Ask the Expert: What are the most common types of brain tumors in children? – The Daily Progress
By daniellenierenberg
What are the most common types of brain tumors in children, and what treatment options are available?
Brain tumors are the most common solid tumors affecting children, with approximately 4,500 new cases each year in the U.S.
As brain tumors expand or block the normal pathways in the brain, the pressures inside the skull expand. As a result, symptoms of brain tumors can include headaches, seizures, lethargy, nausea and vomiting. A child experiencing progressively worsening symptoms like these should be evaluated by a pediatrician or in the emergency room. The doctors evaluation may include a scan of the brain. If the scan shows a tumor, the next step is a consultation with a neurosurgeon.
The majority of pediatric brain tumors occur in the posterior fossa (located near the bottom of the skull and the brain stem). The most common tumors include medulloblastoma, pilocytic astrocytoma, and ependymoma. Other less common tumors can occur in the cerebral hemispheres (the two main portions of the brain) and include astrocytomas, gangliogliomas, craniopharyngiomas, and germ cell tumors.
Surgery is usually the first step in treatment when a brain tumor is discovered. The goals of surgery are to determine whether the tumor is cancerous and remove all or as much of the tumor as safely as possible. At UVa Childrens Hospital, the latest technologies are utilized to help perform surgery, including intraoperative MRI, navigation, ultrasound and minimally invasive endoscopic surgery. Based on the types of cells found in the brain tumor, additional treatments may be needed. These therapies may include chemotherapy, radiation therapy, proton therapy, stem cell rescue and bone marrow transplantation and/or supportive care for rehabilitation.
More recent treatment options have focused on precision medicine and targeted drug therapy. Targeted drug treatments can cause brain tumor cells to die by blocking abnormalities present within these cells. These drugs are changing how brain tumors are treated while improving outcomes. Current research is focused on understanding the molecular basis of tumor formation and discovery of new targets for treatment.
At UVa, we are committed to providing the best neurosurgical care for children through our multidisciplinary brain tumor team, consisting of neurosurgery, neurology, pediatric oncology and radiation oncology.
For more information, visit childrens.uvahealth.com/services/pediatric-neurosurgery.
Dr. Hasan R. Syed and Dr. John Jane Jr. are pediatric neurosurgeons at UVa Childrens Hospital.
Read more:
Ask the Expert: What are the most common types of brain tumors in children? - The Daily Progress
At 16, shes a pioneer in the fight to cure sickle cell disease at Boston Childrens – Boston.com
By daniellenierenberg
BOSTON Helen Obando, a shy slip of a girl, lay curled in a hospital bed in June waiting for a bag of stem cells from her bone marrow, modified by gene therapy, to start dripping into her chest.
The hope was that the treatment would cure her of sickle cell disease, an inherited blood disorder that can cause excruciating pain, organ damage and early death.
Helen, who at 16 was the youngest person ever to undergo the therapy, was sound asleep for the big moment.
It was a critical moment in medical science.
For more than a half-century, scientists have known the cause of sickle cell disease: A single mutation in a gene turns red blood cells into rigid crescent or sickle shapes instead of soft discs. These misshapen cells get stuck in veins and arteries, blocking the flow of blood that carries life-giving oxygen to the body and causing the diseases horrifying hallmark: episodes of agony that begin in babyhood.
Millions of people globally, a vast majority of them Africans, suffer from sickle cell disease. Researchers have worked for decades on improving treatment and finding a cure, but experts said the effort has been hindered by chronic underfunding, in part because most of the estimated 100,000 people in the United States who have the disease are African American, often poor or of modest means.
The disease also affects people with southern European, Middle Eastern or Asian backgrounds, or those who are Hispanic, like Helen.
This is the story of two quests for a sickle cell cure one by the Obando family and one by a determined scientist at Boston Childrens Hospital, Dr. Stuart Orkin, 73, who has labored against the disease since he was a medical resident in the 1970s.
Like many others affected by sickle cell, the Obando family faced a double whammy: not one but two children with the disease, Helen and her older sister, Haylee Obando. They lived with one hope for a cure, a dangerous and sometimes fatal bone marrow transplant usually reserved for those with a healthy sibling as a match. But then they heard about a potential breakthrough: a complex procedure to flip a genetic switch so the body produces healthy blood.
Scientists have been experimenting with gene therapy for two decades, with mixed success. And it will be years before they know if this new procedure is effective in the long term. But if it is, sickle cell disease could be the first common genetic disorder to be cured by manipulating human DNA.
Four weeks after the infusion of stem cells, Helen was strong enough to be discharged. At home, in Lawrence, Massachusetts, on a sofa with her mother by her side, she put a hand over her eyes and started to sob. She and her family wondered: Would it work? Was her suffering really over?
A Familys Nightmare
Sheila Cintron, 35, and Byron Obando, 40, met when she was in the eighth grade and he was a high school senior. They fell in love. Haylee, their first child, was born in 2001, when Cintron was 17.
When a newborn screening test showed that Haylee had the disease, her father asked, Whats sickle cell?
They soon found out.
As the family gathered for her first birthday party, Haylee started screaming inconsolably. They rushed her to the hospital. It was the first of many pain crises.
Doctors warned the parents that if they had another baby, the odds were 1 in 4 that the child would have sickle cell, too. But they decided to take the chance.
Less than two years later, Helen was born. As bad as Haylees disease was, Helens was much worse. When she was 9 months old, a severe blockage of blood flow in her pelvis destroyed bone. At age 2, her spleen, which helps fight bacterial infections, became dangerously enlarged because of blocked blood flow. Doctors surgically removed the organ.
After Helen was born, her parents decided not to have any more children. But four years later, Cintron discovered she was pregnant again.
But they were lucky. Their third child, Ryan Obando, did not inherit the sickle cell mutation.
As Ryan grew up, Helens health worsened. When he was 9, Helens doctors suggested a drastic solution: If Ryan was a match for her, he might be able to cure her by giving her some of his bone marrow, though there would also be major risks for her, including death from severe infections or serious damage to organs if his immune system attacked her body.
As it turned out, Ryan matched not Helen but Haylee.
The transplant succeeded, but her parents asked themselves how they could stand by while one daughter was cured and the sicker one continued to suffer.
There was only one way to get a sibling donor for Helen: have another baby. In 2017, the couple embarked on another grueling medical journey.
Obando had a vasectomy, so doctors had to surgically extract his sperm from his testicles. Cintron had 75 eggs removed from her ovaries and fertilized with her husbands sperm. The result was more than 30 embryos.
Not a single embryo was both free of the sickle cell gene and a match for Helen.
So the family decided to move to Mesa, Arizona, from Lawrence, where the cold, which set off pain crises, kept Helen indoors all winter. The family had already sold their house when they heard that doctors at Boston Childrens were working on sickle cell gene therapy.
Cintron approached Dr. Erica Esrick, a principal investigator for the trial. But the trial wasnt yet open to children.
Figuring Out the Science
Nothing had prepared Orkin for the suffering he witnessed in his 30s as a medical resident in the pediatric hematology ward at Boston Childrens. It was the 1970s, and the beds were filled with children who had sickle cell crying in pain.
Orkin knew there was a solution to the puzzle of sickle cell, at least in theory: Fetuses make hemoglobin the oxygen-carrying molecules in blood cells with a different gene. Blood cells filled with fetal hemoglobin do not sickle. But the fetal gene is turned off after a baby is born, and an adult hemoglobin gene takes over. If the adult gene is mutated, red cells sickle.
Researchers had to figure out how to switch hemoglobin production to the fetal form. No one knew how to do that.
Orkin needed ideas. Supported by the National Institutes of Health and Howard Hughes Medical Institute, he kept looking.
The breakthrough came in 2008. The cost of gene sequencing was plummeting, and scientists were finding millions of genetic signposts on human DNA, allowing them to home in on small genetic differences among individuals. Researchers started doing large-scale DNA scans of populations, looking for tiny but significant changes in genes. They asked: Was there a molecular switch that flipped cells from making fetal to adult hemoglobin? And if there was, could the switch be flipped back?
They found a promising lead: an unprepossessing gene called BCL11A.
In a lab experiment, researchers blocked this gene and discovered that the blood cells in petri dishes started making fetal instead of adult hemoglobin.
Next they tried blocking the gene in mice genetically engineered to have human hemoglobin and sickle cell disease. Again, it worked.
Patients came next, in the gene therapy trial at Boston Childrens that began in 2018.
The trial run by Dr. David Williams, an expert in the biology of blood-forming stem cells at Boston Childrens, and Esrick has a straightforward goal: Were going to reeducate the blood cells and make them think they are still in the fetus, Williams said.
Doctors gave adult patients a drug that loosened stem cells immature cells that can turn into red blood cells from the bone marrow, their normal home, so they floated free in the bloodstream. Then they extracted those stem cells from whole blood drawn from the patient.
The researchers used a disabled genetically engineered AIDS virus to carry information into the stem cells, flipping on the fetal hemoglobin gene and turning off the adult gene. Then they infused the treated stem cells into patients veins. From there, the treated cells migrated into the patients bone marrow, where they began making healthy blood cells.
With the success in adults, the Food and Drug Administration said Boston Childrens could move on to teenagers.
When her mother told her about the gene therapy trial, Helen was frightened. But the more she thought about it, the more she was ready to take the risk.
In the months after the gene therapy infusion at Boston Childrens, her symptoms disappeared.
Helen was scheduled for her six-month checkup Dec. 16. Helens total hemoglobin level was so high it was nearly normal a level she had never before achieved, even with blood transfusions. She had no signs of sickle cell disease.
Continue reading here:
At 16, shes a pioneer in the fight to cure sickle cell disease at Boston Childrens - Boston.com
At 16, Shes a Pioneer in the Fight to Cure Sickle Cell Disease – The New York Times
By daniellenierenberg
In the months after the gene therapy infusion at Boston Childrens, her symptoms disappeared. But doctors had given her blood transfusions while she regrew her own red blood cells, so it was not clear if the absence of symptoms was because of the gene therapy or the transfusions.
As she recovered, Helen returned to her passion: dancing. One day, she came back from her school dance group and told her mother, My legs hurt. It feels funny. Ms. Cintron smiled. Thats soreness, she explained. Helen laughed. She had only known pain from sickle cell.
Helen was scheduled for her six-month checkup on Dec. 16. By then, all the transfused cells were gone, leaving only blood made by stem cells in her own marrow. The doctors would finally tell her whether the therapy was working.
