Page 25«..1020..24252627..3040..»

Lonza’s Cocoon will soon make dozens of stem cell therapies all at once – Innovation Origins

By daniellenierenberg

The name Lonza comes from the river in Switzerland near where the company was originally founded more than a hundred years ago, As such, it has nothing to do with the biomedical products and services that Lonza provides.

Lonza is active around the world and has around 15,000 employees with branches in the Netherlands as well. Such as the one on the BrightlandsChemelot Campus in Geleen. where approximately 250 people work there. This company division started as a start-up in Maastricht in 2005 and developed a production facility for stem cell and gene therapy to combat diseases. It became part of Lonza in 2018.

The reason that Lonza is on the Chemelot campus is due to its strategic location. This is very convenient for having access to all kinds of industry-related services that are already available there, says Willem Dullaers. He is the senior manager of quality control at Lonza in Geleen. Security is well organized, and we use a number of other facilities so that as a company you dont need to arrange these yourself.

The interesting thing about the Lonza production facility in Geleen is that the company isolates living cells and is even able to manipulate them on behalf of pharmaceutical groups. These companies then supply them to hospitals for the treatment of patients, primarily those suffering from forms of cancer. So what does Lonza do exactly and what does it ultimately deliver to those hospitals? is the question for Dullaers. This is not so easy to explain.

We work in cleanrooms at Lonzas premises in Geleen with the aim of selecting body cells from a sample of the patient taken in the hospital via a blood transfusion or bone marrow puncture. For example, body cells that are selected have the ability to fight cancer cells by virtue of their specific properties. If these cells are selected and reproduce in number after being cultured, it can be useful to add DNA to them so that they are able to attack the cancer cells even more effectively. Modification is done using a piece of deactivated virus that is used as a vector to introduce DNA into the selected cells.

Once that process is completed, the number of cells, which is usually very small, is cultivated to a larger quantity so that after various quality checks and the preparation for transport (cooled or frozen) are carried out, the cells are introduced into the patient. It is very common that patients are successfully treated afterward, says Dullaers. He refers to a report that made the world news last year. An Italian two-year-old boy with a rare immune disease (HLH) who was initially given up by doctors, Alex Montresor, was cured after stem cell therapy.

About 30 people are currently working on the production process for cell and gene therapy to treat people, Dullaers adds. The tasks that the biomedical doctors have to perform take time and require careful attention. They have to enter the cleanroom themselves to put the cells through the process to be transformed into stem cell therapies. They have to wear protective, hermetically sealed suits under the strictest safety conditions. That is to safeguard their own safety but also to prevent any potential contamination of the cells. Patients for whom this therapy is intended are often severely debilitated. They are not allowed to get sick as a result of a bacterium or particulate matter that has entered the cultured cells. A check always takes place to make sure that the product is completely clean. If this is not the case, it must be remade as a last resort.

At the moment, Lonza is working on a method to fully automate the culture process of the cells in the cleanroom. A pilot is currently underway at the Sheba Medical Center in Israel. It has a test setup with a so-called cocoon. The cocoon looks like an egg-shaped module of white plastic that is about one meter long. Inside the egg there is a small factory that automates all operations, from cell selection to DNA insertion and preparation for transport and administration.

Over the coming years, this innovative culture method for cell and gene therapy must be approved through clinical trials and by medicinal regulatory agencies such as the U.S. FDA and the European EMA. Only then can this robotized method be applied on a large scale.

I hope it will be achievable within five to ten years, says Dullaers. That will change a lot in terms of affordability and supply options for cell and gene therapy. Because it is such a cumbersome treatment, the costs are high right now. The production also takes a lot of time. Depending on the complexity of the process, the duration varies from a few days to sometimes more than two months, Dullaers notes.

If the entire process can be robotized, fewer people will be needed to do the work. I think that whereas we now work with 150 people, you will be able to do it with 15. However, you will need a different set of employees: People with a software background and an understanding of the machinery.

You can simultaneously fill a room with dozens of cocoons where cell therapies are made. That means that productivity is bound to skyrocket. Consequently, it will also be possible to make more medication based on the cells of individual patients, which will also be cheaper since less staff is needed. The chance of making mistakes is smaller than with work that involves human hands, Dullaers points out.

Another alternative is for hospital laboratories to make the gene and cell therapies themselves. It is conceivable that they would like to have a cocoon in their own hospital that they can use to treat patients.

