Page 275«..1020..274275276277..280290..»

Covid-19 Impact On Induced Pluripotent Stem Cells (iPSCs) Market 2020 Is Thriving Globally With Horizon Discovery Ltd., Takara Bio Inc, Cell…

By daniellenierenberg

Induced pluripotent stem cells (iPSCs) market is expected to gain market growth in the forecast period of 2020 to 2027. Data Bridge Market Research analyses the market to account to USD 2,442.97 million by 2027 growing at a CAGR of 7.5% in the above-mentioned forecast period. Increasing R&D investment activities is expected to create new opportunity for the market.

This induced pluripotent stem cells (iPSCs) market report provides details of new recent developments, trade regulations, import export analysis, production analysis, value chain optimization, market share, impact of domestic and localised market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market.

To Remain Ahead Of Your Competitors, Request for a FREE Sample Here (with covid 19 Impact Analysis) @ https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-induced-pluripotent-stem-cells-market&Dw

Increasing demand for personalized regenerative cell therapies among medical researchers & healthcare is expected to enhance the market growth. Some of the other factors such as increasing cases of chronic diseases, growing awareness among patient, rising funding by government & private sectors and rising number of clinical trials is expected to drive the induced pluripotent stem cells (iPSCs) market in the forecast period of 2020 to 2027.

Global Induced Pluripotent Stem Cells (iPSCs) Market Scope and Market Size

Induced pluripotent stem cells (iPSCs) market is segmented of the basis of derived cell type, application and end- user. The growth amongst these segments will help you analyse meagre growth segments in the industries, and provide the users with valuable market overview and market insights to help them in making strategic decisions for identification of core market applications.

Make an Enquiry before Buying @ https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-induced-pluripotent-stem-cells-market&DW

The countries covered in the induced pluripotent stem cells (iPSCs) market report are U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America.

The country section of the induced pluripotent stem cells (iPSCs) market report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as consumption volumes, production sites and volumes, import export analysis, price trend analysis, cost of raw materials, down-stream and upstream value chain analysis are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.

The major players covered in the induced pluripotent stem cells (iPSCs) market report are Thermo Fisher Scientific Inc., FUJIFILM Corporation, Horizon Discovery Ltd., Takara Bio Inc, Cell Applications, Inc., Lonza Group AG, Evotec A.G., ViaCyte, Inc., CELGENE CORPORATION, Fate Therapeutics, Astellas Pharma Inc., among other domestic and global players. Market share data is available for Global, North America, Europe, Asia-Pacific (APAC), Middle East and Africa (MEA) and South America separately. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.

Read More @ https://www.databridgemarketresearch.com/reports/global-induced-pluripotent-stem-cells-market?DW

About Data Bridge Market Research:

An absolute way to forecast what future holds is to comprehend the trend today!

Data Bridge set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.

Contact:

Data Bridge Market ResearchUS: +1 888 387 2818UK: +44 208 089 1725Hong Kong: +852 8192 7475Email @ Corporatesales@databridgemarketresearch.com

Read more:
Covid-19 Impact On Induced Pluripotent Stem Cells (iPSCs) Market 2020 Is Thriving Globally With Horizon Discovery Ltd., Takara Bio Inc, Cell...

To Read More: Covid-19 Impact On Induced Pluripotent Stem Cells (iPSCs) Market 2020 Is Thriving Globally With Horizon Discovery Ltd., Takara Bio Inc, Cell…
categoriaCardiac Stem Cells commentoComments Off on Covid-19 Impact On Induced Pluripotent Stem Cells (iPSCs) Market 2020 Is Thriving Globally With Horizon Discovery Ltd., Takara Bio Inc, Cell… | dataSeptember 12th, 2020
Read All

Global Stem Cell Reconstructive Market- Industry Analysis and Forecast (2020-2027) – Kewaskum Statesman News Journal

By daniellenierenberg

Global Stem Cell Reconstructive Marketwas valued US$ XX Mn in 2019 and is expected to reach US$ XX Mn by 2027, at a CAGR of 24.5% during a forecast period.

Market Dynamics

The Research Report gives an in-depth account of the drivers and restraints in the stem cell reconstructive market. Stem cell reconstructive surgery includes the treatment of injured or dented part of body. Stem cells are undifferentiated biological cells, which divide to produce more stem cells. Growing reconstructive surgeries led by the rising number of limbs elimination and implants and accidents are boosting the growth in the stem cell reconstructive market. Additionally, rising number of aged population, number of patients suffering from chronic diseases, and unceasing development in the technology, these are factors which promoting the growth of the stem cell reconstructive market. Stem cell reconstructive is a procedure containing the use of a patients own adipose tissue to rise the fat volume in the area of reconstruction and therefore helping 3Dimentional reconstruction in patients who have experienced a trauma or in a post-surgical event such as a mastectomy or lumpectomy, brain surgery, or reconstructive surgery as a result of an accident or injury. Stem cell reconstructive surgeries are also used in plastic or cosmetic surgeries as well. Stem cell and regenerative therapies gives many opportunities for development in the practice of medicine and the possibility of an array of novel treatment options for patients experiencing a variety of symptoms and conditions. Stem cell therapy, also recognised as regenerative medicine, promotes the repair response of diseased, dysfunctional or injured tissue using stem cells or their derivatives.

The common guarantee of all the undifferentiated embryonic stem cells (ESCs), foetal, amniotic, UCB, and adult stem cell types is their indefinite self-renewal capacity and high multilineage differentiation potential that confer them a primitive and dynamic role throughout the developmental process and the lifespan in adult mammal.However, the high expenditure of stem cell reconstructive surgeries and strict regulatory approvals are restraining the market growth.

The report study has analyzed revenue impact of covid-19 pandemic on the sales revenue of market leaders, market followers and disrupters in the report and same is reflected in our analysis.

Global Stem Cell Reconstructive Market Segment analysis

Based on Cell Type, the embryonic stem cells segment is expected to grow at a CAGR of XX% during the forecast period. Embryonic stem cells (ESCs), derived from the blastocyst stage of early mammalian embryos, are distinguished by their capability to distinguish into any embryonic cell type and by their ability to self-renew. Owing to their plasticity and potentially limitless capacity for self-renewal, embryonic stem cell therapies have been suggested for regenerative medicine and tissue replacement after injury or disease. Additionally, their potential in regenerative medicine, embryonic stem cells provide a possible another source of tissue/organs which serves as a possible solution to the donor shortage dilemma. Researchers have differentiated ESCs into dopamine-producing cells with the hope that these neurons could be used in the treatment of Parkinsons disease. Upsurge occurrence of cardiac and malignant diseases is promoting the segment growth. Rapid developments in this vertical contain protocols for directed differentiation, defined culture systems, demonstration of applications in drug screening, establishment of several disease models, and evaluation of therapeutic potential in treating incurable diseases.

Global Stem Cell Reconstructive Market Regional analysis

The North American region has dominated the market with US$ XX Mn. America accounts for the largest and fastest-growing market of stem cell reconstructive because of the huge patient population and well-built healthcare sector. Americas stem cell reconstructive market is segmented into two major regions such as North America and South America. More than 80% of the market is shared by North America due to the presence of the US and Canada.

Europe accounts for the second-largest market which is followed by the Asia Pacific. Germany and UK account for the major share in the European market due to government support for research and development, well-developed technology and high healthcare expenditure have fuelled the growth of the market. This growing occurrence of cancer and diabetes in America is the main boosting factor for the growth of this market.

The objective of the report is to present a comprehensive analysis of the Global Stem Cell Reconstructive Market including all the stakeholders of the industry. The past and current status of the industry with forecasted market size and trends are presented in the report with the analysis of complicated data in simple language. The report covers all the aspects of the industry with a dedicated study of key players that includes market leaders, followers and new entrants. PORTER, SVOR, PESTEL analysis with the potential impact of micro-economic factors of the market has been presented in the report. External as well as internal factors that are supposed to affect the business positively or negatively have been analysed, which will give a clear futuristic view of the industry to the decision-makers.

The report also helps in understanding Global Stem Cell Reconstructive Market dynamics, structure by analysing the market segments and projects the Global Stem Cell Reconstructive Market size. Clear representation of competitive analysis of key players by Application, price, financial position, Product portfolio, growth strategies, and regional presence in the Global Stem Cell Reconstructive Market make the report investors guide.Scope of the Global Stem Cell Reconstructive Market

Global Stem Cell Reconstructive Market, By Sources

Allogeneic Autologouso Bone Marrowo Adipose Tissueo Blood Syngeneic OtherGlobal Stem Cell Reconstructive Market, By Cell Type

Embryonic Stem Cell Adult Stem CellGlobal Stem Cell Reconstructive Market, By Application

Cancer Diabetes Traumatic Skin Defect Severe Burn OtherGlobal Stem Cell Reconstructive Market, By End-User

Hospitals Research Institute OthersGlobal Stem Cell Reconstructive Market, By Regions

North America Europe Asia-Pacific South America Middle East and Africa (MEA)Key Players operating the Global Stem Cell Reconstructive Market

Osiris Therapeutics NuVasives Cytori Therapeutics Takeda (TiGenix) Cynata Celyad Medi-post Anterogen Molmed Baxter Eleveflow Mesoblast Ltd. Micronit Microfluidics TAKARA BIO INC. Tigenix Capricor Therapeutics Astellas Pharma US, Inc. Pfizer Inc. STEMCELL Technologies Inc.

Global Stem Cell Reconstructive Market Request For View Sample Report Page : @https://www.maximizemarketresearch.com/request-sample/54688

About Us:

Maximize Market Research provides B2B and B2C market research on 20,000 high growth emerging technologies & opportunities in Chemical, Healthcare, Pharmaceuticals, Electronics & Communications, Internet of Things, Food and Beverages, Aerospace and Defense and other manufacturing sectors.

Contact info:Name: Vikas GodageOrganization: MAXIMIZE MARKET RESEARCH PVT. LTD.Email:sales@maximizemarketresearch.comWebsite:www.maximizemarketresearch.com

Visit link:
Global Stem Cell Reconstructive Market- Industry Analysis and Forecast (2020-2027) - Kewaskum Statesman News Journal

To Read More: Global Stem Cell Reconstructive Market- Industry Analysis and Forecast (2020-2027) – Kewaskum Statesman News Journal
categoriaCardiac Stem Cells commentoComments Off on Global Stem Cell Reconstructive Market- Industry Analysis and Forecast (2020-2027) – Kewaskum Statesman News Journal | dataSeptember 12th, 2020
Read All

Could COVID-19 have long-term effect on athletes’ health? – The Japan Times

By daniellenierenberg

While the sports world has attempted to prevent infections of COVID-19 and reduce its spread, some have raised concerns over the potential long-term consequences for athletes who have already been infected.

The virus has hit a number of star athletes. In Japan alone, Shintaro Fujinami of the Hanshin Tigers, Hayato Sakamoto of the Yomiuri Giants and Gotoku Sakai of the J. Leagues Vissel Kobe are among those who have tested positive.

Australian Mitch Langerak, a goalkeeper for Nagoya Grampus, became one of the J. Leagues first positive cases in early June. Fortunately he was asymptomatic and subsequently returned to the pitch when the leagues top flight resumed its season on July 4.

For me, it was a bit of a shock it was a major shock, Langerak told the Japan Times last month. (But) I didnt feel anything. I didnt feel any different. But I guess Im part of the exceptions, not the rule. I was very lucky.

As soon as I got out I tested negative twice, so I was OK to leave the hospital I was straight into training and within two days I was feeling strong and feeling back into it.

But in actuality, Langeraks experience is common among athletes in Japan who have tested positive for COVID-19, leaving some local medical officials optimistic about a lower risk of long-term effects. Yet the potential threat of reduced respiratory or pulmonary function looms large for those whose careers rely on being able to physically compete at the highest level.

Kentaro Iwata, professor of infectious disease at Kobe University, believes that athletes do not have to worry about whether the virus could severely affect their athletic performances after recovery.

Its evident if you look at the data: Athletes have been infected around the world, but the virus has barely caused any impact (on their post-recovery performances), Iwata said. In most cases, regardless of the sport, symptoms are mild and athletes recover naturally and return to their competitions. From the medical standpoint, there isnt much to be afraid of as far as athlete infections are concerned.

Iwata even described the virus as nearly harmless for healthy, young people, which can be used to describe most professional-level athletes, too.

Because the disease presents symptoms when the virus reaches a persons respiratory tract, it poses a possible risk to an athletes performance if their lungs are damaged as a result.

Iwata did not exclude the possibility, but described it as unlikely and said most people would face few or no symptoms during their recovery.

Vissel Kobes Gotoku Sakai has been infected with it, said Iwata, who is a fan of the Kansai-based soccer team. But after he received medical treatment and recovered, hes been running around at his highest level possible, playing twice a week or so.

There arent almost any problems with cardiopulmonary functions thats how its viewed generally. Im not going to deny that (a problem) could happen, though.

Kentaro Iwata, professor of infectious disease at Kobe University, believes athletes shouldnt fear long-term effects after recovering from the virus. | KAZ NAGATSUKA

Haruo Nakayama, a neurosurgeon and an infectious disease specialist for Toho University, did not rule out the possibility that the virus could affect respiratory systems long-term, even though currently available evidence is not yet conclusive.

The effect of the virus on respiratory systems after patients no longer need to be hospitalized has not been scientifically examined, Nakayama said. But when we observe the pictures of those infected and the symptoms that they claim after they are discharged, some of them have claimed to be physically worn out for a while, or it gets harder for them to exert themselves more than usual.

Thats not just older people, but there are some in their 20s and 30s claiming the same things.

Nakayama explained that the coronavirus could cause fibrosis in the lungs, causing the organs to lose flexibility.

If the lungs lose their flexibility, it could affect the cardiopulmonary functions of athletes and I would say the chance of that happening is not zero, he said.

Underlying medical conditions such as Type-1 diabetes, heart failure and respiratory disease can exacerbate the symptoms of the virus. Referring to Hanshin pitcher Minoru Iwata and Vissels Sergi Samper, who both are diabetic, Kentaro Iwata stated that high-risk patients, including those undergoing dialysis or using immunosuppressants or cariostatic drugs could be at risk for more severe symptoms.

To that end, Iwata criticized the participation of swimmer Rikako Ikee, who is recovering from leukemia, in a July event marking one year before the postponed Olympics at the National Stadium.

She had leukemia and (hematopoietic stem cell transplantation) and must have had so many immunosuppressive drugs, which made her weaker to infectious diseases, not just to the coronavirus, Iwata said. Im very angry with the people that brought her out to say something like Lets hope to have a (successful) Olympics next year. I think thats cruel.

While Iwata draws a positive image of athletes post-infection performances, team medical staff working directly with athletes as well as overseas medical officials who have dealt with higher numbers of severe cases have stronger concerns over potential long-term implications.

Nobuhisa Yoshida, a sports science and performance director for the B. Leagues Sunrockers Shibuya, said that athletes with more severe symptoms, if hospitalized for two to three weeks and quarantined further upon release, could require more time to return to their peak condition after experiencing decreases in activity levels and cardiopulmonary functions.

And if (their time away from training) gets longer, it could cause a decline in the volume of muscle and muscle strength as well as slower reflexes, said Yoshida, who previously worked as an athletic performance assistant for the NBAs San Antonio Spurs.

The level of effects from the coronavirus could vary depending on athletes situations as well physical conditions can differ greatly depending on whether they are in or out of season.

If an athlete gets infected during the season, their fatigue level is higher, Yoshida said. So you (as a medical staffer) try to develop the athletes physical condition steadily. If you can check the degree of the athletes physical decline based on data, you can check their readiness and make sure to bring it to where he can finally play, then give him a green light.

Grampus goalkeeper Mitch Langerak (right) made a quick return to training after recovering from COVID-19 in June. | KYODO

Overseas, an increase in residual damage to coronavirus patients hearts and lungs have spurred studies on the viruss potential long-term consequences.

John Swartzberg, a clinical professor emeritus of infectious diseases and vaccinology at the University of California, Berkeley, told the schools news portal in July that the virus seems to accelerate a great deal of scarring in the lungs.

Swartzberg also said that COVID-19 can directly attack heart muscle cells, and that the cytokine storm an excessive release of molecules that trigger an inflammatory response by the body caused by the coronavirus can hurt the heart as well as the lungs. He stated that there is evidence both for and against long-term damage.

We dont know what the long-term effects of that may be, Swartzberg said. But it could be that we will have a population of people who survive COVID-19 only to go on and have chronic cardiac problems.

Swartzberg referred to the central nervous system and the kidneys as other organs that could potentially be damaged by the virus.

Myocarditis inflammation of the heart muscle has been linked to the coronavirus in reports in the United States and Europe.

Some athletes in the U.S. and Europe have reported persistent and residual symptoms, such as coughs, tachycardia and fatigue, many weeks to months after initial coronavirus infections.

These potential post-COVID-19 effects do not seem to have been discussed widely in Japan, where the focus has been on the number of infections and the death toll. In the U.S. and Europe, officials have debated the necessities of pathways for athletes to return to intensive practices and competitions, including heart and lung screenings.

Nakayama admitted that the lack of such discussion within the Japanese sports community was in part due to a lack of sufficient evidence.

But Nakayama who serves as the executive adviser of the B. Leagues anti-coronavirus team said that the group has internally discussed the potential damage athletes face, although it has not been able to specify them in the leagues guidelines.

He said that if two-thirds of an infected athletes lungs are damaged when they are hospitalized, it can easily be inferred that their performance post-recovery will be infected.

And whether the athletes performance would get back to normal after working on rehab and all that, half a year or nine months later? Thats something we are going to find out later, Nakayama said. We dont know yet.

Staff writer Dan Orlowitz contributed to this story.