The day before, she and her parents visited the New England Aquarium in Boston. She was able to stay outside on a cold, blustery day, watching one seal bully the others, barking and fighting. When Helen mentioned that her hands were cold, Ms. Cintrons stomach clenched in fear. But it was just a normal thing to feel on a winter day.
The next morning, Dr. Esrick delivered the news. Helens total hemoglobin level was so high it was nearly normal a level she had never before achieved even with blood transfusions. She had no signs of sickle cell disease.
Now you are like me, her father told her. I jump in the pool, I run. Now you can do it, too!
Her family, accustomed to constant vigilance, is only now getting used to normal life.
On Dec. 23, Helen and her mother flew to the familys new home in Arizona.
Helen recently described her transformed outlook on Facebook.
See the original post:
At 16, Shes a Pioneer in the Fight to Cure Sickle Cell Disease - The New York Times
What is Mantle Cell Lymphoma and How Is It Treated? – Dana-Farber Cancer Institute
By daniellenierenberg
Last Updated on January 10, 2020
Medically reviewed by Ann S. LaCasce, MD, MMSc
Mantle cell lymphoma is a rare, often aggressive form of non-Hodgkin lymphoma (NHL), a cancer that involves white blood cells known as lymphocytes, which help protect the body from disease. It is named for its origins in the mantle zone a ring of cells within the lymph nodes where B cells (a type of lymphocyte) grow and take on specialized functions. It comprises about 6% of all cases of NHL, usually arises during an individuals early 60s, and is more common in men than women.
The most common symptoms of mantle cell lymphoma include:
At the time of diagnosis,nearly all patients have disease that has spread beyond its initial site.
For most patients, the cause of the disease is unknown, but rates are higher among farmers and people from rural areas.
Itoccurs when B lymphocytes acquire genetic mutations that alter their functionand growth. One such abnormality, found in 90% of cases, causes B lymphocytesto overproduce cyclin D1, a protein that spurs the cells growth. Othermutations can interfere with B cells ability to produce infection-fightingantibodies, leaving patients vulnerable to certain diseases.
A definitive diagnosis requires a biopsy of an affected lymph node or other involved tissue.
Doctors use a variety of scans to determine the diseases stage, or how far it has advanced. These include:
Treatment for mantle cell lymphoma varies depending on patients age and overall health and the stage of the disease. Patients who have yet to develop symptoms and who have a relatively small amount of slow-growing disease may be recommended for active surveillance close monitoring of their health through regular checkups and lab tests. When lymphoma-related symptoms appear or tests show a worsening of the disease, active treatment may begin.
The initial treatment for aggressive mantle cell lymphoma in younger patients often includes a combination of chemotherapy drugs in conjunction with an antibody-based treatment, often followed by a stem cell transplant using patients own stem cells. Older, less-fit patients may undergo less intensive chemotherapy sometimes followed by a prolonged course of antibody therapy.
Other treatments may include drugs known as BTK inhibitors such as acalbrutinib and ibrutinib, which interfere with lymphoma cells internal growth signals.
In patients who relapse after treatment or dont respond to initial treatment, a variety of options may be available, including:
Clinical trials are currently underway of CAR T-cell therapy for patients with mantle cell lymphoma. The therapy, which uses genetically modified immune system T cells to attack tumor cells, has been shown to be effective in patients with other forms of non-Hodgkin lymphoma. Other trials are testing drugs known as bispecific antibodies, artificial proteins that can bind simultaneously to two surface proteins on cells, and targeted agents directed against specific cancer-related proteins.
See the article here:
What is Mantle Cell Lymphoma and How Is It Treated? - Dana-Farber Cancer Institute
Jasper Therapeutics Announces Expansion of Series A Financing, Bringing Total Corporate Fundraising to More than $50 Million – Business Wire
By daniellenierenberg
PALO ALTO, Calif.--(BUSINESS WIRE)--Jasper Therapeutics, Inc., a biotechnology company focused on hematopoietic cell transplant therapies, today announced the expansion of its Series A financing with an additional investment of $14.1 million led by Roche Venture Fund and with participation from other investors, bringing the total company financing to more than $50 million to date. The initial Series A round was led by Abingworth LLP and Qiming Venture Partners USA, with further investment from Surveyor Capital (a Citadel company) and participation from Alexandria Venture Investments, LLC.
Jasper plans to use the proceeds to advance and expand the study of its lead clinical asset, JSP191. A humanized antibody targeting CD117 on hematopoietic stem cells, JSP191 is designed to replace toxic chemotherapy and radiation therapy as conditioning regimens to prepare patients for curative stem cell and gene therapy. JSP191 is the only antibody of its kind in clinical development as a single conditioning agent for people undergoing curative hematopoietic cell transplantation.
This investigational agent is currently being evaluated in a Phase 1/2 dose-escalation and expansion study as a conditioning agent to enable stem cell engraftment in patients with severe combined immunodeficiency (SCID) who received a prior stem cell transplant that resulted in poor outcome. Initial positive results from this ongoing clinical trial were presented in an oral session at the American Society of Hematology (ASH) Annual Meeting in December 2019. Jasper plans to expand the Phase 1/2 clinical study to include patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS) receiving hematopoietic cell transplant. The development of JSP191 is supported by a collaboration with the California Institute for Regenerative Medicine (CIRM).
About Hematopoietic Cell TransplantationBlood-forming, or hematopoietic, stem cells are rare cells that reside in the bone marrow and are responsible for the generation and maintenance of all blood and immune cells. These stem cells can harbor inherited or acquired abnormalities that lead to a variety of disease states, including immune deficiencies, blood disorders or hematologic cancers. Replacement of the defective or malignant hematopoietic stem cells in the patients bone marrow by transplantation and engraftment of healthy stem cells is the only cure for most of these life-threatening conditions. Successful transplantation is currently achieved by subjecting patients to toxic treatment with radiation and/or chemotherapy followed by transplantation of a donor or gene-corrected hematopoietic cell graft. These toxic regimens cause DNA damage and lead to short- and long-term toxicities, including unwanted damage to organs and prolonged hospitalization. As a result, many patients who could benefit from a hematopoietic cell transplant are not eligible. New approaches that are effective but have minimal to no toxicity are urgently needed so more patients who could benefit from a curative stem cell transplant could receive the procedure.
Safer and more effective hematopoietic cell transplantation regimens could overcome these limitations and enable the broader application of hematopoietic cell transplants in the cure of many disorders. These disorders include hematologic cancers (e.g., myelodysplastic syndrome [MDS] and acute myeloid leukemia [AML]), autoimmune diseases (e.g., lupus, rheumatoid arthritis, multiple sclerosis and Type 1 diabetes), and genetic diseases that could be cured with genetically-corrected autologous stem cells (e.g., severe combined immunodeficiency syndrome [SCID], sickle cell disease, beta thalassemia, Fanconi anemia and other monogenic diseases).
About JSP191JSP191 (formerly AMG 191) is a first-in-class humanized monoclonal antibody in clinical development as a conditioning agent that clears hematopoietic stem cells from bone marrow. JSP191 binds to human CD117, a receptor for stem cell factor (SCF) that is expressed on the surface of hematopoietic stem and progenitor cells. The interaction of SCF and CD117 is required for stem cells to survive. JSP191 blocks SCF from binding to CD117 and disrupts critical survival signals, causing the stem cells to undergo cell death and creating an empty space in the bone marrow for donor or gene-corrected transplanted stem cells to engraft.
Preclinical studies have shown that JSP191 as a single agent safely depletes normal and diseased hematopoietic stem cells, including in an animal model of MDS. This creates the space needed for transplanted normal donor or gene-corrected hematopoietic stem cells to successfully engraft in the host bone marrow. To date, JSP191 has been evaluated in more than 80 healthy volunteers and patients. It is currently being evaluated as a sole conditioning agent in a Phase 1/2 dose-escalation and expansion trial to achieve donor stem cell engraftment in patients undergoing hematopoietic cell transplant for SCID, which is curable only by this type of treatment. For more information about the design of the clinical trial, visit http://www.clinicaltrials.gov (NCT02963064). Clinical development of JSP191 will be expanded to also study patients with AML or MDS who are receiving hematopoietic cell transplant. IND-enabling studies are planned to advance JSP191 as a conditioning agent for patients with other rare and ultra-rare monogenic disorders and autoimmune diseases.
About Jasper TherapeuticsJasper Therapeutics is a biotechnology company focused on hematopoietic cell transplant therapies. The companys lead compound, JSP191, is in clinical development as a conditioning antibody that clears hematopoietic stem cells from bone marrow in patients undergoing a hematopoietic cell transplant. This first-in-class conditioning antibody is designed to enable safer and more effective curative hematopoietic cell transplants and gene therapies. For more information, please visit us at https://jaspertherapeutics.com.
Read this article:
Jasper Therapeutics Announces Expansion of Series A Financing, Bringing Total Corporate Fundraising to More than $50 Million - Business Wire
Q&A: Cancer Death Rates Are Falling Nationally. Here’s What’s Happening at UVA – University of Virginia
By daniellenierenberg
This week, the American Cancer Society released some very welcome news: the cancer death rate in the U.S. dropped by 2.2% from 2016 to 2017, the largest single-year drop ever recorded.
The drop, which the report attributes to plummeting smoking rates as well as new screening and treatment methods, continues a decades-long trend, as cancer death rates have fallen by nearly 30% since 1991 about 2.9 million fewer deaths.
Dr. Thomas Loughran, director of the University of Virginia Cancer Center, said UVA is in step with this national trend.
The UVA Cancer Center is one of 71 National Cancer Institute-designated treatment centers nationwide and ranked among the nations top 50 cancer centers over each of the past four years (No. 26 last year). The center serves approximately 4 million people in Virginia and West Virginia.
We spoke with Loughran about what he is seeing at UVA and beyond, new treatments and research helping to eradicate cancer, and where he sees cancer treatment in five years.
Q. Why have cancer death rates dropped so significantly?
A. As reports of this latest drop have said, a large part of the decline can be attributed to declining rates of lung cancer. The importance of preventing cancer particularly behavioral interventions like stopping smoking has become more prominent, and there have been remarkable declines in smoking across the United States.
This is a very important focus for us at UVA. We serve a large geographical area 90 contiguous counties in Virginia and West Virginia, including rural Appalachia. Southwest Virginia in Appalachia still has high smoking rates, and as a result, high rates of lung cancer. Education, screening and tobacco cessation programs are critically important, especially in those areas.
