Page 30«..1020..29303132..4050..»

Genenta’s Temferon: Evidence of Controlled and Targeted Interferon Expression in Preliminary Phase I/II Clinical Data in Glioblastoma MultiformeData…

By daniellenierenberg

MILAN, Italy and NEW YORK, Nov. 16, 2020 (GLOBE NEWSWIRE) -- Genenta Science, a clinical-stage biotechnology company pioneering the development of hematopoietic stem progenitor cell immuno-gene therapy for cancer (Temferon), presents new preliminaryclinical data from a Phase I/IIa study of Temferon in patients affected by glioblastoma multiforme (GBM) at the 2020 Society for Neuro-Oncology (SNO) Annual Meeting, taking place November 19-22 in Austin, TX.

To date, ten patients were enrolled and eight were treated. Temferon was well tolerated, as suggested by the rapid hematological recovery and engraftment of modified cells observed in all the treated patients. No dose limiting toxicities were identified.

T-cell immunorepertoire changes were observed after treatment with evidence for clonal expansion, including tumor associated clones, suggesting a possible reset of T-cell responses, which are known to play a key role in the tumor-induced tolerance.

Interferon-alpha (IFN-) response was identified across a number of tumor infiltrating myeloid cells while a low concentration of IFN- was detected in the plasma and cerebrospinal fluid (CSF) of patients. This provides evidence that the Temferon built-in control mechanism is working to reduce the risk of IFN- off-target effects preserving the desired in situ biological effects.

Pierluigi Paracchi, Chairman and Chief Executive Officer at Genenta Science, said: These preliminary results are exciting indications of the feasibility, safety and local biological activity of our approach. The data are encouraging and in line with our pre-clinical results, with preliminary evidence of changes in the immune system and that Temferon is well tolerated without systemic toxicities.

Temferon-derived differentiated cells, as determined by vector copy number (VCN) in peripheral blood and bone marrow, were evident within 14 days of treatment and persist in peripheral blood in the long term (up to one year). Preliminary data on tumor specimens at second surgery confirmed the presence of TEMs and suggested that a higher IFN response gene signature may occur after treatment in stable lesions, compared to lesions that progress.

About Genenta Science

Genenta (www.genenta.com) is a clinical-stage biotechnology company pioneering the development of a proprietary hematopoietic stem cell gene therapy for cancer. Temferon is based on ex-vivo gene transfer into autologous hematopoietic stem/progenitor cells (HSPCs) to deliver immunomodulatory molecules directly via tumor-infiltrating monocytes/macrophages (Tie2 Expressing Monocytes - TEMs). TemferonTM, which is under investigation in a Phase I/IIa clinical trial in newly diagnosed Glioblastoma Multiforme patients, is not restricted to pre-selected tumor antigens nor type and may reach solid tumors, one of the main unresolved challenge in immuno-oncology. Based in Milan, Italy, and New York, USA, Genenta has raised more than 33.6 million (~$40 million) in three separate rounds of financing.

The rest is here:
Genenta's Temferon: Evidence of Controlled and Targeted Interferon Expression in Preliminary Phase I/II Clinical Data in Glioblastoma MultiformeData...

To Read More: Genenta’s Temferon: Evidence of Controlled and Targeted Interferon Expression in Preliminary Phase I/II Clinical Data in Glioblastoma MultiformeData…
categoriaBone Marrow Stem Cells commentoComments Off on Genenta’s Temferon: Evidence of Controlled and Targeted Interferon Expression in Preliminary Phase I/II Clinical Data in Glioblastoma MultiformeData… | dataNovember 16th, 2020
Read All

It’s time for Kentucky to talk to expectant parents about benefits of cord blood banking – Courier Journal

By daniellenierenberg

Paula Grisanti, Opinion contributor Published 6:20 a.m. ET Nov. 9, 2020

This year, Nov.17 has been designated World Cord Blood Day, an annual event to raise awareness for the life-saving benefits of cord blood transplants while educating parents, health professionals and the general public about the need to preserve these precious cells.

Cord blood transplants are being used to treat more than 80 different diseases and conditions including blood cancers like leukemia and lymphoma, neuroblastoma (the most common cancer in infants), bone-marrow failure disorders, inherited blood disorders and rare immune system disorders. They are also showing new promise for conditions that have never had treatment options, like autism and brain injury.

The first cord blood stem cell transplant, an international effort between physicians in the U.S. and Europe, was performed in France in 1988. Stem cells collected from a newborns umbilical cord blood were used to save the life of her brother, a 5-year-old with Fanconi Anemia. Since then, there have been more than 40,000 cord blood transplants performed worldwide.

Now standard of care for cancers of the blood and a host of other life-threatening diseases, blood forming stem cells for transplantation can be collected from bone marrow, circulating bloodor a newborn babys umbilical cord blood. Some experts believe cord blood contains nearly 10 times the number of stem cells found in bone marrow.

Because umbilical cord stem cells are less mature than adult bone marrow stem cells, they are also less likely to be rejected and can be used when there isnt a perfect match.

Between these threeoptions, the easiest collection by far is from umbilical cord and placental tissue after a baby is born and the umbilical cord has been cut, at no risk to mother or child, in a process that typically takes 5 to 10 minutes. The cells are then frozen in liquid nitrogen and can be stored indefinitely in private or public cord blood banks.

To store your babys cord blood for use by your child and your family only, you make arrangements with a private cord blood bank ahead of delivery to collect and store the cells; the cost to you includes a collection fee of $1,500 to $2,000 and an annual storage fee of $100 to $125.

If you cant afford or dont wish to save your babys cord blood stem cells, you can donate them to a public cord blood bank at no cost to you or your family.

Its the equivalent of registering these potentially life-saving cells with the national bone marrow registry; they will be available to the families of other children who need to find a bone marrow match after a devastating diagnosis. Without information and education, however, 95% of all cord blood is discarded as medical waste.

Right now, there is no public cord banking option in Kentucky, although public cord blood banking is highly recommended by both the American Academy of Pediatrics (AAP) and the American Medical Association (AMA). There are fewer than 25 public or hybrid cord blood banks in the U.S., many limited to a specific geographic area. None of them include Kentucky.

The chances of finding a bone marrow match in your family are only about 25%, making the bone marrow and umbilical cord blood registries a lifeline in desperate situations. Odds are worse for African Americans and other ethnic minorities who are underrepresented on the registry and ethnicity matters in a bone marrow transplant.

Donating cord blood cells to a public bank adds to the library of cells that may save someones life and increases the chance of a match for all of us. Who benefits most? Children, patients with rare human leukocyte antigen (HLA) types and ethnic minorities.

We need to do two things: Make public cord blood banking an option in the commonwealth of Kentucky, and then encourage conversations between health care providers and expectant parents about preserving these life-saving cells.

There are 28 states with legislation that ask or mandates physicians to talk to expectant parents about cord blood banking. Kentucky is not one of them, but most of our surrounding states have such legislation in place.

Through a long-standing relationship between the National Stem Cell Foundationand world-renowned cord blood expert Dr. Joanne Kurtzberg, we have a path forward for training hospitals and collecting cells for storage at the Carolinas Cord Blood Bank (CCBB), one of the largest public cord blood banks in the world. Dr. Kurtzberg directs both the Pediatric Blood and Marrow Transplant (PBMT) program at Duke University and the CCBB.

She performed the worlds first unrelated cord blood transplant in 1993, paving the way for this now routine source of donor cells for children who need a bone marrow transplant and dont have a matched donor. She established the CCBB in 1998.

Paula Grisanti is CEO of the National Stem Cell Foundation.(Photo: provided)

While weve initiated discussions between Louisville hospital systems and the CCBB, we need to begin the process of education for parents, nursing and medical school students, residents, midwives, practicing OB-GYNs and the general public.

What a waste to discard these life-saving cells the future of current and developing therapies for disabling and life-threatening diseases depends on our ability to make sure that doesnt happen.

Dr. Paula Grisanti is CEO and a founding member of the National Stem Cell Foundation, headquartered in Louisville, Kentucky. She holds a D.M.D. and MBA from the University of Louisville and has been actively involved in new venture start-ups for most of her career.

Read or Share this story: https://www.courier-journal.com/story/opinion/2020/11/09/expectant-parents-need-to-know-benefits-of-cord-blood-banking/6064540002/

Read more here:
It's time for Kentucky to talk to expectant parents about benefits of cord blood banking - Courier Journal

To Read More: It’s time for Kentucky to talk to expectant parents about benefits of cord blood banking – Courier Journal
categoriaBone Marrow Stem Cells commentoComments Off on It’s time for Kentucky to talk to expectant parents about benefits of cord blood banking – Courier Journal | dataNovember 12th, 2020
Read All

Actinium to Host KOL Call on November 11th Featuring Actimab-A AML Combination Trials – Salamanca Press

By daniellenierenberg

NEW YORK, Nov. 11, 2020 /PRNewswire/ --Actinium Pharmaceuticals, Inc. (NYSE AMERICAN: ATNM) ("Actinium") today announced that it will host a CD33 program update featuring two key opinion leaders (KOLs) today, November 11th at 4:15 PM ET. The event will feature KOLs Dr. Ehab Atallah from the Medical College of Wisconsin, the senior investigator of the Actimab-A CLAG-M combination trial and Dr. Gary Schiller from the University of California Los Angeles Health, the principal investigator for the Actimab-A venetoclax combination trial as well as members of Actinium's management team. Both KOL's will review data that was included in abstracts accepted for presentation at the 62nd American Society of Hematology (ASH) Annual Meeting. They will also provide their perspectives on the treatment landscape and medical need each trial potentially addresses.

Actimab-A AML Combinations Update Call DetailsWebcast link:https://ir.actiniumpharma.com/presentations-webinarsDate: November 11, 2020Time: 4:15 PM ET

Dr. Ehab Atallah, MD, is a Professor of Medicine and Section Head of Hematological Malignancies at the Medical College of Wisconsin Division of Hematology and Oncology, specializing in leukemia and myelodysplastic syndromes at Froedtert Hospital. Dr Atallah, as senior investigator, will review the Phase 1 data from the Actimab-A CLAG-M combination trial in relapsed or refractory acute myeloid leukemia (R/R AML) that demonstrated 100% remission in the third and planned final dose cohort. Further, 83% of patients (10/12) who received 3 or fewer prior lines of treatment achieved CR or CRi. Notably, 70% of CR/CRi patients (7/10) were MRD negative indicating a deep remission with no detectable disease. Dr. Atallah will also discuss the trial data in the context of data available for other treatment options, including recently approved and novel agents in development, in the fit R/R AML population.

Dr. Gary Schiller, MD, is the Director of Bone Marrow/Stem Cell Transplantation and Professor of Hematology-Oncology at UCLA. Dr. Schiller, a well-published clinical investigator in acute and chronic leukemias and other hematologic malignancies, is the principal investigator on the Phase 1/2 clinical trial of Actimab-A and venetoclax. Dr. Schiller will discuss the lack of viable treatment options for R/R AML and the available opportunity for combination regimens such as Actimab-A plus venetoclax. Last week, the company announced that first-in-human data in this combination trial had been accepted for poster presentation at ASH in December. The trial is in the dose escalation phase with proof of concept data expected in 2021.

CD33 Program ASH Abstract Links

Oral Presentation Title: A Phase I Study of Lintuzumab Ac225 in Combination with CLAG-M Chemotherapy in Relapsed/Refractory AMLPublication Number: 165Link: https://ash.confex.com/ash/2020/webprogram/Paper137218.html

Poster Title: Lintuzumab-225Ac in Combination with Venetoclax in Relapsed/Refractory AML: Early Results of a Phase I/II StudyPublication Number: 2875Link: https://ash.confex.com/ash/2020/webprogram/Paper141132.html

About Actinium's CD33 Program

Actinium's CD33 program is evaluating the clinical utility of Actimab-A, an ARC comprised of the anti-CD33 mAb lintuzumab linked to the potent alpha-emitting radioisotope Actinium-225 or Ac-225. CD33 is expressed in the majority of patients with AML and myelodysplastic syndrome, or MDS, as well as patients with multiple myeloma. The CD33 development program is driven by data from over one hundred and twenty-five treated patients, including a Phase 1/2 trial where Actimab-A produced a remission rate as high as 69% as a single agent. This clinical data is shaping a two-pronged approach for the CD33 program, where at low doses the Company is exploring its use for therapeutic purposes in combination with other modalities and at high doses for use for targeted conditioning prior to bone marrow transplant.Actinium currently has multiple clinical trials ongoing including the Phase 1 Actimab-A CLAG-M and Phase 1/2 Actimab-A venetoclax combination trials and is exploring additional CD33 ARC combinations with other therapeutic modalities such as chemotherapy, targeted agents or immunotherapy.

About Actinium Pharmaceuticals, Inc. (NYSE: ATNM)

Actinium Pharmaceuticals, Inc. is a clinical-stage biopharmaceutical company developing ARCs or Antibody Radiation-Conjugates, which combine the targeting ability of antibodies with the cell killing ability of radiation. Actinium's lead application for our ARCs is targeted conditioning, which is intended to selectively deplete a patient's disease or cancer cells and certain immune cells prior to a BMT or Bone Marrow Transplant, Gene Therapy or Adoptive Cell Therapy (ACT) such as CAR-T to enable engraftment of these transplanted cells with minimal toxicities. With our ARC approach, we seek to improve patient outcomes and access to these potentially curative treatments by eliminating or reducing the non-targeted chemotherapy that is used for conditioning in standard practice currently. Our lead product candidate, I-131 apamistamab (Iomab-B) is being studied in the ongoing pivotal Phase 3 Study of Iomab-B in Elderly Relapsed or Refractory Acute Myeloid Leukemia (SIERRA) trial for BMT conditioning. The SIERRA trial is over seventy-five percent enrolled and positive single-agent, feasibility and safety data has been highlighted at ASH, TCT, ASCO and SOHO annual meetings. More information on this Phase 3 clinical trial can be found at sierratrial.com. I-131 apamistamab will also be studied as a targeted conditioning agent in a Phase 1 study with a CD19 CAR T-cell Therapy and Phase 1/2 anti-HIV stem cell gene therapy with UC Davis. In addition, we are developing a multi-disease, multi-target pipeline of clinical-stage ARCs targeting the antigens CD45 and CD33 for targeted conditioning and as a therapeutic either in combination with other therapeutic modalities or as a single agent for patients with a broad range of hematologic malignancies including acute myeloid leukemia, myelodysplastic syndrome and multiple myeloma. Ongoing combination trials include our CD33 alpha ARC, Actimab-A, in combination with the salvage chemotherapy CLAG-M and the Bcl-2 targeted therapy venetoclax. Underpinning our clinical programs is our proprietary AWE (Antibody Warhead Enabling) technology platform. This is where our intellectual property portfolio of over 100 patents, know-how, collective research and expertise in the field are being leveraged to construct and study novel ARCs and ARC combinations to bolster our pipeline for strategic purposes. Our AWE technology platform is currently being utilized in a collaborative research partnership with Astellas Pharma, Inc. Website: https://www.actiniumpharma.com/

Forward-Looking Statements for Actinium Pharmaceuticals, Inc.