Follow this link:
Could COVID-19 have long-term effect on athletes' health? - The Japan Times

To Read More: Could COVID-19 have long-term effect on athletes’ health? – The Japan Times
categoriaCardiac Stem Cells commentoComments Off on Could COVID-19 have long-term effect on athletes’ health? – The Japan Times | dataSeptember 12th, 2020
Read All

Impact Of Covid-19 on Cosmetic Skin Care Market 2020 Industry Challenges, Business Overview and Forecast Research Study 2026 – Owned

By daniellenierenberg

The study of Cosmetic Skin Care market is a compilation of the market of Cosmetic Skin Care broken down into its entirety on the basis of types, application, trends and opportunities, mergers and acquisitions, drivers and restraints, and a global outreach. The detailed study also offers a board interpretation of the Cosmetic Skin Care industry from a variety of data points that are collected through reputable and verified sources. Furthermore, the study sheds a lights on a market interpretations on a global scale which is further distributed through distribution channels, generated incomes sources and a marginalized market space where most trade occurs.

Along with a generalized market study, the report also consists of the risks that are often neglected when it comes to the Cosmetic Skin Care industry in a comprehensive manner. The study is also divided in an analytical space where the forecast is predicted through a primary and secondary research methodologies along with an in-house model.

Download PDF Sample of Cosmetic Skin Care Market report @ https://hongchunresearch.com/request-a-sample/77005

Key players in the global Cosmetic Skin Care market covered in Chapter 4:HenkelNatura & CoKaoLaboratories IPRADMary KayBeiersdorfEste Lauder CompaniesCotyColgate-PalmoliveUnileverP&GShiseidoChanelJohnson & JohnsonAmorepacificRevlonKoseAvonLVMHL BrandsLOreal

In Chapter 11 and 13.3, on the basis of types, the Cosmetic Skin Care market from 2015 to 2026 is primarily split into:Anti-Aging Cosmetic ProductsSkin Whitening Cosmetic ProductsSensitive Skin Care ProductsAnti-Acne ProductsDry Skin Care ProductsWarts Removal ProductsInfants Skin Care ProductsAnti-Scars Solution ProductsMole Removal ProductsMulti Utility Products

In Chapter 12 and 13.4, on the basis of applications, the Cosmetic Skin Care market from 2015 to 2026 covers:Stem Cells Protection Against UVFlakiness ReductionRehydrate the Skin SurfaceMinimize wrinklesIncrease the viscosity of Aqueous

Geographically, the detailed analysis of consumption, revenue, market share and growth rate, historic and forecast (2015-2026) of the following regions are covered in Chapter 5, 6, 7, 8, 9, 10, 13:North America (Covered in Chapter 6 and 13)United StatesCanadaMexicoEurope (Covered in Chapter 7 and 13)GermanyUKFranceItalySpainRussiaOthersAsia-Pacific (Covered in Chapter 8 and 13)ChinaJapanSouth KoreaAustraliaIndiaSoutheast AsiaOthersMiddle East and Africa (Covered in Chapter 9 and 13)Saudi ArabiaUAEEgyptNigeriaSouth AfricaOthersSouth America (Covered in Chapter 10 and 13)BrazilArgentinaColumbiaChileOthers

For a global outreach, the Cosmetic Skin Care study also classifies the market into a global distribution where key market demographics are established based on the majority of the market share. The following markets that are often considered for establishing a global outreach are North America, Europe, Asia, and the Rest of the World. Depending on the study, the following markets are often interchanged, added, or excluded as certain markets only adhere to certain products and needs.

Here is a short glance at what the study actually encompasses:Study includes strategic developments, latest product launches, regional growth markers and mergers & acquisitionsRevenue, cost price, capacity & utilizations, import/export rates and market shareForecast predictions are generated from analytical data sources and calculated through a series of in-house processes.

However, based on requirements, this report could be customized for specific regions and countries.

Brief about Cosmetic Skin Care Market Report with [emailprotected] https://hongchunresearch.com/report/cosmetic-skin-care-market-size-2020-77005

Some Point of Table of Content:

Chapter One: Report Overview

Chapter Two: Global Market Growth Trends

Chapter Three: Value Chain of Cosmetic Skin Care Market

Chapter Four: Players Profiles

Chapter Five: Global Cosmetic Skin Care Market Analysis by Regions

Chapter Six: North America Cosmetic Skin Care Market Analysis by Countries

Chapter Seven: Europe Cosmetic Skin Care Market Analysis by Countries

Chapter Eight: Asia-Pacific Cosmetic Skin Care Market Analysis by Countries

Chapter Nine: Middle East and Africa Cosmetic Skin Care Market Analysis by Countries

Chapter Ten: South America Cosmetic Skin Care Market Analysis by Countries

Chapter Eleven: Global Cosmetic Skin Care Market Segment by Types

Chapter Twelve: Global Cosmetic Skin Care Market Segment by Applications12.1 Global Cosmetic Skin Care Sales, Revenue and Market Share by Applications (2015-2020)12.1.1 Global Cosmetic Skin Care Sales and Market Share by Applications (2015-2020)12.1.2 Global Cosmetic Skin Care Revenue and Market Share by Applications (2015-2020)12.2 Stem Cells Protection Against UV Sales, Revenue and Growth Rate (2015-2020)12.3 Flakiness Reduction Sales, Revenue and Growth Rate (2015-2020)12.4 Rehydrate the Skin Surface Sales, Revenue and Growth Rate (2015-2020)12.5 Minimize wrinkles Sales, Revenue and Growth Rate (2015-2020)12.6 Increase the viscosity of Aqueous Sales, Revenue and Growth Rate (2015-2020)

Chapter Thirteen: Cosmetic Skin Care Market Forecast by Regions (2020-2026) continued

Check [emailprotected] https://hongchunresearch.com/check-discount/77005

List of tablesList of Tables and FiguresTable Global Cosmetic Skin Care Market Size Growth Rate by Type (2020-2026)Figure Global Cosmetic Skin Care Market Share by Type in 2019 & 2026Figure Anti-Aging Cosmetic Products FeaturesFigure Skin Whitening Cosmetic Products FeaturesFigure Sensitive Skin Care Products FeaturesFigure Anti-Acne Products FeaturesFigure Dry Skin Care Products FeaturesFigure Warts Removal Products FeaturesFigure Infants Skin Care Products FeaturesFigure Anti-Scars Solution Products FeaturesFigure Mole Removal Products FeaturesFigure Multi Utility Products FeaturesTable Global Cosmetic Skin Care Market Size Growth by Application (2020-2026)Figure Global Cosmetic Skin Care Market Share by Application in 2019 & 2026Figure Stem Cells Protection Against UV DescriptionFigure Flakiness Reduction DescriptionFigure Rehydrate the Skin Surface DescriptionFigure Minimize wrinkles DescriptionFigure Increase the viscosity of Aqueous DescriptionFigure Global COVID-19 Status OverviewTable Influence of COVID-19 Outbreak on Cosmetic Skin Care Industry DevelopmentTable SWOT AnalysisFigure Porters Five Forces AnalysisFigure Global Cosmetic Skin Care Market Size and Growth Rate 2015-2026Table Industry NewsTable Industry PoliciesFigure Value Chain Status of Cosmetic Skin CareFigure Production Process of Cosmetic Skin CareFigure Manufacturing Cost Structure of Cosmetic Skin CareFigure Major Company Analysis (by Business Distribution Base, by Product Type)Table Downstream Major Customer Analysis (by Region)Table Henkel ProfileTable Henkel Production, Value, Price, Gross Margin 2015-2020Table Natura & Co ProfileTable Natura & Co Production, Value, Price, Gross Margin 2015-2020Table Kao ProfileTable Kao Production, Value, Price, Gross Margin 2015-2020Table Laboratories IPRAD ProfileTable Laboratories IPRAD Production, Value, Price, Gross Margin 2015-2020Table Mary Kay ProfileTable Mary Kay Production, Value, Price, Gross Margin 2015-2020Table Beiersdorf ProfileTable Beiersdorf Production, Value, Price, Gross Margin 2015-2020Table Este Lauder Companies ProfileTable Este Lauder Companies Production, Value, Price, Gross Margin 2015-2020Table Coty ProfileTable Coty Production, Value, Price, Gross Margin 2015-2020Table Colgate-Palmolive ProfileTable Colgate-Palmolive Production, Value, Price, Gross Margin 2015-2020Table Unilever ProfileTable Unilever Production, Value, Price, Gross Margin 2015-2020Table P&G ProfileTable P&G Production, Value, Price, Gross Margin 2015-2020Table Shiseido ProfileTable Shiseido Production, Value, Price, Gross Margin 2015-2020Table Chanel ProfileTable Chanel Production, Value, Price, Gross Margin 2015-2020Table Johnson & Johnson ProfileTable Johnson & Johnson Production, Value, Price, Gross Margin 2015-2020Table Amorepacific ProfileTable Amorepacific Production, Value, Price, Gross Margin 2015-2020Table Revlon ProfileTable Revlon Production, Value, Price, Gross Margin 2015-2020Table Kose ProfileTable Kose Production, Value, Price, Gross Margin 2015-2020Table Avon ProfileTable Avon Production, Value, Price, Gross Margin 2015-2020Table LVMH ProfileTable LVMH Production, Value, Price, Gross Margin 2015-2020Table L Brands ProfileTable L Brands Production, Value, Price, Gross Margin 2015-2020Table LOreal ProfileTable LOreal Production, Value, Price, Gross Margin 2015-2020Figure Global Cosmetic Skin Care Sales and Growth Rate (2015-2020)Figure Global Cosmetic Skin Care Revenue ($) and Growth (2015-2020)Table Global Cosmetic Skin Care Sales by Regions (2015-2020)Table Global Cosmetic Skin Care Sales Market Share by Regions (2015-2020)Table Global Cosmetic Skin Care Revenue ($) by Regions (2015-2020)Table Global Cosmetic Skin Care Revenue Market Share by Regions (2015-2020)Table Global Cosmetic Skin Care Revenue Market Share by Regions in 2015Table Global Cosmetic Skin Care Revenue Market Share by Regions in 2019Figure North America Cosmetic Skin Care Sales and Growth Rate (2015-2020)Figure Europe Cosmetic Skin Care Sales and Growth Rate (2015-2020)Figure Asia-Pacific Cosmetic Skin Care Sales and Growth Rate (2015-2020)Figure Middle East and Africa Cosmetic Skin Care Sales and Growth Rate (2015-2020)Figure South America Cosmetic Skin Care Sales and Growth Rate (2015-2020)Figure North America Cosmetic Skin Care Revenue ($) and Growth (2015-2020)Table North America Cosmetic Skin Care Sales by Countries (2015-2020)Table North America Cosmetic Skin Care Sales Market Share by Countries (2015-2020)Figure North America Cosmetic Skin Care Sales Market Share by Countries in 2015Figure North America Cosmetic Skin Care Sales Market Share by Countries in 2019Table North America Cosmetic Skin Care Revenue ($) by Countries (2015-2020)Table North America Cosmetic Skin Care Revenue Market Share by Countries (2015-2020)Figure North America Cosmetic Skin Care Revenue Market Share by Countries in 2015Figure North America Cosmetic Skin Care Revenue Market Share by Countries in 2019Figure United States Cosmetic Skin Care Sales and Growth Rate (2015-2020)Figure Canada Cosmetic Skin Care Sales and Growth Rate (2015-2020)Figure Mexico Cosmetic Skin Care Sales and Growth (2015-2020)Figure Europe Cosmetic Skin Care Revenue ($) Growth (2015-2020)Table Europe Cosmetic Skin Care Sales by Countries (2015-2020)Table Europe Cosmetic Skin Care Sales Market Share by Countries (2015-2020)Figure Europe Cosmetic Skin Care Sales Market Share by Countries in 2015Figure Europe Cosmetic Skin Care Sales Market Share by Countries in 2019Table Europe Cosmetic Skin Care Revenue ($) by Countries (2015-2020)Table Europe Cosmetic Skin Care Revenue Market Share by Countries (2015-2020)Figure Europe Cosmetic Skin Care Revenue Market Share by Countries in 2015Figure Europe Cosmetic Skin Care Revenue Market Share by Countries in 2019Figure Germany Cosmetic Skin Care Sales and Growth Rate (2015-2020)Figure UK Cosmetic Skin Care Sales and Growth Rate (2015-2020)Figure France Cosmetic Skin Care Sales and Growth Rate (2015-2020)Figure Italy Cosmetic Skin Care Sales and Growth Rate (2015-2020)Figure Spain Cosmetic Skin Care Sales and Growth Rate (2015-2020)Figure Russia Cosmetic Skin Care Sales and Growth Rate (2015-2020)Figure Asia-Pacific Cosmetic Skin Care Revenue ($) and Growth (2015-2020)Table Asia-Pacific Cosmetic Skin Care Sales by Countries (2015-2020)Table Asia-Pacific Cosmetic Skin Care Sales Market Share by Countries (2015-2020)Figure Asia-Pacific Cosmetic Skin Care Sales Market Share by Countries in 2015Figure Asia-Pacific Cosmetic Skin Care Sales Market Share by Countries in 2019Table Asia-Pacific Cosmetic Skin Care Revenue ($) by Countries (2015-2020)Table Asia-Pacific Cosmetic Skin Care Revenue Market Share by Countries (2015-2020)Figure Asia-Pacific Cosmetic Skin Care Revenue Market Share by Countries in 2015Figure Asia-Pacific Cosmetic Skin Care Revenue Market Share by Countries in 2019Figure China Cosmetic Skin Care Sales and Growth Rate (2015-2020)Figure Japan Cosmetic Skin Care Sales and Growth Rate (2015-2020)Figure South Korea Cosmetic Skin Care Sales and Growth Rate (2015-2020)Figure Australia Cosmetic Skin Care Sales and Growth Rate (2015-2020)Figure India Cosmetic Skin Care Sales and Growth Rate (2015-2020)Figure Southeast Asia Cosmetic Skin Care Sales and Growth Rate (2015-2020)Figure Middle East and Africa Cosmetic Skin Care Revenue ($) and Growth (2015-2020) continued

About HongChun Research:HongChun Research main aim is to assist our clients in order to give a detailed perspective on the current market trends and build long-lasting connections with our clientele. Our studies are designed to provide solid quantitative facts combined with strategic industrial insights that are acquired from proprietary sources and an in-house model.

Contact Details:Jennifer GrayManager Global Sales+ 852 8170 0792[emailprotected]

NOTE: Our report does take into account the impact of coronavirus pandemic and dedicates qualitative as well as quantitative sections of information within the report that emphasizes the impact of COVID-19.

As this pandemic is ongoing and leading to dynamic shifts in stocks and businesses worldwide, we take into account the current condition and forecast the market data taking into consideration the micro and macroeconomic factors that will be affected by the pandemic.

More:
Impact Of Covid-19 on Cosmetic Skin Care Market 2020 Industry Challenges, Business Overview and Forecast Research Study 2026 - Owned

To Read More: Impact Of Covid-19 on Cosmetic Skin Care Market 2020 Industry Challenges, Business Overview and Forecast Research Study 2026 – Owned
categoriaSkin Stem Cells commentoComments Off on Impact Of Covid-19 on Cosmetic Skin Care Market 2020 Industry Challenges, Business Overview and Forecast Research Study 2026 – Owned | dataSeptember 12th, 2020
Read All

$14.6M Grant to Explore a Therapy to Control HIV Without Meds – Cancer Health Treatment News

By daniellenierenberg

In nearly 40 years of the HIV epidemic, only two people have likely been cured of the virus. Both scenarios resulted from stem cell transplants needed to fight blood cancers such as leukemia. Inspired by these two cases, a team of scientists is studying a multipronged way to potentially control HIV without medication. It involves two different genetic alterations of immune cells and with a safer method of stem cell transplants, also referred to as bone marrow transplants, a procedure that is generally toxic and dangerous.

The research is being funded by a five-year $14.6 million grant from the National Institutes of Health. The scientists coleading the preclinical studies are Paula Cannon, PhD, a distinguished professor of molecular microbiology and immunology at the Keck School of Medicine of the University of Southern California, and Hans-Peter Kiem, MD, PhD, who directs the stem cell and gene therapy program at the Fred Hutchinson Cancer Research Center, also known as Fred Hutch. According to a Keck School of Medicine press release, the two other main partners are David Scadden, MD, a bone marrow transplant specialist and professor at Harvard University and the Harvard Stem Cell Institute, and the biotechnology company Magenta Therapeutics.

In the HIV cure scenariosinvolving the so-called Berlin and London patientsboth men received stem cell transplants from donors with a natural genetic mutation that made them resistant to HIV. Specifically, their genes resulted in immune cells that lack CCR5 receptors on their surface (HIV latches onto these receptors to infect cells). Unfortunately, this method isnt viable for the nearly 38 million people worldwide living with HIV. Not only is it expensive, toxic and riskyit involves wiping out the patients immune system and replacing it with the new immune cellsbut it also requires matched donors who are CCR5 negative. According to the press release, about 1% of the population have this mutation.

With funding from this new grant, researchers hope to overcome these challenges in several ways. First, Cannon has already developed a gene-editing method to remove the CCR5 receptors from a patients own stem cells. She now hopes to further genetically engineer stem cells so they release antibodies that block HIV.

Our engineered cells will be good neighbors, Cannon said in the press release. They secrete these protective molecules so that other cells, even if they arent engineered to be CCR5 negative, have some chance of being protected.

Fred Hutchs Kiem will use CAR-T therapya new method of genetically modifying immune cells that is emerging out of cancer researchwith the goal of creating T cells that attack HIV-infected cells.

In addition, other scientists involved in the federal grant aim to develop less toxic methods of bone marrow transplantationfor example, by reducing the amount of chemotherapy required and speeding up the process of creating the new immune system.

The research finding could translate to other illnesses, such as cancer, sickle cell anemia and autoimmune disorders.

A home run would be that we completely cure people of HIV, Cannon said. What Id be fine with is the idea that somebody no longer needs to take anti-HIV drugs every day because their immune system is keeping the virus under control so that it no longer causes health problems and, importantly, they cant transmit it to anybody else.

For the latest on the cure cases, see Famed London Man Probably Cured of HIV from earlier this year. And in related news, see $14M Federal Grant to Research CAR-T Gene Therapy to Cure HIV.