Q. What advances in treatment have contributed to falling cancer death rates, nationally and at UVA?
A. Screening technology, especially for the more common cancers like lung, colorectal, prostate and breast cancer, has improved. The latest report probably doesnt fully reflect recent implementation of lung cancer screening using a low-dose CT scan, recommended for high risk individuals and especially those with a history of heavy smoking. That has only been around a few years, and its impact will likely show up in future reports.
The second big factor is the development of immunotherapy [cancer treatments that utilize and help the patients immune system]. UVA has invested quite a lot of institutional resources in becoming a state-of-the-art immunotherapy center, and I am proud to say we are a leader in the field.
We have created a Cancer Therapeutics Program to support the development of new therapies. Dr. Craig Slingluff, who leads that program, is a surgical oncologist internationally famous for immunotherapy treatments for melanoma. To strengthen this program, we have recruited a cadre of leading physician scientists from across the country. Dr. Karen Ballen came here to lead our stem cell and bone marrow transplant program. Dr. Lawrence Lum, the scientific director of the transplant program, has developed a novel therapy using antibodies that bind to both T-cells [patient cells that can kill cancer cells] and tumor cells, forming a bridge between the two that helps the T-cells kill the cancer cells. Dr. Trey Lee is a leader in CAR-T cell therapy.
I could keep going; there are so many great people working on this. We also have a new Good Manufacturing Practice lab, supported by a grant from the commonwealth, that will help us grow and modify T-cells as needed and give them to patients under sterile conditions. That just opened and we are very excited about that program.
Q. What other areas of research have shown great promise?
A. Some of our work in nanotechnology is really unique and exciting. [Biomedical engineering professor] Mark Kester directs UVAs nanoSTAR Institute, which is working on delivering cancer therapies by nanotechnology basically, engineering at a very small scale. For example, nanoliposomes a sort of delivery system for cancer therapy are actually smaller than individual cells and can therefore penetrate cancer cells and release treatment from inside those cells.
We are very excited about early phase trials testing this technology on solid tumors, and we also hope to use it to treat patients with acute leukemia over the next few years.
Q. Looking ahead, where do you see the next big gains coming from?
A. Immunotherapy has revolutionized cancer treatment, but why some patients respond well and some dont remains puzzling. I hope that we can begin to discover why some patients are reacting to these newer treatments differently than others. Once we figure out why some patients respond to immunotherapy, we can begin to make improvements that could benefit a larger percentage of patients with these deadly cancers.
CAR T Cell therapy one method of immunotherapy is very effective against leukemia, lymphoma and cancers of the blood, but not yet against solid tumors. Over the next five years, I hope we can determine how to deliver these T-cells to solid tumors such as those found in lung, colorectal and other common cancers again to make this advance more widely applicable to a larger number of patients.
View original post here:
Q&A: Cancer Death Rates Are Falling Nationally. Here's What's Happening at UVA - University of Virginia
White blood cells: Function, ranges, types, and more – Medical News Today
By daniellenierenberg
White blood cells circulate around the blood and help the immune system fight off infections.
Stem cells in the bone marrow are responsible for producing white blood cells. The bone marrow then stores an estimated 8090% of white blood cells.
When an infection or inflammatory condition occurs, the body releases white blood cells to help fight the infection.
In this article, learn more about white blood cells, including the types and their functions.
Health professionals have identified three main categories of white blood cell: granulocytes, lymphocytes, and monocytes. The sections below discuss these in more detail.
Granulocytes are white blood cells that have small granules containing proteins. There are three types of granulocyte cells:
These white blood cells include the following:
Monocytes are white blood cells that make up around 28% of the total white blood cell count in the body. These are present when the body fights off chronic infections.
They target and destroy cells that cause infections.
According to an article in American Family Physician, the normal range (per cubic millimeter) of white blood cells based on age are:
The normal range for a pregnant women in the 3rd trimester is 5,80013,200 per cubic millimeter.
If a person's body is producing more white blood cells than it should be, doctors call this leukocytosis.
A high white blood cell count may indicate the following medical conditions:
Surgical procedures that cause cells to die can also cause a high white blood cell count.
If a person's body is producing fewer white blood cells than it should be, doctors call this leukopenia.
Conditions that can cause leukopenia include:
Doctors may continually monitor white blood cells to determine if the body is mounting an immune response to an infection.
During a physical examination, a doctor may perform a white blood cell count (WBC) using a blood test. They may order a WBC to test for, or rule out, other conditions that may affect white blood cells.
Although a blood sample is the most common approach to testing for white blood cells, a doctor can also test other body fluids, such as cerebrospinal fluid, for the presence of white blood cells.
A doctor may order a WBC to:
The following are conditions that may impact how many white blood cells a person has in their body.
This is a condition wherein a person's body destroys stem cells in the bone marrow.
Stem cells are responsible for creating new white blood cells, red blood cells, and platelets.
This is an autoimmune condition wherein the body's immune system destroys healthy cells, including red and white blood cells.
HIV can decrease the amount of white blood cells called CD4 T cells. When a person's T cell count drops below 200, a doctor might diagnose AIDS.
Leukemia is a type of cancer that affects the blood and bone marrow. Leukemia occurs when white blood cells rapidly produce and are not able to fight infections.
This condition causes a person's body to overproduce some types of blood cells. It causes scarring in a person's bone marrow.
Whether or not a person needs to alter their white blood cell count will depend on the diagnosis.
If they have a medical condition that affects the number of white blood cells in their body, they should talk to a doctor about the goals for their white blood cell count, depending on their current treatment plan.
A person can lower their white blood cell count by taking medications such as hydroxyurea or undergoing leukapheresis, which is a procedure that uses a machine to filter the blood.
If a person's white blood cell count is low due to cancer treatments such as chemotherapy, a doctor may recommend avoiding foods that contain bacteria. This may help prevent infections.
A person can also take colony-stimulating factors. These may help prevent infection and increase the number of white blood cells in the body.
White blood cells are an important part of the body's immune system response. There are different types of white blood cell, and each has a specific function in the body.
Certain conditions can affect the number of white blood cells in the body, causing them to be too high or too low.
If necessary, a person can take medication to alter their white blood cell count.
Visit link:
White blood cells: Function, ranges, types, and more - Medical News Today
Jasper Therapeutics Raises Additional $14.1M in Series A Financing – FinSMEs
By daniellenierenberg
Jasper Therapeutics, Inc., a Palo Alto, Calif.-based biotechnology company focused on hematopoietic cell transplant therapies, expanded its Series A financing with an additional investment of $14.1m.
The round was led by Roche Venture Fund with participation from other investors. This brought the total company financing to more than $50m to date.
The initial Series A round was led by Abingworth LLP and Qiming Venture Partners USA, with further investment from Surveyor Capital (a Citadel company) and participation from Alexandria Venture Investments, LLC.
The company plans to use the proceeds to advance and expand the study of its lead clinical asset, JSP191.
Jasper Therapeutics is a biotechnology company focused on hematopoietic cell transplant therapies. The companys lead compound, JSP191, is in clinical development as a conditioning antibody that clears hematopoietic stem cells from bone marrow in patients undergoing a hematopoietic cell transplant. This conditioning antibody is designed to enable safer and more effective curative hematopoietic cell transplants and gene therapies.
FinSMEs
09/01/2020
See more here:
Jasper Therapeutics Raises Additional $14.1M in Series A Financing - FinSMEs
Tacitus Therapeutics Launches in Collaboration with Mount Sinai to Develop Stem Cell Therapies for Life-Threatening Diseases – PRNewswire
By daniellenierenberg
NEW YORK, Jan. 9, 2020 /PRNewswire/ -- Tacitus Therapeutics, a clinical-stage company, has launched in collaboration with the Mount Sinai Health System to develop stem cell therapies initially targeting blood cancers and related clotting disorders. Their first therapy, HSC100, currently is being investigated in a Phase I clinical trial1.
Tacitus is building upon technology developed by and exclusively licensed from Mount Sinai. Based on research by scientific co-founders Ronald Hoffman, M.D., and Camelia Iancu-Rubin, Ph.D., the technology includes proprietary cell expansion, differentiation and engineering methods. Together, these methods manufacture healthy cells that overcome the limitations of traditional allogeneic, or donor, cell transplantations.
Blood cancers comprise about 10% of new cancer cases in the U.S. each year, and almost 60,000 people die from blood cancer complications annually. Most blood cancers start in the bone marrow, where blood is produced. A common therapy for such blood cancers is a hematopoietic stem cell (HSC) treatment or, as more commonly referred to, bone marrow transplantation. In this process, doctors infuse healthy HSCs into the patient's bloodstream, where they migrate to the bone marrow to grow or engraft.
HSCs for this process can be collected from bone marrow, circulating blood, or umbilical cord blood (CB) of healthy donors. While HSC transplants are common, significant barriers to success exist, including high levels of graft-versus-host disease, low numbers of healthy cells obtained from CB, and increased risk of bleeding due to delayed megakaryocyte, or platelet, engraftment.
Hoffman and Iancu-Rubin are pioneers of bone marrow cell therapy treatments, and development of this technology was enabled by the New York State Stem Cell Science program, NYSTEM. As a New York State Department of Health initiative, NYSTEM awarded a $1 million grant to Hoffman in 2010 that supported the original research underpinning this platform technology. In 2015, NYSTEM awarded Hoffman and Iancu-Rubin an $8 million grant to translate the technology from the laboratory into the clinic, where it is currently in clinical trial1.
Hoffman also serves as Director of the Myeloproliferative Disorders Research Program and Professor of Medicine (Hematology and Medical Oncology) and Iancu-Rubin is Associate Professor of Pathology at the Icahn School of Medicine and Director of the Cellular Therapy Laboratory at Mount Sinai Hospital.
"Promising discoveries by Mount Sinai scientific thought leaders may lead to new, essential cell-based therapies that will broadly benefit patients," said Erik Lium, Executive Vice President and Chief Commercial Innovation Officer, Mount Sinai Innovation Partners. "We're pleased to be collaborating with Tacitus to launch the next stage of development for these technologies."
"Tacitus is committed in its mission to advance next-generation cell therapies with curative potential," said Carter Cliff, CEO of Tacitus. "Based on our founders' solid foundation of research, we are translating these discoveries into broad clinical practice as we look to dramatically improve the standard of care for patients with life-threatening conditions."