This press release may contain projections or other "forward-looking statements" within the meaning of the "safe-harbor" provisions of the private securities litigation reform act of 1995 regarding future events or the future financial performance of the Company which the Company undertakes no obligation to update. These statements are based on management's current expectations and are subject to risks and uncertainties that may cause actual results to differ materially from the anticipated or estimated future results, including the risks and uncertainties associated with preliminary study results varying from final results, estimates of potential markets for drugs under development, clinical trials, actions by the FDA and other governmental agencies, regulatory clearances, responses to regulatory matters, the market demand for and acceptance of Actinium's products and services, performance of clinical research organizations and other risks detailed from time to time in Actinium's filings with the Securities and Exchange Commission (the "SEC"), including without limitation its most recent annual report on form 10-K, subsequent quarterly reports on Forms 10-Q and Forms 8-K, each as amended and supplemented from time to time.

Contacts:

Investors:Clayton RobertsonActinium Pharmaceuticals, Inc.crobertson@actiniumpharma.com

Hans VitzthumLifeSci Advisors, LLCHans@LifeSciAdvisors.com(617) 430-7578

Go here to read the rest:
Actinium to Host KOL Call on November 11th Featuring Actimab-A AML Combination Trials - Salamanca Press

To Read More: Actinium to Host KOL Call on November 11th Featuring Actimab-A AML Combination Trials – Salamanca Press
categoriaBone Marrow Stem Cells commentoComments Off on Actinium to Host KOL Call on November 11th Featuring Actimab-A AML Combination Trials – Salamanca Press | dataNovember 12th, 2020
Read All

Bone Marrow Processing System Market Industry Outlook, Growth Prospects and Key Opportunities – The Daily Philadelphian

By daniellenierenberg

Bone marrow aspiration and trephine biopsy are usually performed on the back of the hipbone, or posterior iliac crest. An aspirate can also be obtained from the sternum (breastbone). For the sternal aspirate, the patient lies on their back, with a pillow under the shoulder to raise the chest. A trephine biopsy should never be performed on the sternum, due to the risk of injury to blood vessels, lungs or the heart.

The need to selectively isolate and concentrate selective cells, such as mononuclear cells, allogeneic cancer cells, T cells and others, is driving the market. Over 30,000 bone marrow transplants occur every year. The explosive growth of stem cells therapies represents the largest growth opportunity for bone marrow processing systems.Europe and North America spearheaded the market as of 2016, by contributing over 74.0% to the overall revenue. Majority of stem cell transplants are conducted in Europe, and it is one of the major factors contributing to the lucrative share in the cell harvesting system market.

Click Here to Get Sample Premium Report @ https://www.trendsmarketresearch.com/report/sample/3184

In 2016, North America dominated the research landscape as more than 54.0% of stem cell clinical trials were conducted in this region. The region also accounts for the second largest number of stem cell transplantation, which is further driving the demand for harvesting in the region.Asia Pacific is anticipated to witness lucrative growth over the forecast period, owing to rising incidence of chronic diseases and increasing demand for stem cell transplantation along with stem cell-based therapy.

Japan and China are the biggest markets for harvesting systems in Asia Pacific. Emerging countries such as Mexico, South Korea, and South Africa are also expected to report lucrative growth over the forecast period. Growing investment by government bodies on stem cell-based research and increase in aging population can be attributed to the increasing demand for these therapies in these countries.

Major players operating in the global bone marrow processing systems market are ThermoGenesis (Cesca Therapeutics inc.), RegenMed Systems Inc., MK Alliance Inc., Fresenius Kabi AG, Harvest Technologies (Terumo BCT), Arthrex, Inc. and others

More Info of Impact Covid19 @ https://www.trendsmarketresearch.com/report/covid-19-analysis/3184

Read the rest here:
Bone Marrow Processing System Market Industry Outlook, Growth Prospects and Key Opportunities - The Daily Philadelphian

To Read More: Bone Marrow Processing System Market Industry Outlook, Growth Prospects and Key Opportunities – The Daily Philadelphian
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Processing System Market Industry Outlook, Growth Prospects and Key Opportunities – The Daily Philadelphian | dataNovember 12th, 2020
Read All

Angiocrine Bioscience Announces FDA Regenerative Medicine Advanced Therapy (RMAT) Designation Granted to AB-205 (Universal E-CEL Cell Therapy) to…

By daniellenierenberg

SAN DIEGO, Nov. 11, 2020 /PRNewswire/ -- Angiocrine Bioscience Inc., a clinical-stage biopharmaceutical company today announced that the U.S. Food and Drug Administration (FDA) granted the Regenerative Medicine Advanced Therapy (RMAT) designation for AB-205, for "the treatment of organ vascular niche injuries to prevent or reduce severe regimen-related toxicities (SRRT) in patients with Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL) undergoing high-dose therapy (HDT) and autologous hematopoietic stem cell transplantation".Based on its Phase 2 trial results, Angiocrine expects to initiate a single pivotal registration Phase 3 trial in 2021 involving leading cancer centers in North America and Europe.

Angiocrine Bioscience Announces FDA Regenerative Medicine Advanced Therapy (RMAT) Designation Granted to AB-205

"The RMAT designation speaks to the clinical meaningfulness and the promising efficacy data and safety profile of AB-205 based on our Phase 1b/2 study.This is an important step in accelerating the development of AB-205 towards its first market approval," commented Paul Finnegan, MD, Angiocrine's CEO."We appreciate the thorough assessment provided by the FDA reviewers and the support from our partner, the California Institute for Regenerative Medicine."Angiocrine was awarded a $6 million grant from CIRM in 2019 for the clinical development of AB-205.

About Regenerative Medicine Advanced Therapy (RMAT) DesignationEstablished under the 21st Century Cures Act, the RMAT designation was established to facilitate development and expedite review of cell therapies and regenerative medicines intended to treat serious or life-threatening diseases or conditions. Advantages include the benefits of the FDA's Fast Track and Breakthrough Therapy Designation programs, such as early interactions with the FDA to discuss potential surrogate or intermediate endpoints to support accelerated approval.

About HDT-AHCT High-dose therapy and autologous hematopoietic cell transplantation (HDT-AHCT) is considered a standard-of-care therapy for patients with aggressive systemic Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL).Although efficacious and considered a potential cure, HDT-AHCT is associated with severe regimen-related toxicities (SRRT) that increase patient morbidity and risk for mortality, especially in the aging population. Effective prevention of SRRT may lead to more patients being eligible for a potential cure through HDT and stem cell transplantation.

About SRRT Consequences of Diffuse Injury to the Organ Vascular NichesThe human body is capable of renewing, healing and restoring organs.For example, the human oral-GI tract renews its lining every 3 to 7 days. Both the organ renewal and healing processes are dependent on organ stem cell vascular niches made up of stem cells, endothelial cells (cells that line blood vessels) and supportive cells.When tissues are injured, the vascular niche endothelial cells direct the stem cells, via angiocrine factor expression, to repair and restore the damaged tissue. This restorative capacity is most active during childhood and youth but starts to diminish with increasing age.HDT provided to eradicate cancer cells also cause diffuse, collateral damage to vascular niches of multiple healthy organs. In particular, the organs with the highest cell turnover (ones with most active vascular niches) are severely affected.Specifically, the oral-GI tract, dependent on constant renewal of its mucosal lining, starts to break down upon vascular niche injury.The mucosal breakdown can cause severe nausea, vomiting and diarrhea. In addition, the bacteria in the gut may escape into the circulation, resulting in patients becoming ill with endotoxemia, bacteremia or potentially lethal sepsis.HDT-related vascular niche damage can also occur in other organs resulting in severe or life-threatening complications involving the lung, heart, kidney, or the liver.Collectively, these complications are known as severe regimen-related toxicities or SRRT.SRRT can occur as frequently as 50% in lymphoma HDT-AHCT patients, with increased rate and severity in older patients.

About AB205AB-205 is a first-in-class engineered cell therapy consisting of proprietary 'universal' E-CEL (human engineered cord endothelial) cells.The AB-205 cells are intravenously administered after the completion of HDT on the same day as when the patient's own (autologous) blood stem cells are infused. AB-205 acts promptly to repair injured vascular niches of organs damaged by HDT.By repairing the vascular niches, AB-205 restores the natural process of tissue renewal, vital for organs such as oral-GI tract and the bone marrow. Successful and prompt organ restoration can prevent or reduce SRRT, an outcome that is beneficial to quality of life and cost reductive to the healthcare system.

About CIRMThe California Institute for Regenerative Medicine (CIRM) was established in November, 2004 with the passage of Proposition 71, the California Stem Cell Research and Cures Act. The statewide ballot measure provided $3 billion in funding for California universities and research institutions.With over 300 active stem cell programs in their portfolio, CIRM is the world's largest institution dedicated to stem cell research. For more information, visit http://www.cirm.ca.gov.

About Angiocrine Bioscience Inc.Angiocrine Bioscience is a clinical-stage biotechnology company developing a new and unique approach to treating serious medical conditions associated with the loss of the natural healing and regenerative capacity of the body.Based on its novel and proprietary E-CEL platform, Angiocrine is developing multiple therapies to address unmet medical needs in hematologic, musculoskeletal, gastrointestinal, soft-tissue, and degenerative/aging-related diseases.A Phase 3 registration trial is being planned for the intravenous formulation of AB-205 for the prevention of severe complications in lymphoma patients undergoing curative HDT-AHCT.This AB-205 indication is covered by the Orphan Drug Designation recently granted by the US FDA.In addition, Angiocrine is conducting clinical trials of local AB-205 injections for the treatment of: (1) rotator cuff tear in conjunction with arthroscopic repair; and, (2) non-healing perianal fistulas in post-radiation cancer patients.

For additional information, please contact:

Angiocrine Bioscience, Inc.John R. Jaskowiak(877) 784-8496IR@angiocrinebio.com

Visit link:
Angiocrine Bioscience Announces FDA Regenerative Medicine Advanced Therapy (RMAT) Designation Granted to AB-205 (Universal E-CEL Cell Therapy) to...

To Read More: Angiocrine Bioscience Announces FDA Regenerative Medicine Advanced Therapy (RMAT) Designation Granted to AB-205 (Universal E-CEL Cell Therapy) to…
categoriaBone Marrow Stem Cells commentoComments Off on Angiocrine Bioscience Announces FDA Regenerative Medicine Advanced Therapy (RMAT) Designation Granted to AB-205 (Universal E-CEL Cell Therapy) to… | dataNovember 12th, 2020
Read All

‘A heart of gold’: Rick Schwartz remembered for his commitment to family, community – CTV News

By daniellenierenberg

REGINA -- Saskatchewans hockey community is mourning the loss of Rick Schwartz, who died suddenly in his Regina home on Monday evening from a heart attack at age 59.

To the public, Schwartz is known as the father of a Stanley Cup champion. His son, Jaden, is a member of the St. Louis Blues who won the cup in 2019.

Schwartz is also known for the dedication that he and his wife, Carol, have for the Mandi Schwartz Foundation. It is named after their daughter who lost a public battle to cancer in 2011. The foundation has focused on advocating for bone marrow drives and donations.

However, to those closest to Schwartz, hes being remembered as a man who put family and community before anything.

FAMILYS FIRST

Ramona and Patrick Vigneron, who are long-time close family friends of the Schwartzes, say theyll remember Ricks jokes, smile and laughter the most.

And just how much he absolutely loves his family, Ramona said. He always said familys first.

Schwartz had three children: Jaden, Rylan and Mandi.

The two families would travel together, often to watch their children play hockey. Some of their trips took them to Colorado, North Dakota, St. Louis and Germany.

With the celebrations hed always include family and friends, Ramona said.

Whether it was during the kids minor hockey days in Wilcox or watching a Stanley Cup Championship, Schwartz always provided a fun time for those around him.

One of the most entertaining things you could do is watch a hockey game with Rick with one of the kids playing, Patrick said.

It was great watching games with Ricky because he got pretty emotional as he watched the boys and Mandi play, Ramona said. It was really part of Rickys life, you could just see him come to life watching the kids play.

BONE MARROW DRIVES

In honour of Mandi, the Schwartz family launched a foundation that is often involved in bone marrow drives in hopes of helping people who need a donor find their perfect match.

Rick was determined to make sure Mandis foundation continued on with the stem cells, and match program was very important, Ramona said.

Bone marrow drives continue at Yale University, where Mandi played. The St. Louis Blues also held a drive in 2013. Four years later, an 18-year-old woman was able to find her perfect match from a man who was swabbed at that Blues game.

The Schwartz family hosted both the donor and the recipient, both from the United States, in 2019 for the annual Run for Mandi in Saskatchewan.

ATHOL MURRAY COLLEGE OF NOTRE DAME

Rick and Carols three children all attended Athol Murray College of Notre Dame in their childhood and teenage years.