Follow this link:
$14.6M Grant to Explore a Therapy to Control HIV Without Meds - Cancer Health Treatment News

To Read More: $14.6M Grant to Explore a Therapy to Control HIV Without Meds – Cancer Health Treatment News
categoriaBone Marrow Stem Cells commentoComments Off on $14.6M Grant to Explore a Therapy to Control HIV Without Meds – Cancer Health Treatment News | dataSeptember 11th, 2020
Read All

Research Antibodies Market: Report Analysis Global Market Revenue and Share by Manufacturers Boosting the Healthcare Industry Worldwide – Owned

By daniellenierenberg

The global research antibodies market is anticipated to rise at a notable pace over the forecast period. Antibodies display exceptional physiological properties that make them sought-after for cell research.

Antibodies display other properties too. As they have the ability to attach to specific molecules, this enables specific molecules to be isolated for research. Hence, this makes for a key factor for continual research to examine the physiology and anatomy of antibodies.

The report serves to identify prevailing growth trends based on which projections made. The report constitutes most relevant data pertaining to comprehend the growth dynamics of research antibodies market. Geographical distribution of the research antibodies market and an analysis of the competitive structure are highlights of the report.

Request Brochure for Report

https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=58524

Global Research Antibodies Witness Most Promising Rise in Demand

Currently, pharmaceutical and biopharmaceutical companies are undertaking extensive R&D activities to introduce novel products. These pursuits involve widespread use of antibodies because of their exceptional physiological properties. Therefore, research on antibodies receives a boost for their use in secondary cell research.

At present, stem cell research is finding keen interest of researchers and geneticists. Several studies support the efficacy of stem cell for blood cancers, blood and bone marrow diseases, immune disorders. Lately, stem cells from the umbilical cord and stem cells from the blood stream have been used to treat rare blood related diseases. Due to the dependency an antibodies for stem cell research, researchers are involved to isolate different antibodies molecules. This is aiding growth of research antibodies market.

Request for Analysis of COVID19 Impact on Research Antibodies

https://www.transparencymarketresearch.com/sample/sample.php?flag=covid19&rep_id=58524

The study offers an in-depth assessment of various customers journeys pertinent to the market and its segments. It offers various customer impressions about the products and service use. The analysis takes a closer look at their pain points and fears across various customer touch points. The consultation and business intelligence solutions will help interested stakeholders, including CXOs, define customer experience maps tailored to their needs. This will help them aim at boosting customer engagement with their brands.

Key Players of Research Antibodies Report:

Prominent players in the global research antibodies market include Abcam plc, Agilent Technologies, and Thermo Fisher Scientific Inc.

Buy Research Antibodies Report

https://www.transparencymarketresearch.com/checkout.php?rep_id=58524&ltype=S

About Us

Transparency Market Research is a global market intelligence company providing global business information reports and services. Our exclusive blend of quantitative forecasting and trends analysis provides forward-looking insight for several decision makers. Our experienced team of analysts, researchers, and consultants use proprietary data sources and various tools and techniques to gather and analyze information.

Our data repository is continuously updated and revised by a team of research experts so that it always reflects latest trends and information. With a broad research and analysis capability, Transparency Market Research employs rigorous primary and secondary research techniques in developing distinctive data sets and research material for business reports.

Contact

Transparency Market Research,

90 State Street, Suite 700,

Albany, NY 12207

Tel: +1-518-618-1030

USA Canada Toll Free: 866-552-3453

Website: https://www.transparencymarketresearch.com/

Go here to see the original:
Research Antibodies Market: Report Analysis Global Market Revenue and Share by Manufacturers Boosting the Healthcare Industry Worldwide - Owned

To Read More: Research Antibodies Market: Report Analysis Global Market Revenue and Share by Manufacturers Boosting the Healthcare Industry Worldwide – Owned
categoriaBone Marrow Stem Cells commentoComments Off on Research Antibodies Market: Report Analysis Global Market Revenue and Share by Manufacturers Boosting the Healthcare Industry Worldwide – Owned | dataSeptember 11th, 2020
Read All

Bone Marrow Aspirate Concentrates Market Valuable Growth Prospects and Upcoming Trends Till 2025 – Science Examiner

By daniellenierenberg

Theglobal bone marrow aspirate concentrates marketwas valued around US$ 130.0 Mn in 2016 is anticipated to register a stable CAGR of over 5.0% during forecast period of 2017 to 2025, according to a new report published by Transparency Market Research (TMR)titled Bone Marrow Aspirate Concentrates Market Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 20172025. Growth of the global bone marrow aspirate concentrates market is driven by increased prevalence of and incidences of orthopedic diseases, and sports injuries, along with high growth of the cosmetic surgery industry and increasing applications of the BMAC products in the cosmetic and orthopedic surgeries. The bone marrow aspirate concentrates market in Asia Pacific is expanding with a high potential to grow registering a CAGR above 6.0% on the backdrop of unmet clinical needs, rising geriatric population, large patient pool, favorable government regulations, development in health care sector, and increased focus on research and developmental activities.

Increase in incidences of Osteoarthritis on the backdrop of rising geriatric population to drive market growth

According to a collaborative survey conducted by the United Nations and the World Health Organization, 1.2 billion people in China are suffering from OA, of which more than 55% are aged 60 years or above. On the backdrop of such a huge patient base, there has been several developments in the field orthopedic surgery. Bone marrow-derived stem cell treatment is considered a promising and advanced therapy. It reduces the injury healing time in orthopedic diseases to five to six weeks from four to six months in case of surgery. Reduction in the healing time is a factor likely to propel theBone Marrow Aspirate Concentrates marketduring the forecast period. However, pain associated with the treatment, lack of product approval, and preference for alternative treatments are negatively affecting the market growth. Moreover, high investments in R&D and clinical trials, slow approval processes entailing sunken costs, and marginal returns on investment (RoI) for stakeholders are primary concerns faced by manufacturer further hampering growth of the market.

Get Brochure of the Report @https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=40451

Rise in the Number of BMAC Assisted Procedures to Boost Growth of Bone Marrow Aspirate Concentrates Accessories Segment

The product type segment is fragmented into bone marrow aspirate concentrates systems and bone marrow aspirate concentrates accessories. The bone marrow aspirate concentrates accessories segment is anticipated to carry major share of the market on the backdrop of rise in number of BMAC assisted procedures. Cell therapies have been used extensively over the past decade for a variety of medical applications to restore cellular function and enhance quality of life. Owing to the differentiation property, stem cells are being used for repair and regeneration of bone. Moreover, increase in awareness about hygiene and risk of cross-contamination in developing countries such as Brazil, China and India are expected to increase the use of single-use Jamshidi needles for bone marrow stem cell procedures. This is likely to fuel the growth of the accessories segment in the near future.

Orthopedic Surgery Application to Dominate the GlobalBone Marrow Aspirate Concentrates Market

The application segment of global bone marrow aspirate concentrates market is divided into orthopedic surgery, wound healing, chronic pain, peripheral vascular disease, dermatology, and others applications. Of which, orthopedic surgery segment is anticipated to dominate the market owing to rising geriatric population, and surge in incidences of osteoarthritis around the globe. The dermatology segment is anticipated to expand at the highest CAGR of over 6.0% during forecast period of 2017 to 2025 owing to current boom in the industry, increase in disposable income, and technological advancements in the market. The utilization of the regenerative ability of fibroblasts and keratinocytes from human skin has formed new ways to develop cell-based therapies for patients. Moreover, capacity of bone marrow derived extra-cutaneous cells is being researched for its plasticity in regenerating skin; it is likely to lead to the future growth of cell therapies in dermatology.

Rise in Healthcare Expenditure to Fuel Growth ofHospitals & Clinics End-user Segment

In terms of end-users, market is divided into hospitals & clinics, pharmaceutical & biotechnology companies, Contract Research Organizations (CROs) & Contract Manufacturing Organizations (CMOs), and academic & research institutes. The hospitals & clinics segment dominated the bone marrow aspirate concentrates market in 2016. The trend is expected to continue during the forecast period. The hospitals & clinics segment is likely to be followed by the biotechnology & biopharmaceutical companies segment in terms of market share during the forecast period. The segment is anticipated to hold more than 8.0% of market share in 2016. Growth of the segment is attributed to increasing number of biotechnology companies and rising partnerships among the market players to expand global presence.

Request For Covid19 Impact Analysis https://www.transparencymarketresearch.com/sample/sample.php?flag=covid19&rep_id=40451

Large Patient Pool in Developing Countries Like China, India, Brazil, and Taiwan to Create More Opportunities in the Market

Geographically, global bone marrow aspirate concentrates market is divided into major five geographical regions, including North America, Europe, Asia-Pacific, Latin America and Middle East and Africa. North America is anticipated to hold major share of the market owing to technological advancements and regulatory approval for new devices, awareness about stem cell therapy, and rise in number of cosmetic surgical procedures. While, Asia Pacific orthopedic market is at a pivotal point today, which was valued around US$ 19 Million in 2016 and anticipated to derive massive and augmented growth. The orthopedic market in Asia, including bone graft, spine, and bone substitute, is anticipated to grow more than twice as fast as the overall orthopedic market which will further boost growth of BMAC market in the region.

Semi-consolidated Market with 3-4 key Players Operating in the BMAC Systems Market Segment

Key players covered in this report are Terumo Corporation (Terumo BCT), Ranfac Corp., Arthrex, Inc., Globus Medical, Inc., Cesca Therapeutics Inc., MK Alliance Inc. (TotipotentSC), and Zimmer Biomet Holdings, Inc. Companies operating in the global market for bone marrow aspirate concentrates are focusing on in-licensing and collaboration agreements to put new products in the developing markets like Asia Pacific, and Latin America. For instance, in August 2017, Cesca Therapeutics Inc. announced a distribution agreement with Boyalife WSN Ltd., a China based company. Through this agreement, Boyalife WSN Ltd. will distribute Cescas innovative biobanking and point-of-care solutions in China, India, Singapore, and the Philippines. As India and China represent two of the fastest growing economies in the world, successful penetration of these regions can generate more market opportunity to the companies.

Read our Case study at :https://www.transparencymarketresearch.com/casestudies/innovative-medical-device-manufacturing-start-up

The global bone marrow aspirate concentrates market is segmented as follows:

Global bone marrow aspirate concentrates market, by product

Global bone marrow aspirate concentrates market, by application

Global bone marrow aspirate concentrates market, by end-user

Global Bone Marrow Aspirate Concentrates Market, by Geography

More Trending Reports by Transparency Market Research 1.http://www.prnewswire.com/news-releases/increasing-number-of-accidents-and-injuries-to-drive-adoption-of-wound-closure-strips-market-valuation-to-rise-up-to-us446-3-mn-by-2027-end-finds-tmr-301019647.html

2.https://www.biospace.com/article/shoulder-replacement-market-growing-patients-for-reverse-shoulder-arthroplasty-add-sizable-revenues/

Read this article:
Bone Marrow Aspirate Concentrates Market Valuable Growth Prospects and Upcoming Trends Till 2025 - Science Examiner

To Read More: Bone Marrow Aspirate Concentrates Market Valuable Growth Prospects and Upcoming Trends Till 2025 – Science Examiner
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Aspirate Concentrates Market Valuable Growth Prospects and Upcoming Trends Till 2025 – Science Examiner | dataSeptember 11th, 2020
Read All

Bone Marrow Processing System Market Insights Research Forecast By Upstream And Downstream Manufacturers Analysis 2018 2025 – Scientect

By daniellenierenberg

Bone marrowaspiration and trephine biopsy are usually performed on the back of the hipbone, or posterior iliac crest. An aspirate can also be obtained from the sternum (breastbone). For the sternal aspirate, the patient lies on their back, with a pillow under the shoulder to raise the chest. A trephine biopsy should never be performed on the sternum, due to the risk of injury to blood vessels, lungs or the heart.

ThisPress Release will help you to understand the Volume, growth with Impacting Trends. Click HERE To get SAMPLE PDF (Including Full TOC, Table & Figures) #https://www.trendsmarketresearch.com/report/sample/3184

The need to selectively isolate and concentrate selective cells, such as mononuclear cells, allogeneic cancer cells, T cells and others, is driving the market. Over 30,000 bone marrow transplants occur every year. The explosive growth of stem cells therapies represents the largest growth opportunity for bone marrow processing systems.Europe and North America spearheaded the market as of 2016, by contributing over 74.0% to the overall revenue. Majority of stem cell transplants are conducted in Europe, and it is one of the major factors contributing to the lucrative share in the cell harvesting system market.

Get Complete TOC with Tables and[emailprotected]https://www.trendsmarketresearch.com/report/discount/3184

In 2016, North America dominated the research landscape as more than 54.0% of stem cell clinical trials were conducted in this region. The region also accounts for the second largest number of stem cell transplantation, which is further driving the demand for harvesting in the region.Asia Pacific is anticipated to witness lucrative growth over the forecast period, owing to rising incidence of chronic diseases and increasing demand for stem cell transplantation along with stem cell-based therapy.

Get COVID-19 Report Analysis understand the COVID19 impact and be smart in redefining business strategies#https://www.trendsmarketresearch.com/report/covid-19-analysis/3184

Japan and China are the biggest markets for harvesting systems in Asia Pacific. Emerging countries such as Mexico, South Korea, and South Africa are also expected to report lucrative growth over the forecast period. Growing investment by government bodies on stem cell-based research and increase in aging population can be attributed to the increasing demand for these therapies in these countries.

Major players operating in the global bone marrow processing systems market are ThermoGenesis (Cesca Therapeutics inc.), RegenMed Systems Inc., MK Alliance Inc., Fresenius Kabi AG, Harvest Technologies (Terumo BCT), Arthrex, Inc. and others

Visit link:
Bone Marrow Processing System Market Insights Research Forecast By Upstream And Downstream Manufacturers Analysis 2018 2025 - Scientect

To Read More: Bone Marrow Processing System Market Insights Research Forecast By Upstream And Downstream Manufacturers Analysis 2018 2025 – Scientect
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Processing System Market Insights Research Forecast By Upstream And Downstream Manufacturers Analysis 2018 2025 – Scientect | dataSeptember 11th, 2020
Read All

Reasons Industries to Thrive Post-Pandemic! Human Mesenchymal Stem Cells (hMSC) Market Report xyz Answers it Analysis by Key Companies PromoCell,…

By daniellenierenberg

Global Coronavirus pandemic has impacted all industries across the globe, Human Mesenchymal Stem Cells (hMSC) market being no exception. As Global economy heads towards major recession post 2009 crisis, Cognitive Market Research has published a recent study which meticulously studies impact of this crisis on Global Human Mesenchymal Stem Cells (hMSC) market and suggests possible measures to curtail them. This press release is a snapshot of research study and further information can be gathered by accessing complete report. To Contact Research Advisor Mail us @ [emailprotected] or call us on +1-312-376-8303.

The research report on global Human Mesenchymal Stem Cells (hMSC) market as well as industry is a detailed study that provides detailed information of major key players, product types & applications/end-users; historical figures, region analysis, market drivers/opportunities & restraints forecast scenarios, strategic planning, and a precise section for the effect of Covid-19 on the market. Our research analysts intensively determine the significant outlook of the global Human Mesenchymal Stem Cells (hMSC) market study with regard to primary & secondary data and they have represented it in the form of graphs, pie charts, tables & other pictorial representations for better understanding.

Umbilical Cord Matrix hMSC, Bone Marrow hMSC, Adipose Tissue hMSC, Other are some of the key types of market. All the type segments have been analyzed based on present and future trends and the market is estimated from 2020 to 2027. Based on the application segment, the global market can be classified into Medical Application, Research, Other Applications . The analysis of application segment will help to analyze the demand for market across different end-use industries.

Request Free Sample Copy of Human Mesenchymal Stem Cells (hMSC) Market Research [emailprotected] https://cognitivemarketresearch.com/medical-devicesconsumables/human-mesenchymal-stem-cells-%28hmsc%29-market-report#download_report

Amid the COVID-19 pandemic, the industry is witnessing a major change in operations.Some of the key players include PromoCell, ThermoFisher, KURABO, Lifeline Cell Technology, Merck . key players are changing their recruitment practices to comply with the social distancing norms enforced across several regions to mitigate the risk of infection. Additionally, companies are emphasizing on using advanced recruiting solutions and digital assets to avoid in-person meetings. Advanced technologies and manufacturing process are expected to play a decisive role in influencing the competitiveness of the market players.

Regional Analysis for Human Mesenchymal Stem Cells (hMSC) Market:North America (United States, Canada)Europe (Germany, Spain, France, UK, Russia, and Italy)Asia-Pacific (China, Japan, India, Australia, and South Korea)Latin America (Brazil, Mexico, etc.)The Middle East and Africa (GCC and South Africa)

Get A Free Sample of Human Mesenchymal Stem Cells (hMSC) Market Report: https://cognitivemarketresearch.com/medical-devicesconsumables/human-mesenchymal-stem-cells-%28hmsc%29-market-report#download_report

NOTE: Whole world is experiencing the impact of Covid-19 pandemic due to its increasing spread hence, the report comprises of an up to date scenario of the Human Mesenchymal Stem Cells (hMSC) market report. Research analyst team of our company is understanding & reviewing the Covid19 Impact on Market and all the necessary areas of the market that have been altered due to the change caused by Covid19 impact. Get in touch with us for more precise/in-depth information of the Human Mesenchymal Stem Cells (hMSC) market.

Any query? Enquire Here For Discount (COVID-19 Impact Analysis Updated Sample): Click Here>Download Sample Report of Human Mesenchymal Stem Cells (hMSC) Market Report 2020 (Coronavirus Impact Analysis on Human Mesenchymal Stem Cells (hMSC) Market)

At the end of May, many states began lifting lockdown restrictions and reopening in order to revive their economies, despite warnings that it was still too early. As a result, by mid-July, around 33 states were reporting higher rates of new cases compared to the previous week with only three states reporting declining rates. Due to this Covid-19 pandemic, there has been disruptions in the supply chain which have made end-use businesses realize destructive in the manufacturing and business process. During this lockdown period, the plastic packaging helps the products to have longer shelf life as the public would not be able to buy new replacements for the expired products because most of the production units are closed.

