Human nervous system – The spinal cord | Britannica.com

By Dr. Matthew Watson

The spinal cord is an elongated cylindrical structure, about 45 cm (18 inches) long, that extends from the medulla oblongata to a level between the first and second lumbar vertebrae of the backbone. The terminal part of the spinal cord is called the conus medullaris. The spinal cord is composed of long tracts of myelinated nerve fibres (known as white matter) arranged around the periphery of a symmetrical butterfly-shaped cellular matrix of gray matter. The gray matter contains cell bodies, unmyelinated motor neuron fibres, and interneurons connecting either the two sides of the cord or the dorsal and ventral ganglia. Many interneurons have short axons distributed locally, but some have axons that extend for several spinal segments. Some interneurons may modulate or change the character of signals, while others play key roles in transmission and in patterned reflexes. The gray matter forms three pairs of horns throughout most of the spinal cord: (1) the dorsal horns, composed of sensory neurons, (2) the lateral horns, well defined in thoracic segments and composed of visceral neurons, and (3) the ventral horns, composed of motor neurons. The white matter forming the ascending and descending spinal tracts is grouped in three paired funiculi, or sectors: the dorsal or posterior funiculi, lying between the dorsal horns; the lateral funiculi, lying on each side of the spinal cord between the dorsal-root entry zones and the emergence of the ventral nerve roots; and the ventral funiculi, lying between the ventral median sulcus and each ventral-root zone.

Associated with local regions of the spinal cord and imposing on it an external segmentation are 31 pairs of spinal nerves, each of which receives and furnishes one dorsal and one ventral root. On this basis the spinal cord is divided into the following segments: 8 cervical (C), 12 thoracic (T), 5 lumbar (L), 5 sacral (S), and 1 coccygeal (Coc). Spinal nerve roots emerge via intervertebral foramina; lumbar and sacral spinal roots, descending for some distance within the subarachnoid space before reaching the appropriate foramina, produce a group of nerve roots at the conus medullaris known as the cauda equina. Two enlargements of the spinal cord are evident: (1) a cervical enlargement (C5 through T1), which provides innervation for the upper extremities, and (2) a lumbosacral enlargement (L1 through S2), which innervates the lower extremities. (The spinal nerves and the area that they innervate are described in the section The peripheral nervous system: Spinal nerves.)

The gray matter of the spinal cord is composed of nine distinct cellular layers, or laminae, traditionally indicated by Roman numerals. Laminae I to V, forming the dorsal horns, receive sensory input. Lamina VII forms the intermediate zone at the base of all horns. Lamina IX is composed of clusters of large alpha motor neurons, which innervate striated muscle, and small gamma motor neurons, which innervate contractile elements of the muscle spindle. Axons of both alpha and gamma motor neurons emerge via the ventral roots. Laminae VII and VIII have variable configurations, and lamina VI is present only in the cervical and lumbosacral enlargements. In addition, cells surrounding the central canal of the spinal cord form an area often referred to as lamina X.

All primary sensory neurons that enter the spinal cord originate in ganglia that are located in openings in the vertebral column called the intervertebral foramina. Peripheral processes of the nerve cells in these ganglia convey sensation from various receptors, and central processes of the same cells enter the spinal cord as bundles of nerve filaments. Fibres conveying specific forms of sensation follow separate pathways. Impulses involved with pain and noxious stimuli largely end in laminae I and II, while impulses associated with tactile sense end in lamina IV or on processes of cells in that lamina. Signals from stretch receptors (i.e., muscle spindles and tendon organs) end in parts of laminae V, VI, and VII; collaterals of these fibres associated with the stretch reflex project into lamina IX.

Virtually all parts of the spinal gray matter contain interneurons, which connect various cell groups. Many interneurons have short axons distributed locally, but some have axons that extend for several spinal segments. Some interneurons may modulate or change the character of signals, while others play key roles in transmission and in patterned reflexes.

Sensory tracts ascending in the white matter of the spinal cord arise either from cells of spinal ganglia or from intrinsic neurons within the gray matter that receive primary sensory input.