They participated in multiple sports, but hockey was the biggest. Its been about a decade since any of the kids played there, but the Schwartzes have always stayed involved in the community.

The great thing about Rick was that he loves hockey, Rob Palmarin, the president of Athol Murray College of Notre Dame, said. Hed still come out to our arena and would visit with our coaches who were the coaches of his sons and daughter, and our hockey staff. He was a frequent visitor to our arena so he was just one of the family.

After Mandis passing in 2011, the Schwartz family helped to honour her at the school.

The Schwartz family has set up an endowment fund and that supports a number of our female athletes, particularly hockey players, on an annual basis, Palmarin said. That came out of the tragedy of Mandi Schwartz dying of cancer in 2011. So its been almost a decade of them working to keep her memory alive.

Palmarin said Rick and Carol were role models of parents who had children playing hockey.

One of the mottos painted in the rink at Notre Dame reads Never Lose Heart.

That motto is painted up there not only as an inspiration to our student athletes when they practice and play, but its also an inspirational motto for all of us to remember the Notre Dame Hounds family, both living and deceased, Palmarin said. Rick is now going to be part of that.

RECENT MEMORIES

Most recently, Schwartz worked with the Saskatchewan Safety Council. Patrick worked there with him for the past five years.

Weve got a couple of projects on the board right now and Im not sure where theyre going to end up, but well try to make them work for him, Patrick said.

Ramona said right now, the Schwartz family is cherishing the time they were able to spend together over the summer.

One of the blessings of COVID-19 was that Rylan came home from Germany and then Jaden came home from St. Louis and they were with their parents for literally four months, Ramona said. Carol kept repeating these last few days it has been awesome how much time Rick got to spend with his sons for the last four months.

She said the memories of playing golf and cards will long be remembered by the family.

The death is a shock. Theres a lot of people who have been affected by Ricky and just how passionate he is, Ramona said. He has a heart of gold.

More:
'A heart of gold': Rick Schwartz remembered for his commitment to family, community - CTV News

To Read More: ‘A heart of gold’: Rick Schwartz remembered for his commitment to family, community – CTV News
categoriaBone Marrow Stem Cells commentoComments Off on ‘A heart of gold’: Rick Schwartz remembered for his commitment to family, community – CTV News | dataNovember 12th, 2020
Read All

TaiGen Partners with GPCR to develop Burixafor & Taigexyn(R) – PRNewswire

By daniellenierenberg

TAIPEI, Nov. 9, 2020 /PRNewswire/ -- TaiGen Biotechnology Company, Limited ("TaiGen") announced today that they have signed an exclusive agreement with GPCR Therapeutics, Inc. ("GPCR"), a leading Korean biotechnology company, for the continued development of Burixafor worldwide and the commercialization of Taigexyn (nemonoxacin) in South Korea.

Burixafor is a highly potent CXCR4 inhibitor currently under clinical development. It can be used as a stem cell mobilizer for hematopoietic stem cell transplantation and a chemosensitizer in hematological and solid tumors. It can also be used for stem cell collection in healthy individuals for personalized regenerative medicine. Taigexyn is a novel safe and effective antibiotic for the treatment of bacterial infections including those caused by drug-resistant bacteria.

Under the terms of the agreement, GPCR Therapeutics will be wholly responsible for the development, registration, and commercialization of Taigexyn in S. Korea and Burixafor worldwide. Apart from upfront fees, TaiGen will receive shares of GPCR Therapeutics as well as future milestone and royalty payments.

GPCR Therapeutics is a world leader in the field of GPCR heteromer science and hasproprietary expertise and technology applicable to the development of this class of anti-cancer targets. CXCR4 antagonism is a well-accepted avenue towards cancer therapy and GPCR Therapeutics is well experienced and possesses the necessary know-how to develop Burixafor in the oncology field.

Dongseung Seen, CEO of GPCR Therapeutics, said, "This collaboration with TaiGen, which is a leading biotech company engaged in innovative molecular-based platforms with strong R&D capabilities, will lead to a long-term strategic and productive partnership. Further, it is our goal that our work together will position us to be a pre-eminent developer of anti-CXCR4 oncology drugs."

Kuo-Lung Huang, Chairman and Chief Executive Officer of Licensor, said, "This agreement and collaboration with GPCR is a tremendous progress in the continued development of Burixafor. Through the collaboration with GPCR Therapeutics, a novel and effective treatment for cancer patients possessing CXCR4 heteromers is on the horizon while a highly effective antibiotic will enter the S. Korea market to address their unmet medical needs in the near future."

About Burixafor

A stem cell mobilizer, Burixafor, is TaiGen's first fully in-house developed product, a First-in-Class drug with an IND under US FDA. With a variety of potential applications in a number of disease indications, if proven effective in clinical trials, Burixafor will be able to address several unmet medical needs. The molecule is a potent and selective chemokine receptor antagonist which can rapidly mobilize stem cells and progenitor cells from the bone marrow into peripheral circulation. Burixafor also has potential application in chemosensitization treatment of leukemia patients, delaying relapse after chemotherapy.

About Taigexyn

Taigexyn is a novel non-fluorinated quinolone available in both oral and intravenous formulations. The oral formulation of Taigexyn have received market approval in Taiwan and mainland China shown activity against drug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) and quinolone-resistant MRSA as well as quinolone-resistant Streptococcus pneumonia. TaiGen partnered with Zhejiang Medicaine Co., Holding Distribution, R-Pharm of Russia, Productos Cientficos S.A. de C.V., Luminarie Canada Inc. and GPCR Therapeutics, Inc. in 36 countries worldwide. In addition to the oral formulation, TaiGen granted NDA approval for intravenous formulation in Taiwan and is going to obtain the market approval in mainland China.

About GPCR Therapeutics, Inc.

Based in Seoul, S. Korea, GPCR Therapeutics is a biopharmaceutical company developing drugs based on the novel science of GPCR (G Protein-Coupled Receptor) heteromers. GPCR Therapeutics is specifically focused on the development of cancer therapeutics with a precision oncology approach.

About TaiGen Biotechnology

TaiGen Biotechnology is a leading research-based and market-driven biotechnology company in Taiwan with a wholly-owned subsidiary in Beijing, China. In addition to Taigexyn and Burixafor, TaiGen has two other in-house discovered NCEs: TG-1000, a novel pan-influenza antiviral effective against influenza-A, influenza-B, avian flu H7N7, and Tamiflu-resistant viruses, and Furaprevir, a HCV protease inhibitor for treatment of chronic hepatitis infection. TG-1000 is currently in Phase 1 clinical study in China and is granted IND approval by FDA in the U.S., and Furaprevir is currently in Phase 3 clinical development.

SOURCE TaiGen

View post:
TaiGen Partners with GPCR to develop Burixafor & Taigexyn(R) - PRNewswire

To Read More: TaiGen Partners with GPCR to develop Burixafor & Taigexyn(R) – PRNewswire
categoriaBone Marrow Stem Cells commentoComments Off on TaiGen Partners with GPCR to develop Burixafor & Taigexyn(R) – PRNewswire | dataNovember 12th, 2020
Read All

CytoDyn Completes Second Non-dilutive $28.5 Million Convertible Note Financing with Conversion Rate at $10.00 Per Share Without Warrants to Help…

By daniellenierenberg

VANCOUVER, Washington, Nov. 11, 2020 (GLOBE NEWSWIRE) -- CytoDyn Inc. (OTC.QB: CYDY), (CytoDyn or the Company"), a late-stage biotechnology company developing leronlimab (PRO 140), a CCR5 antagonist with the potential for multiple therapeutic indications, announced today it completed an additional non-dilutive convertible debt offering with an institutional investor, which provides $25 million of immediately available capital. The note has a two-year maturity, bears interest at the rate of 10% per annum and is secured by all assets of the Company, excluding its intellectual property. The note may be converted at the option of the investor into shares of the Companys common stock at a conversion price of $10.00 per share.

Nader Pourhassan, Ph.D., President and Chief Executive Officer of CytoDyn, stated, We are very pleased with the institutions demonstration of confidence and their understanding of leronlimabs positioning on its regulatory trajectory. This infusion of capital will enable us to accelerate efforts to file BLAs in Canada and the U.K. for leronlimab as a combination therapy for HIV patients with one dose (one 350 mg subcutaneous injection) per week. We continue to expedite enrollment in CD12 (currently at 260 patients), in addition to now accelerating a COVID-19 trial for long-hauler patients, who have no alternative therapy and are rapidly emerging as a widespread health concern. We are well-positioned to supply $2 billion worth of leronlimab to treat COVID-19, if emergency use authorization is approved in the next 2-4 months based on anticipated successful CD12 results.

About Coronavirus Disease 2019 CytoDyn completed its Phase 2 clinical trial (CD10) for COVID-19, a double-blinded, randomized clinical trial for mild-to-moderate patients in the U.S. which produced statistically significant results for NEWS2. Enrollment continues in its Phase 2b/3 randomized clinical trial for the severe-to-critically ill COVID-19 population in several hospitals and clinics throughout the U.S., which are identified on the Companys website under the Clinical Trial Enrollment section of the homepage; an interim analysis on the first 195 patients was conducted mid-October and is expected to occur again after enrollment reaches 293 patients.

About Leronlimab (PRO 140) The FDA has granted a Fast Track designation to CytoDyn for two potential indications of leronlimab for critical illnesses. The first indication is a combination therapy with HAART for HIV-infected patients and the second is for metastatic triple-negative breast cancer. Leronlimab is an investigational humanized IgG4 mAb that blocks CCR5, a cellular receptor that is important in HIV infection, tumor metastases, and other diseases, including NASH.Leronlimab has completed nine clinical trials in over 800 people and met its primary endpoints in a pivotal Phase 3 trial (leronlimab in combination with standard antiretroviral therapies in HIV-infected treatment-experienced patients).

In the setting of HIV/AIDS, leronlimab is a viral-entry inhibitor; it masks CCR5, thus protecting healthy T cells from viral infection by blocking the predominant HIV (R5) subtype from entering those cells. Leronlimab has been the subject of nine clinical trials, each of which demonstrated that leronlimab could significantly reduce or control HIV viral load in humans. The leronlimab antibody appears to be a powerful antiviral agent leading to potentially fewer side effects and less frequent dosing requirements compared with daily drug therapies currently in use.

In the setting of cancer, research has shown that CCR5 may play a role in tumor invasion, metastases, and tumor microenvironment control. Increased CCR5 expression is an indicator of disease status in several cancers. Published studies have shown that blocking CCR5 can reduce tumor metastases in laboratory and animal models of aggressive breast and prostate cancer. Leronlimab reduced human breast cancer metastasis by more than 98% in a murine xenograft model. CytoDyn is, therefore, conducting a Phase 1b/2 human clinical trial in metastatic triple-negative breast cancer and was granted Fast Track designation in May 2019.

The CCR5 receptor appears to play a central role in modulating immune cell trafficking to sites of inflammation. It may be crucial in the development of acute graft-versus-host disease (GvHD) and other inflammatory conditions. Clinical studies by others further support the concept that blocking CCR5 using a chemical inhibitor can reduce the clinical impact of acute GvHD without significantly affecting the engraftment of transplanted bone marrow stem cells.CytoDyn is currently conducting a Phase 2 clinical study with leronlimab to support further the concept that the CCR5 receptor on engrafted cells is critical for the development of acute GvHD, blocking the CCR5 receptor from recognizing specific immune signaling molecules is a viable approach to mitigating acute GvHD. The FDA has granted orphan drug designation to leronlimab for the prevention of GvHD.

About CytoDyn CytoDyn is a late-stage biotechnology company developing innovative treatments for multiple therapeutic indications based on leronlimab, a novel humanized monoclonal antibody targeting the CCR5 receptor. CCR5 appears to play a critical role in the ability of HIV to enter and infect healthy T-cells. The CCR5 receptor also appears to be implicated in tumor metastasis and immune-mediated illnesses, such as GvHD and NASH.

CytoDyn has successfully completed a Phase 3 pivotal trial with leronlimab in combination with standard antiretroviral therapies in HIV-infected treatment-experienced patients. The FDA met telephonically with Company key personnel and its clinical research organization and provided written responses to the Companys questions concerning its recent Biologics License Application (BLA) for this HIV combination therapy in order to expedite the resubmission of its BLA filing for this indication.

CytoDyn has completed a Phase 3 investigative trial with leronlimab as a once-weekly monotherapy for HIV-infected patients. CytoDyn plans to initiate a registration-directed study of leronlimab monotherapy indication. If successful, it could support a label extension. Clinical results to date from multiple trials have shown that leronlimab can significantly reduce viral burden in people infected with HIV. No drug-related serious site injection reactions reported in about 800 patients treated with leronlimab and no drug-related SAEs reported in patients treated with 700 mg dose of leronlimab. Moreover, a Phase 2b clinical trial demonstrated that leronlimab monotherapy can prevent viral escape in HIV-infected patients; some patients on leronlimab monotherapy have remained virally suppressed for more than six years.

CytoDyn is also conducting a Phase 2 trial to evaluate leronlimab for the prevention of GvHD and a Phase 1b/2 clinical trial with leronlimab in metastatic triple-negative breast cancer. More information is at http://www.cytodyn.com.