About Us:Cognitive Market Research is one of the finest and most efficient Market Research and Consulting firm. The company strives to provide research studies which include syndicate research, customized research, round the clock assistance service, monthly subscription services, and consulting services to our clients. We focus on making sure that based on our reports, our clients are enabled to make most vital business decisions in easiest and yet effective way. Hence, we are committed to delivering them outcomes from market intelligence studies which are based on relevant and fact-based research across the global market.Contact Us: +1-312-376-8303Email: [emailprotected]Web: https://www.cognitivemarketresearch.com/

Read the original:
Reasons Industries to Thrive Post-Pandemic! Human Mesenchymal Stem Cells (hMSC) Market Report xyz Answers it Analysis by Key Companies PromoCell,...

To Read More: Reasons Industries to Thrive Post-Pandemic! Human Mesenchymal Stem Cells (hMSC) Market Report xyz Answers it Analysis by Key Companies PromoCell,…
categoriaBone Marrow Stem Cells commentoComments Off on Reasons Industries to Thrive Post-Pandemic! Human Mesenchymal Stem Cells (hMSC) Market Report xyz Answers it Analysis by Key Companies PromoCell,… | dataSeptember 11th, 2020
Read All

Scientists at the Salk Institute Came Across a Possible Way to Slow Down Aging – Gilmore Health News

By daniellenierenberg

Arteries and veins are the blood vessels that help transport blood and nutrients in the body. Each type of blood vessel has its own specific structure and set of features that enable the functioning of blood vessels at an optimal level.

For example, arteries, which are the vessels responsible for carrying oxygenated blood from the heart to the rest of the body are generally thick and more elastic than their counterpart, veins. Veins carry the deoxygenated blood from the body back to the heart and are generally thinner than arteries.

It is important to note that the thickness or thinness of the blood vessel refers to the wall size and the diameter of the vessel.

Read Also: Senolytic Agents: The Potential Forerunners in the Fight Against Aging

The blood vessels over time become less elastic and can be calcified over time. This is referred to as an age-related change, something everyone goes through. The entire body undergoes these types of changes as one ages. Most of the changes are associated with the general weakness of body physiology. Over time, these changes, after being affected by comorbidities can be severely detrimental to an individuals health.

As people age, the blood vessels in the body become weak and less elastic. This weakness presents in the form of leakiness. Furthermore, the loss of elasticity results in rigid and hardened vessels. All of this can result in serious consequences to ones health.

Hence, making blood vessels an important topic of research, However, this research topic comes riddled with limitations as the study of blood vessels requires a sample which can only be obtained in an invasive manner. This is not a suitable method for long term research and study of blood vessels and the effect of age on them has been performed using pluripotent stem cells.

Read Also: Anti-Aging: HGH Can Reduce Biological Age by One Year and a Half Study Shows

The use of stem cells by researchers leads to the second limitation in this field of research. Stem cells are the undifferentiated cells in the embryonic stage that can differentiate into any other type of cells. These are the cells that all humans start off as. However, differentiating them into cells of the blood vessels to study them further doesnt provide the results scientists hoped for.

Martin Hetzer, Salks vice president and chief science officer is the head of the new research in which he and his team claim to have found a solution to this problem. However, in 2015, Hetzer was in the team that initially used stem cells to form cells of the blood vessels. The limitation of this study was that the blood vessel formed had no age-markers and was brand new and couldnt be studied for the effects of aging on blood vessels.

A recent study published in the eLife Journal in September 2020, performed by a team of scientists from Salk headed by Hetzer found that using fibroblasts may be more useful than pluripotent stem cells. Fibroblasts, a type of cells in the connective tissue, were derived from skin cells and used in this study to form induced vascular endothelial cells (iVECs) and induced smooth muscle cells (iSMCs)

Read Also: Is NAD+ The Anti Aging Substance Mankind Has Been Searching For?

For this study, researchers used skin cells from three groups of subjects; young subjects between the ages of 19 and 30 years, older subjects between the ages of 62 and 87 years, and patients suffering from Hutchinson-Gilford progeria syndrome (HGPS), an accelerated aging disorder.

Three samples from young subjects, three from older subjects, and 8 from patients affected by Hutchinson-Gilford Progeria Syndrome were taken and stimulated to develop into iVECs and iSMCs.

Hetzer and his team found that these iVECs and iSMCs had all the age-markers and showed different genetic expression dependant on age. This helped the researchers find genes and proteins associated with aging and age-related effects on blood vessels.

One such protein, namely BMP4, was found in higher amounts in the samples from older individuals and the iSMCs from the HGPS patients. Researchers assumed that this protein might be the reason for the accelerated aging seen in HGPS.

Read Also: HGH and Anti Diabetic drugs, an Anti-Aging Cocktail According to Study

To test their hypothesis, they used antibodies against BMP4 in volunteers with vascular disease. Hetzer and the team found that blocking BMP4 in these volunteers resulted in lesser vascular leaking, a feature of vascular disease. This finding is being recommended by the researchers as the new target for the treatment of HGPS or progeria.

Hetzer and his team aim to continue working on this to isolate the genes associated with aging and the exact mechanism of them, especially at the molecular level.

Direct reprogramming of human smooth muscle and vascular endothelial cells reveals defects associated with aging and Hutchinson-Gilford progeria syndrome

Link:
Scientists at the Salk Institute Came Across a Possible Way to Slow Down Aging - Gilmore Health News

To Read More: Scientists at the Salk Institute Came Across a Possible Way to Slow Down Aging – Gilmore Health News
categoriaSkin Stem Cells commentoComments Off on Scientists at the Salk Institute Came Across a Possible Way to Slow Down Aging – Gilmore Health News | dataSeptember 11th, 2020
Read All

New Data Further Reinforce Genentech’s Ocrevus (ocrelizumab) as a Highly Effective Treatment for People With Multiple Sclerosis – BioSpace

By daniellenierenberg

Sept. 11, 2020 05:00 UTC

SOUTH SAN FRANCISCO, Calif.--(BUSINESS WIRE)-- Genentech, a member of the Roche Group (SIX: RO, ROG; OTCQX: RHHBY), today announced new data that show Ocrevus (ocrelizumab) is a highly effective treatment option for people with relapsing-remitting multiple sclerosis (RRMS) who experienced a suboptimal response to their prior disease modifying therapy (DMT). Subgroup analysis from the two-year open-label Phase IIIb CASTING study also demonstrates that patients benefit across a wide range of disease related and demographic subgroups, regardless of prior treatment background. Findings will be presented at MSVirtual2020, the 8th Joint Meeting of the Americas Committee for Treatment and Research in Multiple Sclerosis (ACTRIMS) and the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS).

For a wide range of people with MS who experienced a suboptimal response to prior treatment, we continue to see evidence that Ocrevus provides significant benefit in slowing disease progression, said Levi Garraway, M.D., Ph.D., chief medical officer and head of Global Product Development. New real-world Ocrevus data show high persistence and adherence to the only B-cell therapy with a twice-yearly dosing schedule, which we know can be very important to both people with MS and their physicians.

Phase IIIb open-label CASTING study

Approximately 75% of RRMS patients (492/658) had no evidence of disease activity (NEDA; brain lesions, relapses and worsening of disability) two years after switching to twice-yearly Ocrevus treatment (with prespecified MRI re-baselining at 8 weeks) in the primary analysis of the CASTING study. Patients enrolled in the study had prior suboptimal response to at least six months of treatment with up to two DMTs. The analysis also showed the proportion of patients achieving NEDA remained consistently high across all measured patient subgroups, including baseline MRI activity, relapse activity, disability level, age and the number of prior DMTs. Further, 78% of patients treated with only one prior DMT compared with 70% of patients treated with two prior DMTs achieved NEDA.

Additionally, patients treated with Ocrevus experienced an improvement in the majority of symptoms measured by SymptoMScreen after two years. SymptoMScreen is a patient-reported outcome tool to assess symptom severity across twelve domains. The most pronounced significant improvements (p<0.001) were seen in sensory symptoms, fatigue and vision, which are important for daily living.

CONFIDENCE real-world safety study

A 97% treatment persistence for Ocrevus patients at 18 months, and strong adherence to infusions every six months, was seen in an interim analysis of more than 1,600 patients in the ongoing German CONFIDENCE study. Separate data from a U.S. commercial claims database that support high persistence and sustained adherence to Ocrevus treatment will also be presented.

Ocrevus longer-term safety data

New safety data as of January 2020 will be presented, representing 5,680 patients with RMS and PPMS and 18,218 patient-years of exposure to Ocrevus, across all Ocrevus clinical trials. These findings further demonstrate the consistently favorable benefit:risk profile of Ocrevus over seven years.

With rapidly growing real-world experience and more than 170,000 people treated globally, Ocrevus has twice-yearly (six-monthly) dosing and is the first and only therapy approved for RMS (including relapsing-remitting MS [RRMS] and active, or relapsing, secondary progressive MS [SPMS], in addition to clinically isolated syndrome [CIS] in the U.S.) and primary progressive MS (PPMS). Ocrevus is approved in 92 countries across North America, South America, the Middle East, Eastern Europe, as well as in Australia, Switzerland and the European Union.

About multiple sclerosis

Multiple sclerosis (MS) is a chronic disease that affects nearly one million people in the United States, for which there is currently no cure. MS occurs when the immune system abnormally attacks the insulation and support around nerve cells (myelin sheath) in the brain, spinal cord and optic nerves, causing inflammation and consequent damage. This damage can cause a wide range of symptoms, including muscle weakness, fatigue and difficulty seeing, and may eventually lead to disability. Most people with MS experience their first symptom between 20 and 40 years of age, making the disease the leading cause of non-traumatic disability in younger adults.

Relapsing-remitting MS (RRMS) is the most common form of the disease and is characterized by episodes of new or worsening signs or symptoms (relapses) followed by periods of recovery. Approximately 85 percent of people with MS are initially diagnosed with RRMS. The majority of people who are diagnosed with RRMS will eventually transition to secondary progressive MS (SPMS), in which they experience steadily worsening disability over time. Relapsing forms of MS (RMS) include people with RRMS and people with SPMS who continue to experience relapses. Primary progressive MS (PPMS) is a debilitating form of the disease marked by steadily worsening symptoms but typically without distinct relapses or periods of remission. Approximately 15 percent of people with MS are diagnosed with the primary progressive form of the disease. Until the FDA approval of Ocrevus, there had been no FDA approved treatments for PPMS.

People with all forms of MS experience disease activity inflammation in the nervous system and permanent loss of nerve cells in the brain even when their clinical symptoms arent apparent or dont appear to be getting worse. An important goal of treating MS is to reduce disease activity as soon as possible to slow how quickly a persons disability progresses. Despite available disease-modifying treatments (DMTs), some people with RMS continue to experience disease activity and disability progression.

About Ocrevus (ocrelizumab)

Ocrevus is the first and only therapy approved for both RMS (including clinically isolated syndrome, RRMS and active, or relapsing, SPMS) and PPMS, with dosing every six months. Ocrevus is a humanized monoclonal antibody designed to target CD20-positive B cells, a specific type of immune cell thought to be a key contributor to myelin (nerve cell insulation and support) and axonal (nerve cell) damage. This nerve cell damage can lead to disability in people with MS. Based on preclinical studies, Ocrevus binds to CD20 cell surface proteins expressed on certain B cells, but not on stem cells or plasma cells, suggesting that important functions of the immune system may be preserved.

Ocrevus is administered by intravenous infusion every six months. The initial dose is given as two 300 mg infusions given two weeks apart. Subsequent doses are given as single 600 mg infusions.

Important Safety Information

What is Ocrevus?

Ocrevus is a prescription medicine used to treat:

It is not known if Ocrevus is safe or effective in children.

Who should not receive Ocrevus?

Do not receive Ocrevus if you have an active hepatitis B virus (HBV) infection.

Do not receive Ocrevus if you have had a life threatening allergic reaction to Ocrevus. Tell your healthcare provider if you have had an allergic reaction to Ocrevus or any of its ingredients in the past.

What is the most important information I should know about Ocrevus?

Ocrevus can cause serious side effects, including:

These infusion reactions can happen for up to 24 hours after your infusion. It is important that you call your healthcare provider right away if you get any of the signs or symptoms listed above after each infusion.

If you get infusion reactions, your healthcare provider may need to stop or slow down the rate of your infusion.

Before receiving Ocrevus, tell your healthcare provider about all of your medical conditions, including if you:

Tell your healthcare provider about all the medicines you take, including prescription and over-the-counter medicines, vitamins, and herbal supplements.

What are the possible side effects of Ocrevus?

Ocrevus may cause serious side effects, including:

Most common side effects include infusion reactions and infections.

These are not all the possible side effects of Ocrevus.

Call your doctor for medical advice about side effects. You may report side effects to the FDA at 1-800-FDA-1088.

For more information, go to http://www.Ocrevus.com or call 1-844-627-3887.

For additional safety information, please see the full Prescribing Information and Medication Guide.

About Genentech in neuroscience

Neuroscience is a major focus of research and development at Genentech and Roche. Our goal is to pursue groundbreaking science to develop new treatments that help improve the lives of people with chronic and potentially devastating diseases.

Genentech and Roche are investigating more than a dozen medicines for neurological disorders, including multiple sclerosis, stroke, Alzheimers disease, Huntingtons disease, Parkinsons disease, Duchenne muscular dystrophy and autism spectrum disorder. Together with our partners, we are committed to pushing the boundaries of scientific understanding to solve some of the most difficult challenges in neuroscience today.

About Genentech

Founded more than 40 years ago, Genentech is a leading biotechnology company that discovers, develops, manufactures and commercializes medicines to treat patients with serious and life-threatening medical conditions. The company, a member of the Roche Group, has headquarters in South San Francisco, California. For additional information about the company, please visit http://www.gene.com.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200910006081/en/

See more here:
New Data Further Reinforce Genentech's Ocrevus (ocrelizumab) as a Highly Effective Treatment for People With Multiple Sclerosis - BioSpace

To Read More: New Data Further Reinforce Genentech’s Ocrevus (ocrelizumab) as a Highly Effective Treatment for People With Multiple Sclerosis – BioSpace
categoriaSkin Stem Cells commentoComments Off on New Data Further Reinforce Genentech’s Ocrevus (ocrelizumab) as a Highly Effective Treatment for People With Multiple Sclerosis – BioSpace | dataSeptember 11th, 2020
Read All

Post-COVID heart damage alarms researchers: ‘There was a black hole’ in infected cells – Yahoo Sports

By daniellenierenberg

Shelby Hedgecock contracted the coronavirus in April and thought she had fought through the worst of it the intense headaches, severe gastrointestinal distress and debilitating fatigue but early last month she started experiencing chest pain and a pounding heartbeat. Her doctor put her on a cardiac monitor and ordered blood tests, which indicated that the previously healthy 29-year-old had sustained heart damage, likely from her bout with COVID-19.

I never thought I would have to worry about a heart attack at 29 years old, Hedgecock told Yahoo News in an interview. I didnt have any complications before COVID-19 no preexisting conditions, no heart issues. I can deal with my taste and smell being dull, I can fight through the debilitating fatigue, but your heart has to last you a really long time.

Hedgecocks primary-care physician has referred her to a cardiologist she will see this week; the heart monitor revealed that Hedgecocks pulse rate is wildly irregular, ranging from 49 to 189 beats per minute, and she has elevated inflammatory markers and platelet counts. She was told to go to the emergency room if her chest pain intensifies before she can see the specialist. A former personal trainer who is now out of breath just from walking around the room, Hedgecock is worried about what the future holds.

She is far from alone in her struggle. Dr. Ossama Samuel is a cardiologist at New Yorks Mount Sinai Hospital, where he routinely sees coronavirus survivors who are contending with cardiac complications. Samuel said his team has treated three young and otherwise healthy coronavirus patients who have developed myocarditis an inflammation of the heart muscle weeks to months after recovering from the virus.

Shelby Hedgecock in a hospital bed. (Shelby Hedgecock)

Myocarditis can affect how the heart pumps blood and trigger rapid or abnormal heart rhythms. It is particularly dangerous for athletes, doctors say, because it can go undetected and can result in a heart attack during strenuous exercise. In recent weeks, some collegiate athletes have reported cardiac complications from the coronavirus, underscoring the seriousness of the condition.

Last month, former Florida State basketball center Michael Ojo died from a heart attack in Serbia; Ojo had recovered from the coronavirus before he collapsed on the basketball court. An Ohio State University cardiologist found that between 10 and 13 percent of university athletes who had recovered from COVID-19 had myocarditis.When the Big Ten athletic conference announced the cancellation of its season last month, Commissioner Kevin Warren cited the risk of heart failure in athletes. Researchers have estimated that up to 20 percent of people who get the coronavirus sustain heart damage.

Samuel said he feels an obligation to warn people, particularly since some of the patients he and Mount Sinai colleagues have seen with myocarditis had only mild cases of the coronavirus months ago.

We are now seeing people three months after COVID who have pericarditis [inflammation of the sac around the heart] or myocarditis, Samuel said. He said he believes a small fraction of coronavirus survivors are sustaining heart damage, but when a disease is so widespread it is concerning that a tiny fraction is still sizable.

Samuel said he worries particularly about athletes participating in team sports, since many live together and spend time in close quarters. Teammates may all get the coronavirus and recover together, Samuel said, but the one who really gets that crazy myocarditis could be at risk of dying through exercise or training.

Story continues

Its a concern about what do you do: Should we do sports in general, should we do it in schools, should we do it in college, should we just do it for professionals who understand the risk and they're getting paid? Samuel asked. I hope we dont scare the public, but we should make people aware.

Samuel is recommending that patients recovering from COVID-19 with myocarditis avoid workouts for three to six months.

Todd McDevitt, who runs a stem-cell lab at Gladstone Institutes, which is affiliated with the University of California at San Francisco, recently published images that show how the coronavirus can directly invade the heart muscle. McDevitt said he was so alarmed when he saw a sample of heart muscle cells in a petri dish get diced by the coronavirus that he had trouble sleeping for nights afterward.

Todd McDevitt. (Facebook)

McDevitt said his teams research was spurred by their desire to understand if the coronavirus is entering heart cells and how it is affecting them. He was surprised to see the heart muscle samples he was studying react to a very small amount of the coronavirus, usually within 24 to 48 hours. He said the virus decimated the heart cells in his petri dishes.