About HSC100
HSC100 is an investigational therapy based on allogeneic hematopoietic stem cells (HSC) expanded from umbilical cord blood. HSC100 is being investigated currently in an open-label Phase I clinical trial1 in the United States for treatment of hematological malignancies. The success of unmanipulated cord blood as a source of stem cells has been hampered by the small number of stem cells present in a single cord, leading to delayed engraftment and frequent graft failure. Our proprietary technology includes the use of an epigenetic modifier, valproic acid, to expand the number and the quality of HSCs found in cord blood collections. For more information on HSC100 clinical trials, please visit http://www.clinicaltrials.gov.
1ClinicalTrials.gov identifier NCT03885947.
About Tacitus Therapeutics
Tacitus Therapeutics is a clinical-stage biotechnology company developing advanced medicines for treatment of blood cancers, immune disorders and other intractable disease conditions. Our mission is to pioneer best-in-class therapies using proprietary cell expansion, differentiation and engineering platform technologies that overcome the limitations of traditional cell transplantation. Initial targets include a lead clinical program (HSC100) investigating the treatment of blood cancers, followed by preclinical programs to address clotting disorders and other serious unmet medical needs. For additional information, please visit http://www.tacitustherapeutics.com.
About Mount Sinai Health System
The Mount Sinai Health System is New York City's largest integrated delivery system, encompassing eight hospitals, a leading medical school, and a vast network of ambulatory practices throughout the greater New York region. Mount Sinai's vision is to produce the safest care, the highest quality, the highest satisfaction, the best access and the best value of any health system in the nation. The Health System includes approximately 7,480 primary and specialty care physicians; 11 joint-venture ambulatory surgery centers; more than 410 ambulatory practices throughout the five boroughs of New York City, Westchester, Long Island, and Florida; and 31 affiliated community health centers. The Icahn School of Medicine is one of three medical schools that have earned distinction by multiple indicators: ranked in the top 20 by U.S. News & World Report's "Best Medical Schools", aligned with a U.S. News & World Report's "Honor Roll" Hospital, No. 12 in the nation for National Institutes of Health funding, and among the top 10 most innovative research institutions as ranked by the journal Nature in its Nature Innovation Index. This reflects a special level of excellence in education, clinical practice, and research. The Mount Sinai Hospital is ranked No. 14 on U.S. News & World Report's "Honor Roll" of top U.S. hospitals; it is one of the nation's top 20 hospitals in Cardiology/Heart Surgery, Diabetes/Endocrinology, Gastroenterology/GI Surgery, Geriatrics, Gynecology, Nephrology, Neurology/Neurosurgery, and Orthopedics in the 2019-2020 "Best Hospitals" issue. Mount Sinai's Kravis Children's Hospital also is ranked nationally in five out of ten pediatric specialties by U.S. News & World Report. The New York Eye and Ear Infirmary of Mount Sinai is ranked 12th nationally for Ophthalmology, Mount Sinai St. Luke's and Mount Sinai West are ranked 23rd nationally for Nephrology and 25th for Diabetes/Endocrinology, and Mount Sinai South Nassau is ranked 35th nationally for Urology. Mount Sinai Beth Israel, Mount Sinai St. Luke's, Mount Sinai West, and Mount Sinai South Nassau are ranked regionally. For more information, visit http://www.mountsinai.org or find Mount Sinai on Facebook, Twitter and YouTube.
About Mount Sinai Innovation Partners (MSIP)
MSIP is responsible for driving the real-world application and commercialization of Mount Sinai discoveries and inventions and the development of research partnerships with industry. Our aim is to translate discoveries and inventions into health care products and services that benefit patients and society. MSIP is accountable for the full spectrum of commercialization activities required to bring Mount Sinai inventions to life. These activities include evaluating, patenting, marketing and licensing new technologies building research, collaborations and partnerships with commercial and nonprofit entities, material transfer and confidentiality, coaching innovators to advance commercially relevant translational discoveries, and actively fostering an ecosystem of entrepreneurship within the Mount Sinai research and health system communities. For more information, please visit http://www.ip.mountsinai.orgor find MSIP onLinkedIn, Twitter, Facebook,Medium, and YouTube.
Media Contacts:
Mount Sinai Cynthia Cleto Mount Sinai Innovation Partners (646) 605-7359 cynthia.cleto@mmsm.edu
Tacitus TherapeuticsJoleen RauRau Communications(608) 209-0792232130@email4pr.com
SOURCE Tacitus Therapeutics
Here’s Why CRISPR Therapeutics Stock Jumped 113.2% in 2019 – Motley Fool
By daniellenierenberg
What happened
Shares of CRISPR Therapeutics (NASDAQ:CRSP) rose over 113% last year, according to data provided by S&P Global Market Intelligence. The pharma stock built momentum throughout much of the year, but surged in October ahead of an important data presentation that ultimately lived up to the hype. That allowed the gene-editing stock to easily outperform the 28.8% gain of the S&P 500 in 2019.
The end-of-year rally was driven by promising clinical results for its lead drug candidate. The first two individuals, one with sickle cell disease (SCD) and one with transfusion-dependent beta thalassemia (TDT), dosed with CTX001 achieved functional cures after receiving an initial dose of the gene-editing product. The results need to be proven durable and replicated in a larger number of patients, but the update was about as good as investors could have hoped for at the current stage of development.
Image source: Getty Images.
Both SCD and TDT are caused by structural abnormalities in red blood cells. But these are one of the few cells in the human body that don't contain DNA. That means CRISPR Therapeutics has to harvest stem cells from the bone marrow of patients, apply gene editing to those extracted cells, and then inject the engineered stem cells back into patients (the ex vivo method). If the therapy works, then the engineered stem cells should produce functional red blood cells and potentially result in a cure.
In the early study, the ex vivo approach of CTX001 appeared to do just that. The TDT patient required an average of 16.5 blood transfusions per year in the two years before the clinical trial. Nine months after receiving the gene-editing treatment, the individual was transfusion independent (compared with an expected 12 transfusions) and expressed working copies of hemoglobin on 99.8% of red blood cells.
The SCD patient experienced an average of seven vaso-occlusive crises (painful blockages of blood vessels caused by abnormally shaped red blood cells) per year in the two years before the clinical trial. Four months after receiving the gene-editing treatment, the individual reported no vaso-occlusive crises (compared with an expectation for two such episodes) and expressed working copies of hemoglobin on 94.7% of red blood cells.
The early success of CTX001 bodes well for the ex vivo approach of CRISPR Therapeutics and its partner Vertex Pharmaceuticals(NASDAQ:VRTX), but investors should be careful not to extrapolate the results too broadly. Gene-editing tools that are applied inside the body (in vivo) face significantly steeper obstacles, such as the difficulty of delivering gene-editing payloads to specific tissue types inside the body. There's also the elephant in the room: Scientists are beginning to realize that current-generation CRISPR gene-editing tools don't work all that well.
Nonetheless, CRISPR Therapeutics is the top CRISPR-based gene-editing stock on the market. It has the cash, the partnerships, and the early results to back up its claim to that label.
Read the original here:
Here's Why CRISPR Therapeutics Stock Jumped 113.2% in 2019 - Motley Fool
Stem Cell and Regenerative Medicine Action Awards to be Presented at World Stem Cell Summit on January 23 at the Hyatt Regency Miami – GlobeNewswire
By daniellenierenberg
Miami, FL, Jan. 09, 2020 (GLOBE NEWSWIRE) -- The formal ceremony of the 2020 Stem Cell and Regenerative Medicine Action Awards will take place at a gala reception and dinner on January 23, during the 15th annual World Stem Cell Summit (WSCS) at the Hyatt Regency in Miami. Since 2005, the nonprofit Regenerative Medicine Foundation (RMF) (formerly Genetics Policy Institute) has recognized the stem cell and regenerative medicine community's leading innovators, leaders, and champions through its annual awards reception.
Bernard Siegel, Executive Director of Regenerative Medicine Foundation and founder of the World Stem Cell Summit, said, The 2020 Action Awards will recognize three important organizations that are positively impacting the emerging field of regenerative medicine. We will also honor a retired Major General, who has capped off his military and diplomatic career by promoting the cause of world peace through medicine. All of these distinguished honorees will be recognized for their devotion to improving health and developing cures through advocacy, innovation, leadership and inspiration. In addition, the wounded warrior veterans community of South Florida will also receive special recognition at the event.
Meet the 2020 Stem Cell & Regenerative Medicine Action Award Honorees:
Innovation Award: With the motto, We will not rest until we find a cure, the Cystic Fibrosis Foundation is geared towards the successful development and delivery of treatments, therapies and a cure for every person with cystic fibrosis. CF Foundation has added decades to the lives of people with the disease as a direct result of advances in treatment and care made possible through its innovative business model- venture philanthropy. The Foundation recently unveiled its Path to a Cure research agenda aimed at addressing the root genetic cause of the disease and is currently funding industry programs aimed at gene delivery with the goal of progressing into clinical studies in 2021.
Inspiration Award: Emily Whitehead Foundation is a nonprofit organization committed to raising funds to invest in the most promising pediatric cancer research. Tom and Kari Whitehead founded EWF in honor of their daughter Emily, the first child in the world to receive CAR T-cell therapy, training her own cells to fight cancer. Her inspiring story focused public attention on thepotential for cancer immunotherapy to transform cancer treatment,as well as the need to support lifesaving cancer immunotherapy research. The foundation provides support to pediatric cancer patients and promotes awareness of the disease through education and sharing other inspiring stories.
Advocacy Award: Gift of Life Marrow Registry was established in 1991 by Jay Feinberg and his family after Jay received a life-saving bone marrow transplant. Gift of Life is dedicated to saving lives and facilitating bone marrow and blood stem cell transplants for patients with leukemia, lymphoma, sickle cell and other diseases. In 2019, Gift of Life opened the worlds first apheresis center fully integrated within a registry, the Dr. Miriam and Sheldon G. Adelson Gift of Life-Be The Match Stem Cell Collection Center. With the collection center and rapidly expanding donor database, Gift of Life will launch a biobank to advance cellular therapies using allogeneically sourced cells in 2020.