You can also read the earlier articles in this series here:

The Chinese and Americans are knocking on the Dutch town of Geleens door to test innovative chem tech

Xilloc: Requests from dozens of hospitals worldwide for 3D-printed implants

Dutch Arlanxeo: 85% less CO2 emissions thanks to rubber from sugar cane

Niaga: 100% recyclable mattresses, furniture and carpets have the future

Visit link:
Lonza's Cocoon will soon make dozens of stem cell therapies all at once - Innovation Origins

To Read More: Lonza’s Cocoon will soon make dozens of stem cell therapies all at once – Innovation Origins
categoriaBone Marrow Stem Cells commentoComments Off on Lonza’s Cocoon will soon make dozens of stem cell therapies all at once – Innovation Origins | dataJanuary 3rd, 2021
Read All

Bone Marrow Processing Systems Market to Make Great Impact in near Future by -2025 – The Monitor

By daniellenierenberg

Bone marrow aspiration and trephine biopsy are usually performed on the back of the hipbone, or posterior iliac crest. An aspirate can also be obtained from the sternum (breastbone). For the sternal aspirate, the patient lies on their back, with a pillow under the shoulder to raise the chest. A trephine biopsy should never be performed on the sternum, due to the risk of injury to blood vessels, lungs or the heart.

More insightful information | Request a sample copy @https://www.trendsmarketresearch.com/report/sample/3374

The need to selectively isolate and concentrate selective cells, such as mononuclear cells, allogeneic cancer cells, T cells and others, is driving the market. Over 30,000 bone marrow transplants occur every year. The explosive growth of stem cells therapies represents the largest growth opportunity for bone marrow processing systems.

Europe and North America spearheaded the market as of 2018, by contributing over 74.0% to the overall revenue. Majority of stem cell transplants are conducted in Europe, and it is one of the major factors contributing to the lucrative share in the cell harvesting system market.

In 2018, North America dominated the research landscape as more than 54.0% of stem cell clinical trials were conducted in this region. The region also accounts for the second largest number of stem cell transplantation, which is further driving the demand for harvesting in the region.

Do you have any questions or specific requirements for Report ? Ask industry experts @https://www.trendsmarketresearch.com/checkout/3374/Single

Asia Pacific is anticipated to witness lucrative growth over the forecast period, owing to rising incidence of chronic diseases and increasing demand for stem cell transplantation along with stem cell-based therapy. Japan and China are the biggest markets for harvesting systems in Asia Pacific. Emerging countries such as Mexico, South Korea, and South Africa are also expected to report lucrative growth over the forecast period. Growing investment by government bodies on stem cell-based research and increase in aging population can be attributed to the increasing demand for these therapies in these countries.

Major players operating in the global bone marrow processing systems market are ThermoGenesis (Cesca Therapeutics inc.), RegenMed Systems Inc., MK Alliance Inc., Fresenius Kabi AG, Harvest Technologies (Terumo BCT), Arthrex, Inc. and others.

Talk to our Analyst / Ask for a discount on Market and Get More Information Related to This Report@https://www.trendsmarketresearch.com/report/discount/3374

https://mmcthemonitor.com/

Go here to read the rest:
Bone Marrow Processing Systems Market to Make Great Impact in near Future by -2025 - The Monitor

To Read More: Bone Marrow Processing Systems Market to Make Great Impact in near Future by -2025 – The Monitor
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Processing Systems Market to Make Great Impact in near Future by -2025 – The Monitor | dataJanuary 3rd, 2021
Read All

The Myeloproliferative Disorders Drugs Market to grow on an exceptional note in the next 10 years – LionLowdown

By daniellenierenberg

Myeloproliferative disorders are disease of blood and bone marrow which have unknown cause and there are wide range of symptoms. The treatment of myeloproliferative disorders generally depends on the type and presence of symptoms. Myeloproliferative disorders is generally considered as clonal disorder which begins with one or more change in the DNA of a single stem cells in the bone marrow. The changes to the hematopoietic stem cell cause the cell to reproduce repeatedly, creating more abnormal stem cells and these abnormal cells become one or more types of blood cells. Myeloproliferative disorders gets worst with time as the number of extra blood cells build up in the bone marrow and bloodstream.

To remain ahead of your competitors, request for a sample[emailprotected]https://www.persistencemarketresearch.com/samples/27949

Emergence of new treatment for the myeloproliferative disorders and availability of novel drug drive the market for myeloproliferative disorders drugs market in the near future. Rising incidence of myeloproliferative disorders and presence of strong product pipeline spur the myeloproliferative disorders drugs market. Growing geriatric population, change in lifestyle and growing awareness among general population is expected to drive the market of myeloproliferative disorders in the forecast period. Advancement in the treatment for oncology further expand the treatment option for myeloproliferative disorders. Various clinical trial undergoing for the treatment of myeloproliferative disorders which further drive the growth of the myeloproliferative disorders drugs market. However, high cost of drug and treatment along with the lack of awareness among the population in developing and under developed nations hinder the growth of myeloproliferative disorders drugs market.