The largest ascending tracts, the fasciculi gracilis and cuneatus, arise from spinal ganglion cells and ascend in the dorsal funiculus to the medulla oblongata. The fasciculus gracilis receives fibres from ganglia below thoracic 6, while spinal ganglia from higher segments of the spinal cord project fibres into the fasciculus cuneatus. The fasciculi terminate upon the nuclei gracilis and cuneatus, large nuclear masses in the medulla. Cells of these nuclei give rise to fibres that cross completely and form the medial lemniscus; the medial lemniscus in turn projects to the ventrobasal nuclear complex of the thalamus. By this pathway, the medial lemniscal system conveys signals associated with tactile, pressure, and kinesthetic (or positional) sense to sensory areas of the cerebral cortex.

Fibres concerned with pain, thermal sense, and light touch enter the lateral-root entry zone and then ascend or descend near the periphery of the spinal cord before entering superficial laminae of the dorsal hornlargely parts of laminae I, IV, and V. Cells in these laminae then give rise to fibres of the two spinothalamic tracts. Those fibres crossing in the ventral white commissure (ventral to the central canal) form the lateral spinothalamic tract, which, ascending in the ventral part of the lateral funiculus, conveys signals related to pain and thermal sense. The anterior spinothalamic tract arises from fibres that cross the midline in the same fashion but ascend more anteriorly in the spinal cord; these fibres convey impulses related to light touch. At medullary levels the two spinothalamic tracts merge and cannot be distinguished as separate entities. Many of the fibres, or collaterals, of the spinothalamic tracts terminate upon cell groups in the reticular formation, while the principal tracts convey sensory impulses to relay nuclei in the thalamus.

Impulses from stretch receptors are carried by fibres that synapse upon cells in deep laminae of the dorsal horn or in lamina VII. The posterior spinocerebellar tract arises from the dorsal nucleus of Clarke and ascends peripherally in the dorsal part of the lateral funiculus. The anterior spinocerebellar tract ascends on the ventral margin of the lateral funiculus. Both tracts transmit signals to portions of the anterior lobe of the cerebellum and are involved in mechanisms that automatically regulate muscle tone without reaching consciousness.

Tracts descending to the spinal cord are involved with voluntary motor function, muscle tone, reflexes and equilibrium, visceral innervation, and modulation of ascending sensory signals. The largest, the corticospinal tract, originates in broad regions of the cerebral cortex. Smaller descending tracts, which include the rubrospinal tract, the vestibulospinal tract, and the reticulospinal tract, originate in nuclei in the midbrain, pons, and medulla oblongata. Most of these brainstem nuclei themselves receive input from the cerebral cortex, the cerebellar cortex, deep nuclei of the cerebellum, or some combination of these.

In addition, autonomic tracts, which descend from various nuclei in the brainstem to preganglionic sympathetic and parasympathetic neurons in the spinal cord, constitute a vital link between the centres that regulate visceral functions and the nerve cells that actually effect changes.

The corticospinal tract originates from pyramid-shaped cells in the premotor, primary motor, and primary sensory cortex and is involved in skilled voluntary activity. Containing about one million fibres, it forms a significant part of the posterior limb of the internal capsule and is a major constituent of the crus cerebri in the midbrain. As the fibres emerge from the pons, they form compact bundles on the ventral surface of the medulla, known as the medullary pyramids. In the lower medulla about 90 percent of the fibres of the corticospinal tract decussate and descend in the dorsolateral funiculus of the spinal cord. Of the fibres that do not cross in the medulla, approximately 8 percent cross in cervical spinal segments. As the tract descends, fibres and collaterals branch off at all segmental levels, synapsing upon interneurons in lamina VII and upon motor neurons in lamina IX. Approximately 50 percent of the corticospinal fibres terminate within cervical segments.

At birth, few of the fibres of the corticospinal tract are myelinated; myelination takes place during the first year after birth, along with the acquisition of motor skills. Because the tract passes through, or close to, nearly every major division of the neuraxis, it is vulnerable to vascular and other kinds of lesions. A relatively small lesion in the posterior limb of the internal capsule, for example, may result in contralateral hemiparesis, which is characterized by weakness, spasticity, greatly increased deep tendon reflexes, and certain abnormal reflexes.