Leadership Award: Ret. Major General Bernard Burn Loeffke, PhD (US Military) is a highly decorated Special Forces officer, diplomat and medical officer.He survived two helicopter crashes and was wounded in combat. After the Vietnam War, he served as the Army Attach at theU.S. Embassy in Moscow, first Defense Attach at the U.S Embassy in Beijing, a staff officer in theWhite House, and Director of the Commission onWhite House Fellows. His last command was Commanding General of Army South. After 35 years in the military, he became a medical officer traveling the world on relief missions to third and fourth world countries. Presently, at age 85, he champions the hydrocephalus and wounded warrior communities. He continues to serve as an inspiration and supporter of building peaceful international relations through medical partnerships and played a pivotal role as a keynote speaker at the inaugural 2019 World Stem Cell Summit CHINA.He is called the Peace General in Latin America. In China, he is simply known as The General, our Friend.
To learn more about past honorees and details for sponsoring or attending the upcoming 2020 Stem Cell and Regenerative Medicine Action Awards dinner, please visit, https://www.worldstemcellsummit.com/stem-cell-action-awards/
About the World Stem Cell Summit (WSCS)
Produced by the non-profit Regenerative Medicine Foundation (RMF), and in its 15th year, the World Stem Cell Summit will take place January 21-24, 2020, in Miami, Florida in partnership with Phacilitate Leaders World, as part of Advanced Therapies Week. The Summit is the most inclusive and expansive interdisciplinary, networking, and partnering meeting in the stem cell science and regenerative medicine field. With the overarching purpose of fostering translation of biomedical research, funding, and investments targeting cures, the Summit and co-located conferences serve a diverse ecosystem of stakeholders. For more information about the upcoming World Stem Cell Summit in Miami, please visit: http://www.worldstemcellsummit.com.
About the Regenerative Medicine Foundation (RMF)
The nonprofit Regenerative Medicine Foundation fosters strategic collaborations to accelerate the development of regenerative medicine to improve health and deliver cures. RMF unites the worlds leading researchers, medical centers, universities, labs, businesses, funders, policymakers, experts in law, regulation and ethics, medical philanthropies, and patient organizations. We maintain a trusted network of leaders and pursue our mission by producing our flagship World Stem Cell Summit series of conferences and public days, honoring leaders through the Stem Cell and Regenerative Medicine Action Awards, supporting our official journal partner STEM CELLS Translational Medicine (SCTM), promoting solution-focused policy initiatives both nationally and internationally and creating STEM/STEAM educational projects. For more information about RMF, please visit: http://www.regmedfoundation.org.
Here is the original post:
Stem Cell and Regenerative Medicine Action Awards to be Presented at World Stem Cell Summit on January 23 at the Hyatt Regency Miami - GlobeNewswire
LEUKOTAC (inolimomab) is available again in France, following the granting of cohort ATU for the treatment of graft-versus-host disease,…
By daniellenierenberg
LEUKOTAC (inolimomab) is available again in France, following the granting of cohort ATU for the treatment of graft-versus-host disease, corticosteroid-resistant or corticosteroid-dependent, with grade II-IV
Lyon, FRANCE, January 9, 2020, ElsaLys Biotech announced today that the cATU has been granted by the ANSM and its clinical experts, after evaluation of a dossier containing data on the quality, safety and efficacy of the drug based on its administration in several hundred patients included in clinical trials or treatedvia named patient Temporary Authorization for Use (ATU nominative) until November 2015. This authorization includes the implementation of a reinforced monitoring (defined in the Protocol for Therapeutic Use) of the efficacy and safety data obtained in patients treated within the framework of this cATU. Inolimomab treatment can only be considered if the patient cannot be included in an ongoing clinical trial.
"We have data that support the benefit of inolimomab treatment in patients with acute corticosteroid-resistant or corticosteroid-dependent graft-versus-host disease (Grades II-IV in Glucksberg classification)," said Dr. David LIENS, Chief Medical Officer, ElsaLys Biotech. "We are delighted with this decision by the ANSM, which allows us to, once again, make inolimomab (1 mg/mL, solution for infusion) available to hematologists in the therapeutic emergency which is this pathology".
"While we continue to work on the filing of marketing authorization applications (MAA) in Europe and in the US, this ATU demonstrates the therapeutic value of inolimomab in the management of acute graft-versus-host disease (aGvHD). The ATU program in France allows patients, whose survival is at stake, to have access to a therapeutic solution before marketing in Europe, in close collaboration with the competent authority, the ANSM. The implementation of this cATU is effective immediately" said Dr. Christine GUILLEN, CEO and co-founder of ElsaLys Biotech.
Considering the potential emergency situation of the indication, it is recommended that hematology specialists anticipate the administrative procedures by contacting the ATU Cell (by Tel: 0800 08 90 81 - Fax: 01 56 59 05 60 or by e-mail: atu-leukotac@pharma-blue.com) which is at their disposal for any further information or request for a Protocol for Therapeutic Use and collection of information.
About inolimomab (LEUKOTAC)
Inolimomab (LEUKOTAC) is an immunotherapy monoclonal antibody that targets the interleukin-2 receptor (IL-2), a chemical molecule named cytokine that contributes to the development and proliferation of some white blood cells including T-cells responsible for aGvHD. By linking specifically to the a chain of the receptor (CD25), inolimomab prevents IL-2 from binding on the surface of the donors over-active T-cells which blocks their multiplication.
The efficacy of inolimomab in aGvHD lies mainly in its specificity and its preferential affinity to the CD25 receptor found on the surface of T-lymphocytes.
About steroid-resistant aGvHD
Formerly called bone marrow transplant, Hematopoietic Stem Cell Transplantation (HSCT) is the last therapeutic option for patients with certain blood cancers or severe immunodeficiency. In practice, the treatment is designed to replace the diseased blood cells of the patient with the hematopoietic stem cells of a matching donor (allograft).
Once grafted, these stem cells will produce new healthy and functional blood cells, including white blood cells that will allow patients to bridge their immune deficiency or to eliminate surviving cancer cells.
If this technique has made considerable progress in 60 years, half of transplant recipients are still victims of complications: side effects of conditioning pretreatment (that aims to prevent transplant rejection), long-term susceptibility to infections and GvHD. In the latter case, the donors over-active T-cells turn against the patients tissues: mucous membranes, skin, gastro-intestinal tract, liver and lungs. The acute form appears just after the transplant, the chronic form occurring several months later (preceded or not by an aGvHD).
Affecting between 30 to 55% of patients, GvHD is the main complication of transplantation. To halt this autoimmune disease, physicians combine corticosteroids with other immunosuppressive agents. The fact remains that some 30 to 50% of aGvHD gradually become resistant or dependant to these first-line treatments. To date clinicians do not have any standard of treatment approved in Europe for these patients for whom there is a strong unmet medical need. Thus, in Europe, 4,000 children and adults die each year from their aGvHD.
About ELSALYS BIOTECH
ELSALYS BIOTECH is a clinical stage immuno-oncology company which designs and develops a new generation of therapeutic antibodies targeting tumors and their immune and/or vascular microenvironment.
To convert these novel targets into drug candidates, the Company is currently conducting 5 proprietary development programs including inolimomab (LEUKOTAC), an immunotherapy antibody that has recently demonstrated its clinical superiority in Phase 3 and that is closed to market approval in an orphan post-cancer disease with very poor prognosis: steroid-resistant acute Graft-versus-Host Disease.
Founded in 2013, ELSALYS BIOTECH is located in the heart of the European cluster LYON BIOPOLE. Its shareholders are TRANSGENE, SOFIMAC INNOVATION, joined in 2015 by IM EUROPE, a subsidiary of INSTITUT MERIEUX, and CREDIT AGRICOLE CREATION, and in 2018 by LABORATOIRES THEA.
Stay in touch with ElsaLys Biotech and receive directly our press releases by filling our contact form on http://www.elsalysbiotech.com
And follow us on Twitter: @ElsalysBiotech
Contacts
ELSALYS BIOTECHDr. Christine GUILLENCEO and Co-founder+33 (0)4 37 28 73 00guillen@elsalysbiotech.com
PRESSEATCG PARTNERS Marie PUVIEUX (France) +33 (0)6 10 54 36 72Cline VOISIN (UK/US) +33 (0)6 62 12 53 39presse@atcg-partners.com
Adipose Derived Stem Cell Therapy Market Size, Analysis, Competitive Strategies and Forecasts, 2018-2026 – Primo Journal
By daniellenierenberg
Adipose Derived Stem Cell Therapy Market Report 2018-2026includes a comprehensive analysis of the present Market. The report starts with the basic Adipose Derived Stem Cell Therapy industry overview and then goes into each and every detail.
Adipose Derived Stem Cell Therapy Market Report contains in depth information major manufacturers, opportunities, challenges, and industry trends and their impact on the market forecast. Adipose Derived Stem Cell Therapy also provides data about the company and its operations. This report also provides information on the Pricing Strategy, Brand Strategy, Target Client, Distributors/Traders List offered by the company.
Adipose Derived Stem Cell Therapy Market competition by top manufacturers/players, with Adipose Derived Stem Cell Therapy sales volume, Price (USD/Unit), Revenue (Million USD) and Market Share for each manufacturer/player; the top players including: BioRestorative Therapies, Inc., Celltex Therapeutics Corporation, Antria, Inc., Cytori Therapeutics Inc., Intrexon Corporation, Mesoblast Ltd., iXCells Biotechnologies, Pluristem Therapeutics, Inc., Thermo Fisher Scientific, Inc., Tissue Genesis, Inc., Cyagen US Inc., Celprogen, Inc., and Lonza Group, among others.
Description:
Adipose derived stem cells (ADSCs) are stem cells derived from adipocytes, and can differentiate into variety of cell types. ADSCs have multipotency similar to bone marrow mesenchymal stem cells, thus ADSCs substitute for bone marrow as a source of stem cells. Numerous manual and automatic stem cell separation procedures are adopted in order to separate adipose stem cells (ASCs) from adipose tissue. Flow cytometry can also be used to isolate ADSCs from other stem cells within a cell solution.
Adipose derived stem cells are gaining appeal as a new cell source in regenerative medicine therapies as it can be differentiated into a variety of different cell lineages. These stem cells also have anti-apoptotic, anti-inflammatory, pro-angiogenic, immunomodulatory, and anti-scarring properties, which enhances its effectiveness.