Forward-Looking StatementsThis press release contains certain forward-looking statements that involve risks, uncertainties and assumptions that are difficult to predict. Words and expressions reflecting optimism, satisfaction or disappointment with current prospects, as well as words such as "believes," "hopes," "intends," "estimates," "expects," "projects," "plans," "anticipates" and variations thereof, or the use of future tense, identify forward-looking statements, but their absence does not mean that a statement is not forward-looking. Forward-looking statements specifically include statements about leronlimab, its ability to have positive health outcomes, the possible results of clinical trials, studies or other programs or ability to continue those programs, the ability to obtain regulatory approval for commercial sales, and the market for actual commercial sales. The Company's forward-looking statements are not guarantees of performance, and actual results could vary materially from those contained in or expressed by such statements due to risks and uncertainties including: (i) the sufficiency of the Company's cash position, (ii) the Company's ability to raise additional capital to fund its operations, (iii) the Company's ability to meet its debt obligations, if any, (iv) the Company's ability to enter into partnership or licensing arrangements with third parties, (v) the Company's ability to identify patients to enroll in its clinical trials in a timely fashion, (vi) the Company's ability to achieve approval of a marketable product, (vii) the design, implementation and conduct of the Company's clinical trials, (viii) the results of the Company's clinical trials, including the possibility of unfavorable clinical trial results, (ix) the market for, and marketability of, any product that is approved, (x) the existence or development of vaccines, drugs, or other treatments that are viewed by medical professionals or patients as superior to the Company's products, (xi) regulatory initiatives, compliance with governmental regulations and the regulatory approval process, (xii) general economic and business conditions, (xiii) changes in foreign, political, and social conditions, and (xiv) various other matters, many of which are beyond the Company's control. The Company urges investors to consider specifically the various risk factors identified in its most recent Form 10-K, and any risk factors or cautionary statements included in any subsequent Form 10-Q or Form 8-K, filed with the Securities and Exchange Commission. Except as required by law, the Company does not undertake any responsibility to update any forward-looking statements to take into account events or circumstances that occur after the date of this press release.

CONTACTSInvestors: Michael MulhollandOffice: 360.980.8524, ext. 102mmulholland@cytodyn.com

More here:
CytoDyn Completes Second Non-dilutive $28.5 Million Convertible Note Financing with Conversion Rate at $10.00 Per Share Without Warrants to Help...

To Read More: CytoDyn Completes Second Non-dilutive $28.5 Million Convertible Note Financing with Conversion Rate at $10.00 Per Share Without Warrants to Help…
categoriaBone Marrow Stem Cells commentoComments Off on CytoDyn Completes Second Non-dilutive $28.5 Million Convertible Note Financing with Conversion Rate at $10.00 Per Share Without Warrants to Help… | dataNovember 12th, 2020
Read All

Three-month-old Winnipeg boy in need of bone marrow transplant to survive – CTV News Winnipeg

By daniellenierenberg

WINNIPEG -- A baby boy in Winnipeg is in need of a bone marrow transplant to survive, but he has yet to find a donor.

Three-month-old Boston has a rare disease called hemophagocytic lymphohistiocytosis HLH, a rare auto-inflammatory condition with his immune system.

His mother Simone Jannetta, who is a nurse at Grace Hospital, said they need someone who is of mixed race to donate stem cells.

Thats the only way to cure this, she said.

In the meantime, hes just receiving chemotherapy and steroids to help keep him well until then."

Jannetta said the reason they are having difficulty finding a match is because they need someone half Filipino and half Caucasian, and there are not many mixed-race donors currently in the Canadian and worldwide stem cell registries.

A TOUGH ROAD FOR FAMILY DEALING WITH HEALTH ISSUES

This is not the first time the family has dealt with a child facing health issues over the last few years.

When Jannettas daughter and Bostons older sister Beatrix was seven-months-old she presented to the emergency department with a fever and low blood counts. After a bone marrow biopsy, they learned she had a rare condition called autoimmune neutropenia.

So her immune system is not well either, shes very susceptible to infection too, Jannetta said.

Weve had a lot of back and forth with the hospital through herits been a tough road for us.

Anyone in Canada who wants to register to see if they are a match for Boston can go to the Canadian Blood Services website and look up the stem cell registry.

Boston also has his own link where you can register. The Canadian Blood Services will then mail you a kit with a swab, which you can send back once completed.

Its that simple, Jannetta said.

Youre put on the registry and Boston can then match with somebody.

For anyone who is thinking about registering to become a stem cell donor, Jannetta wants them to know they could save somebodys life.

Its not hard, theres no obligation follow through even if you do register, she said.

Theres just such a small representation of ethnically-diverse people on the registry and I just feel like everybody deserves a chance.

- With files from CTVs Nicole Dube.

Read the original here:
Three-month-old Winnipeg boy in need of bone marrow transplant to survive - CTV News Winnipeg

To Read More: Three-month-old Winnipeg boy in need of bone marrow transplant to survive – CTV News Winnipeg
categoriaBone Marrow Stem Cells commentoComments Off on Three-month-old Winnipeg boy in need of bone marrow transplant to survive – CTV News Winnipeg | dataNovember 10th, 2020
Read All

Reynoldsburg man makes unusual birthday wish: ‘I wanted to save someone’s life’ – 10TV

By daniellenierenberg

Troy McKinley donated stem cells to help a stranger with blood cancer.

Think about your birthday wish this year? Did it involve saving someone's life?

A Reynoldsburg man's wish did.

Thirty-five-year-olf Troy McKinely wanted to make sure his birthday wish made a difference in someone else's life.

I wanted to do something big if possible. I've never donated blood before I don't even like needles, he said.

Two years ago, he decided he wanted to make his birthday more about gifts, and instead give the gift of life.

I thought it would be great to save a life so what can I do to help, he said

He found DKMS, the world's largest bone marrow and blood stem cell donor center.

The company sent him a swab kit and he waited to see if he would be a match. Two and a half years later, he was notified that his stem cells matched a patient who was diagnosed with blood cancer.

It was kind of like 'wow this is big. I don't know this person. I don't know anything about him or her.' It's kind of amazing feeling that it could be better for somebody else, he said.

McKinley said it only took a few hours to give the needed stem cells that doctors would later implant to the unknown patient.

I'm hoping that this gentleman I helped is feeling better for it and helped him in some way. Maybe it didn't give him everything back but he has some more time and we all want more time in the world so hopefully, it helped him, he said.

Time, we can all use more of it, but how many of us take the time to think about how we can give others more days on this earth.

It was a birthday wish McKinley says he'd do again knowing his kindness gave a stranger something more valuable than anything.

I think it's amazing to save someone's life. It's an incredible experience, he said.

About DKMS

Read the rest here:
Reynoldsburg man makes unusual birthday wish: 'I wanted to save someone's life' - 10TV

To Read More: Reynoldsburg man makes unusual birthday wish: ‘I wanted to save someone’s life’ – 10TV
categoriaBone Marrow Stem Cells commentoComments Off on Reynoldsburg man makes unusual birthday wish: ‘I wanted to save someone’s life’ – 10TV | dataNovember 10th, 2020
Read All

Protective protein could help keep blood young and healthy – New Atlas

By daniellenierenberg

A new study led by the University of Edinburgh and Queen Mary University of London has identified a protein that plays a crucial role in protecting the bodys blood stem cells from damage during infection, a finding that could lead to new ways to slow down the aging process.

Hematopoietic stem cells (HSCs) are found in bone marrow, and from there they produce other blood and immune cells. When an infection strikes the body, HSCs are known to ramp up production to fight it off but thats raised some questions for scientists in the past. In particular, how do they protect themselves from damage while working overtime?

We know that inflammatory pathways induced by infection force blood stem cells to rapidly produce immune cells to help combat infections, says Kamil Kranc, corresponding author of the study. However, these pathways can eventually exhaust stem cells or cause their premature aging, and it is important to understand how this can be stopped.

In the new study, the researchers identified a protein called YTHDF2 that seems to be responsible for this important job. When an infection arises, the HSCs produce far more immune cells, but at the same time that triggers inflammatory processes that can damage the stem cells. The study found that the YTHDF2 protein regulates genes that control those inflammatory processes, protecting the stem cells from premature aging.

To investigate the role of YTHDF2, the team engineered mice to be deficient in the protein, then administered a chemical that acts like a viral infection. Sure enough, the mices HSCs appeared to suffer chronic inflammation, altering the production of different blood cell types. Interestingly, the blood of these young animals began to resemble that of much older mice.

The new study seems to agree with previous reports that blood transfusions from young animals to older ones can improve the health of the recipient, and even slow the progression of diseases like Alzheimer's. As such, the team says that future work could investigate whether manipulating levels of YTHDF2 may be a potential anti-aging treatment.

The research was published in the Journal of Experimental Medicine.

Source: University of Edinburgh

Read the rest here:
Protective protein could help keep blood young and healthy - New Atlas

To Read More: Protective protein could help keep blood young and healthy – New Atlas
categoriaBone Marrow Stem Cells commentoComments Off on Protective protein could help keep blood young and healthy – New Atlas | dataNovember 10th, 2020
Read All

Her favorite part of research was the patients, so she switched to primary… – Bothell-Kenmore Reporter

By daniellenierenberg

Some people live by the adage, if it aint broke, dont fix it. When Dr. Adewunmi (Ade) Nuga looks at the world she asks a different question: could we make this even better?

Dr. Nuga is now a primary care physician at Pacific Medical Centers (PacMed) Canyon Park, but before she went to medical school she earned a PhD in Microbiology and conducted medical research.

One of my research areas was retroviruses, which is the class of virus that HIV belongs to. I wanted to understand why patients with HIV cant stop taking the medications to treat it, even when theyve taken those medications for decades. Where is the virus hiding in the body?

Advances in medications mean patients with HIV can now expect to live an average lifespan, but that wasnt good enough for Dr. Nuga. She hopes her research into bone marrow stem cells will contribute to a cure.

Only two people in the world are confirmed to have been cured of HIV, and both of them received a stem cell transplant as part of their treatment, she says.

Coordinating your care

HIV treatment is not yet part of Dr. Nugas practice, but as a primary care physician she coordinates with specialists and ensures her patients receive comprehensive care for the best possible outcomes. Since people living with HIV can expect to live an average lifespan, they need to continue caring for other aspects of their health in addition to HIV care cancer screenings, mental health, and other ongoing primary care.

Think of Dr. Nuga as your health care quarterback: calling plays and adapting strategies on the fly to develop a treatment plan that works for you. That may mean adjusting doses to your weight and age, but it could also mean adjusting referrals to accommodate your culture, social class or even access to transportation.

I want to address the barriers to care and deliver healthcare to everyone that needs it, regardless of their status. The resources at PacMed are a big help I can coordinate with care managers and community health liaisons to make sure nobody falls through the cracks, she says.

Dr. Nuga loves taking care of patients of all ages, life stages and social situations, and she has a soft spot for children.

Theres a special privilege that comes with taking care of babies from the first day of life, she says, and she hopes to have more opportunities to practice pediatrics.

Another way Dr. Nuga hopes to improve healthcare? Wit better representation throughout the system so patients see themselves in health care professionals from patient care to management.

Im hoping to get involved with the Providence mentorship program, to help inspire the next generation. The number of physicians from some minority groups hasnt changed since 1978 its kind of astounding that over 40 years we havent been able to increase representation, she says. If we improve access to care we make the environment better for everyone.

Dr. Nugas pediatric and internal medicine practice is open to people of all ages, from newborns to geriatrics. Make an appointment with Dr. Nuga for you or your child by calling 425-412-7200 or booking online. Find Dr. Nuga at Pacific Medical Centers (PacMed) Canyon Park, 1909 214th St. SE, in Bothell.

In consideration of how we voice our opinions in the modern world, weve closed comments on our websites. We value the opinions of our readers and we encourage you to keep the conversation going.

Please feel free to share your story tips by emailing editor@bothell-reporter.com.

To share your opinion for publication, submit a letter through our website https://www.bothell-reporter.com/submit-letter/. Include your name, address and daytime phone number. (Well only publish your name and hometown.) We reserve the right to edit letters, but if you keep yours to 300 words or less, we wont ask you to shorten it.

Originally posted here:
Her favorite part of research was the patients, so she switched to primary... - Bothell-Kenmore Reporter

To Read More: Her favorite part of research was the patients, so she switched to primary… – Bothell-Kenmore Reporter
categoriaBone Marrow Stem Cells commentoComments Off on Her favorite part of research was the patients, so she switched to primary… – Bothell-Kenmore Reporter | dataNovember 10th, 2020
Read All

Cell Harvesting Market 2020 Growth Analysis, Share, and consumption by Regional data, Investigation and Growth, Demand by Regions, Types and Analysis…

By daniellenierenberg

Cell harvesting usuallyfor use incanceror other treatment. Usually the cells are removed from the patients own bone marrow. Stem cells can be harvested from the blood or bone marrow. Umbilical cords have been saved as a future source of stem cells for the baby..cagr1 with growth trends, various stakeholders like investors, CEOs, traders, suppliers, Research & media, Global Manager, Director, President, SWOT analysis i.e. Strength, Weakness, Opportunities and Threat to the organization and others.

Get a sample copy of the Cell Harvesting market report 2020

Competitive Landscapeand Cell HarvestingMarket Share AnalysisCell Harvesting competitive landscape provides details by vendors, including company overview, company total revenue (financials), market potential, global presence, Cell Harvestingsales and revenue generated, market share, price, production sites and facilities, SWOT analysis, product launch. For the period 2015-2020, this study provides the Cell Harvestingsales, revenue and market share for each player covered in this report.

Cell HarvestingMarket competition by Top Countries manufacturers/ Key player Data Profiled:

PerkinElmer (US),,Brandel (US),,TOMTEC (US),,Cox Scientific (UK),,Connectorate (Switzerland),,Scinomix (US),,ADSTEC (Japan),,Sartorius,,Terumo Corporation,,

And More

Get a Sample PDF of report @https://www.360marketupdates.com/enquiry/request-sample/13061329

Market segmentation

Cell Harvesting Market is split by Type and by Application. For the period 2015-2025, the growth among segments provide accurate calculations and forecasts for sales by Type and by Application in terms of volume and value. This analysis can help you expand your business by targeting qualified niche markets.

Cell Harvesting Market Segment by Type covers:

Cell Harvesting Market Segment by Applications can be divided into:

Scope of theCell Harvesting MarketReport:

Fill the Pre-Order Enquiry form for the report@https://www.360marketupdates.com/enquiry/pre-order-enquiry/13061329

Regional analysis covers:

The report provides an in-depth knowledge of the Global Cell Harvesting market scenario:

Other Major Topics Covered in Cell Harvesting market research report are as follows:

And another component .