Cell nuclei the hubs of all the genetic information, all of the nuclear DNA in many of the cells were gone, McDevitt said. There was a black hole literally where we would normally see the nuclear DNA. Thats also pretty bizarre.

While McDevitts study has not yet been peer-reviewed it is still in pre-print he said he felt compelled to share the findings as soon as possible. He said his team also sampled tissues from three COVID-19 patient autopsies and found similar damage in the heart muscles of those patients, none of whom had been flagged for myocarditis or heart problems while they were alive.

This is probably not the whole story yet, but we think we have insights into the beginning of when the virus would get into some of these people and what it might be doing that is concerning enough that we should probably let people know, because clinicians need to be thinking about this, McDevitt said in an interview. We dont have any means of bringing heart muscle back. ... This virus is [causing] a very different type of injury, and one we haven't seen before.

McDevitt said the chopped-up heart muscles he and his colleagues saw are so concerning because when the microfibers in the muscle are damaged, the heart cant properly contract.

If heart muscle cells are damaged and they cant regenerate themselves, then what youre looking at is someone who could prematurely have heart failure or heart disease due to the virus, McDevitt said. This could be a warning sign for a potential wave of heart disease that we could see in the future, and its in the survivors thats the concern.

McDevitt said he believes the risk of heart disease is serious and one people should consider as they assess their own risk of getting the coronavirus.

I am more scared today of contracting the virus, by far, than I was four months ago, he said.

In lab experiments, infection of heart muscle cells with SARS-CoV-2 caused long fibers to break apart into small pieces, shown above. (Gladstone)

The medical journal the Lancet recently reported that an 11-year-old child had died of myocarditis and heart failure after a bout of COVID-induced multisystem inflammatory syndrome (MIS-C). An autopsy showed coronavirus embedded in the childs cardiac tissue.

A recent study from Germany found that 78 percent of patients who had recovered from the coronavirus and who had only mild to moderate symptoms while ill with the disease had indications of cardiac involvement on MRIs conducted more than two months after their initial infection.Lead investigator Eike Nagel said it is concerning to see such widespread cardiac impact; six in 10 of the patients Nagels team studied experienced ongoing myocardial inflammation.

We found an astonishingly high level of cardiac involvement approximately two months after COVID infection, Nagel said in an email. These changes are much milder than observed in patients with severe acute myocarditis.

The scale of the cardiac impact on relatively healthy, young patients surprised many doctors. Nagel said the findings are significant on a population basis, and that the impact of COVID-19 on the heart must be studied more.

Dr. Gregg Fonarow. (UCLA)

Dr. Gregg Fonarow, chief of UCLAs Division of Cardiology and director of the Ahmanson-UCLA Cardiomyopathy Center, said the picture is evolving, but the new studies showing cardiac impact in even young people with mild cases of COVID-19 have raised troubling new questions.

We really do need to take seriously individuals that have had the infection and are having continued symptoms, [and] not just dismiss those symptoms, Fonarow said. There could be, in those who had milder or even asymptomatic cases, the potential for cardiac risk.

Fonarow said it is important to understand whether a more proactive screening and treatment approach is needed to better address the needs of patients who have recovered from the coronavirus and who may still have weakened heart function. Fonarow said he found McDevitts research to be potentially significant because it proves from a mechanistic standpoint that there can be direct cardiac injury from the virus itself.

Even if it were going to impact, say, 2 percent of the people that had COVID-19, when you think of the millions that have been infected, that ends up in absolute terms being a very large number of individuals, Fonarow said in an interview. You dont want people to be unduly alarmed, but on the other hand you dont want individuals to be complacent about, Oh, the mortality rate is so low with COVID-19, I dont really care if Im infected because the chances that it will immediately or in the next few weeks kill me is small enough, I dont need to be concerned. There are other consequences.

_____

Read more from Yahoo News:

See the rest here:
Post-COVID heart damage alarms researchers: 'There was a black hole' in infected cells - Yahoo Sports

To Read More: Post-COVID heart damage alarms researchers: ‘There was a black hole’ in infected cells – Yahoo Sports
categoriaCardiac Stem Cells commentoComments Off on Post-COVID heart damage alarms researchers: ‘There was a black hole’ in infected cells – Yahoo Sports | dataSeptember 11th, 2020
Read All

Covid-19 Impact on Global Progenitor Cell Product Market 2020 Industry Opportunities And Development Analysis 2026: NeuroNova AB,R&D Systems,Asterias…

By daniellenierenberg

The aim of this detailed market research report on Progenitor Cell Product market is to offer readers, with ample competitive edge in the context of market dynamics such as challenges, barriers, threats and opportunities that orchestrate high end growth amidst stringent competition in global Progenitor Cell Product market.

Get PDF Sample Copy of this Report to understand the structure of the complete report: https://www.orbispharmareports.com/sample-request/57498

Global Progenitor Cell Product Market: Understanding Scope:

The aforementioned Progenitor Cell Product market has been evaluated to register a thumping growth of xx million USD in 2020 and is anticipated to further attain a growth valuation of xx million USD through the forecast tenure till 2027, growing at a CAGR of xx% throughout the forecast span.For utmost reader convenience this elaborate research report on global Progenitor Cell Product market identifies 2019 as the base year and 2020-27 constitutes the overall forecast tenure, allowing precise market estimation about growth probabilities in the Progenitor Cell Product market.

Major Company Profiles operating in the Progenitor Cell Product Market:

NeuroNova ABR&D SystemsAsterias BiotherapeuticsStemCellsAxol BioReNeuron LimitedATCCSTEMCELL TechnologiesThermo Fisher ScientificLonzaIrvine ScientificCDI

Do You Have Any Query Or Specific Requirement? Ask to Our Industry [emailprotected] https://www.orbispharmareports.com/enquiry-before-buying/57498

Unravelling Report Offerings Market:

1. A thorough and detailed analytical review of the Progenitor Cell Product market2. Brief about evident changes and market developments affecting market dynamics3. A clear understanding of market segmentation related to Progenitor Cell Product market4. A critical synopsis of all historical, real time as well as forecast developments likely to impact growth5. A systematic review of the diverse market developments and potent alterations that steer growth in the global Progenitor Cell Product market6. A reference of all the successful growth rendering developments

By the product type, the market is primarily split into:

Pancreatic progenitor cellsCardiac Progenitor CellsIntermediate progenitor cellsNeural progenitor cells (NPCs)Endothelial progenitor cells (EPC)Others

By the application, this report covers the following segments:

Medical careHospitalLaboratory

Owing to the sudden onset of global pandemic with the COVID-19 outrage in place, Orbis Pharma Reports analysts and dedicated research personnel have assigned a specific section evaluating the various implications and explaining the aftermath of the pandemic affecting diverse trends, developments as well as also categorically focusing on various opportunities emerging during the pandemic. The section is aimed at allowing market players to devise winning growth plans to secure profit even amidst the pandemic in Progenitor Cell Product market.

We are a team of young, mindful, agile research experts who pursue a fact-based approach to decode all relevant market specific information, required to harness superlative reader understanding about various marker facets that lead towards unhindered growth prognosis. Our flagship expertise in scavenging through various facets of market development and key perspectives are in place to unleash industry patterns to design and develop a future-ready market study that unravels information based on which report readers can well devise profit oriented business decisions that fetch highly profitable investment returns, favoring market participants.At Orbis Pharma Reports we categorically offer expert market research-oriented services across a heterogenous range of industrial participants, such as manufacturing companies, corporations, product development companies, who stand in greater need of market specific information.

Browse Full Report at: https://www.orbispharmareports.com/covid-19-impact-on-global-progenitor-cell-product-industry-research-report-2020-segmented-by-major-market-players-types-applications-and-countries-forecast-to-2026/

About Us :

At Orbispharma we curate the most relevant news stories, features, analysis and research reports on the important challenges undertaken by the pharmaceutical and related sectors. Our editorial philosophy is to bring you sharp, focused and informed perspective of industries, the end users and application of all upcoming trends into the pharma sector. Orbispharma believes in conversations that can bring a change in one of the most crucial economic sectors in the world. With these conversations we wish our customers to make sound business decisions with right business intelligence.

Contact Us :

Continue reading here:
Covid-19 Impact on Global Progenitor Cell Product Market 2020 Industry Opportunities And Development Analysis 2026: NeuroNova AB,R&D Systems,Asterias...

To Read More: Covid-19 Impact on Global Progenitor Cell Product Market 2020 Industry Opportunities And Development Analysis 2026: NeuroNova AB,R&D Systems,Asterias…
categoriaCardiac Stem Cells commentoComments Off on Covid-19 Impact on Global Progenitor Cell Product Market 2020 Industry Opportunities And Development Analysis 2026: NeuroNova AB,R&D Systems,Asterias… | dataSeptember 11th, 2020
Read All

Study Identifies New Set of Genes That May Explain Why People with Down Syndrome Have a Higher Risk of Leukemia – DocWire News

By daniellenierenberg

A study which appeared in the journal Oncotarget sheds light on why people with Down syndrome are at higher risk of Leukemia. Researchers pinpointed a new set of genes overexpressed in endothelial cells of individuals with Down syndrome, thus creating an environment conducive for leukemia.

Down syndrome occurs in approximately in one in 700 babies, and individuals with the syndrome not only development physical impairments, they have a greatly augmented risk of developing leukemia. Specifically, people with Down syndrome have a 500-fold risk of developing acute megakaryoblastic leukemia (AMKL) and a 20-fold risk of being diagnosed with acute lymphoblastic leukemia (ALL).

In this study, researchers used skin samples from patients with Down syndrome to create induced pluripotent stem cells (iPSC). They subsequently differentiated the iPSC cells into that were then endothelial cells. The researchers observed that the endothelial cell genetic expression produced altered endothelial function throughout cell maturation. We found that Down syndrome, or Trisomy 21, has genome-wide implications that place these individuals at higher risk for leukemia, says co-lead author Mariana Perepitchka, BA, Research Associate at the Manne Research Institute at Lurie Childrens via a press release. We discovered an increased expression of leukemia-promoting genes and decreased expression of genes involved in reducing inflammation. These genes were not located on chromosome 21, which makes them potential therapeutic targets for leukemia even for people without Down syndrome.

Our discovery of leukemia-conducive gene expression in endothelial cells could open new avenues for cancer research, said co-lead author Yekaterina Galat, BS, Research Associate at the Manne Research Institute at Lurie Childrens.

Fortunately, advances in iPSC technology have provided us with an opportunity to study cell types, such as endothelial cells, that are not easily attainable from patients, stated senior author Vasil Galat, PhD, Director of Human iPS and Stem Cell Core at Manne Research Institute at Lurie Childrens and Research Assistant Professor of Pathology at Northwestern University Feinberg School of Medicine. If our results are confirmed, we may have new gene targets for developing novel leukemia treatments and prevention.

Read more:
Study Identifies New Set of Genes That May Explain Why People with Down Syndrome Have a Higher Risk of Leukemia - DocWire News

To Read More: Study Identifies New Set of Genes That May Explain Why People with Down Syndrome Have a Higher Risk of Leukemia – DocWire News
categoriaSkin Stem Cells commentoComments Off on Study Identifies New Set of Genes That May Explain Why People with Down Syndrome Have a Higher Risk of Leukemia – DocWire News | dataSeptember 9th, 2020
Read All

Can High Blood Sugar Haunt People with Diabetes Even After it is Under Control? – BioSpace

By daniellenierenberg

Yes, even your metabolism has a memory and it can hold a grudge for years. In people with diabetes, periods of high blood sugar can negatively impact their health years later, even if they get their blood sugar under control. While this metabolic memory phenomenon has been known for years, why it happens is poorly understood.

Rama Natarajan, Ph.D., Professor and Chair of the Department of Diabetes Complications & Metabolism at City of Hope, turned to our epigenome for the answer.

Weve shown the first link between DNA methylation in blood and stems cells, blood sugar history, and future development of complications, said Natarajan. This highlights the importance of good glycemic control to prevent long-term complications.

The history of metabolic memory

We now know high blood sugar can lead to a variety of complications, including eye disease, kidney disease, nerve problems, heart disease, and stroke. But the relationship between strict blood sugar control and complication risk wasnt well understood before the 1980s.

Back in 1983, the Diabetes Control and Complications Trial (DCCT) began tracking complications in 1,441 participants with type 1 diabetes. Researchers compared the occurrence of long-term complications between participants who tightly regulated their blood glucose levels to those who followed less strict standard regulation.

After 10 years, the difference was striking the risk of diabetic complications was reduced in participants who tightly regulated their blood sugar but not in those following standard regulation. In other words, a person with higher blood sugar had a higher risk of complications.

To continue following the DCCT patients, the Epidemiology of Diabetes Interventions and Complications (EDIC) follow-up trial began at the end of DCCT in 1993 and is ongoing. At the end of DCCT, all participants were encouraged to adopt strict blood sugar regulation; many in the standard regulation group did.

Despite blood sugar regulation being very similar in all the patients (as measured by hemoglobin A1c, called HbA1c), differences persisted between the two original intervention groups. The phenomenon of long-term effects from high or variable blood sugar control is called metabolic memory (or the legacy effect in type 2 diabetes).

Complications resulted from total high blood sugar exposure it didnt matter whether the person was exposed to slightly elevated levels over a long time or high levels over a short time.

So, what caused the sweet sugar molecule to become so destructive?

Sugary destruction

Extra sugar in your blood can interact with your cells, DNA, and proteins, adding itself onto things it shouldnt be on through a process called glycation. In fact, HbA1c can be thought of as sugar-coated red blood cells.

The sugar-coated molecules cant function as well, if at all, and the damage begins a self-perpetuating cycle. Not only do these damaged molecules stop working, they can also accumulate in the skin, eyes, and other organs, causing damage. Build-up of sugar-coated molecules can trigger the creation of harmful free radicals, causing oxidative stress and feeding a destructive cycle.

Although sugar can directly modify molecules, it can also trigger other epigenetic modifications. These modifications can control how genes are expressed, changing protein levels in cells.

There hasnt been a strong genetic association with diabetic complications very few genetic mutations have been strongly linked to complications, Natarajan explained. But we knew the epigenome is what makes identical twins different and can have implications into why one gets diabetes or cancer and the other doesnt. So, we turned our focus to epigenetics.

Epigenetics and diabetes

Natarajan sought to explain the long-term sugary destruction wrought by high blood sugar by searching the epigenome. Her lab specifically looks for one type of modification called DNA methylation, where a tiny molecule called a methyl group is added onto DNA.

Epigenetics is the coating on top of genetics that can be altered by environmental influences, Natarajan said. We started focusing on the role of epigenetics in developing diabetes and its complications because we know that lifestyles, improper diet, lack of exercise, and even viruses can affect epigenetics.

Natarajans lab began collaborating with the DCCT trial group, analyzing data collected through the trial for epigenetic clues to explain the metabolic memory of complications. They found more modifications associated with active genes on proteins called histones that are wrapped by DNA in participants with regular blood sugar control compared to the strict controllers. Even more interesting was that many epigenetic DNA methylation variations between the two groups persisted through at least 17 years of follow-up in the EDIC study.

These changes were in important genes related to complications, showing something about persistent epigenetic programming in peripheral blood cells, commented Natarajan. Previous high blood sugar episodes could be a key factor in why these genes were continually misbehaving.

Now, Natarajans lab illuminated even more links between epigenetic changes, blood sugar history, and metabolic memory in their recent Nature Metabolism paper. Persistent epigenetic modifications of a few key genes were detected in participants with previously less regulated blood sugar who developed either retinopathy or nephropathy. They showed that DNA methylation is a key link between a patients HbA1c history, metabolic memory, and development of future complications.

Many HbA1c-associated modifications were in stem cells and the blood cells they create. Even though blood cells are turned over relatively quickly, stem cells stick around for a long-time, so changes in stem cells can have long-term consequences.

The important thing we found was the connection to stem cells, explained Natarajan. Were asking how these changes alter inflammatory gene expression and how we can interrupt those pathways.

Sugar-modified genes arent so sweet

Natarajans lab sorted through all the modified genes to find the most common modifications in participants with less strict blood sugar control. The most commonly modified gene coded for thioredoxin-interacting protein (TxNIP).

TxNIP is not a new protein, but the discovery that its DNA methylation is altered by different glycemic control is new, Natarajan added.

Thioredoxin-interacting protein is known to be highly regulated in certain pancreas cells, called beta cells, that release insulin. The plot thickened when high blood sugar was found to increase TxNIP protein production. Even more interesting, high TxNIP protein levels make beta-cells dysfunctional, ultimately leading to their untimely death. So, high blood sugar triggers more TxNIP to be produced, possibly through epigenetic modifications of the TxNIP gene, which ultimately leads to the death of insulin-producing beta cells.

Showing that the TxNIP gene can be epigenetically modified for years and years suggests that it could be one of the culprits causing long-term problems in diabetes, Natarajan said.

The proteins that TxNIP interacts with, called thioredoxins, protect against oxidative stress. TxNIP can bind to and inactivate thioredoxin to increase oxidative stress by increasing reactive oxygen species (ROS). In mouse cells in a dish, high glucose exposure triggered increased ROS levels mediated by TxNIP, leading to oxidative stress. Oxidative stress can trigger cell and organ damage, so this could be one mechanism explaining diabetes-induced damage.

Her lab also found epigenetic changes in other genes related to inflammation and inflammation-related processes.

Next steps and clinical implications

Natarajans lab is continuing to study the link between blood sugar history, epigenetics, and other complications of diabetes. They are also expanding their scope, searching the entire genome for more epigenetic modifications linked with past blood sugar maintenance.

This study also lays the groundwork for further studies with meaningful clinical implications, including developing epigenetic biomarkers for diabetic complications. In the future, Natarajan says a simple blood test looking at key epigenetic modifications, along with HbA1c history, could be used to predict future risk of retinopathy, nephropathy, and neuropathy. This would allow the doctor to figure out who should have early and more aggressive treatment to mitigate complication risk.

While these studies were done in type 1 diabetes patients, other studies in type 2 diabetes patients have shown similar epigenetic modifications after history of higher blood sugar levels.