The global myeloproliferative disorders drugs market is segmented on basis of Type, Drug Type, Distribution Channel, End User and Geography.

To receive Methodology request here @https://www.persistencemarketresearch.com/methodology/27949

Improvement in the symptoms and reduction of in splenomegaly among patients receiving available therapy is expected to boost the market of myeloproliferative disorders. Development in new therapeutic drug and target therapy further drive the market growth of myeloproliferative disorders. Increased research and development and increased funding by the government towards the development of novel therapy spur the market growth. With the discovery of specific gene mutations in myeloproliferative disorders the market is expected to grow in the forecast period owing to increased adoption of new drugs and increased awareness along with the favorable reimbursement scenarios for the treatment of myeloproliferative disorders.

The North America market holds the largest revenue share for myeloproliferative disorders drugs, due to presence of major pharmaceutical players undergoing various clinical innovation, government initiative and increase research and development funding for the Myeloproliferative disorders. Europe is expected to contribute for the second largest revenue share after North America in the global myeloproliferative disorders drugs market, owing to merging treatment option and development of oncology drug discovery and rising prevalence of myeloproliferative disorders. Asia Pacific is expected to show rapid growth, due to increasing number of vascular surgeons and low cost of peripheral interventions. China is expected to register fast growth, due to significant increase in the number of innovative firm and research organization and increasing importance of pharmaceutical research & development activities and investments in research for developing new drugs. Latin America and Middle East & Africa are projected to exhibit sluggish growth in myeloproliferative disorders Drugs market, due to proper healthcare systems and adoption of new drug and therapy.

To receive extensive list of important regions, Request TOC here @https://www.persistencemarketresearch.com/toc/27949

Examples of some of the key manufacturer present in the global myeloproliferative disorders drugs market are

Explore Extensive Coverage of PMR`sLife Sciences & Transformational HealthLandscape

Persistence Market Research (PMR) is a third-platform research firm. Our research model is a unique collaboration of data analytics andmarket research methodologyto help businesses achieve optimal performance.

To support companies in overcoming complex business challenges, we follow a multi-disciplinary approach. At PMR, we unite various data streams from multi-dimensional sources. By deploying real-time data collection, big data, and customer experience analytics, we deliver business intelligence for organizations of all sizes.

Our client success stories feature a range of clients from Fortune 500 companies to fast-growing startups. PMRs collaborative environment is committed to building industry-specific solutions by transforming data from multiple streams into a strategic asset.

Contact us:

Naved BegPersistence Market ResearchAddress 305 Broadway, 7th Floor New York City,NY 10007 United StatesU.S. Ph. +1-646-568-7751USA-Canada Toll-free +1 800-961-0353Sales[emailprotected]Websitehttps://www.persistencemarketresearch.com

https://lionlowdown.com/

Read the rest here:
The Myeloproliferative Disorders Drugs Market to grow on an exceptional note in the next 10 years - LionLowdown

To Read More: The Myeloproliferative Disorders Drugs Market to grow on an exceptional note in the next 10 years – LionLowdown
categoriaBone Marrow Stem Cells commentoComments Off on The Myeloproliferative Disorders Drugs Market to grow on an exceptional note in the next 10 years – LionLowdown | dataJanuary 3rd, 2021
Read All

2020: The year science took centre-stage – The Hindu

By daniellenierenberg

Apart from new findings on coronavirus every single day, the year was also filled with stories from outer space, archeology and anatomy

The year 2020 also termed as the year of the pandemic, social distancing, work from home, was also the year of research at breakneck speed. Virologists, immunologists, computational biologists, epidemiologists, and medical professionals across the globe turned into superheroes without capes.

Quick sequencing of the whole genome of the novel coronavirus (SARS-CoV-2) helped develop various test kits. We now have not one or two, but multiple COVID-19 vaccines that have succeeded in human clinical trials. Moderna's and Pfizer-BioNTechs vaccines that use messenger RNA have reported efficacy of about 95%, and the United Kingdom, the United States and the United Arab Emirates have already launched mass vaccinations.

Apart from new findings on coronavirus every single day, the year was also filled with stories from outer space, archeology and anatomy. Here is a list of a few of them in random order

In October, NASA confirmed, for the first time, water on the sunlit side of the Moon indicating that water may be distributed across the moons surface, and not limited to the cold and shadowed side.

Researchers from the Netherlands Cancer Institute announced in October that they have discovered a new pair of salivary glands hidden between the nasal cavity and throat. The team proposed the name tubarial glands and noted that this identification could help to explain and avoid radiation-induced side-effects such as trouble during eating, swallowing, and speaking.