The next part also sheds light on the gap between supply and consumption. Apart from the mentioned information,growth rateof Cell Harvesting market in 2025is also explained.Additionally, type wise and application wise consumptiontables andfiguresof Cell Harvesting marketare also given.

Global Organic Yogurt Market 2020 to Expand at a CAGR of by 2026: Complete Market Analysis by Growth Opportunities, Market Size & Growth, Demand, Production

Global Ultrasonic Atomization Market 2020-2026 | CAGR Projection Over the Next Five Years, Predicts Market Research Future Including Market Size & Growth, Key Vendors, Product Type, Major Application, Key Regions

Global Treated Distillate Aromatic Extract (TDAE) Market Size 2020, Share, Movements by Key Findings, Covid-19 Impact Analysis,audience, Area Marketplace Expanding, Competitive Progresses, Revenue Expectation to 2025

Global Methyl Acetate Market 2020 with COVID-19 impact on Industry: Growth Global Industry Size, Top manufacturers Entry, Analysis, Share, Showing Impressive Growth by 2026

Global Automated Security E-gate Market Size 2020, Share, Movements by Key Findings, Covid-19 Impact Analysis,audience, Area Marketplace Expanding, Competitive Progresses, Revenue Expectation to 2025

Read the rest here:
Cell Harvesting Market 2020 Growth Analysis, Share, and consumption by Regional data, Investigation and Growth, Demand by Regions, Types and Analysis...

To Read More: Cell Harvesting Market 2020 Growth Analysis, Share, and consumption by Regional data, Investigation and Growth, Demand by Regions, Types and Analysis…
categoriaBone Marrow Stem Cells commentoComments Off on Cell Harvesting Market 2020 Growth Analysis, Share, and consumption by Regional data, Investigation and Growth, Demand by Regions, Types and Analysis… | dataNovember 10th, 2020
Read All

BioCardia Reports Third Quarter 2020 Financial Results and Business Highlights – GlobeNewswire

By daniellenierenberg

SAN CARLOS, Calif., Nov. 10, 2020 (GLOBE NEWSWIRE) -- BioCardia, Inc.[NASDAQ: BCDA], a leader in the development of autologous and allogenic cell therapies, today reported financial results and business highlights for the third quarter of 2020 and filed its quarterly report on Form 10-Q for the three and nine months ended September 30, 2020 with the Securities and Exchange Commission on November 10, 2020.

The Company is advancing its autologous and allogenic bone marrow-derived cell therapies for three cardiovascular indications and one respiratory indication.

Third Quarter 2020 Business Highlights:

Autologous Cell Therapies

Allogenic Cell Therapies

Corporate Developments

We are reaching critical milestones in our cardiovascular and respiratory cell therapy development programs at a time when patients are increasingly presenting with heart damage due to COVID-19, said BioCardia CEO Peter Altman, PhD. We believe that the clinical data supports patient benefit through paracrine mechanisms, which differs from those attempting to transform cells into new heart cells, and believe that the approach has tremendous promise to help patients suffering from severe heart and respiratory diseases.

Third Quarter 2020 Financial Results:

Anticipated Upcoming Milestones in Q4 2020:

About BioCardiaBioCardia, Inc., headquartered in San Carlos, California, is developing regenerative biologic therapies to treat cardiovascular and respiratory disease. CardiAMP autologous and Neurokinin-1 Receptor Positive allogenic cell therapies are the Companys biotherapeutic platforms in clinical development. The Company's products include the Helix Biotherapeutic Delivery System and its steerable guide and sheath catheter portfolio. BioCardia also partners with other biotherapeutic companies to provide its Helix system and clinical support for their programs studying therapies for the treatment of heart failure, chronic myocardial ischemia and acute myocardial infarction. For more information, visit http://www.BioCardia.com.

Forward Looking StatementsThis press release contains forward-looking statements that are subject to many risks and uncertainties. Forward-looking statements include, among other things, references to the enrollment of our clinical trials, the availability of data from our clinical trials, filings with the FDA, FDA product clearances, the efficacy and safety of our products and therapies, anticipated milestones, and other statements regarding our intentions, beliefs, projections, outlook, analyses or current expectations. Such risks and uncertainties include, among others, the inherent uncertainties associated with developing new products or technologies, regulatory approvals, unexpected expenditures, the ability to raise the additional funding needed to continue to pursue BioCardias business and product development plans and overall market conditions.We may find it difficult to enroll patients in our clinical trials due to many factors, some of which are outside of our control.Slower than targeted enrollment could delay completion of our clinical trials and delay or prevent development of our therapeutic candidates.These forward-looking statements are made as of the date of this press release, and BioCardia assumes no obligation to update the forward-looking statements.

We may use terms such as believes, estimates, anticipates, expects, plans, intends, may, could, might, will, should, approximately or other words that convey the uncertainty of future events or outcomes to identify these forward-looking statements. Although we believe that we have a reasonable basis for each forward-looking statement contained herein, we caution you that forward-looking statements are not guarantees of future performance and that our actual results may differ materially from the forward-looking statements contained in this press release. As a result of these factors, we cannot assure you that the forward-looking statements in this press release will prove to be accurate.Additional factors that could materially affect actual results can be found in our documents filed with the SEC, including our recent filings on Form 8-K, Form 10-K and Form 10-Q, particularly any statements under the caption entitled Risk Factors Therein. BioCardia expressly disclaims any intent or obligation to update these forward-looking statements, except as required by law.

Media Contact:Michelle McAdam, Chronic Communications, Inc.michelle@chronic-comm.com(310) 902-1274

Investor Contact:David McClung, Chief Financial OfficerInvestors@BioCardia.com(650) 226-0120

BIOCARDIA, INC.Condensed Statements of Operations(Unaudited In thousands, except share and per share amounts)

Follow this link:
BioCardia Reports Third Quarter 2020 Financial Results and Business Highlights - GlobeNewswire

To Read More: BioCardia Reports Third Quarter 2020 Financial Results and Business Highlights – GlobeNewswire
categoriaBone Marrow Stem Cells commentoComments Off on BioCardia Reports Third Quarter 2020 Financial Results and Business Highlights – GlobeNewswire | dataNovember 10th, 2020
Read All

Calquence approved in the EU for the treatment of chronic lymphocytic leukaemia | Small Molecules | News Channels – PipelineReview.com

By daniellenierenberg

DetailsCategory: Small MoleculesPublished on Monday, 09 November 2020 08:56Hits: 725

Calquence demonstrated superior progression-free survival and favourable tolerability in both previously untreated and relapsed or refractory patients

LONDON, UK I November 9, 2020 I AstraZenecas Calquence (acalabrutinib), a next-generation selective Brutons tyrosine kinase (BTK) inhibitor, has been approved in the European Union (EU) for the treatment of adult patients with chronic lymphocytic leukaemia (CLL), the most common type of leukaemia in adults.

The approval by the European Commission was based on positive results from two Phase III clinical trials, ELEVATE-TN in patients with previously untreated CLL and ASCEND in patients with relapsed or refractory CLL.1,2 This follows a recommendation for approval by the Committee for Medicinal Products for Human Use of the European Medicines Agency in July 2020.

Paolo Ghia, MD, Director, Strategic Research Program on CLL, Universit Vita-Salute San Raffaele in Milan, and investigator of the ASCEND Phase III trial, said: One of our biggest hurdles in treating chronic lymphocytic leukaemia is finding tolerable treatment options that manage the disease long term, which typically impacts older patients with comorbidities. Todays news marks great progress for patients in Europe, as the Phase III clinical trials for Calquence showed a significant improvement in comparison with current standard treatments.

Dave Fredrickson, Executive Vice President, Oncology Business Unit, said: This approval represents a key development for patients in Europe who until now have had limited chemotherapy-free treatment options. As our first European approval in blood cancers, Calquence provides a new tolerable treatment option with uncompromised efficacy and the potential to positively impact the quality of life for thousands of patients living with chronic lymphocytic leukaemia.

In the ELEVATE-TN Phase III trial, Calquence combined with obinutuzumab and as monotherapy reduced the risk of disease progression or death by 90% and 80%, respectively, compared with standard chemo-immunotherapy treatment chlorambucil plus obinutuzumab, in patients with previously untreated CLL.1 In the ASCEND Phase III trial, 88% of patients with relapsed or refractory CLL taking Calquence remained alive and free from disease progression after 12 months compared with 68% of patients on rituximab combined with idelalisib or bendamustine.2 Data from the interim results of the trials were published in The Lancet and Journal of Clinical Oncology, respectively.

Calquence is approved for the treatment of CLL and small lymphocytic lymphoma in the US and is approved for CLL in several other countries worldwide. Calquence is also approved for the treatment of adult patients with mantle cell lymphoma (MCL) who have received at least one prior therapy in the US and several other countries. Calquence is not currently approved for the treatment of MCL in Europe.

As part of a broad development programme, Calquence is being assessed in more than 20 AstraZeneca-sponsored clinical trials for the treatment of patients with B-cell malignancies including CLL, MCL, diffuse large B-cell lymphoma (DLBCL), Waldenstrms macroglobulinaemia (WM), follicular lymphoma (FL), and other haematologic malignancies.

Chronic lymphocytic leukaemia

Chronic lymphocytic leukaemia (CLL) is the most common type of leukaemia in adults, with an estimated 105,000 new cases globally in 2016, and the number of people living with CLL is expected to grow with improved treatment as patients live longer with the disease.3,4,5,6 In CLL, too many blood stem cells in the bone marrow become abnormal lymphocytes and these abnormal cells have difficulty fighting infections. As the number of abnormal cells grows there is less room for healthy white blood cells, red blood cells, and platelets. This could result in anaemia, infection, and bleeding.4 B-cell receptor signalling through BTK is one of the essential growth pathways for CLL.

ELEVATE-TN

ELEVATE-TN (ACE-CL-007) was a randomised, multicentre, open-label Phase III trial evaluating the safety and efficacy of Calquence in combination with obinutuzumab, a CD20 monoclonal antibody, or Calquence alone versus chlorambucil, a chemotherapy, in combination with obinutuzumab in previously untreated patients with CLL. Patients 65 years of age or older, or between 18 and 65 years of age with a total Cumulative Illness Rating Scale >6 or creatinine clearance of 30 to 69mL/min, were enrolled. In the trial, 535 patients were randomised (1:1:1) into three arms. Patients in the first arm received chlorambucil in combination with obinutuzumab. Patients in the second arm received Calquence (100mg approximately every 12 hours until disease progression or unacceptable toxicity) in combination with obinutuzumab. Patients in the third arm received Calquence monotherapy (100mg approximately every 12 hours until disease progression or unacceptable toxicity).1

The primary endpoint was progression-free survival (PFS) in the Calquence and obinutuzumab arm compared to the chlorambucil and obinutuzumab arm, assessed by an independent review committee (IRC), and a key secondary endpoint was IRC-assessed PFS in the Calquence monotherapy arm compared to the chlorambucil and obinutuzumab arm. Other secondary endpoints included objective response rate, time to next treatment and overall survival (OS).1

ASCEND

ASCEND (ACE-CL-309) was a global, randomised, multicentre, open-label Phase III trial evaluating the efficacy of Calquence in patients with relapsed or refractory CLL. In the trial, 310 patients were randomised (1:1) into two arms. Patients in the first arm received Calquence monotherapy (100mg twice daily until disease progression or unacceptable toxicity). Patients in the second arm received investigators choice of either rituximab, a CD20 monoclonal antibody, in combination with idelalisib, a PI3K inhibitor, or rituximab in combination with bendamustine, a chemotherapy.2

The primary endpoint was PFS assessed by an IRC, and key secondary endpoints included physician-assessed PFS, IRC- and physician-assessed overall response rate and duration of response, as well as OS, patient-reported outcomes and time to next treatment.2

Calquence

Calquence (acalabrutinib) is a next-generation, selective inhibitor of BTK. Calquence binds covalently to BTK, thereby inhibiting its activity.7,8 In B-cells, BTK signalling results in activation of pathways necessary for B-cell proliferation, trafficking, chemotaxis, and adhesion.7

As part of an extensive clinical development programme, AstraZeneca and Acerta Pharma are currently evaluating Calquence in more than 20 company-sponsored clinical trials. Calquence is being developed for the treatment of multiple B-cell blood cancers including CLL, MCL, DLBCL, WM, FL, and other haematologic malignancies.

AstraZeneca in haematology

Leveraging its strength in oncology, AstraZeneca has established haematology as one of four key oncology disease areas of focus. The Companys haematology franchise includes two medicines approved by the US Food and Drug Administration and a robust global development programme for a broad portfolio of potential blood cancer treatments. Acerta Pharma serves as AstraZenecas haematology research and development arm. AstraZeneca partners with like-minded science-led companies to advance the discovery and development of therapies to address unmet need.

AstraZeneca in oncology

AstraZeneca has a deep-rooted heritage in oncology and offers a quickly growing portfolio ofnew medicines that has the potential to transform patients lives and the Companys future. With seven new medicines launched between 2014 and 2020, and a broad pipelineof small molecules and biologics in development, the Company is committed to advance oncology as a key growth driver for AstraZeneca focused on lung, ovarian, breast and haematology.

By harnessing the power of six scientific platforms - Immuno-Oncology, Tumour Drivers and Resistance, DNA Damage Response, Antibody Drug Conjugates, Epigenetics, and Cell Therapies - and by championing the development of personalised combinations, AstraZeneca has the vision to redefine cancer treatment and one day eliminate cancer as a cause of death.

AstraZeneca

AstraZeneca (LSE/STO/Nasdaq: AZN) is a global, science-led biopharmaceutical company that focuses on the discovery, development and commercialisation of prescription medicines, primarily for the treatment of diseases in three therapy areas - Oncology, Cardiovascular, Renal & Metabolism, and Respiratory & Immunology. Based in Cambridge, UK, AstraZeneca operates in over 100 countries and its innovative medicines are used by millions of patients worldwide. Please visitastrazeneca.comand follow the Company on Twitter@AstraZeneca.