Turning knowledge into potential drugs

What about doing something about the epigenetic modifications can we remove them? As a matter of fact, yes!

There is an interesting new type of experimental drug on the horizon called epigenetic editing. The hot new technology CRISPR isnt just for cutting out chunks of DNA or controlling genes it can also be used to insert or remove epigenetic modifications. While this technology is still experimental and in early preclinical animal studies, the potential is very exciting.

A CRISPR/enzyme pair can be used the CRISPR genetic material can hunt down the genetic spot you want to change; and the attached enzyme can snip or add certain molecules to the DNA, effectively removing or creating an epigenetic modification, thereby activating or silencing the targeted gene.

Enzymes such as methyltransferase or demethylase can add or remove methyl groups from genes. Because they just change what is on the gene or histone wrapped around it (not the genetic sequence itself), the gene itself isnt tampered with, meaning there could be less genetic complications associated with CRISPR epigenetic editing.

This is a futuristic thing, Natarajan concluded. The combination of genetics and epigenetics is going to be the future of personalized medicine.

The rest is here:
Can High Blood Sugar Haunt People with Diabetes Even After it is Under Control? - BioSpace

To Read More: Can High Blood Sugar Haunt People with Diabetes Even After it is Under Control? – BioSpace
categoriaSkin Stem Cells commentoComments Off on Can High Blood Sugar Haunt People with Diabetes Even After it is Under Control? – BioSpace | dataSeptember 9th, 2020
Read All

David Shavelle, MD, Named Medical Director of Adult Cardiology for the MemorialCare Heart & Vascular Institute at Long Beach Medical Center -…

By daniellenierenberg

Dr. Shavelle, a Millikan High School (Long Beach, Calif.) graduate, is returning to Long Beach with more than 20 years of cardiology practice, research leadership, and teaching experience. He joins Long Beach Medical Center from Keck Medical Center at the University of Southern California, where he served as the Director of Interventional Cardiology while leading a multitude of clinical research trials, including several focused on implanted devices for heart failure. He plans on increasing the availability of clinical research trials for cardiology patients at Long Beach Medical Center.

"The MemorialCare Heart & Vascular Institute has a rich history of research and pioneering new treatment techniques," says Ike Mmeje, chief operating officer, Long Beach Medical Center.

"Dr. Shavelle's passion for research makes him a perfect fit to continue that legacy and find the next cutting-edge treatment for our cardiology patients."

MemorialCare Heart & Vascular Institute facilities are among the most comprehensive centers for diagnosis, treatment and rehabilitation of cardiac disease, providing groundbreaking care for complex heart conditions, including myocardial infarction, heart failure, arrhythmias and peripheral vascular disease. In addition to his hopes to expand research opportunities, Dr. Shavelle plans on expanding the programs for heart failure and structural heart disease.

"I am excited to join the MemorialCare Heart & Vascular Institute at Long Beach Medical Center," says Dr. Shavelle. "My dad was a physician here, and many of my mentors and fellows are at Long Beach Medical Center. I'm looking forward to creating more collaboration among cardiologists, surgeons, residents and the entire team to expand the already comprehensive cardiology care available to the community."

After earning his medical degree from the University of California, Los Angeles (UCLA), Dr. Shavelle completed his internal medicine internship and residency at Harbor-UCLA Medical Center. He completed General Cardiology Fellowship at the University of Washington and Interventional Cardiology Fellowship at Harbor-UCLA Medical Center/Good Samaritan Hospital. Dr. Shavelle served as Associate Professor at both the David Geffen School of Medicine at UCLA and the Keck School of Medicine at the University of Southern California. He alsoserveson the editorial boards for the Journal of Cardiovascular Pharmacology and Therapeutics, Current Medical Research and Opinion and Cardiology Clinics.

The MemorialCare Heart & Vascular Institute delivering nearly 20,000 cardiovascular diagnostic tests and treatments last year continues to push the boundaries of discovery with many "firsts." These began 70 years ago when world-renowned cardiologist, researcher and educator, the late Mervyn Ellestad, M.D., co-invented at Long Beach Medical Center the modern-day maximum stress test to detect heart disease. Today, millions of exercise stress tests performed annually save hundreds of thousands of lives globally.

"It is amazing how the field of cardiology has grown and how many treatment options are available through minimally invasive techniques," says Dr. Shavelle. "Many of these new treatment options have come from research trials, and I'm looking forward to expanding the opportunities for patients in the Long Beach area. The studies we have in the pipeline include trials with stem cells and heart failure devices."

About MemorialCare Long Beach Medical Center:MemorialCare Long Beach Medical Center has been providing the community with compassionate, quality health care for more than 100 years. While leading in specialized care, research and education, Long Beach Medical Center uses the most advanced health care technologies it is the only hospital in L.A. County with the innovative ExactechGPS and ExcelsiusGPS surgical systems. Long Beach Medical Center is ranked no. 7 in the Los Angeles Metro Area by U.S. News & World Report and has earned Magnet recognition for nursing excellence. With leading centers for cancer, heart, rehabilitation, orthopedics, neurology and trauma, physicians and surrounding hospitals continually refer to its accredited programs. For more information, visit memorialcare.org/LongBeach.

SOURCE MemorialCare Long Beach Medical Center

Follow this link:
David Shavelle, MD, Named Medical Director of Adult Cardiology for the MemorialCare Heart & Vascular Institute at Long Beach Medical Center -...

To Read More: David Shavelle, MD, Named Medical Director of Adult Cardiology for the MemorialCare Heart & Vascular Institute at Long Beach Medical Center -…
categoriaCardiac Stem Cells commentoComments Off on David Shavelle, MD, Named Medical Director of Adult Cardiology for the MemorialCare Heart & Vascular Institute at Long Beach Medical Center -… | dataSeptember 9th, 2020
Read All

Tweet Chat Recap: Evaluating Treatment Approaches for Relapsed/Refractory DLBCL – Targeted Oncology

By daniellenierenberg

Targeted Oncology was joined by Kami J. Maddocks, MD, associate professor of clinical internal medicine, Division of Hematology, The Ohio State University Comprehensive Cancer CenterJames, for the discussion of a 76-year-old man with relapsed/refractory diffuse large B-cell lymphoma (DLBCL) in a recent tweet chat. In this case scenario, the patient presented with stage IV high-risk disease and received R-CHOP (Rituximab [Rituxan], cyclophosphamide, doxorubicin, vincristine, prednisone), and radiotherapy.

Although the treatment appeared well-tolerated, the patient presented with similar symptoms as at diagnosis after completing 6 cycles with complete response to the therapy. According to the work-up, the patient is ineligible for transplant.

The patient was ineligible for stem cell transplantation (SCT), which Maddocks speculates may be due to the patients age, although other considerations could include comorbidities or intolerance to R-CHOP. Eligibility is the first thing she considers for her patients as it is currently the standard of care and the only curative approach for patients to receive salvage chemotherapy followed by consolidation with autologous SCT.

Maddocks told Targeted Oncology, In some patient cases, [the reason for ineligibility] is age even though there's no specific age cutoff, but we know that it's harder on the marrow as patients get older to collect stem cells and get that aggressive salvage chemotherapy. Patient comorbidities [can also impact eligibility], so heart conditions, lung conditions, renal insufficiency can be a problem. Performance status and then lastly, just if the patient had trouble getting to their initial chemotherapy with R-CHOP or had a lot of complications, then it's probably going to be harder for them to tolerate even more aggressive or intensive therapy.

In a twitter poll ahead of the chat, Targeted Oncology asked what the next best line of therapy for this patient might be, with 4 potential different treatment options. The option that drew the most attention, however, was the recently approved regimen of tafasitamab (Monjuvi) and lenalidomide (Revlimid).

Maddocks tweeted, All these options are potential therapeutic choices for this patient, but the combination of tafasitamab/lenalidomide is the only option approved in this setting. The treatment has a promising ORR [overall response rate], and CR [complete response], and the remissions for patients who respond are durable!

During the tweet chat, Maddocks reviewed each of the different treatment options in the poll, and why she selected this combination regimen as the next best line of therapy for this particular patient. Following the chat, she spoke with Targeted Oncology to share further insights on each of these therapeutic approaches and the importance of the FDAs approval of tafasitamab plus lenalidomide in this setting.

The combination of tafasitamab plus lenalidomide held the majority vote, which Maddocks agreed would be the next best line of therapy for this patient.

For patients who are not candidates or considered eligible for a salvage chemotherapy followed by autologous SCT, the tafasitamab/lenalidomide combination was recently approved in the setting of first relapse, and it's the only approved therapy in this setting, Maddocks said. Historically, we would give some sort of palliative chemotherapy approach if patients were candidates and interested in pursuing therapy, or consideration of clinical trial, but this is the only therapy approved in this setting.

The approval of tafasitamab in combination with lenalidomide includes an indication for patients who are not eligible for autologous SCT, as describes the patient in our case. This regimen was approved on the basis of the phase 2 L-MIND (NCT02399085) clinical trial, which explored this use of this regimen in 81 patients with relapsed/refractory DLBCL. Two-year follow-up demonstrated an ORR of 58.5%, which included CRs in 41.3% of patients and partial responses (PRs) in 17.5% of patients. In addition, 15.0% achieved stable disease, and the median duration of response was 34.6 months (95% CI, 26.1-34.6).1

I think this patient case is the perfect example of where this can fit into the treatment landscape, Maddocks explained. For patients who first relapse from the standard R-CHOP therapy, the toxicities were generally manageable, and with the response rate, this is a great option for patients at first relapse who are not going to be candidates for a transplant. I think maybe patients who go on to get palliative chemotherapy or maybe patients who get treatment with plans to go to transplant but just don't tolerate it and dont look like they're going to [undergo] aggressive therapy, this may be an option for those patients too, understanding that there is some role for CAR T in a set of those patients.

This study, which was presented during the 25th Congress of the European Hematology Association (EHA), demonstrated that the majority of toxicities were hematologic, and most were reversible. The most common grade 3 hematologic treatment-emergent adverse events (TEAEs) were neutropenia in 49.4% of patients, thrombocytopenia in 17.3%, and febrile neutropenia in 13.2%.1

These were able to be managed by holding the dose growth factor, and there was a population of patients who had to be dose-reduced on the lenalidomide. The starting dose was 25 mg, so the majority were able to maintain 20 mg if they were dose-reduced, although a few had to be reduced more than once, Maddocks said. The most common grade 3/4 or serious AEs were infection, probably not surprisingly, and overall, that's probably similar to what you see with other options in this setting. There was a small number of infusion reactions, but these were all grade 1 in the trial and were easily managed.

Non-hematologic TEAEs of grade 3 included pneumonia in 8.6% of patients and hypokalemia in 6.2%. Serious AEs reported included pneumonia in 8.6%, febrile neutropenia in 6.2%, and pulmonary embolism in 3.7%, as well as bronchitis, lower respiratory tract infection, atrial fibrillation, and congestive cardiac failure in 2.5% each.1

Given the safety profile of this combination of tafasitamab plus lenalidomide, this regimen is particularly suitable for a large proportion of patients with DLBCL, Gilles Salles, MD, PhD, lead author of L-MIND, toldTargeted Oncology. We do know that the median age of occurrence of DLBCL is in the late 60s, and there are many, many patients that are over 70 and that are not usually transplant eligible. Clearly this is a great opportunity for patients to receive this non-cytotoxic regimen.

Although this regimen is an exciting opportunity for patients with DLBCL and relapsed/refractory disease, 1 challenge that needs to be addressed is the potential use of tafasitamab plus lenalidomide in sequence with CAR T-cell therapy. There is very little experience, if any, of patients receiving the combination regimen after receiving CAR T-cell therapy. The combination and CAR T cells both target the same antigen, CD19, which can be problematic. As its known that some patients will lose CD19 expression on CAR T-cell therapy, the regimen may no longer be an effective treatment option.

For those patients that had failed CAR T-cell therapy, substantial proportions, about 30% of them, may have lost CD19 expression and then may not be eligible anymore for this regimen. There is, however, a substantial proportion of patients that retains CD19 and in whom tafasitamab/lenalidomide can be used as a treatment option, Salles commented.

A large proportion of patients will maintain CD19 expression following CAR T-cell therapy, so tafasitamab plus lenalidomide may still be effective in a percentage of patients.

Its hard to say because we dont have a lot of data, but we do know there are other CD19-directed therapies outside of CAR T cell development, Maddocks told Targeted Oncology. I think in the next few years, were going to see patients treated both pre- and post-CAR T with other CD19-directed therapies, and well have more information on this.

The combination of polatuzumab vedotin (Polivy) plus bendamustine (Bendeka) and rituximab (BR) was approved by the FDA as treatment of patients with relapsed/refractory DLBCL after 2 prior lines of therapy in June 2019 based on the findings from the phase 1b/2 GO29365 (NCT02257567) clinical trial. Although this option is also not FDA-approved for the treatment of patients after first relapse, Maddocks noted that this was the only treatment evaluated in a randomized trial. The study had included patients who were ineligible for transplant.

Significant improvements were observed with polatuzumab vedotin plus BR compared with BR alone in an international, multicenter, open-label study, particularly in regard to the ORR, CRs, progression-free survival (PFS), and overall survival (OS). CRs were observed in 40.0% of the patients with the combination versus 17.5% with BR alone. Survival rates favored the combination as well, with a median PFS of 9.5 months with the combination versus 3.7 months with BR alone (HR, 0.36; 95% CI, 0.21-0.63; P <.001) and a median OS of 12.4 months versus 4.7 months (HR, 0.42; 95% CI, 0.24-0.75; P =.002), respectively.2

The addition of polatuzumab did increase toxicity from the standpoint of cytopenias, but that didn't really translate to increased serious infections. It did add neuropathy as a side effect, but most of that was reversible, so I think this was a regimen that, by the addition of polatuzumab, was something that you could offer patients that did give them somewhat of a better overall response and was more durable than just giving them a palliative chemotherapy alone, Maddocks added. This is also a regimen that's been used in patients who were not able to achieve a remission to bridge them to CAR T or in some patients after CAR T, and so I can understand why this was definitely one of the more favorable choices.

In the study, grade 3/4 neutropenia was observed more frequently in the combination arm (42.6%) compared with the BR alone arm (33.3%), but the occurrence of grade 3/4 infections was comparable between the 2 groups (23.1% vs. 20.5%, respectively). In addition, the study authors noted that although many of the fatal AEs occurred after disease progression, 11 patients in the BR arm experienced fatal AEs compared with 9 in the combination arm, infection being the most common, which was the cause in 4 patients in each arm.2

Although the regimen appeared tolerable in this setting, Maddocks tweeted, it is more attractive than chemotherapy alone and understandable why it was chosen [as the second-best option in the Twitter poll].

Among the treatment options considered in our twitter poll ahead of the tweet chat, selinexor (Xpovio) only caught the attention of 16.7% of voters, similar to CAR T-cell therapy. However, both of these options are currently only approved in patients who have received at least 2 prior lines of therapy, which this case did not.

In regard to selinexor in particular, Maddocks tweeted, Looking at the single arm phase 2 data, it also has the lowest overall response rates of all the options listed with an ORR of 28%.

Selinexor received its approval from the FDA in June 2020, which is indicated for the treatment of adult patients with relapsed/refractory DLBCL, not otherwise specified, who have received at least 2 prior systemic therapies. This is the only oral single-agent therapy approved in this setting, and it is also the only nuclear export inhibitor approved by the FDA for use in hematologic malignancies.

The agent was approved on the basis of the phase 2b SADAL clinical trial, which demonstrated an ORR of 29% with 13% CRs and 16% PRs. The responses achieved in the study were durable, which led to a median duration of response of 9.2 months in the overall population (95% CI, 4.8-23.0) and 13.5 months in those who had achieved a CR (95% CI, 9.3-23.0).3

The most common treatment-related AEs were cytopenias and gastrointestinal/constitutional symptoms, which were generally reversible and manageable with dose modifications and/or standard supportive care approaches. The most common on-hematologic AEs, which were mostly grade 1/2, were nausea (52.8%), fatigue (37.8%), and anorexia (34.6%). The most common grade 3/4 AEs included thrombocytopenia (39.4%), neutropenia (20.5%), and anemia (13.4%). No treatment-related grade 5 AEs were observed.

CAR T-cell therapy, on the other hand, offers a unique option to this patient case even though it is still only approved in patients who have progressed or relapsed after 2 prior therapies or SCT. The TRANSCEND-PILOT-017006 (NCT03483103) study is evaluating the potential for CAR T-cell therapy lisocabtagene maraleucel (liso-cel) as treatment of patients with relapsed/refractory aggressive B-cell non-Hodgkin lymphoma who have received at least 1 prior therapy and are ineligible for SCT. While this does appear promising for introducing CAR T-cell therapy earlier on for patients with DLBCL, the treatment is not available off trial and is not a standard approach.

Maddocks told Targeted Oncology, It's very clear who's eligible for autologous transplant by age and comorbidities, but with CAR T, it's not so clear all the time who is going to be a candidate. There's not as great of data or information on who is going to be a candidate for that or not. Probably more patients are going to be a candidate for transplant, but there is still going to be patients that are comorbidities that they're not going to be a candidate for CAR T cells, and while they're approved in this setting and they can be very effective, there's also logistical issues, including that right now there's only certain centers, most often transplant centers, that are able to administer CAR T cells, so the patient has to have access to a center, they have to be able to get through the time that their leukapheresis cells are sent out and then sent back, and there's still barriers to cost and insurance in some patients, too.

This particular patient case does represent a challenge, Maddocks said. Historically, this is not a patient that's going to be a candidate for an autologous SCT, and that's going to be the only curative approach. CAR T is not approved in this setting, which is the other curative approach we know outside of patients who are unable to get to autologous STC, or at least appears to be likely curative for a percentage of patients.

Overall, CAR T-cell therapy is not a viable treatment option for the patient depicted in our tweet chat discussion, although it can still offer curative opportunities to a select group of patients with DLBCL who are ineligible for transplant.

In conclusion, tafasitamab plus lenalidomide helps fulfill the unmet need of patients who are in first relapse but are ineligible for transplant, which is the only curative option for patients with relapsed/refractory DLBCL. Although CAR T cells appear hopeful in this space, more research needs to be done to further determine their role in the treatment paradigm.