Get Request Sample Copy of Research Report @ https://www.coherentmarketinsights.com/insight/request-sample/2357
Important Features that are under offer & key highlights of the report:
1) What all regional segmentation covered? Can the specific country of interest be added?Currently, the research report gives special attention and focus on the following regions:North America (U.S., Canada, Mexico), Europe (Germany, U.K., France, Italy, Russia, Spain etc), South America (Brazil, Argentina etc) & Middle East & Africa (Saudi Arabia, South Africa etc)** One country of specific interest can be included at no added cost. For inclusion of more regional segment quote may vary.
2) What all companies are currently profiled in the report?The report Contain the Major Key Players currently profiled in this market.** List of companies mentioned may vary in the final report subject to Name Change / Merger etc.
3) Can we add or profiled new company as per our need?Yes, we can add or profile new company as per client need in the report. Final confirmation to be provided by the research team depending upon the difficulty of the survey.** Data availability will be confirmed by research in case of a privately held company. Up to 3 players can be added at no added cost.
4) Can the inclusion of additional Segmentation / Market breakdown is possible?Yes, the inclusion of additional segmentation / Market breakdown is possible to subject to data availability and difficulty of the survey. However, a detailed requirement needs to be shared with our research before giving final confirmation to the client.** Depending upon the requirement the deliverable time and quote will vary.
Get PDF Brochure of Research Report @ https://www.coherentmarketinsights.com/insight/request-pdf/2357
Adipose Derived Stem Cell Therapy Market Dynamics in the world mainly, the worldwide 2018-2026 Adipose Derived Stem Cell Therapy Market is analyzed across major global regions. CMI also provides customized specific regional and country-level reports for the following areas:
Region Segmentation:
North America (USA, Canada and Mexico)Europe (Germany, France, UK, Russia and Italy)Asia-Pacific (China, Japan, Korea, India and Southeast Asia)South America (Brazil, Argentina, Columbia etc.)Middle East and Africa (Saudi Arabia, UAE, Egypt, Nigeria and South Africa)
Key questions answered in the report:
1. What will the market growth rate of Adipose Derived Stem Cell Therapy market in 20262. What are the key factors driving the global Adipose Derived Stem Cell Therapy market3. Who are the key manufacturers in Adipose Derived Stem Cell Therapy market space?4. What are the market opportunities, market risk and market overview of the Adipose Derived Stem Cell Therapy market?5. What are sales, revenue, and price analysis by types and applications of Adipose Derived Stem Cell Therapy market?6. What are sales, revenue, and price analysis by regions of Adipose Derived Stem Cell Therapy industry?
Further in the report, the Adipose Derived Stem Cell Therapy market is examined for Sales, Revenue, Price and Gross Margin. These points are analyzed for companies, types, and regions. In continuation with this data, the sale price is for various types, applications and region is also included. The Adipose Derived Stem Cell Therapy industry consumption for major regions is given. Additionally, type wise and application wise figures are also provided in this report.
Ask Query for more details @ https://www.coherentmarketinsights.com/insight/talk-to-analyst/2357
In this study, the years considered to estimate the market size of 2018-2026 Adipose Derived Stem Cell Therapy Market are as follows:History Year: 2015-2017Base Year: 2017Estimated Year: 2018Forecast Year 2018 to 2026
About Coherent Market Insights:
Coherent Market Insights is a prominent market research and consulting firm offering action-ready syndicated research reports, custom market analysis, consulting services, and competitive analysis through various recommendations related to emerging market trends, technologies, and potential absolute dollar opportunity.
Contact Us:
Name: Mr. Raj Shah
Phone: US +12067016702 / UK +4402081334027
Email: [emailprotected]
Visit our Blog: https://hospitalhealthcareblog.wordpress.com/
The rest is here:
Adipose Derived Stem Cell Therapy Market Size, Analysis, Competitive Strategies and Forecasts, 2018-2026 - Primo Journal
Why These 3 Oil and Gas Stocks Rose by Double Digits In December – Nasdaq
By daniellenierenberg
What happened
Shares of stocks across the oil and gas industry surged in December. These included shares of independent exploration and production companyNoble Energy(NYSE: NBL), and oilfield services companiesHalliburton(NYSE: HAL) andTechnipFMC(NYSE: FTI). The three companies' shares were up 19.7%, 16.6%, and 13.8%, respectively, according to data provided byS&P Global Market Intelligence.
This largely mirrored the performance of the oil and gas industry as a whole. Industrywide fundsSPDR Oil and Gas Exploration & Production ETFandSPDR Oil and Gas Equipment & Services ETFrose 16.4% and 18.1% for the month, respectively.
When oil prices go up, oil stocks outperform. Image source: Getty Images.
The price of crude oil was the major factor in the companies' December outperformance. After a rocky summer in which prices plunged, oil closed out the year with a sustained three-month rally. An early December OPEC production cut helped keep prices on the risein December. For the month, the international benchmark Brent Crude spot price rose 5.1% to finish the year at $67.77/barrel, while U.S. benchmark WTI Crude was up 9.2% to close out 2019 at $61.14/barrel.
While rising oil prices helped Noble Energy, it also had some good news from its gas operations. On December 31, the company announced that it had begun production at its aptly named Leviathan offshore field in Israel. Leviathan, which the company touts as "the largest natural gas field in the Eastern Mediterranean," is expected to initially produce1.2 billion cubic feet of natural gas per day, with further development projected.
While Noble was ramping up production in the Mediterranean, a slowdown in North American drilling activity was weighing down third quarter earnings at both Halliburton and TechnipFMC. However, Halliburton responded by promising aggressive cost cuts to ease what it sees as continued weakness in the sector.
TechnipFMC's December performance lagged its oilfield services peer Halliburton. Although both companies released poor Q3 2019 earnings reports in October, TechnipFMC's bottom line in particularfell way short of expectations. Management hopesto turn things around by splitting into two companies: an oil and gas engineering and construction company, and a more traditional oilfield services company. Investors may be waiting to buy in before the split occurs.
In the new year, as was true in December, one of the biggest issues that will affect share price growth for these companies -- and the industry generally -- is the price of oil.
In December, the U.S. Energy Information Administration (EIA) projected that Brent Crude spot prices would average $61/barrel in 2020, while WTI Crude would average $55.50/barrel. It cited a forecast of "rising global oil inventories, particularly in the first half of" 2020. Here's how that would compare to averages in recent years:
*Estimate as of 12/10/2019. Data source: U.S. Energy Information Administration. Chart by author.
Those projected average spot prices are lower than they've been for the last two years, and much lower than current prices. However, the EIA's estimate is just that, an estimate, and it could be way off. Nobody knows where oil prices are heading. News of the U.S. drone strike in the Middle East caused oil to briefly spike about 4%, before easing back down. However, the situation remains uncertain and could lead to higher prices -- which would likely benefit these three companies -- or not much of anything.
TechnipFMC hopes to make its split into two pure-play companies in the first half of this year, and until that dust settles, investors bullish on oil prices would be better off considering Halliburton or Noble. Investors who think oil prices are likely to sink probably want to steer clear.
10 stocks we like better than Noble EnergyWhen investing geniuses David and Tom Gardner have a stock tip, it can pay to listen. After all, the newsletter they have run for over a decade, Motley Fool Stock Advisor, has tripled the market.*
David and Tom just revealed what they believe are the ten best stocks for investors to buy right now... and Noble Energy wasn't one of them! That's right -- they think these 10 stocks are even better buys.
See the 10 stocks
*Stock Advisor returns as of December 1, 2019
John Bromels has no position in any of the stocks mentioned. The Motley Fool recommends TechnipFMC. The Motley Fool has a disclosure policy.
The views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.
See the original post here:
Why These 3 Oil and Gas Stocks Rose by Double Digits In December - Nasdaq
CohBar Discovers Novel Peptide Inhibitors of CXCR4, a Key Regulator of Tumor Growth and Metastasis | Proteins and Peptides | News Channels -…
By daniellenierenberg
DetailsCategory: Proteins and PeptidesPublished on Thursday, 09 January 2020 12:06Hits: 265
Anti-tumor effects demonstrated in vivo in preclinical melanoma immuno-oncology model
MENLO PARK, CA, USA I January 08, 2020 I CohBar, Inc. (NASDAQ: CWBR), a clinical stage biotechnology company developing mitochondria based therapeutics (MBTs) to treat chronic diseases and extend healthy lifespan, today announced the discovery of a series of novel mitochondrial peptide analogs with potent in vitro activity as selective inhibitors of C-X-C Chemokine Receptor Type 4 (CXCR4) and with preliminary in vivo efficacy in a mouse model of melanoma, including substantial reduction in tumor growth as compared to control animals. CXCR4 is a key regulatory receptor involved in tumor growth, invasion, angiogenesis, metastasis, and resistance to therapy.
This new discovery offers the potential to develop novel therapeutics for difficult-to-treat cancers, based on peptides encoded in the mitochondrial genome, said Ken Cundy, Ph.D., CohBars Chief Scientific Officer. Inhibition of this key regulatory pathway is potentially applicable to a wide range of cancers, as well as orphan indications where CXCR4 signaling is dysregulated.
Novel peptide analogs of a mitochondrially encoded peptide (MBT5) demonstrated potent and selective inhibition of human CXCR4 receptor in cell-based assays, with IC50 values in the low nanomolar concentration range. In a difficult-to-treat in vivo mouse model of melanoma, the B16F10 syngeneic tumor model, the combination of an analog of MBT5 administered subcutaneously with the chemotherapeutic temozolomide showed enhanced antitumor activity, reducing tumor growth after 11 days by 61% compared to control animals. The reduction in tumor growth produced by the combination exceeded the effect of either temozolomide used as a single agent, which reduced tumor growth by 38% compared to control, or the murine checkpoint inhibitor anti-PD-1 antibody, which had no effect on tumor growth in this model.
CohBar plans to further explore the efficacy of this new family of peptides in additional animal models with the goal of identifying a new clinical development MBT candidate.
These new data further expand our understanding of the broad regulatory influence exerted by mitochondria and the therapeutic potential of analogs of peptides encoded in mitochondrial DNA, said Steve Engle, CohBar CEO. We are just beginning to scratch the surface of this previously untapped field.
CXCR4 is overexpressed in more than 75% of cancers and high levels of the receptor are associated with poor survival prognosis. Inhibition of the CXCR4 receptor has been shown to mobilize immune cells, enhance the effects of chemotherapy and immunotherapy in various cancers, and reduce the development of metastatic tumors by blocking the ability of tumor cells to evade immune surveillance. CXCR4 also regulates the homing and retention of hematopoietic stem cells and malignant cells in the bone marrow.