References

1. Sharman JP, et al. ELEVATE TN: Phase 3 Study of Acalabrutinib Combined with Obinutuzumab (O) or Alone Vs O Plus Chlorambucil (Clb) in Patients (Pts) with Treatment-Naive Chronic Lymphocytic Leukemia (CLL). Blood. 2019; 134 (Supplement_1): 31. doi:10.1182/blood-2019-128404.

2. Ghia P, et al. ASCEND: Phase III, Randomized Trial of Acalabrutinib Versus Idelalisib Plus Rituximab or Bendamustine Plus Rituximab in Relapsed or Refractory Chronic Lymphocytic Leukemia [published online ahead of print, 2020 May 27]. J Clin Oncol. 2020; JCO1903355. doi:10.1200/JCO.19.03355.

3. American Cancer Society. What is Chronic Lymphocytic Leukemia? Available at https://www.cancer.org/cancer/chronic-lymphocytic-leukemia/about/what-is-cll.html. Accessed August 2020.

4. National Cancer Institute. Chronic Lymphocytic Leukemia Treatment (PDQ)Patient Version. Available at https://www.cancer.gov/types/leukemia/patient/cll-treatment-pdq. Accessed August 2020.

5. Global Burden of Disease Cancer Collaboration. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2016. JAMA Oncol. 2018;4(11):1553-1568.

6. Jain N, et al. Prevalence and Economic Burden of Chronic Lymphocytic Leukemia (CLL) in the Era of Oral Targeted Therapies. Blood. 2015;126:871.

7. Calquence (acalabrutinib) [prescribing information]. Wilmington, DE; AstraZeneca Pharmaceuticals LP; 2019.

8. Wu J, Zhang M & Liu D. Acalabrutinib (ACP-196): a selective second-generation BTK inhibitor. J Hematol Oncol. 2016;9(21).

SOURCE: AstraZeneca

Go here to read the rest:
Calquence approved in the EU for the treatment of chronic lymphocytic leukaemia | Small Molecules | News Channels - PipelineReview.com

To Read More: Calquence approved in the EU for the treatment of chronic lymphocytic leukaemia | Small Molecules | News Channels – PipelineReview.com
categoriaBone Marrow Stem Cells commentoComments Off on Calquence approved in the EU for the treatment of chronic lymphocytic leukaemia | Small Molecules | News Channels – PipelineReview.com | dataNovember 10th, 2020
Read All

Jehovahs Witness, 15, shouldnt be allowed to die says High Court judge after teen refuses lifesaving blood t – The Sun

By daniellenierenberg

A TEENAGE Jehovah's Witness was ordered to undergo a lifesaving blood transfusion after a concerned judge quashed her religious objection.

Doctors received the go-ahead to urgently give the 15-year-old blood when she was just hours from death.

3

The teen suffers from sickle cell, an inherited condition that affects red blood cells.

It puts her at greater risk of suffering a debilitating stroke - or dying.

At the High Court on Tuesday, November 10, Sir James Munby said the girl's life was in imminent danger, so he had rushed to make his decision, reports the Daily Mail.

He explained: "The blood transfusion is imperatively needed and within a timescale measured in hours, and not days.

"At one point, her doctor lamented that four hours had gone by because of the judicial proceedings."

Sir James described the patient as "wise beyond her years".

The unnamed teen has recently been baptised as a Jehovah's Witness, and has "profound religious beliefs".

Although Jehovah's Witnesses do not accept blood transfusions or blood products, based on biblical readings, he warned failure to help her presented a "very real risk" of "serious harm to her future health and welfare".

He acknowledged that the girl may end up refusing blood transfusions when older, and has more say on her medical treatment.

3

Sir James suggested that legal precedents dating back three decades needed to be re-examined for cases like this.

These previous decisions state that kids shouldn't have a say in whether or not they accept medical treatment.

In just three years time, when she reaches the age of 18, the girl will be legally able to reject such lifesaving help.

However, Sir James recommended the High Court to look at whether she should have more say on treatments - including blood transfusions - before she turns 18.

A 1970s ruling says Jehovah's Witnesses' beliefs must be given the same respect as those of other religions when it comes to kids' rights to reject treatment.

Appeal Court decisions in the 1990s stress that courts must decide what is in the best interests of under-16s, the Mail writes.

Teens aged 16 and 17 are allowed to have a say in their treatment - but this can be overruled in exceptional cases.

What is Sickle Cell?

Sickle cell disease (SCD) is a serious and lifelong health condition.

Sickle cell disease is the name for a group of inherited health conditions that affect the red blood cells.

The most serious type is called sickle cell anaemia.

People with sickle cell disease produce unusually shaped red blood cells.

These can cause problems because they do not live as long as healthy blood cells and can block blood vessels.

People with SCD start to have signs of the disease during the first year of life, usually around five months of age.

Symptoms and complications of SCD are different for each person and can range from mild to severe.

The only cure for SCD is bone marrow or stem cell transplant.

Sickle cell disease varies between individuals from mild to serious, but most people with it lead happy and normal lives.

But the illness can be serious enough to have a significant effect on a person's life, says the NHS.

It can lead to health problems like strokes, serious infections and lung problems, which can occasionally be fatal.

3

GRIM GROWTHCovid deaths rise by 532 in 24 hours - the biggest daily rise in six months

Exclusive

SWINGING DETECTIVECop & paramedic lover caught selling 150 an hour threesome sessions

BABY DEATH ARRESTNurse re-arrested over murder of 8 babies & attempting to kill 9 others

DIDNT DESERVE THISPlumber fighting for life after being 'attacked with bat outside bar'

OPINION

INGRID SEWARDHarry's 'publicity stunt' wreath has wilted like the public's opinion of him

KILLER BLASTGran with suspected Covid died after oxygen tank 'exploded like firework'

More:
Jehovahs Witness, 15, shouldnt be allowed to die says High Court judge after teen refuses lifesaving blood t - The Sun

To Read More: Jehovahs Witness, 15, shouldnt be allowed to die says High Court judge after teen refuses lifesaving blood t – The Sun
categoriaBone Marrow Stem Cells commentoComments Off on Jehovahs Witness, 15, shouldnt be allowed to die says High Court judge after teen refuses lifesaving blood t – The Sun | dataNovember 10th, 2020
Read All

Mesenchymal Stem Cells Market to Witness Significant Rise in Revenue and Covid-19 Impact by 2026 | Celprogen Inc., Axol Bioscience Ltd., Stemedica…

By daniellenierenberg

Global Mesenchymal Stem Cells market report 2020 offers extremely oblique professional analysis and forecast from 2020 to 2026. The report also consists of market shares, size, profit revenue, and the Mesenchymal Stem Cells markets economic process. It also covers the strategic identification of major players within the market and analyzing their core competencies and methodology. The Mesenchymal Stem Cells market report analyzes information collected and integrated through recent analysis techniques and from trustful sources across varied industries.

A thorough evaluation of the restrains encompassed in the Mesenchymal Stem Cells report reveals the difference to drivers and contributes room for strategic planning. Features that overshadow the Mesenchymal Stem Cells market development are essential. They can be understood to devise different bends for getting hold of the profitable prospects present in the ever-growing market. Additionally, perceptions by market expert opinions have been taken to understand the Mesenchymal Stem Cells market better.

[Due to the pandemic, we have included a special section on the Impact of COVID 19 on the market which would mention How the Covid-19 is Affecting the Global Mesenchymal Stem Cells Market]

Get a Sample Copy of this Report @https://www.futuristicreports.com/request-sample/52595

Top Key Players of Mesenchymal Stem Cells Market:

(Celprogen Inc., Axol Bioscience Ltd., Stemedica Cell Technologies Inc., Cell Applications Inc., Stem cell technologies Inc., Cytori Therapeutics Inc., Cyagen Biosciences Inc., BrainStorm Cell Therapeutics.)

On the basis of Types, the Mesenchymal Stem Cells market:

Bone Marrow Umbilical Cord Blood Peripheral Blood Lung Tissue Synovial Tissues Amniotic Fluids Adipose Tissues

On the basis of Applications, the Mesenchymal Stem Cells market:

Injuries Drug Discovery Cardiovascular Infraction Others

To Understand How Covid-19 Impact Is Covered in This Report With additional Discount: https://www.futuristicreports.com/check-discount/52595

Geographically, the detailed analysis of consumption, revenue, market share and growth rate, historic and forecast (2016-2026) of the following regions are including,

The Research aims of the Mesenchymal Stem Cells Market report would be:

Major TOC points

1Mesenchymal Stem Cells Market Overview

1.1 Product Overview and Scope of Mesenchymal Stem Cells

1.2 Segment by Type

1.2.1 Global Sales Growth Rate Comparison by Type (2021-2026)

1.2.2 Type 1

1.2.3 Type 2

1.3 Segment by Application

1.3.1 Sales Comparison by Application: 2020 VS 2026

1.3.2 Application 1

1.3.3 Application 2

1.4 Global Market Size Estimates and Forecasts

1.4.1 Global Revenue 2016-2026

1.4.2 Global Sales 2016-2026

1.4.3 Mesenchymal Stem Cells Market Size by Region: 2020 Versus 2026

2 Global Mesenchymal Stem Cells Market Competition by Manufacturers

2.1 Global Sales Market Share by Manufacturers (2016-2020)

2.2 Global Revenue Share by Manufacturers (2016-2020)

2.3 Global Average Price by Manufacturers (2016-2020)

2.4 ManufacturersMesenchymal Stem Cells Manufacturing Sites, Area Served, Product Type

2.5 Market Competitive Situation and Trends

2.5.1 Mesenchymal Stem Cells Market Concentration Rate

2.5.2 Global Top 5 and Top 10 Players Market Share by Revenue

2.5.3 Market Share by Company Type (Tier 1, Tier 2, and Tier 3)

2.6 Manufacturers Mergers and Acquisitions, Expansion Plans

2.7 Primary Interviews with KeyMesenchymal Stem Cells Players (Opinion Leaders)

3 Mesenchymal Stem Cells Retrospective Market Scenario by Region

3.1 Global Mesenchymal Stem Cells Retrospective Market Scenario in Sales by Region: 2016-2020

3.2 Global Mesenchymal Stem Cells Retrospective Market Scenario in Revenue by Region: 2016-2020

3.3 North America Market Facts and Figures by Country

3.4 EuropeMesenchymal Stem Cells Facts and Figures by Country

3.5 Asia Pacific Market Facts and Figures by Region

3.6 Latin America Market Facts and Figures by Country

3.7 the Middle East and Africa Market Facts and Figures by Country

4 Global Mesenchymal Stem Cells Historic Market Analysis by Type

4.1 Global Sales Market Share by Type (2016-2020)

4.2 Global Revenue Market Share by Type (2016-2020)

4.3 Global Price Market Share by Type (2016-2020)

4.4 Global Market Share by Price Tier (2016-2020)

5 GlobalMesenchymal Stem Cells Historic Market Analysis by Application

5.1 Global Sales Market Share by Application (2016-2020)

5.2 Global Revenue Market Share by Application (2016-2020)

5.3 Global Price by Application (2016-2020)

..Countinued

Inquire or Share Your Questions If Any before the Purchasing This Report https://www.futuristicreports.com/send-an-enquiry/52595

Our Other Reports:

Neuroleptics Market Trend, CAGR Status, Forecast and Covid-19 Impact by 2026 | Johnson & Johnson, Pfizer, Eli Lilly and Others

Adult Bike Helmet Market Analysis, Size, Share and Covid-19 Impact by 2026 | Vista Outdoor, Dorel, Specialized and Others

Cholesterol Testing Market Key Trends, Top Players, Forecast and Covid-19 Impact by 2026 | AccuTech LLC, Abbott Diagnostics Inc., Chek Diagnostics and Others

Server Motherboards Market Overview, Segmentation and Covid-19 Impact by 2026 | Foxconn, Gigabyte, HP and Others

Futuristic Reports

Name: Mark RiveraTel: +1-408-520-9037Email: [emailprotected]

Go here to see the original:
Mesenchymal Stem Cells Market to Witness Significant Rise in Revenue and Covid-19 Impact by 2026 | Celprogen Inc., Axol Bioscience Ltd., Stemedica...

To Read More: Mesenchymal Stem Cells Market to Witness Significant Rise in Revenue and Covid-19 Impact by 2026 | Celprogen Inc., Axol Bioscience Ltd., Stemedica…
categoriaBone Marrow Stem Cells commentoComments Off on Mesenchymal Stem Cells Market to Witness Significant Rise in Revenue and Covid-19 Impact by 2026 | Celprogen Inc., Axol Bioscience Ltd., Stemedica… | dataNovember 8th, 2020
Read All

‘We’re truly blood brothers’: Stanford coach David Shaw and his recent fight to save his brother, Eric – KGO-TV

By daniellenierenberg

David Shaw walks into the hospital room and takes a seat next to the bed. He does this nearly every day, right around lunchtime.

He looks at his younger brother, Eric, tubes snaking across his arms, machines beeping and whirring. Eric does not look like Eric anymore, his skin darkened, scars deepened, features altered. They both know this but never mention it.

Eric is dying, a rare, aggressive skin cancer rampaging through his body with such ferocity that his doctors are nearly out of options. Radiation failed. Chemotherapy failed. Two bone marrow transplants failed.

As Stanford's head football coach, David Shaw is relied on to always know what to say, how to say it and when to say it; but he cannot find the words now that he and his brother are staring down what seems to be an inevitable fate.

"What do you say, where you think you've pulled at the last thread and there are no more threads?" David said. "All I could tell him was that I loved him and that I was there for him. The rest of it was really just ... I thought it was only a matter of time before he passed away."

Two years later, what happened between David and Eric remains real, present and raw -- changing their entire relationship, redefining what it means to be a brother. The words are still difficult to say, so they tip-toe around the crushing physical and mental toll Eric's cancer took on them.

