUJIFILM Holdings Corporation, Tokyo, Japan brings continuous innovation and leading-edge products to a broad spectrum of industries, including: healthcare, with medical systems, pharmaceuticals and cosmetics; graphic systems; highly functional materials, such as flat panel display materials; optical devices, such as broadcast and cinema lenses; digital imaging; and document products. These are based on a vast portfolio of chemical, mechanical, optical, electronic, software and production technologies. In the year ended March 31, 2016, the company had global revenues of $22.1 billion, at an exchange rate of 112.54 yen to the dollar. Fujifilm is committed to environmental stewardship and good corporate citizenship. For more information, please visit:www.fujifilmholdings.com.

All product and company names herein may be trademarks of their registered owners.

Originally posted here:
Cellular Dynamics International Signs Collaboration Agreement with Harvard Stem Cell Institute - Business Wire (press release)

To Read More: Cellular Dynamics International Signs Collaboration Agreement with Harvard Stem Cell Institute – Business Wire (press release)
categoriaIPS Cell Therapy commentoComments Off on Cellular Dynamics International Signs Collaboration Agreement with Harvard Stem Cell Institute – Business Wire (press release) | dataApril 20th, 2017
Read All

Husaini trust plans to perform bone marrow transplants, stem cell therapy – The News International

By LizaAVILA

The Husaini Haematology and Oncology Trust will soon provide facilities of bone marrow transplant and stem cell therapies at its newly established Blood Transfusion Centre and Thalassaemia Centre that was inaugurated by the city director health on Tuesday.

Speaking at the inaugural ceremony, Karachi director health Dr Muhammad Toufique urged the trust officials to share the data of patients undergoing blood transfusions, stem cell therapies and bone marrow transplant.

He said the data would help the Sindh government formulate a plan to establish more such facilities in the future. In addition to the blood screening and storage facilities, the centre is providing blood transfusion service to children suffering from genetic blood disorders as well as diagnostic services related to blood disorders.

This is a state-of-the-art blood transfusion and thalassaemia centre where bone marrow transplant and stem cell therapies would be started very soon, said a renowned haematologist associated with the Husaini Blood Bank, Dr Sarfraz Jaffery, at the inaugural ceremony of the blood transfusion and thalassaemia centre located at Qalandaria Chowk, North Nazimabad.

The head office of the Husaini Haematology and Oncology Trust is equipped with a diagnostic lab, blood bank having storage capacity of around 3,000 blood bags and blood transfusion centre for thalassaemic patients while its management is also planning to introduce bone marrow transplant and stem cell therapy services at the same facility in the near future.

Felicitating the trust officials, the city director health vowed to support them in their services. He said the government was also striving hard for provision of safe blood to thalassaemic children and other patients.

Dr Toufique hoped that institutions like Hussaini would come forward to support the government in establishing such centres in the province. Talking to journalists, the director health said steps were being taken to control the outbreak of Chikungunya in the city.

He said the health department was in contact with the municipal authorities to start fumigation in various areas of Karachi to eliminate the mosquitoes and prevent people from mosquito-borne diseases, including dengue and Malaria.

The Sindh government was planning to merge the Malaria and Dengue Prevention and Control Cells under one project director, who would be utilizing all the resources to eliminate the mosquitoes that were responsible for the deadly infectious diseases in the province, he added.

I would also urge people to take precautionary measures, prevent themselves and their children from mosquitoes by using repellents, improving sanitation conditions in their residential areas and adopt other preventive measures to protect themselves against the mosquitoes, he advised.

Earlier, speaking at a workshop on thalassaemia management held at the same place, noted haematologists of the country stressed the need for promoting the culture of prevention from diseases in the country.

They called for the implementation of laws regarding thalassaemia screening, saying that both the government and private sector could not treat the increasing number of thalassaemic patients.

Senior haematologist from Lahore, Prof Dr Jovaria Mannan, urged the doctors and researchers to use latest research methods in the field of haematology.

Continue reading here:
Husaini trust plans to perform bone marrow transplants, stem cell therapy - The News International

To Read More: Husaini trust plans to perform bone marrow transplants, stem cell therapy – The News International
categoriaBone Marrow Stem Cells commentoComments Off on Husaini trust plans to perform bone marrow transplants, stem cell therapy – The News International | dataApril 20th, 2017
Read All

Automatically Observing Stem Cell Differentiation – Asian Scientist Magazine

By Dr. Matthew Watson

A team of researchers in Japan has combined simple agarose with advanced machine learning techniques to study the differentiation of stem cells.