When you look at relapsed DLBCL, in general, and have these options, it's exciting for our patients to be able to have these. All of these have come up in the last 1 to 2 years, CAR T being a little bit longer than the other 3 regimens, but they all have offered patients tolerable therapy in the setting of previously not having these options.

Reference

1. Salles G, Duell J, Gonzlez-Barca E, et al. Long-term outcomes from the phase II L-MIND study of Tafasitamab (MOR208) plus lenalidomide in patients with relapsed or refractory diffuse large B-cell lymphoma. Presented at: Presented at: EHA25 Virtual; June 11-21, 2020. Abstract EP1201.

2. Sehn LH, Herrera AF, Flowers CR, et al. Polatuzumab Vedotin in Relapsed or Refractory Diffuse Large B-Cell Lymphoma.J Clin Oncol. 2019;38(2):155-165. doi: 10.1200/JCO.19.00172

3. Kalakonda N, Cavallo F, Follows G, et al. A phase 2b study of selinexor in patients with relapsed/refractory (r/r) diffuse large B-cell lymphoma (DLBCL).Hematol Oncol. 2019;37(S2). doi: 10.1002/hon.31_2629

Continue reading here:
Tweet Chat Recap: Evaluating Treatment Approaches for Relapsed/Refractory DLBCL - Targeted Oncology

To Read More: Tweet Chat Recap: Evaluating Treatment Approaches for Relapsed/Refractory DLBCL – Targeted Oncology
categoriaCardiac Stem Cells commentoComments Off on Tweet Chat Recap: Evaluating Treatment Approaches for Relapsed/Refractory DLBCL – Targeted Oncology | dataSeptember 9th, 2020
Read All

AgeX Therapeutics and Lineage Cell Therapeutics Announce Expansion of Agreement Related to ESI Clinical-grade Pluripotent Stem Cell Lines for…

By daniellenierenberg

Sept. 9, 2020 12:00 UTC

ALAMEDA, Calif. & CARLSBAD, Calif.--(BUSINESS WIRE)-- AgeX Therapeutics, Inc.(AgeX: NYSE American: AGE), a company focused on developing and commercializing innovative therapeutics for human aging, and Lineage Cell Therapeutics, Inc.. (Lineage: NYSE American and TASE: LCTX), a clinical-stage biotechnology company developing novel cell therapies for unmet medical needs, and ES Cell International Pte Ltd. (ESI), a subsidiary of Lineage, today announced the broadening of their collaborative relationship with regard to ESI stem cell lines. ESI cell lines are current Good Manufacturing Practice (cGMP)-compatible, registered with the National Institutes of Health (NIH), and widely studied as a potential source for the industrial-scale manufacture of any cell type in the human body. Neither party made or received any cash payments in connection with this arrangement.

Both Lineage and AgeX are pioneering important aspects of regenerative medicine. Working together, we have amended our agreement regarding ESI cell lines derived under cGMP to be optimal for the business needs of each company, stated Brian M. Culley, Lineages CEO. In particular, Lineage has acquired exclusivity for the use of ESI cell lines in spinal cord injury and certain oncology indications. On the other hand, AgeX has gained greater flexibility and independence to support its efforts toward licensing certain technologies and cell lines to third parties. With this step complete, we next intend to explore additional opportunities to collaborate with AgeX on promising tissue regenerating projects.

The ESI cell lines are recognized for being the first clinical-grade human pluripotent stem cell lines created under cGMP as described in the publication Cell Stem Cell (2007;1:490-4). It may become possible to generate potentially limitless quantities of all the cell types of the human body from these master cell banks with a wide array of potential therapeutic applications. These cell lines are listed on the NIH Stem Cell Registry and are among the best characterized and documented stem cell lines available globally. Importantly, ESI cells are among only a few pluripotent stem cell lines from which a derived cell therapy product candidate has been granted FDA investigational new drug (IND) clearance to commence human studies.

Key to the creation of shareholder value is the placement of these important assets in the hands of collaborators to advance the development of a vast number of regenerative therapies, said Michael West, Ph.D., AgeXs CEO. Our collaborative relationship with Lineage led to this streamlined process that may facilitate the commercialization of these applications to the benefit of shareholders of each company. Since the beginning of the year, AgeX has entered into new research and commercial arrangements utilizing an array of its technology platforms, such as UniverCyteTM for the engineering of universally transplantable cells, PureStem for the manufacture and derivation of cells, and an ESI cell line as source material for deriving cellular therapeutics.

About AgeX Therapeutics, Inc

AgeX Therapeutics, Inc. (NYSE American: AGE) is focused on developing and commercializing innovative therapeutics for human aging. Its PureStem and UniverCyte manufacturing and immunotolerance technologies are designed to work together to generate highly defined, universal, allogeneic, off-the-shelf pluripotent stem cell-derived young cells of any type for application in a variety of diseases with a high unmet medical need. AgeX has two preclinical cell therapy programs: AGEX-VASC1 (vascular progenitor cells) for tissue ischemia and AGEX-BAT1 (brown fat cells) for Type II diabetes. AgeXs revolutionary longevity platform induced Tissue Regeneration (iTR) aims to unlock cellular immortality and regenerative capacity to reverse age-related changes within tissues. AGEX-iTR1547 is an iTR-based formulation in preclinical development. HyStem is AgeXs delivery technology to stably engraft PureStem cell therapies in the body. AgeXs core product pipeline is intended to extend human healthspan. AgeX is seeking opportunities to establish licensing and collaboration arrangements around its broad IP estate and proprietary technology platforms and therapy product candidates. For more information, please visit http://www.agexinc.com or connect with the company on Twitter, LinkedIn, Facebook, and YouTube.

About Lineage Cell Therapeutics, Inc.

Lineage Cell Therapeutics is a clinical-stage biotechnology company developing novel cell therapies for unmet medical needs. Lineages programs are based on its robust proprietary cell-based therapy platform and associated in-house development and manufacturing capabilities. With this platform Lineage develops and manufactures specialized, terminally differentiated human cells from its pluripotent and progenitor cell starting materials. These differentiated cells are developed to either replace or support cells that are dysfunctional or absent due to degenerative disease or traumatic injury or administered as a means of helping the body mount an effective immune response to cancer. Lineages clinical programs are in markets with billion dollar opportunities and include three allogeneic (off-the-shelf) product candidates: (i) OpRegen, a retinal pigment epithelium transplant therapy in Phase 1/2a development for the treatment of dry age-related macular degeneration, a leading cause of blindness in the developed world; (ii) OPC1, an oligodendrocyte progenitor cell therapy in Phase 1/2a development for the treatment of acute spinal cord injuries; and (iii) VAC, an allogeneic dendritic cell therapy platform for immuno-oncology and infectious disease, currently in clinical development for the treatment of non-small cell lung cancer and in preclinical development for additional cancers and as a vaccine against infectious diseases, including SARS-CoV-2, the virus which causes COVID-19. For more information, please visit http://www.lineagecell.com or follow the Company on Twitter @LineageCell.

About ESI

ES Cell International Pte Ltd (ESI). Established in 2000, ESI, a wholly owned subsidiary of Lineage Cell Therapeutics, Inc., developed ESI hESC lines in compliance with the principles of current Good Manufacturing Practices and has made them available to various biopharmaceutical companies, universities and other research institutions, including AgeX. These ESI cell lines are extensively characterized and most of the lines have documented and publicly available genomic sequences.

Forward-Looking Statements for AgeX

Certain statements contained in this release are forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any statements that are not historical fact including, but not limited to statements that contain words such as will, believes, plans, anticipates, expects, estimates should also be considered forward-looking statements. Forward-looking statements involve risks and uncertainties. Without limitation, such risks include those associated with the use of human pluripotent stem cell lines in the research, development, and use of therapies for the treatment of human diseases, disorders, and injuries, and risks associated with commercializing the pluripotent stem cell lines. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the business of AgeX Therapeutics, Inc. and its respective subsidiaries, particularly those mentioned in the cautionary statements found in more detail in the Risk Factors section of its most recent Annual Reports on Form 10-K and Quarterly Reports on Form 10-Q filed with the Securities and Exchange Commissions (copies of which may be obtained at http://www.sec.gov). Subsequent events and developments may cause these forward-looking statements to change. Undue reliance should not be placed on forward-looking statements, which speak only as of the date on which they were made. AgeX specifically disclaims any obligation or intention to update or revise these forward-looking statements as a result of changed events or circumstances that occur after the date of this release, except as required by applicable law.

Forward-Looking Statements for Lineage

Lineage cautions you that all statements, other than statements of historical facts, contained in this press release, are forward-looking statements. Forward-looking statements, in some cases, can be identified by terms such as believe, may, will, estimate, continue, anticipate, design, intend, expect, could, plan, potential, predict, seek, should, would, contemplate, project, target, tend to, or the negative version of these words and similar expressions. Such statements include, but are not limited to, statements relating to the potential commercialization of ESI cell lines. Forward-looking statements involve known and unknown risks, uncertainties and other factors that may cause Lineages actual results, performance or achievements to be materially different from future results, performance or achievements expressed or implied by the forward-looking statements in this press release, including risks and uncertainties inherent in Lineages business and other risks in Lineages filings with the Securities and Exchange Commission (the SEC). Lineages forward-looking statements are based upon its current expectations and involve assumptions that may never materialize or may prove to be incorrect. All forward-looking statements are expressly qualified in their entirety by these cautionary statements. Further information regarding these and other risks is included under the heading Risk Factors in Lineages periodic reports with the SEC, including Lineages Annual Report on Form 10-K filed with the SEC on March 12, 2020 and its other reports, which are available from the SECs website. You are cautioned not to place undue reliance on forward-looking statements, which speak only as of the date on which they were made. Lineage undertakes no obligation to update such statements to reflect events that occur or circumstances that exist after the date on which they were made, except as required by law.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200909005398/en/

Original post:
AgeX Therapeutics and Lineage Cell Therapeutics Announce Expansion of Agreement Related to ESI Clinical-grade Pluripotent Stem Cell Lines for...

To Read More: AgeX Therapeutics and Lineage Cell Therapeutics Announce Expansion of Agreement Related to ESI Clinical-grade Pluripotent Stem Cell Lines for…
categoriaSpinal Cord Stem Cells commentoComments Off on AgeX Therapeutics and Lineage Cell Therapeutics Announce Expansion of Agreement Related to ESI Clinical-grade Pluripotent Stem Cell Lines for… | dataSeptember 9th, 2020
Read All

Lineage Cell Therapeutics : AgeX Therapeutics and Lineage Cell Therapeutics Announce Expansion of Agreement Related to ESI Clinical-grade Pluripotent…

By daniellenierenberg

AgeX Therapeutics, Inc. (AgeX: NYSE American: AGE), a company focused on developing and commercializing innovative therapeutics for human aging, and Lineage Cell Therapeutics, Inc. (Lineage: NYSE American and TASE: LCTX), a clinical-stage biotechnology company developing novel cell therapies for unmet medical needs, and ES Cell International Pte Ltd. (ESI), a subsidiary of Lineage, today announced the broadening of their collaborative relationship with regard to ESI stem cell lines. ESI cell lines are current Good Manufacturing Practice (cGMP)-compatible, registered with the National Institutes of Health (NIH), and widely studied as a potential source for the industrial-scale manufacture of any cell type in the human body. Neither party made or received any cash payments in connection with this arrangement.

Both Lineage and AgeX are pioneering important aspects of regenerative medicine. Working together, we have amended our agreement regarding ESI cell lines derived under cGMP to be optimal for the business needs of each company, stated Brian M. Culley, Lineages CEO. In particular, Lineage has acquired exclusivity for the use of ESI cell lines in spinal cord injury and certain oncology indications. On the other hand, AgeX has gained greater flexibility and independence to support its efforts toward licensing certain technologies and cell lines to third parties. With this step complete, we next intend to explore additional opportunities to collaborate with AgeX on promising tissue regenerating projects.

The ESI cell lines are recognized for being the first clinical-grade human pluripotent stem cell lines created under cGMP as described in the publication Cell Stem Cell (2007;1:490-4). It may become possible to generate potentially limitless quantities of all the cell types of the human body from these master cell banks with a wide array of potential therapeutic applications. These cell lines are listed on the NIH Stem Cell Registry and are among the best characterized and documented stem cell lines available globally. Importantly, ESI cells are among only a few pluripotent stem cell lines from which a derived cell therapy product candidate has been granted FDA investigational new drug (IND) clearance to commence human studies.

Key to the creation of shareholder value is the placement of these important assets in the hands of collaborators to advance the development of a vast number of regenerative therapies, said Michael West, Ph.D., AgeXs CEO. Our collaborative relationship with Lineage led to this streamlined process that may facilitate the commercialization of these applications to the benefit of shareholders of each company. Since the beginning of the year, AgeX has entered into new research and commercial arrangements utilizing an array of its technology platforms, such as UniverCyteTM for the engineering of universally transplantable cells, PureStem for the manufacture and derivation of cells, and an ESI cell line as source material for deriving cellular therapeutics.

About AgeX Therapeutics, Inc

AgeX Therapeutics, Inc. (NYSE American: AGE) is focused on developing and commercializing innovative therapeutics for human aging. Its PureStem and UniverCyte manufacturing and immunotolerance technologies are designed to work together to generate highly defined, universal, allogeneic, off-the-shelf pluripotent stem cell-derived young cells of any type for application in a variety of diseases with a high unmet medical need. AgeX has two preclinical cell therapy programs: AGEX-VASC1 (vascular progenitor cells) for tissue ischemia and AGEX-BAT1 (brown fat cells) for Type II diabetes. AgeXs revolutionary longevity platform induced Tissue Regeneration (iTR) aims to unlock cellular immortality and regenerative capacity to reverse age-related changes within tissues. AGEX-iTR1547 is an iTR-based formulation in preclinical development. HyStem is AgeXs delivery technology to stably engraft PureStem cell therapies in the body. AgeXs core product pipeline is intended to extend human healthspan. AgeX is seeking opportunities to establish licensing and collaboration arrangements around its broad IP estate and proprietary technology platforms and therapy product candidates. For more information, please visit http://www.agexinc.com or connect with the company on Twitter, LinkedIn, Facebook, and YouTube.

About Lineage Cell Therapeutics, Inc.

Lineage Cell Therapeutics is a clinical-stage biotechnology company developing novel cell therapies for unmet medical needs. Lineages programs are based on its robust proprietary cell-based therapy platform and associated in-house development and manufacturing capabilities. With this platform Lineage develops and manufactures specialized, terminally differentiated human cells from its pluripotent and progenitor cell starting materials. These differentiated cells are developed to either replace or support cells that are dysfunctional or absent due to degenerative disease or traumatic injury or administered as a means of helping the body mount an effective immune response to cancer. Lineages clinical programs are in markets with billion dollar opportunities and include three allogeneic (off-the-shelf) product candidates: (i) OpRegen, a retinal pigment epithelium transplant therapy in Phase 1/2a development for the treatment of dry age-related macular degeneration, a leading cause of blindness in the developed world; (ii) OPC1, an oligodendrocyte progenitor cell therapy in Phase 1/2a development for the treatment of acute spinal cord injuries; and (iii) VAC, an allogeneic dendritic cell therapy platform for immuno-oncology and infectious disease, currently in clinical development for the treatment of non-small cell lung cancer and in preclinical development for additional cancers and as a vaccine against infectious diseases, including SARS-CoV-2, the virus which causes COVID-19. For more information, please visit http://www.lineagecell.com or follow the Company on Twitter @LineageCell.

About ESI

ES Cell International Pte Ltd (ESI). Established in 2000, ESI, a wholly owned subsidiary of Lineage Cell Therapeutics, Inc., developed ESI hESC lines in compliance with the principles of current Good Manufacturing Practices and has made them available to various biopharmaceutical companies, universities and other research institutions, including AgeX. These ESI cell lines are extensively characterized and most of the lines have documented and publicly available genomic sequences.

Forward-Looking Statements for AgeX

Certain statements contained in this release are forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any statements that are not historical fact including, but not limited to statements that contain words such as will, believes, plans, anticipates, expects, estimates should also be considered forward-looking statements. Forward-looking statements involve risks and uncertainties. Without limitation, such risks include those associated with the use of human pluripotent stem cell lines in the research, development, and use of therapies for the treatment of human diseases, disorders, and injuries, and risks associated with commercializing the pluripotent stem cell lines. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the business of AgeX Therapeutics, Inc. and its respective subsidiaries, particularly those mentioned in the cautionary statements found in more detail in the Risk Factors section of its most recent Annual Reports on Form 10-K and Quarterly Reports on Form 10-Q filed with the Securities and Exchange Commissions (copies of which may be obtained at http://www.sec.gov). Subsequent events and developments may cause these forward-looking statements to change. Undue reliance should not be placed on forward-looking statements, which speak only as of the date on which they were made. AgeX specifically disclaims any obligation or intention to update or revise these forward-looking statements as a result of changed events or circumstances that occur after the date of this release, except as required by applicable law.

Forward-Looking Statements for Lineage

Lineage cautions you that all statements, other than statements of historical facts, contained in this press release, are forward-looking statements. Forward-looking statements, in some cases, can be identified by terms such as believe, may, will, estimate, continue, anticipate, design, intend, expect, could, plan, potential, predict, seek, should, would, contemplate, project, target, tend to, or the negative version of these words and similar expressions. Such statements include, but are not limited to, statements relating to the potential commercialization of ESI cell lines. Forward-looking statements involve known and unknown risks, uncertainties and other factors that may cause Lineages actual results, performance or achievements to be materially different from future results, performance or achievements expressed or implied by the forward-looking statements in this press release, including risks and uncertainties inherent in Lineages business and other risks in Lineages filings with the Securities and Exchange Commission (the SEC). Lineages forward-looking statements are based upon its current expectations and involve assumptions that may never materialize or may prove to be incorrect. All forward-looking statements are expressly qualified in their entirety by these cautionary statements. Further information regarding these and other risks is included under the heading Risk Factors in Lineages periodic reports with the SEC, including Lineages Annual Report on Form 10-K filed with the SEC on March 12, 2020 and its other reports, which are available from the SECs website. You are cautioned not to place undue reliance on forward-looking statements, which speak only as of the date on which they were made. Lineage undertakes no obligation to update such statements to reflect events that occur or circumstances that exist after the date on which they were made, except as required by law.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200909005398/en/

View original post here:
Lineage Cell Therapeutics : AgeX Therapeutics and Lineage Cell Therapeutics Announce Expansion of Agreement Related to ESI Clinical-grade Pluripotent...