David and Eric are sure to think about it all this weekend, when Stanford opens its season at Oregon on Saturday. Because the last time the Cardinal visited Eugene, neither one knew whether Eric would live or die.

After Stanford came from behind to win that game 38-31 in overtime, David delivered a message at the end of his postgame television interview, looking at the camera and saying, "To my brotherEric: I love you." He tapped the lime green pin on his black Stanford sweatshirt before he left the screen.

When Shaw became head coach at Stanford in 2011, it was the culmination of a family journey. His father was a longtime coach there; David played receiver for the Cardinal and eventually returned as an assistant under Jim Harbaugh. The entire Shaw family -- parents Willie and Gay, along with David, Eric and their sister, Tawnya -- all call the Bay Area home.

To this day, David says the day he was introduced as coach was "one of the better days in all our lives."

Yet something started to happen to Eric that no one could quite figure out. That same year, Eric found strange looking spots on his torso. His wife, Crystal, noticed the first one under his arm. Maybe it was eczema, they thought. Then the spots started to spread. He went to the doctor. They prescribed an ointment, but the spots kept popping up, until they covered his entire body. Eventually, tumors started to grow. It looked as if someone had pushed marbles under his skin. Doctors remained confounded. Eric itched uncontrollably, insatiably. His skin itched so badly, it became difficult to put on clothes, shower, sleep and go to work. He eventually needed sleep medication so he could get uninterrupted rest.

Even then, he itched subconsciously, only realizing what happened when he woke up in the morning to find his arms and sheets covered in blood. Some nights, he tried to sleep on his forearms so his body wouldn't touch the sheets, because his skin grew too sensitive to any touch. At one point, he had more than 30 open wounds on his body.

"It's something that's so pervasive and so destructive that a lot of people have mental problems -- you can't do anything without extreme pain," Eric said. "You bleed a lot through the tumors, through the lesions, through the scratching. A lot of people don't survive, really, because of the mental stress that comes with it."

Doctors had a hard time diagnosing his disease because it is often confused with psoriasis, eczema or other skin conditions. Eventually, they determined he had a rare form of skin cancer called mycosis fungoides, a type of T-cell lymphoma that affects one in 6 million people in the United States and Europe. At the time, Eric Shaw was 38.

In 2013, he and Crystal pushed for a referral to Stanford Cancer Center, which has leading experts in the disease. Mycosis fungoides is so rare, it accounts for only 4% of all non-Hodgkin lymphoma cases; among those who suffer from it, only 20% have the type of itching Eric experienced. Rarer still is to find it in people under the age of 40, and African American men often end up with the worst prognosis. All the odds were firmly against him.

"When you first hear skin cancer, your mind doesn't go too far," David said. "So initially I was like, 'There are creams and other minor surgeries. I think it'll be OK.' And then Eric said, 'No, this is not the typical skin cancer. This is inside my body. This is inside the layers of my skin, and it's not one spot. It's everywhere.'

"I didn't really get it for weeks after that because, rectifying something that I didn't think was so serious to [then thinking] ... 'Oh my gosh. So this is really cancer. This is really scary now.' It took a long time for that to sink in."

David turned it over in his mind. He was the big brother, the protector, the one who always made sure Eric would be OK. They were supposed to raise their kids together, grow old together, and reminisce about the randomness of a life spent together.

He kept coming back to one thought: You're not supposed to lose your little brother.

David and Eric Shaw grew particularly close as children as they moved from place to place when their father, Willie, took new coaching jobs. Tawnya, their older sister, fit in anywhere socially. But David and Eric, who is two years younger, stuck together.

"Like a pair," David said.

They loved riding their bikes and, when they moved to Arizona, they took advantage of the wide-open spaces in the new development where they lived. They rode for miles and miles, setting up their own ramps and doing tricks and wheelies, visiting friends along the way before returning home after dark. They played sports, too, and though David loved football as much as their dad, the basketball court is where the brothers had their epic battles.

"I was always kind of a little bit stronger and I'll never forget the last time we played one-on-one basketball," David said. "He just got better than me, and he won, and once I got over the anger and disappointment, I was proud because my younger brother had grown and was gaining confidence."

Said Eric: "I wanted nothing more than to beat him, and he wanted nothing more than to keep beating me. But, during those times, it was just us, it was me and him. He was my best friend."

David went on to play at Stanford and eventually got into coaching, against his mother's best wishes. Eric did not pursue a career in athletics. He went to San Diego State and got into a career in marketing at a financial services company, where his gregarious nature, big smile and easy laugh made him a perfect fit. Though their personalities are different -- David is stoic and introspective, Eric makes anyone feel as if they have been friends forever -- they are grounded in the same values they learned at a young age: family and faith above everything else.

Those principles only grew stronger after they found themselves in the Bay Area as adults.

After David was hired by Stanford, the entire Shaw family made it clear it would always be around to support him. Family members all have a standing invitation to come for dinner on Tuesdays. And they always attend home football games, waving and hugging David during the team's pregame walk, cheering from the stands, and then waiting for some time together once the game ends.

Even as Eric grew sick, he made it a point to go cheer for his big brother. "It's not just the football game. Our family comes together," he said. "We celebrate, we come to watch the game and cheer the team on and support David. And then afterwards, win or lose, we all wait for him to come out. It's a family day. It's been wonderful to share that experience with David."

Stanford eventually drew them even closer, and it had nothing to do with football.

Eric did not understand the gravity of his situation until his first meeting in 2013 with the doctors at Stanford Cancer Center. They put it bluntly: He had such an aggressive form of the disease that he needed immediate treatment. They would start with total skin radiation, preparing Eric to lose his hair, eyebrows, eyelashes, fingernails and toenails.

If that did not work, they would try chemotherapy next.

"All these thoughts are running through your mind," Crystal said. "'Is he going to make it? Is it going to work? What's going to happen?' At the time, our youngest daughter was 3 months old, so it was pretty overwhelming. We were just putting our lives together and then boom: you're in the middle of this cancer war."

The next week, Eric took a leave of absence from work and began four-times-a-week trips from their home east of Palo Alto, California, to Stanford Hospital, often driving as many as three hours one way in traffic. When he arrived, he went into a box and his whole body was exposed to the radiation light for about an hour. Then, he would make the drive back home to see Crystal and their four kids -- Caleb Michael, Jared Spann-Shaw, Madison Shaw and Olivia Shaw.

The radiation charred his skin. He lost weight. When he looked in the mirror, Eric no longer recognized the man looking back at him.

"Nothing prepares you for something like this," he said. "Knowing that other people were looking at me and knowing that something was very wrong, that was a daily grind to get myself up out of bed and get ready for the day, knowing that that was going to be my life."

He did this for three straight months, all to keep the disease from growing to a point where it would kill him. It worked for a short time, but the disease came back more aggressively six months later. Doctors moved on to chemotherapy treatments, some of them experimental, but also began discussing the last-resort option: a bone marrow transplant.

David and Tawnya immediately volunteered to become donors, and underwent testing. In most cases, siblings are the best chance at a donor match. Unfortunately, in their case, neither was close. On a 10-point match scale, Tawnya registered a 3, David a 5. Neither qualified to donate.

"I wanted to jump to the front of the line and say, 'Whatever I have to do, whatever you have to take out of me, however you have to do it, just do it,'" David said. "For them to come back and say that you're not a strong enough match was disheartening. It hurt me. The fact that we had to put our trust and faith in people that we didn't know, and that we're going to have to go out to registries and try to find someone who was a better match than I was, that uncertainty, and that doubt, it's hard to keep it at bay at that point. It starts to creep in."

Doctors eventually found two donors whom they believed could work, but they were not perfect matches. In early 2018, Eric and his family moved into a two-bedroom apartment near Stanford Hospital to prepare for the transplant. For three months, he went through radiation, then chemotherapy to prepare his body to accept the donor cells.

He underwent the transplant in April, feeling confident and inspired it would work. After a month, doctors did an initial check to see how many of the donor cells had survived the transplant.

None survived.

"It was like I never even had the transplant," Eric said. "That was so devastating. We just knew it was going to work. I mean, we're people of faith, and we knew everybody was praying for us, and that we were praying that this six-year journey was going to finally be over. And it wasn't over. It was crushing for them to say, 'It didn't work. We're going to have to try again.'"

The second attempt happened in September. Crystal bought lime green pins for the family to wear for lymphoma awareness. Without telling Eric or Crystal, David decided he would wear his on his shirt for the 2018 football season. In addition to that, he had lime green and yellow ribbons placed on the back of Stanford helmets as a way to show support for both cancer patients and cancer survivors.

He told his team that his brother was fighting cancer, and briefly mentioned the helmet ribbons publicly during an early-season news conference. But beyond that, David kept the severity of what was happening to his brother to himself, masking his growing nervousness, fear and anxiety as the clock ticked toward the next transplant. He had a hard time processing what was happening. He did not want to put that at the feet of his players, or his staff.

The doctors used the same donor cells that failed the first time for the second transplant on Sept. 11, 2018, because that was the only option available. But this time, doctors used even stronger drugs to prepare Eric's body to receive the donor cells -- hoping that would do enough to stop his immune system from attacking them.

When Stanford played Oregon on Sept. 22, no one in the Shaw family knew whether the transplant had worked. But the situation was more dire than the first transplant. The stronger chemotherapy caused major complications, and Eric became severely ill.

David coached the game with this in the back of his mind. Stanford rallied from a 21-7 deficit to win an overtime thriller, moving to 4-0 on the season, with a top-10 matchup against Notre Dame the following week. Back in Palo Alto, Eric watched the entire game alone in an apartment he rented near the hospital, the comeback buoying his spirits.

He had no idea his brother would speak to him through the television until he heard the words, "To my brother Eric ..."

"In that moment, I didn't feel any sickness at all," Eric said. "I can't really describe what I felt, just how proud I am of him and how awesome it made me feel that he would do that for me."

Said David: "If that transplant didn't work, I didn't know how many more games he was going to be able to see. That was an opportunity for me on national TV to speak to him, to say to my brother that against the odds, we came back and throughout the entire game, I was thinking about him."

Eric soon returned to Stanford Hospital. The chemotherapy destroyed his blood system, so he needed daily blood transfusions to stay alive. It came as no surprise when doctors told him the second transplant had failed. They had no plan now, no other donor options. David came by to visit as often as he could, but he had a hard time finding the words to say to his dying brother.

"I thought about Crystal. I thought about their kids," Shaw said. "I thought about, 'How can we help?' And then I kept going, 'We just can't get there. There has to be something else.' And we all prayed and we all comforted each other and trusted the doctors and prayed for the doctors. And just kept saying, 'Just tell us whatever options there are. Just tell us what to do and we'll do it.'"

During the day, Eric had his mother, Crystal, David, or David's wife, Kori, at his side, helping to keep his mind off what was happening to him. But in the evenings, when he was alone in his hospital room, he couldn't help but think about the dwindling medical options and his own death, slowly accepting what he believed would inevitably come.

Over seven years, everything the doctors tried had failed, and the disease always came back more aggressively. He felt exhausted in every possible way, desperate to feel better. He didn't want to die. All he wanted to do was get better, and see his kids again, hug his wife and go home. But that possibility seemed as far off as the stars.

"The doctors couldn't help us," Eric said. "They had lost all hope. There was nothing left, but we were in the deepest part of the valley, and there was nobody there but God. I said, 'You're going to take me off this Earth.' And he told me, 'Eric, you're not going to die.' That was the point at which my faith really took over, and I really had true peace."

His team of doctors huddled together again and came up with a plan many of their colleagues questioned, simply because they had never attempted it. In mid-October of 2018, they told Eric they wanted to try a third transplant.

Only this time, they wanted David to be the donor and they had only weeks to make it happen.

Eric thought, "Are they trying to kill me?"

When David was initially rejected, doctors had worked for 25 years to find a way to do half-match transplants but had virtually no success. By 2018, doctors explained that a different way to do the transplant had emerged, opening up the potential to try it with Eric. These transplants, called haploidentical transplants, typically use donor cells from a family member.

Dr. Wen-Kai Weng, Eric's bone marrow transplant physician, explained, "It was relatively new at this time. We decided to go ahead, because we knew if we didn't do it, the disease would really come back with a vengeance."

No one had ever done a third transplant with donor cells at Stanford.

"If he didn't go for this risk, he wouldn't be here," said Dr. Youn Kim, who treated Eric and heads Stanford's multidisciplinary Cutaneous Lymphoma Clinic/Program. "He wouldn't be living."

Doctors told Shaw there was a 15% chance he would not survive the transplant itself. If he did survive it, there was only about a 30% to 40% chance the donor cells would work. Compared to much steeper survival odds with no transplant at all, the decision -- filled with multiple layers of danger -- did not feel risky at all.

They had to try.

"They might have told us what the odds were, and I honestly just pushed it out of my brain," David said. "If this is the Hail Mary, hey, we're going to drop back and throw it as far as we can and send prayers along with it and hope that it works."

Without hesitation, David said to his brother, "Tell me what I need to do."

Stanford gathered in its team hotel early on Oct. 27 to begin final preparations before hosting Washington State later that day. David checked in for a 9 a.m. meeting and when it finished, he checked out of the hotel without saying a word. He walked toward the back exit, careful to make sure no one saw him, and snuck out the door to a waiting car.

Shaw sat in the passenger seat, headed toward campus and Stanford Hospital, praying all the while that what he was about to do would work.

He arrived at the hospital and was hooked up to an IV for the first dose of medication. This would not be the more traditional bone marrow transplant, where cells are extracted with a needle through the hips. Rather, the medication flowing through the IV would stimulate his body to overproduce the stem cells needed for the transplant, flooding his blood with them. The cells would then be extracted from his blood, and transplanted into Eric.

Doctors told him to expect to start feeling joint pain and tiredness within 24 hours. Those symptoms would grow only stronger over the coming days, when he came in for more medication. They told him he should stay off his feet, rest and remain hydrated.