Asian Scientist Newsroom | April 20, 2017 | In the Lab

AsianScientist (Apr. 20, 2017) - Stem cell differentiation can now be seen thanks to a combination of machine learning and microfabrication techniques developed by scientists at the RIKEN Quantitative Biology Center in Japan. The results, published in PLOS ONE, followed the differentiation of human mesenchymal stem cells (MSC) which are easily obtained from adult bone marrow.

MSCs have proven to be important for regenerative medicine and stem cell therapy because they can potentially repair many different types of organ damage. Depending on the way the cells are grown, the results can be quite different, making controlling differentiation is an important goal.

Observing MSC differentiation under different conditions is an essential step in understanding how to control the process. However, this has proved challenging on two fronts. First, the physical space in which the cells are grown has a dramatic impact on the results, causing significant variation in the types of cells into which they differentiate. Studying this effect requires consistent and long lasting spatial confinement. Second, classifying the cell types which have developed through manual observation is time consuming.

Previous studies have confined cell growth with fibronectin on a glass slide. The cells can only adhere and differentiate where the fibronectin is present and are thus chemically confined. However, this procedure requires high technical skill to maintain the confinement for an extended period of time. To overcome this, the first author of the study, Dr. Nobuyuki Tanaka, decided to look for a new way to confine them. Using a simple agarose gel physical confinement system, he found that he could maintain them for up to 15 days.

It was wonderful to be able to do this, because agarose gel is a commonly used material in biology laboratories and can be easily formed into a micro-cast in a PDMS silicone mold, Tanaka said.

The advantage of this system is that once the PDMS molds are obtained the user only needs agarose gel and a vacuum desiccator to create highly reproducible micro-casts.

Tanaka's paper also describes an automated cell type classification system, using machine learning, which reduces the time and labor needed to analyze cells.

Combined together, these tools give us a powerful way to understand how stem cells differentiate in given conditions, he added.

The article can be found at: Tanaka et al. (2017) Simple Agarose Micro-confinement Array and Machine-learning-based Classification for Analyzing the Patterned Differentiation of Mesenchymal Stem Cells.

Source: RIKEN; Photo: Shutterstock. Disclaimer: This article does not necessarily reflect the views of AsianScientist or its staff.

See the article here:
Automatically Observing Stem Cell Differentiation - Asian Scientist Magazine

To Read More: Automatically Observing Stem Cell Differentiation – Asian Scientist Magazine
categoriaBone Marrow Stem Cells commentoComments Off on Automatically Observing Stem Cell Differentiation – Asian Scientist Magazine | dataApril 20th, 2017
Read All

8-year-old patient surprises her bone marrow donor at their first … – The Straits Times

By Dr. Matthew Watson

SINGAPORE - It was a bone marrow match that defied the odds of one in 20,000 - not once, but twice.

Just months after his first match fell through when the patient withdrew from treatment, Mr Phil Tan, 27, was again identified as a suitable bone marrow donor for another patient.

His donation saved the life of eight-year-old Ryssa, who was diagnosed with a rare blood disease called Myelodysplastic Syndrome about three years ago. Both met for the first time on Wednesday (April 19). Ryssa received the transplant just before her seventh birthday.

Mr Tan was one of 22 Singaporeans who were honoured by Minister for Home Affairs and Law K. Shanmugam for saving the life of a patient through the donation of their bone marrow.

"We celebrate those who have come forward without expecting a benefit, other than making a huge difference in someone else's life. It is the real spirit of giving," said Mr Shanmugam, who is a patron of the Bone Marrow Donor Programme (BMDP).

Bone marrow or blood stem cell transplant is the best treatment option for patients diagnosed with blood diseases such as leukaemia and lymphoma.

At any one time, there are at least 50 patients waiting to find a matching donor.

Siblings of the patient are the first options for a donation, as they have a one in four chance of DNA compatibility for a transplant.

When that fails, the next option would be a match with a volunteer donor registered in the BMDP.

To date, more than 75,000 volunteers have joined the BMDP register, which records the genetic type of each person.

Since 2015, more than 50 Singaporeans have donated their bone marrow to patients in Singapore and overseas, including in the United States, Britain, Canada and France.

The BMDP, which was set up in 1993, aims to increase the size of the local donor register by another 50,000 by next year.

Go here to read the rest:
8-year-old patient surprises her bone marrow donor at their first ... - The Straits Times

To Read More: 8-year-old patient surprises her bone marrow donor at their first … – The Straits Times
categoriaBone Marrow Stem Cells commentoComments Off on 8-year-old patient surprises her bone marrow donor at their first … – The Straits Times | dataApril 20th, 2017
Read All

Page 435«..1020..434435436437..440450..»


Copyright :: 2025