To Read More: Lineage Cell Therapeutics : AgeX Therapeutics and Lineage Cell Therapeutics Announce Expansion of Agreement Related to ESI Clinical-grade Pluripotent…
categoriaSpinal Cord Stem Cells commentoComments Off on Lineage Cell Therapeutics : AgeX Therapeutics and Lineage Cell Therapeutics Announce Expansion of Agreement Related to ESI Clinical-grade Pluripotent… | dataSeptember 9th, 2020
Read All

Coronavirus, Charity, and the Trolley Problem – Crooked

By daniellenierenberg

I signed up to be a bone marrow donor in 2016, after an anonymous strangers marrow saved my father. It started out easy enough: The registry mailed me a kit to swab my cheeks, I mailed it back, and then I heard nothing for years. This wasnt unusual. Marrow transplantation requires finding complex and rare genetic matches; according to Be The Match, only about one out of every 430 people who sign up will ever go on to donate. I expected it would be a while before I got to pay my dads transplant forward. It did not occur to me that my opportunity might arise at the height of a global coronavirus pandemic.

The coronavirus created a tangle of moral dilemmas that most Americans never expected to face. At the extremes, weve resolved these dilemmas easily. Weve designated whole categories of labormostly underpaid, perennially underappreciatedessential because we accept that even with a plague lurking, people must eat and medicate and have working showers in which to cry. On the opposite end of the spectrum, weve trained our online shaming apparatus on the most reckless and selfish offendersthe wealthy New Yorkers who fled to the Hamptons, the house parties posted to Instagram with weak defensive captions (we only took our masks off for the body shots).

The longer we live in the shadow of an uncontained virus, the more agonizing the in-between dilemmas become. How long should people be expected to remain isolated from their loved ones? Is there a point at which the negative effects of physical distancing begin to outweigh the toll of the disease itself? On the one hand, we should do everything in our power to protect the most vulnerable in our communities. On the other hand, what should we tell the vulnerable seniors who feel they dont have endless spare months to let pass without embracing their grandchildren? Are our individual mitigation responsibilities lessened by the fact that we all made sacrifices to buy an incompetent president time to get this under control, and he squandered it? Are we that much more obligated to pick up the slack?

In some sort of sick philosophical joke, the moral waters get even murkier when you throw altruism into the mix. For all of the guidance reminding us of the impact of our selfish choices on strangersyou might not kill your own grandmother by going to that dive bar, but think of the bartenders roommates grandmothermoral experts have had far less to say about the boundaries around charitable acts. How should we think about helping strangers when doing so requires a dangerous level of social interaction? How should we measure the suffering of the people we want to help against the harm we risk causing to unseen others in the process? That quandary leads to another awful question that most people should never have to confront: When does human life become too risky to save?

Be The Match first notified me that it had identified me as a potential match in June, when coronavirus cases in Los Angeles, where I live, had just begun to spike. By the time I was confirmed as the patients best match and asked to proceed with a donation several weeks later, the city had become a full-blown hotspot. The idea of navigating the whole process in plague conditions made me nervous, but underneath the anxiety was a distinct whiff of relief. Like a lot of people, Id spent the last few months in a horrified daze, helpless to do anything but stay home, donate money, and cyberbully the mayor. Here, finally, was a task that felt equal to the urgency of the moment. Here was somethingsomeonereal. I just wasnt allowed to know who.

Be The Match will put donor and recipient in contact one year after the transplant, if both have consented; until then, everything is completely anonymous. I was told that my recipient was a man in the United States, along with his age (surprisingly young), and diagnosis (a type of blood cancer). Because matches are typically found within shared ancestries, I assume that he is, like me, an Ashkenazi Jew, and because he needed a bone marrow transplant, his situation must have been dire.

Fortunately, helping people like him has become simpler. When most people think of donating for a bone marrow transplant, they imagine general anesthesia; a very big needle; a painful recovery. This is one of the two ways to donate, but its grown much less common. Ninety percent of donors (including me) are instead asked to donate peripheral blood stem cells (PBSC), through a process called apheresis. While a donor is awake and watching Party Down, their blood flows through a tube attached to one arm, gets spun around in a centrifuge that separates out the extra blood-forming stem cells, and is returned through a tube into the other arm. This can take several hours, but its painless, and neednt even happen at a hospital. Usually.

(Sarah Lazarus)

On August 13, two nurses met me at the San Bernardino blood bank where I was scheduled to donate later that month. We were all there for an assessment, to make sure my arm veins could handle the apheresis needles. It was a weird little ritual. The two women bent on either side of me, intently tapping along my upturned arms in total silence as if waiting for something to tap back. They then switched sides, tapped the opposite arm, and issued their verdict: Too small. I would need to donate through a central line placed in one of my larger veins, and that could only happen at a hospital. I would probably be sent to a medical center two hours south in La Jolla, they told me.

This was a complication, but not necessarily a big deal. Be The Match footed the bill for all of my donation-related expenses, including the fancy car service that seemed safer, COVID-wise, than using Lyft. (I am a genius who moved to Los Angeles without a drivers license. A worse essay for another time.) Donating at the La Jolla hospital would mean a longer commute, maybe even one night in a hotel, but that was about it.

Later that morning I was waiting for my next appointment at an urgent care center when Heather, my donor coordinator, called to tell me that La Jolla didnt have an opening on the right day. Neither did the next-closest option, she told me as I paced around the parking lot, and the patients team couldnt shift his treatment schedule.

So my question for you is, would you feel comfortable flying to Boise, Idaho?

I went back inside to the busy waiting room and reclaimed my seat. Across the room, a man in a UPS uniform freed his nose to rest obscenely on top of his mask. I hunched over my phone and googled, Boise coronavirus. My phone informed me that it was dying. The UPS man coughed. On a TV in the corner, the president admitted he was sabotaging the post office to steal the election. I googled, airports coronavirus. At last, a nurse called me back and started checking my vitals.

Your heart rate is really elevated, she said, frowning at the reading. Any idea why?

As of this writing, Be The Matchs COVID-19 FAQ page was last updated on April 6. Heres part of the section on air travel:

Q: Are there alternatives to donors traveling for donation?A: Possibly. If you feel uncomfortable traveling, we respect your decision. However, it is extremely important that you tell us right away so we can look for alternatives. Donation is time-sensitive, and any delay can have a negative impact on the recipients wellbeing. It may be possible to arrange for donation to occur somewhere within driving distance.

There was an alternative to Boise, it turned out, if I felt uncomfortable. I could donate at the La Jolla hospital a day later than originally planned. My cells would be cryogenically frozen and given to the patient a week or two later, instead of immediately. Heather told me that the patients team preferred me to stick with the original date, that a delayed transplant would be riskier for him, but, for confidentiality reasons, they couldnt tell me how much riskier.

We dont want you to feel pressured, Heather emphasized. You should only agree to travel if you feel comfortable.

Did I feel comfortable? It depended on the circumstances, which I wasnt allowed to know. The window of risks were willing to take expands as the stakes get higher; anyone who showed up to a Black Lives Matter protest this summer or signed up to be a poll worker this fall can attest to that. I wouldnt feel at all comfortable flying for the heck of it, but I would certainly do it to save a life. This fell somewhere on the vast spectrum in between, but I had no idea where.

How do you make a call about your personal risk tolerance when its also a choice about the course of a strangers cancer treatment? If the pandemic had taught us all a valuable lesson about the interconnectedness of our fates, I was now being beaten over the head with it. Stuck without enough facts to make an informed decision, I thought about my dads old hospital room in Baltimore, the airlock separating his ward from the rest of the building because any mundane microbe could kill the patients on the other side. I imagined a somber-looking doctor walking through those doors to give my vulnerable recipient the news.

Im afraid theres been a change of plans, he would say, removing his glasses. It seems your donor is a pussy-ass bitch.

I called Heather back and told her to arrange my donation in Boise.

In most respects, my pre-donation medical screening was extremely, almost ludicrously thorough. I submitted vials and vials of blood to check for a host of diseases and disorders. I peed in a cup to make sure I wasnt pregnant. I had more blood drawn, to make sure I really wasnt pregnant. After the second pregnancy test confirmed the results of the first pregnancy test, I got the following email from Heather:

The result of your repeat pregnancy test on 8/13 was negative, but we are still required to complete our pregnancy assessment with you today. The assessment consists of a single question Is there any chance you could be pregnant? Please respond via email when convenient.

I have not touched another person in five months, I wrote back.

Thank you for completing the pregnancy assessment, Heather replied.

In one respect, my pre-donation medical screening seemed oddly lax. I wasnt tested for coronavirus until the day before my flight, and only then because I panicked.

(Sarah Lazarus)

The PBSC donation process begins in earnest a few days before the stem cells are actually collected, with five rounds of filgrastim injections. Its a drug normally given to cancer patients to bring up low white-blood cell counts after chemo or radiation. In my case, it would send my healthy bone marrow into overdrive, to produce enough cells for the donation. The injections have a few side effects: bone pain, fatigue, headaches, nausea. Essentially, filgrastim makes you feel like you have the flua particularly special feeling in the year of our lord 2020. My side effects were mild and I knew to expect them, and I was managing them fine until an extra one showed up.

The night after receiving my second round of shots, I went for a walk around my neighborhood. It was a hot night, and I was tired and achy from the medication; this was not a fast walk. And yet within a few blocks I noticed that my breathing was quick and shallow, and my heart was pounding as if Id just run a sprint. When I tried to take a deep breath, it felt like there was an elastic band cinched around my chest.

Shortness of breath was not on my list of filgrastim side effects. Neither were the heart palpitations, which continued long after I went home and collapsed on my bed.

I put an empty Gatorade bottle on my stomach and watched it pulse up and down as I considered how fucked I was. I had assumed my fatigue and body aches were side effects; what if those were symptoms, too? I mentally tallied up my appointments from over the past week. I had been to five different medical facilities, been a passenger in three different cars. Of course I had caught it. How stupid to think I wouldnt catch it.

The timing was a nightmare. At some point while I was receiving the filgrastim injections, the patient began a course of high-dose chemo to kill off his own blood-forming stem cells in preparation for the transplant. If I had to back out of donating after that treatment began, the patient would die quickly.

For a few desperate minutes, I thought about keeping these symptoms to myself. I didnt have a fever. As long as I didnt develop one, maybe I could get to Boise and finish the donation leaving no one the wiser. What was the moral math, I wondered, of proceeding with travel plans that might seed multiple new outbreaks (but also might not) and lead to numerous deaths (but maybe none), knowing that if I didnt, one person would certainly die? Had anyone solved that particular trolley problem? My heart palpitations got worse. This was insane. I texted Heather everything and asked if she could arrange for a rapid coronavirus test the next day.

It was nearly 11 p.m. by this point, later in Heathers time zone. She made sure my shortness of breath wasnt an emergency, then said shed see how I was feeling in the morning to assess whether a test was necessary.

I went to bed and thought about what they would tell the patient. Would his doctors be allowed to explain why I couldnt donate? Would he think I had just bailed? Would he and his family hate me? What did it say about my motivations that I was fixated on this? Probably nothing good. I drifted off into a stress dream, and then it was dawn.

My breathing was still labored in the morning, and now, compounding my dread, I had a definite tickle in my throat that verged on a cough. Heather and the medical team decided this did indeed warrant a coronavirus test, and went about setting one up. In the meantime, Heather told me, I should proceed with my third day of filgrastim.

When my home nurse Maria arrived at 8 a.m. to do the honors, I stopped her outside to inform her that I might be a vector of death. She was unimpressed. (Ok, sweetie. Can I come in and wash my hands?) Soon afterwards, Heather called to let me know she had found a doctors office that would send someone to test me at my apartment, and deliver results within 24 hoursjust fast enough that I could still make my flight if I tested negative. Be The Match picked up the tab for this, too, but the receipt came to my email. The cost of a rapid PCR test, antibody test, and home visit came out to a cool $900.

The unaffordable testing nurse arrived an hour later cloaked in full PPE. She coached me on how to swab my own mouth and throat for the diagnostic test, then we made small talk while waiting for the little white antibody tray, which looked for all the world like yet another pregnancy test, to reveal either one or two lines. She had been doing these home visits for two weeks, she told me, and none of her patients had yet tested positive for an infection. For no good reason at all, this made me feel better. The antibody test came up negative. The nurse wished me luck with my other results and headed off to her next appointment, leaving me alone with my wonderful thoughts.

I had nothing to do for the rest of the day but wait. By late afternoon my throat felt better, and my breathing had become less conspicuous. At one point I started to pack a bag, wondered if I was jinxing it, and unpacked the bag. At 10 p.m., less than 12 hours after my throat swab, the results arrived in my inbox. NOT DETECTED. I texted Heather a screenshot and lay down on the floor, awash with relief.

(Sarah Lazarus)

The travel and donation themselves were mercifully uneventful. My parents, who were very pleased that I was donating and terrified that I was flying, had shipped me a steady stream of hand sanitizer, KN95 masks, surgical masks, disinfectant wipes, face shields, safety glasses, and gloves. I wore only some of this to the airport, unless you are my parents, in which case I wore all of it. In any event, I felt protected. My terminal at LAX was deserted, and Heather had booked me a first class seat on Delta, which limits capacity to 50 percent. After barely leaving my immediate neighborhood for half a year, the feeling of takeoff, even for a two-day trip to Boise, was sensational.

The next day I arrived at the hospital at 7:15 a.m. By 8:30 Id had a central line inserted above my collarbone, in a painless 15-minute procedure under local anesthesia. The song We Are Young was playing, and the doctors threading a tube into my neck were chatting quietly about a patient whod given them trouble over the weekend. (Im just saying, if youre cussing people out and trying to beat me up, you probably didnt have too bad of a stroke.) Ive had much less pleasant mornings.

By 9:30 I was in bed and hooked up to the apheresis machine, where I would remain for the next seven hours. At one point my calcium levels dropped too low and I threw up; this was the excitement peak of the day. I spent the rest of the time comfortably reading or watching Netflix, keeping an eye on the stem cells slowly collecting in the bag above my head, and carefully avoiding any RNC coverage that might cause the nausea to recur. At around 4:30 I was loosed from the machine, and after waiting a couple more hours while the lab made sure I had forked over enough cells, the nurse removed my central line and I was officially done.

I was exhausted that evening, but the next day felt well enough to go for a walk along the Boise River, where I took 50 terrible photos of a great blue heron. My shortness of breath, whatever it had been, was gone. The day after that I was just a little more fatigued than usual, and by day three I was back to my 2020-adjusted tiredness baseline.

Coronavirus complications aside, the actual donation process was remarkably easy; shockingly easy, when you consider the scale of what it means for the recipient. It was a time commitment for a few weeksIm lucky to have employers who were happy to give me the necessary leaveand involved some mild discomfort, but as a baby about both pain and scheduling, I would not hesitate to do this again.

I also came away with a clearer sense of how to approach the kind of altruistic acts that standard social-distancing guidelines say we shouldnt engage in. The people and organizations that facilitate charity, particularly sensitive medical charity, have existing support systems that theyve retrofitted to help mitigate the extra risks. Those systems may be imperfect and require some self-advocacy, but when combined with ones own diligence and added layers of protection (and, if one is lucky, a concerned Jewish mother), its possible to get help to the people who need it with risk levels not much higher than we tolerate in normal times. There is a way to be selfless without being self-sacrificing, or worse, becoming an inadvertent menace.

Even so, pandemic experiences like this one wont be universally feasible. One might live with immunosuppressed family members or roommates, or have care-taking responsibilities, or lack the spare emotional bandwidth, or have any number of circumstances more complex than my own. And thats finethere will still be people in need of a lifeline on the other side of this crisis, and that lifeline will be no less appreciated.

I asked my dad, Mitchell Lazarus, what he thought potential donors should know about the recipient experience. He sent me this:

The diagnosis is, literally, a death sentence: you will soon die. Word of a matching donor who has agreed to participate is a reprieve the only possible reprieve. I have felt relief many times in my life, but except possibly for the safe birth of my children, nothing like that. I was in a chemo chair when they came by and told me. I called my wife and said, I have a donor, and I started to cry.

Patients in the transplant ward talk a lot about our donors, despite not knowing who they are. Everybody everybody! tears up when talking about their donors.

True story: I was in the hallway on the transplant floor, talking with the woman in the room next to mine. A nurse walking by stopped and said, Mr. Lazarus, are you having trouble with allergies? (which would require attention). I said no, I was talking about my donor. No other explanation needed. She patted my arm and walked on.

I am a chimera. The rest of me has my own DNA, but my blood cells carry my donors DNA, not mine. Somebody elses blood pumps through my body, keeping me alive, not just through treatment, but every second of every day for the rest of my life. How can you not be grateful to someone who literally gave you the rest of your life?

At some point during the 24 hours after I was unhooked from the machine, a volunteer courier arrived at the hospital in Boise. He or she or they retrieved the bag of my donated cells, flew with it to wherever the recipient is located, and hand-delivered it to his hospital. The patient almost certainly received the transplant before I made it back to Los Angeles. If all goes well, my stem cells will navigate their way into his bone marrow, where theyll settle in, multiply, and start producing healthy blood cells. If all goes well, this perfect stranger will eventually have my blood type, and potentially even my childhood immunitieshe might soon, in other words, have my immune system. If all goes well, may that sucker protect us both.

Read more from the original source:
Coronavirus, Charity, and the Trolley Problem - Crooked

To Read More: Coronavirus, Charity, and the Trolley Problem – Crooked
categoriaBone Marrow Stem Cells commentoComments Off on Coronavirus, Charity, and the Trolley Problem – Crooked | dataSeptember 9th, 2020
Read All

Page 275«..1020..274275276277..280290..»


Copyright :: 2025