That would be nice, David thought. But he had a game to coach. Only two people inside the program knew he had gone that morning: assistant athletic director for football operations Callie Dale, who drove him to the hospital, and defensive coordinator Lance Anderson.

"The way that I do my job, I work really hard not to make it about me," David said. "Although I wanted my team to know what my family was going through, college football is about the student-athletes. I wanted them to focus on what they needed to do. I didn't want to pull from that. I didn't want to, all of a sudden, now make it about me and my family."

A few hours later, he returned to the team hotel and acted as if he had been there the entire day, speaking nothing about his trip to the hospital. Shaw put on his lime green pin and made his way toward the bus. The short ride to the stadium felt long that day. His mind wandered before returning to the flip card in front of him.

As he exited the bus and finished the walk to the stadium, his two young nieces ran up to him. They squeezed him, holding on longer than usual, as if they knew their Uncle David was their only option, too.

He worried players would notice him moving around so slowly. If they did, no one said a word. Shaw kept pushing the pain aside, shoving his emotions down deep, saying prayers every chance he got.

On Wednesday, Shaw woke up and was so lethargic, he felt as if he was moving like a sloth. He went to the hospital for the final procedure: extracting the cells from his blood. Shaw wore comfortable clothes, arranged his pillows and settled in for a long day ahead. Doctors hooked him up to a machine that would do the work through two IVs: One took his blood so the needed donor cells could be siphoned out; the other IV would put the blood back in his body.

Eric rested on another floor in the same hospital.

David worked on his game plan, watched a few movies and occasionally stared at his own blood in the IVs, willing it to save his brother. He kept saying to himself over and over again, "God, I hope this works."

After eight hours, he was finished. Shaw then went out to practice.

"I remember walking up to him and just asking him, 'How are you doing, how are you feeling?'" Anderson said. "I could see it in him that he wasn't his normal self. He paused for a little bit and then he's like, 'I'm OK. A little bit tired, but I'm OK.' You know, just trying to put the most positive light that he could on it."

The next day, Nov. 1, 2018, Shaw went back to the hospital. It was transplant day, and he had to be with Eric to witness what they hoped would be a miracle. David and Crystal watched as Eric received a transfusion of David's stem cells, a shimmering light pink fluid flowing into his body. They sang and prayed. Already, they had received one small bit of good news: Doctors extracted 28 million cells from David's blood, about 20 million more than what they had hoped to get.

Stanford traveled the following day to Seattle, for a game against Washington. David felt guilty for leaving, but he knew there was nothing else he could do. Eric struggled in the hospital, not only from the transplant, but from the heavy chemo and radiation doctors used to prepare his body for the new cells.

Eric ran a fever of 105 degrees and vomited for days. The pain grew so intense he was put on a morphine drip and was in and out of consciousness. In Seattle, Shaw remembers being locked into the game, "except for those little moments where my heart was with my brother."

Stanford lost another heartbreaker, 27-23.

"I know us losing had nothing to do with everything David was going through," Dale said. "But just piling that on with everything else he was dealing with, it was a lot for him. He brought that up many times, about how Eric would tell him the biggest excitement for him every week was watching us play and watching us win. I know David had a lot of pressure on himself, amongst the pressure he already has as a head coach, to win for Eric. And I know that every time he did, he really felt like it was for him. And when we came up short, I know he was probably even harder on himself than he normally would have been."

Back at Stanford, David visited Eric when he could. But the waiting game took an increasing mental toll. David prides himself on his ability to compartmentalize, to focus on the only thing in front of him. He never spaces out, and he rarely gets emotional. But Shaw was falling apart on the inside.

He often found himself staring at cut-ups of red zone plays, not realizing the film had been paused for 20 minutes while his mind drifted off. Whenever that happened, he would stop and call someone, either his brother, his wife, his mother or Crystal just to see how they were doing.

"There were times where I thought life was slow motion, but it was actually moving and I was the one who was in slow motion," David said. "I found myself sometimes saying, 'Is this real? Is this really happening? This shouldn't happen.'"

In the middle of every single meeting, in the middle of every single film session, he silently prayed, "God help my brother. Just please let this one work."

"I look back now and I know more of everything that was going on and the situation," Anderson said. "I realized how much he was dealing with and how much he had to bear that week. And it's amazing that he was able to go through that week without really letting any of us really know exactly what he was going through and what a big deal this really was."

Within a few weeks, Eric started to turn a corner. Though they did not know whether the transplant had worked just yet, he showed enough improvement to leave the hospital after 52 days. David arrived for the big day, and Eric slowly put on a protective mask before shuffling to a waiting wheelchair. Doctors, nurses and support staff lined the hallway, clapping and cheering.

David cries when recalling that moment, his pent-up emotions flooding out as he describes it publicly for the first time.

"This is my little brother, after years of cancer, getting to leave the hospital," Shaw said, his voice quavering. He pauses to wipe tears from his eyes. "The nurses were crying. The doctors were crying. Because a few months earlier, they were preparing us for him to die. And he got to go home."

Three days later, doctors met with Eric and Crystal to deliver the results from the transplant. After only 27 days, Eric had none of his own blood coursing through his body.

It was all David's.

Eric picked up the phone.

"Dave," Eric said. "You have a twin. We're truly blood brothers."

Eric, who turns 46 on Friday, has lived a fairly normal life since he was declared cancer free on Jan. 1, 2019, although the coronavirus pandemic has limited how often the Shaw family can see each other.

In September, they decided to get together to celebrate all of their recent birthdays at David's house. They stayed outdoors, socially distanced, with masks on. Eric and David allowed themselves a hug, their heads turned to the side.

"Every time I see him, I just smile, you know? Because he gets to be here," David said.

Link:
'We're truly blood brothers': Stanford coach David Shaw and his recent fight to save his brother, Eric - KGO-TV

To Read More: ‘We’re truly blood brothers’: Stanford coach David Shaw and his recent fight to save his brother, Eric – KGO-TV
categoriaBone Marrow Stem Cells commentoComments Off on ‘We’re truly blood brothers’: Stanford coach David Shaw and his recent fight to save his brother, Eric – KGO-TV | dataNovember 5th, 2020
Read All

Latest Study explores the Stem Cell Banking Market Witness Highest Growth in nea – GroundAlerts.com

By daniellenierenberg

The ' Stem Cell Banking market' research report now available with Market Study Report, LLC, is a compilation of pivotal insights pertaining to market size, competitive spectrum, geographical outlook, contender share, and consumption trends of this industry. The report also highlights the key drivers and challenges influencing the revenue graph of this vertical along with strategies adopted by distinguished players to enhance their footprints in the Stem Cell Banking market.

The latest research report on the Stem Cell Banking market assesses the major factors influencing industry growth with respect to the competitive dynamics and geographical reach. It also ensembles the challenges prevalent in this industry vertical and identifies opportunities that will further aid business expansion. Further, the report revisits all areas of the business to cover the impact of COVID-19 pandemic so as to assist stakeholders in devising new strategies and reinforcing their position in the market.

Request a sample Report of Stem Cell Banking Market at:https://www.marketstudyreport.com/request-a-sample/2953678?utm_source=Groundalerts.com&utm_medium=AN

Key pointers from COVID-19 impact analysis:

Important inclusions in the Stem Cell Banking market report:

Ask for Discount on Stem Cell Banking Market Report at:https://www.marketstudyreport.com/check-for-discount/2953678?utm_source=Groundalerts.com&utm_medium=AN

Regional scope:

TOC of Stem Cell Banking Market Report Includes:

The Report Answers the key Questions

For More Details On this Report: https://www.marketstudyreport.com/reports/global-stem-cell-banking-market-report-2020-by-key-players-types-applications-countries-market-size-forecast-to-2026-based-on-2020-covid-19-worldwide-spread

Related Reports:

1. Global Multiple Myeloma Drugs Market Report 2020 by Key Players, Types, Applications, Countries, Market Size, Forecast to 2026 (Based on 2020 COVID-19 Worldwide Spread)Read More: https://www.marketstudyreport.com/reports/global-multiple-myeloma-drugs-market-report-2020-by-key-players-types-applications-countries-market-size-forecast-to-2026-based-on-2020-covid-19-worldwide-spread

2. Global Animal Hospitals and Veterinary Clinics Services Market Report 2020 by Key Players, Types, Applications, Countries, Market Size, Forecast to 2026 (Based on 2020 COVID-19 Worldwide Spread)Read More: https://www.marketstudyreport.com/reports/global-animal-hospitals-and-veterinary-clinics-services-market-report-2020-by-key-players-types-applications-countries-market-size-forecast-to-2026-based-on-2020-covid-19-worldwide-spread

Related Report : https://www.marketwatch.com/press-release/oat-milk-market-size-to-witness-huge-growth-by-2026-2020-11-05?tesla=y

Contact Us:Corporate Sales,Market Study Report LLCPhone: 1-302-273-0910Toll Free: 1-866-764-2150 Email: [emailprotected]

Read more:
Latest Study explores the Stem Cell Banking Market Witness Highest Growth in nea - GroundAlerts.com

To Read More: Latest Study explores the Stem Cell Banking Market Witness Highest Growth in nea – GroundAlerts.com
categoriaBone Marrow Stem Cells commentoComments Off on Latest Study explores the Stem Cell Banking Market Witness Highest Growth in nea – GroundAlerts.com | dataNovember 5th, 2020
Read All

Blocking energy pathway reduces GVHD while retaining anti-cancer effects of T-cells – Science Codex

By daniellenierenberg

MUSC Hollings Cancer Center researchers identified that blocking an alternative energy pathway for T-cells after hematopoietic stem cell transplant helps reduce graft-versus-host disease (GVHD) in an animal model of leukemia.

Xue-Zhong Yu, M.D., who also is associate director of Basic Science at Hollings, and collaborators at the Indiana University School of Medicine discovered that donor T-cells must have the key enzyme lysosomal acid lipase in order to induce GVHD.

The Yu laboratory focuses on understanding the biological balance between GVHD and graft-versus-leukemia effect. Hematopoietic stem cell transplantation is used as a treatment option for some leukemia patients. T-cells in stem cell grafts from a donor are given to a leukemia patient in order to kill the cancer and reboot the patient's immune system. GVHD is a big clinical challenge because the donor T-cells, which come from the bone marrow, can attack the patient's organs. Anywhere from 30% to 70% of patients develop acute GVHD after allogeneic bone marrow transplant and 15% die.

"When we deal with hematopoietic cell transplant, it is an important balance - blocking GVHD while still allowing T-cells to do their job and control the cancer," Yu said.

Each cell in our body has its own metabolic process. Cells convert the food that is eaten into energy in order to perform their intended functions. However, cellular metabolism is often altered in various diseases. Yu researches T-cell metabolism in order to understand the balance between graft-versus-host and graft-versus-leukemia responses.

Most cells in our body require oxygen to create energy efficiently. However, this research focused on lipid, or fat, metabolism. T-cells have special metabolic processes: Sometimes they multiply so rapidly that they need an extra source of energy from free fatty acids.

Lysosomal acid lipase is an enzyme that breaks the large lipids and cholesterol into individual free fatty acid building blocks. If that enzyme is missing, there are not enough free fatty acids for energy production. This changes the T-cell metabolism, which in turn changes T-cell function.

Clinically, broad spectrum immunosuppression drugs (steroids and rapamycin) are still used as the first line of care in patients with severe GVHD. However, Yu and collaborators hypothesized that changing T-cell metabolism could reduce GVHD after hematopoietic stem cell transplantation.

"We know that the gut is the primary organ affected by GVHD. Since the gut has less oxygen, the T-cells rely on free fatty acids and must use lysosomal acid lipase. We thought if we could remove or block the activity of that, we could reduce GVHD in the gut."

The Yu Laboratory collaborated with the Indiana University School of Medicine and used a lysosomal acid lipase-deficient mouse model. T-cells lacking lysosomal acid lipase were given to mice with leukemia. As a control, T-cells with lysosomal acid lipase from normal mice were given to another group of leukemia mice. Strikingly, the mice that received the T-cells without lysosomal acid lipase did not get severe GVHD. Additionally, the T-cells from the donor lysosomal acid lipase-deficient bone marrow still killed the leukemia cells.

To increase the clinical translational potential of the work, orlistat, the FDA-approved lysosomal acid lipase inhibitor was also tested in the leukemia model. Mice with leukemia were treated with orlistat every other day after receiving bone marrow from normal mouse donors. Similar to the first experiment with the lysosomal acid lipase-deficient bone marrow, blocking the activity of lysosomal acid lipase with orlistat greatly reduced GVHD while the graft-versus-leukemia effect was preserved.

Additionally, the researchers discovered that inhibiting the lysosomal acid lipase enzyme with orlistat reduced the number of pathogenic T-cells and increased the number of regulatory T-cells. The pathogenic T-cells are the ones that cause GVHD. Regulatory T-cells are one of the "braking mechanisms" of the immune system. They help to reduce the activity of the pathogenic T-cells and prevent GVHD damage.

Therefore, blocking lysosomal acid lipase activity with orlistat preferentially stopped the donor T-cells from damaging the gut but allowed the T-cells to function during circulation and kill the leukemia cells.

The researchers' future plan is to look deeper at the biological mechanisms. For example, it is not clear how the loss or inhibition of lysosomal acid lipase affects the other metabolites in T-cells. To move this finding closer to the clinic, Yu explained that human cells can be used in a special mouse model that recreates the human immune environment.

"Looking at the immune cells in the gut was technically challenging. However, the results were exciting because our hypothesis was validated. These results encourage us to continue studying this in order to provide better treatment options to patients."

Read the original post:
Blocking energy pathway reduces GVHD while retaining anti-cancer effects of T-cells - Science Codex

To Read More: Blocking energy pathway reduces GVHD while retaining anti-cancer effects of T-cells – Science Codex
categoriaBone Marrow Stem Cells commentoComments Off on Blocking energy pathway reduces GVHD while retaining anti-cancer effects of T-cells – Science Codex | dataNovember 5th, 2020
Read All

Page 30«..1020..29303132..4050..»


Copyright :: 2024