The rubrospinal tract arises from cells in the caudal part of the red nucleus, an encapsulated cell group in the midbrain tegmentum. Fibres of this tract decussate at midbrain levels, descend in the lateral funiculus of the spinal cord (overlapping ventral parts of the corticospinal tract), enter the spinal gray matter, and terminate on interneurons in lamina VII. Through these crossed rubrospinal projections, the red nucleus exerts a facilitating influence on flexor alpha motor neurons and a reciprocal inhibiting influence on extensor alpha motor neurons. Because cells of the red nucleus receive input from the motor cortex (via corticorubral projections) and from globose and emboliform nuclei of the cerebellum (via the superior cerebellar peduncle), the rubrospinal tract effectively brings flexor muscle tone under the control of these two regions of the brain.

The vestibulospinal tract originates from cells of the lateral vestibular nucleus, which lies in the floor of the fourth ventricle. Fibres of this tract descend the length of the spinal cord in the ventral and lateral funiculi without crossing, enter laminae VIII and IX of the anterior horn, and terminate upon both alpha and gamma motor neurons, which innervate ordinary muscle fibres and fibres of the muscle spindle (see below Functions of the human nervous system: Movement). Cells of the lateral vestibular nucleus receive facilitating impulses from labyrinthine receptors in the utricle of the inner ear and from fastigial nuclei in the cerebellum. In addition, inhibitory influences upon these cells are conveyed by direct projections from Purkinje cells in the anterior lobe of the cerebellum. Thus, the vestibulospinal tract mediates the influences of the vestibular end organ and the cerebellum upon extensor muscle tone.

A smaller number of vestibular projections, originating from the medial and inferior vestibular nuclei, descend ipsilaterally in the medial longitudinal fasciculus only to cervical levels. These fibres exert excitatory and inhibitory effects upon cervical motor neurons.

The reticulospinal tracts arise from relatively large but restricted regions of the reticular formation of the pons and medulla oblongatathe same cells that project ascending processes to intralaminar thalamic nuclei and are important in the maintenance of alertness and the conscious state. The pontine reticulospinal tract arises from groups of cells in the pontine reticular formation, descends ipsilaterally as the largest component of the medial longitudinal fasciculus, and terminates among cells in laminae VII and VIII. Fibres of this tract exert facilitating influences upon voluntary movements, muscle tone, and a variety of spinal reflexes. The medullary reticulospinal tract, originating from reticular neurons on both sides of the median raphe, descends in the ventral part of the lateral funiculus and terminates at all spinal levels upon cells in laminae VII and IX. The medullary reticulospinal tract inhibits the same motor activities that are facilitated by the pontine reticulospinal tract. Both tracts receive input from regions of the motor cortex.

Descending fibres involved with visceral and autonomic activities emanate from groups of cells at various levels of the brainstem. For example, hypothalamic nuclei project to visceral nuclei in both the medulla oblongata and the spinal cord; in the spinal cord these projections terminate upon cells of the intermediolateral cell column in thoracic, lumbar, and sacral segments. Preganglionic parasympathetic neurons originating in the oculomotor nuclear complex in the midbrain project not only to the ciliary ganglion but also directly to spinal levels. Some of these fibres reach lumbar segments of the spinal cord, most of them terminating in parts of laminae I and V. Pigmented cells in the isthmus, an area of the rostral pons, form a blackish-blue region known as the locus ceruleus; these cells distribute the neurotransmitter norepinephrine to the brain and spinal cord. Fibres from the locus ceruleus descend to spinal levels without crossing and are distributed to terminals in the anterior horn, the intermediate zone, and the dorsal horn. Other noradrenergic cell groups in the pons, near the motor nucleus of the facial nerve, project uncrossed noradrenergic fibres that terminate in the intermediolateral cell column (that is, lamina VII of the lateral horn). Postganglionic sympathetic neurons associated with this system have direct effects upon the cardiovascular system. Cells in the nucleus of the solitary tract project crossed fibres to the phrenic nerve nucleus (in cervical segments three through five), the intermediate zone, and the anterior horn at thoracic levels; these innervate respiratory muscles.

More:
Human nervous system - The spinal cord | Britannica.com

Related Post


categoriaSpinal Cord Stem Cells commentoComments Off on Human nervous system – The spinal cord | Britannica.com | dataJanuary 28th, 2019

About...

This author published 5472 posts in this site.

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2024