Further details of these new studies will be available on the CohBar website at http://www.cohbar.com.
About CohBar
CohBar (NASDAQ: CWBR) is a clinical stage biotechnology company focused on the research and development of mitochondria based therapeutics, an emerging class of drugs for the treatment of chronic and age-related diseases. Mitochondria based therapeutics originate from the discovery by CohBars founders of a novel group of naturally occurring mitochondrial-derived peptides within the mitochondrial genome that regulate metabolism and cell death, and whose biological activity declines with age. To date, the company has discovered more than 100 mitochondrial-derived peptides. CohBars efforts focus on the development of these peptides into therapeutics that offer the potential to address a broad range of diseases, including nonalcoholic steatohepatitis (NASH), obesity, fibrotic diseases, cancer, type 2 diabetes, and cardiovascular and neurodegenerative diseases. The companys lead compound, CB4211, is in the phase 1b stage of a phase 1a/1b clinical trial that includes an evaluation of biological activity relevant to NASH and obesity.
For additional company information, please visit http://www.cohbar.com.
SOURCE: CohBar
The rest is here:
CohBar Discovers Novel Peptide Inhibitors of CXCR4, a Key Regulator of Tumor Growth and Metastasis | Proteins and Peptides | News Channels -...
The ‘supercells’ that cured an infant’s grave genetic illness – Japan Today
By daniellenierenberg
When a person's immune system is impaired by a genetic disease, a bone-marrow transplant can be a powerful therapeutic tool, but with a major downside: during the first few months the recipient's defenses against viruses are severely weakened. The slightest infection can lead to a hospital trip.
A still-experimental type of treatment known as T-cell therapy aims to assist during this vulnerable period -- the months during which the body is rebuilding its natural defenses. After two decades of clinical trials, the technology has been refined, and is being used to treat more and more patients, many of them children.
A boy named Johan is one of them.
Today he is a mischievous, smiling toddler with a thick shock of light-brown hair, who never tires, playfully tormenting the family's puppy, Henry. There is no sign of the three-year-long medical and emotional roller-coaster ride he and his family, who live in an affluent Washington suburb, have been on.
The first traumatic surprise came with the results of a pregnancy test: Johan was not planned.
"That was a huge shock. I cried," said his mother, 39-year-old Maren Chamorro.
She had known since childhood that she carried a gene that can be fatal in a child's first 10 years, chronic granulomatous disease (CGD). Her brother died of it at the age of seven. The inexorable laws of genetics meant that Maren had a one in four chance of transmitting it to her child.
For their first children, she and her husband Ricardo had chosen in-vitro fertilization, allowing the embryos to be genetically tested before implantation.
Their twins Thomas and Joanna were born -- both disease-free -- seven and a half years ago. But in Johan's case, a post-birth genetic test quickly confirmed the worst: he had CGD.
After conferring with experts at Children's National Hospital in Washington, the couple took one of the most important decisions of their lives: Johan would receive a bone-marrow transplant, a risky procedure but one that would give him a chance of a cure.
"Obviously, the fact that Maren had lost a sibling at a young age from the disease played a big role," Ricardo confided.
Bone marrow, the spongy tissue inside bones, serves as the body's "factory" for the production of blood cells -- both red and white.
Johan's white blood cells were incapable of fighting off bacteria and fungal infections. A simple bacterial infection, of negligible concern in a healthy child, could spread out of control in his young body.
Luckily, Johan's brother Thomas, six years old at the time, was a perfect match. In April 2018, doctors first "cleansed" Johan's marrow using chemotherapy. They then took a small amount of marrow from Thomas's hip bones using a long, thin needle.
From that sample they extracted "supercells," as Thomas calls them -- stem cells, which they reinjected into Johan's veins. Those cells would eventually settle in his bone marrow -- and begin producing normal white blood cells.
The second step was preventive cell therapy, under an experimental program led by immunologist Michael Keller at Children's National Hospital.
The part of the immune system that protects against bacteria can be rebuilt in only a matter of weeks; but for viruses, the natural process takes at least three months.
From Thomas's blood, doctors extracted specialized white blood cells -- T-cells -- that had already encountered six viruses.
Keller grew them for 10 days in an incubator, creating an army of hundreds of millions of those specialized T-cells. The result: a fluffy white substance contained in a small glass vial.
Those T-cells were then injected into Johan's veins, immediately conferring protection against the six viruses.
"He has his brother's immune system," said Keller, an assistant professor at Children's National.
Johan's mother confirmed as much: today, when Thomas and Johan catch a cold, they have the same symptoms, and for nearly the same amount of time.
"I think it's pretty cool to have immunity from your big brother," Maren Chamorro said.
This therapeutic approach -- boosting the body's immune system using cells from a donor or one's own genetically modified cells -- is known as immunotherapy.
Its main use so far has been against cancer, but Keller hopes it will soon become available against viruses for patients, like Johan, who suffer from depressed immune systems.
The chief obstacles to that happening are the complexity of the process and the costs, which can run to many thousands of dollars. These factors currently restrict the procedure to some 30 medical centers in the United States.
For Johan, a year and a half after his bone marrow transplant, everything points to a complete success.
"It's neat to see him processing things, and especially play outside in the mud," his mother said. "You know, what a gift!"
Her only concern now is the same as any mother would have -- that when her son does fall ill, others in the family might catch the same bug.
Read the rest here:
The 'supercells' that cured an infant's grave genetic illness - Japan Today
Mum’s ‘excruciating’ battle with lifelong disease that requires regular blood transfusions – Nottinghamshire Live
By daniellenierenberg
Daily life can be excruciatingly painful and tiring for a West Bridgford mum suffering with a lifelong inherited blood disease.
Oyesola Oni, 37, was born with sickle cell disease and has to have eight pints of blood transfused into her body every six weeks at Nottingham City Hospital.
Sickle cell can cause serious and potentially fatal complications such as organ damage, stroke, death to bone tissue and acute chest syndrome.
People with sickle cell disease produce "unusually shaped" red blood cells that can cause problems because they do not live as long as healthy blood cells. They can also block blood vessels.
If both parents have the gene that affects red blood cells, there's a one in four chance of each child they have being born with the disease.
I mainly get crisis pains in my ribs, legs, hips, my back and my lower abdomen. You cant describe the pain," said Oye, of West Bridgford.
"Its like something stabbing me, at other times its like something crushing my bones. Its excruciating."
The only cure for sickle cell disease is astem cell or bone marrow transplant,but they're not done very often because of the risks involved.
Her story comes as the NHS launch a call for more men to donate blood in 2020 because of a "serious imbalance" in the gender of new donors.
The mum has regular red cell transfusions for sickle cell disease after several years of her condition getting worse.
Having a secure supply of blood is particularly important for people like Mrs Oni, who receive many transfusions over their lives.
The mum to daughter Ade, 12, who does not have sickle cell, said people who donate the blood that she receives are "heroes that dont wear capes".
They give blood to someone they dont know its amazing, very selfless. Its an extraordinary thing to do and I hope more men start donating blood in the New Year," she added.
"Having the transfusions gives me so much more energy, keeps me out of hospital and allows me to spend more time with my family."
The mum said she hopes to return to work as in customer services thanks to the continued transfusions.
During 2019, 43 percent of the new donors at Nottingham Donor Centre were men.
Until the end of November, 1,203 women started donating blood in Nottingham but only 898 men.
The NHS said this is a concern because men have higher iron levels and only mens blood can be used for some transfusions and products.
Without more men starting to give blood, blood stocks will come under increasing pressure in future years, the NHS has warned.
Mike Stredder, the head of donor recruitment for NHS Blood and Transplant, added: All our donors are amazing. But we need more men to start donating blood in Nottingham during the New Year.
"Mens blood can be used in extraordinary, lifesaving ways, but we dont have enough new male donors coming forward.
"This is not about recruiting as many donors as possible its about getting the right gender mix.
If you cant find an appointment right away dont worry your blood will do extraordinary things if you donate in a few weeks instead."
Read more here:
Mum's 'excruciating' battle with lifelong disease that requires regular blood transfusions - Nottinghamshire Live
CohBar Discovers Novel Peptide Inhibitors of CXCR4, a Key Regulator of Tumor Growth and Metastasis – Associated Press
By daniellenierenberg
MENLO PARK, Calif., Jan. 08, 2020 (GLOBE NEWSWIRE) -- CohBar, Inc. (NASDAQ: CWBR), a clinical stage biotechnology company developing mitochondria based therapeutics (MBTs) to treat chronic diseases and extend healthy lifespan, today announced the discovery of a series of novel mitochondrial peptide analogs with potent in vitro activity as selective inhibitors of C-X-C Chemokine Receptor Type 4 (CXCR4) and with preliminary in vivo efficacy in a mouse model of melanoma, including substantial reduction in tumor growth as compared to control animals. CXCR4 is a key regulatory receptor involved in tumor growth, invasion, angiogenesis, metastasis, and resistance to therapy.
This new discovery offers the potential to develop novel therapeutics for difficult-to-treat cancers, based on peptides encoded in the mitochondrial genome, said Ken Cundy, Ph.D., CohBars Chief Scientific Officer. Inhibition of this key regulatory pathway is potentially applicable to a wide range of cancers, as well as orphan indications where CXCR4 signaling is dysregulated.
Novel peptide analogs of a mitochondrially encoded peptide (MBT5) demonstrated potent and selective inhibition of human CXCR4 receptor in cell-based assays, with IC50 values in the low nanomolar concentration range. In a difficult-to-treat in vivo mouse model of melanoma, the B16F10 syngeneic tumor model, the combination of an analog of MBT5 administered subcutaneously with the chemotherapeutic temozolomide showed enhanced antitumor activity, reducing tumor growth after 11 days by 61% compared to control animals. The reduction in tumor growth produced by the combination exceeded the effect of either temozolomide used as a single agent, which reduced tumor growth by 38% compared to control, or the murine checkpoint inhibitor anti-PD-1 antibody, which had no effect on tumor growth in this model.
CohBar plans to further explore the efficacy of this new family of peptides in additional animal models with the goal of identifying a new clinical development MBT candidate.
These new data further expand our understanding of the broad regulatory influence exerted by mitochondria and the therapeutic potential of analogs of peptides encoded in mitochondrial DNA, said Steve Engle, CohBar CEO. We are just beginning to scratch the surface of this previously untapped field.
CXCR4 is overexpressed in more than 75% of cancers and high levels of the receptor are associated with poor survival prognosis. Inhibition of the CXCR4 receptor has been shown to mobilize immune cells, enhance the effects of chemotherapy and immunotherapy in various cancers, and reduce the development of metastatic tumors by blocking the ability of tumor cells to evade immune surveillance. CXCR4 also regulates the homing and retention of hematopoietic stem cells and malignant cells in the bone marrow.
Further details of these new studies will be available on the CohBar website at http://www.cohbar.com.
About CohBar
CohBar (NASDAQ: CWBR) is a clinical stage biotechnology company focused on the research and development of mitochondria based therapeutics, an emerging class of drugs for the treatment of chronic and age-related diseases. Mitochondria based therapeutics originate from the discovery by CohBars founders of a novel group of naturally occurring mitochondrial-derived peptides within the mitochondrial genome that regulate metabolism and cell death, and whose biological activity declines with age. To date, the company has discovered more than 100 mitochondrial-derived peptides. CohBars efforts focus on the development of these peptides into therapeutics that offer the potential to address a broad range of diseases, including nonalcoholic steatohepatitis (NASH), obesity, fibrotic diseases, cancer, type 2 diabetes, and cardiovascular and neurodegenerative diseases. The companys lead compound, CB4211, is in the phase 1b stage of a phase 1a/1b clinical trial that includes an evaluation of biological activity relevant to NASH and obesity.
For additional company information, please visit http://www.cohbar.com.
Forward-Looking Statements
This news release contains forward-looking statements which are not historical facts within the meaning of the Private Securities Litigation Reform Act of 1995. Forward-looking statements are based only on our current beliefs, expectations and assumptions regarding the future of our business, future plans and strategies, projections, anticipated events and other future conditions. In some cases you can identify these statements by forward-looking words such as believe, may, will, estimate, continue, anticipate, intend, could, should, would, project, plan, expect, goal, seek, future, likely or the negative or plural of these words or similar expressions. Examples of such forward-looking statements including but not limited to statements regarding the ability of mitochondrial peptide analogs to reduce tumor growth in mice; anticipated outcomes of research and clinical trials for our mitochondria based therapeutic (MBT) candidates; expectations regarding the growth of MBTs as a significant future class of drug products; and statements regarding anticipated therapeutic properties and potential of our mitochondrial peptide analogs and MBTs. You are cautioned that such statements are not guarantees of future performance and that actual results or developments may differ materially from those set forth in these forward looking statements. Factors that could cause actual results to differ materially from these forward-looking statements include: our ability to successfully advance drug discovery and development programs, including the delay or termination of ongoing clinical trials; our possible inability to mitigate the prevalence and/or persistence of the injection site reactions, receipt of unfavorable feedback from regulators regarding the safety or tolerability of CB4211 or the possibility of other developments affecting the viability of CB4211 as a clinical candidate or its commercial potential; results that are different from earlier data results including less favorable than and that may not support further clinical development; our ability to raise additional capital when necessary to continue our operations; our ability to recruit and retain key management and scientific personnel; and our ability to establish and maintain partnerships with corporate and industry partners. Additional assumptions, risks and uncertainties are described in detail in our registration statements, reports and other filings with the Securities and Exchange Commission and applicable Canadian securities regulators, which are available on our website, and at http://www.sec.gov or http://www.sedar.com.
You are cautioned that such statements are not guarantees of future performance and that our actual results may differ materially from those set forth in the forward-looking statements. The forward-looking statements and other information contained in this news release are made as of the date hereof and CohBar does not undertake any obligation to update publicly or revise any forward-looking statements or information, whether as a result of new information, future events or otherwise, unless so required by applicable securities laws. Nothing herein shall constitute an offer to sell or the solicitation of an offer to buy any securities.
Investor and Media Contact:Jordyn TaraziDirector of Investor RelationsCohBar, Inc.(650) 445-4441 Jordyn.tarazi@cohbar.com
Joyce AllaireLifeSci Advisors, LLC jallaire@lifesciadvisors.com
Read more here:
CohBar Discovers Novel Peptide Inhibitors of CXCR4, a Key Regulator of Tumor Growth and Metastasis - Associated Press
New Treatment Approved in Canada for Most Common Type of Leukemia – Canada NewsWire
By daniellenierenberg
CALQUENCE (acalabrutinib) is now available for adult patients with previously untreated and relapsed/refractory chronic lymphocytic leukemia
MISSISSAUGA, ON, Jan. 8, 2020 /CNW/ - AstraZeneca Canada today announced that Health Canada has approved Calquence (acalabrutinib), an oral Bruton's tyrosine kinase (BTK) inhibitor, for the treatment of adult patients with chronic lymphocytic leukemia (CLL), as monotherapy or in combination with obinutuzumab in the first-line setting, and as monotherapy for relapsed/refractory (r/r) disease.1
CLL is the most common type of leukemia in adults, accounting for 44 per cent of all cases in Canada.2 Morethan 2,200 people in Canada are diagnosed with the disease each year and more than 600 will die from it.3,4 Despite advancements in the treatment of CLL, there is still no cure for the disease and even after successful initial treatment, some patients may relapse, leaving them in need of further innovation.
"CLL is most often diagnosed when patients are more than 60 years old, at a time when they are already dealing with other health conditions related to aging and are trying to maintain the best quality of life," says Antonella Rizza, CEO of Lymphoma Canada. "Today's announcement offers Canadians living with CLL an important new option for this incurable but treatable disease."'
The Canadian approval was granted under Project Orbis, a new international health authority collaboration which provides a framework for simultaneous submission and review of oncology products among international partners.5Under this collaboration, Health Canada, the U.S. FDA, and the Australian Therapeutic Goods Administration (TGA) collectively reviewed the application for Calquence, making it the second treatment approved as part of the program and the first in hematology.
"In the last several years, we've been moving away from traditional chemotherapies to more targeted therapies for CLL." said Dr. Carolyn Owen, Alberta Health Services, Calgary. "Health Canada's approval of acalabrutinib provides a new effective and well tolerated treatment option for CLL patients and improves their treatment options."
The Health Canada approval of Calquence was based on positive interim data from two Phase III clinical trials, ELEVATE-TN and ASCEND.6,7The ELEVATE-TN trial evaluated the safety and efficacy of Calquence in combination with obinutuzumab, a CD20 monoclonal antibody, or Calquence alone versus chlorambucil, a chemotherapy, in combination with obinutuzumab in previously untreated patients with CLL. The ASCEND trial evaluated the efficacy of Calquence in previously treated patients with CLL.Together, the trials showed that Calquence in combination with obinutuzumab or as a monotherapy significantly reduced the relative risk of disease progression or death. Across both trials, the safety and tolerability of Calquence were consistent with its established profile.1
About chronic lymphocytic leukemia (CLL)Chronic lymphocytic leukemia is the most common type of leukemia in adults, which begins in the bone marrow, and progresses slowly.8 In CLL, too many blood stem cells in the bone marrow become abnormal lymphocytes and these abnormal cells have difficulty fighting infections.9 As the number of abnormal cells grows there is less room for healthy white blood cells, red blood cells and platelets.9This could result in anaemia, infection and bleeding.9B-cell receptor signalling through BTK is one of the essential growth pathways for CLL. Many people with CLL do not have any symptoms upon diagnosis, and the disease is often found in blood tests for unrelated health problems.10
AboutCalquenceCalquence(acalabrutinib; previously known as ACP-196) is a selective inhibitor of Bruton's tyrosine kinase (BTK).1Calquencebinds covalently to BTK, thereby inhibiting its activity, and has demonstrated this with minimal interactions with other immune cells in pre-clinical studies.1,6,7In B cells, BTK signaling results in activation of pathways necessary for B cell proliferation, trafficking, chemotaxis and adhesion.1 The recommended dose ofCalquenceis one 100mg capsule taken orally twice daily (approximately 12 hours apart), until disease progression or unacceptable toxicity.1Calquencemay be taken with or without food.1
About AstraZenecaAstraZeneca is a global, innovation-driven biopharmaceutical business with a primary focus on the discovery, development and commercialization of primary and specialty care medicines that transform lives. Our primary focus is on three important areas of healthcare: Cardiovascular and Metabolic disease; Oncology; and Respiratory, Inflammation and Autoimmunity. AstraZeneca operates in more than 100 countries and its innovative medicines are used by millions of patients worldwide. In Canada, we employ more than 675 employees across the country and our headquarters are located in Mississauga, Ontario. For more information, please visit the company's website at http://www.astrazeneca.ca.
References
SOURCE AstraZeneca Canada Inc.
For further information: AstraZeneca Corporate Communications, [emailprotected]; Hibaq Ali, Weber Shandwick Canada, [emailprotected] / tel: 416-642-7915
View post:
New Treatment Approved in Canada for Most Common Type of Leukemia - Canada NewsWire
Contemporary Bone Alleviates Mechanisms Have Prospective Therapeutic Applications – MENAFN.COM
By daniellenierenberg
(MENAFN - Fior Markets)
Spearheaded by researchers at Baylor College of Medicine divulges a contemporary mechanism that donates to adult bone conservation and restores and unfurls the possibility of advancing the therapeutic plan of action for enhancing bone healing.
Corresponding author Dr. Dongsu Park professor of molecular and human genetics said that adult bone repairs depend on the setting off of bone stem cells which yet remains deficiently distinguished. Bone stem cells have been discovered both in the bone marrow interior of the bone and also in the periosteum the exterior layer of the tissue that wraps the bone. Former studies have portrayed that these two communities of stem cell albeit they apportion various characteristics also have distinctive functions and particular regulatory processes.
Of the two periosteal steam cells are the minimalistcomprehended. It is known that they constitute a heterogeneous population ofcells that can bestow to bone density, molding and rupture restoration,however, scientists had not been able to discern between varied subtypes of thebone stem cell to scrutinize how their varied purposes are controlled.
In the present study Park and his colleagues advanced aprocedure to recognize varied subpopulations of periosteal stem cells expoundtheir benefaction to bone fracture restoration in animate mouse models andrecognize particular components that control their migration and multiplicationunder psychological circumstances.
The researchers found particular trademarks for periosteal stem cells in mouse models. The trademarks recognized a definite subset of stem cells that donates to long-lasting adult bone resurrection.
MENAFN07012020007010660ID1099519082
See the article here:
Contemporary Bone Alleviates Mechanisms Have Prospective Therapeutic Applications - MENAFN.COM