In September, an international scientific team announced that they have spotted phosphine gas on Venus. On Earth, microorganisms that live in anaerobic (with no oxygen) environments produce phosphine. Massachusetts Institute of Technology molecular astrophysicist and study co-author Clara Sousa-Silva said in a release, This is important because, if it is phosphine, and if it is life, it means that we are not alone. It also means that life itself must be very common, and there must be many other inhabited planets throughout our galaxy.

Read our detailed explainer here.

In March, a person suffering from Leber congenital amaurosis, a rare inherited disease that leads to blindness, became the first to have CRISPR/Cas-9-based therapy directly injected into the body.

In June, two patients with beta-thalassemia and one with sickle cell disease had their bone marrow stem cells edited using CRISPR techniques.

Click here to read our explainer on the genome-editing tool that won this years Nobel Prize for Chemistry.

The year 2020 marks 100 years of discovery of Indus Valley Civilisation, and a new study showed that dairy products were being produced by the Harappans as far back as 2500 BCE.

Another study found the presence of animal products, including cattle and buffalo meat, in ceramic vessels dating back about 4,600 years.

Chinas Change-5 probe brought back about 1,731 grams of samples from the moon becoming the third country to bring moon samples after the U.S and Soviet Union.

Also, Japans Hayabusa 2 brought back the first extensive samples from an asteroid. The spacecraft, launched from Japan's Tanegashima space centre in 2014, took four years to reach the asteroid Ryugu before taking a sample and heading back to Earth in November 2019.

Mars rover Perseverance blasted off for the red planet on July 30 to bring the first Martian rock samples back to Earth. If all goes well, the rover will descend to the Martian surface on February 18, 2021.

You have reached your limit for free articles this month.

Find mobile-friendly version of articles from the day's newspaper in one easy-to-read list.

Enjoy reading as many articles as you wish without any limitations.

A select list of articles that match your interests and tastes.

Move smoothly between articles as our pages load instantly.

A one-stop-shop for seeing the latest updates, and managing your preferences.

We brief you on the latest and most important developments, three times a day.

Support Quality Journalism.

*Our Digital Subscription plans do not currently include the e-paper, crossword and print.

Read the original here:
2020: The year science took centre-stage - The Hindu

To Read More: 2020: The year science took centre-stage – The Hindu
categoriaBone Marrow Stem Cells commentoComments Off on 2020: The year science took centre-stage – The Hindu | dataJanuary 3rd, 2021
Read All

Stem cells from cord blood can now be used across many conditions: Mayur Abhaya, MD & CEO, LifeCell Internat.. – ETHealthworld.com

By daniellenierenberg

Shahid Akhter, editor, ETHealthworld, spoke to Mayur Abhaya, MD & CEO, LifeCell International, to know more about the latest advancements in Stem cell industry and how it has recovered from the Covid challenges.Impact and challenges of Covid-19 on the Stem cell industry ?One of the biggest issues faced by the stem cell industry during the pandemic was the transport of the cells after collection at birth. It needs to reach the lab within 72 hours and in the case of bone marrow stem cell from donation all the way until it reaches the patient that also has to be completed within 72 hours. The bone marrow cells cannot be handed over in courier. It has to be manually hand carried and that created a huge logistics hurdle were transplants significantly reduced in numbers because of the availability of donors and the transport issues around it.

What are the current global trends in the Stem Cell Industry at large?The recent clinical progress that has been made in the medical space of stem cell transplantation is that now cord blood is considered as a better source than bone marrow cells. This was found in a research study based in US, published in 2020. They have also shown that stem cells from the cord blood can now be used across many conditions with the same treatment protocol. Besides that, the preparation of the patient is different in different conditions but now they have simplified that and reduced the risk of death to a very, very low number. So the cord blood is preferred, as the outcomes are improving.How has Life Cell managed the scenario during the pandemic? Do let us know your challenges and the way forward plan?One of the biggest issues during the pandemic was transport, especially the flight operations because we heavily depend on them for moving the samples across the country. We had to revert to an alternate plan where we had to transport these samples through a relay network from one city to another, through a road network. Luckily LifeCell has operations across the country covering more than 250 cities. So still we had the ability to ensure that our commitment of getting the samples to the lab within those 72 hours was very much possible.

Another major milestone during this pandemic that we were able to help was to support a transplant were a child having Aplastic Anaemia needed not one but two cord blood units for the transplant and within the family they couldnt find a match. Luckily because of the LifeCell network and the inventory size of 50,000 units we were able to meet the requirements of the transplant and happy to share the outcome was very successful. So LifeCell ensures that we have appropriate training for its paramedical staff and they are also provided with the appropriate personal protective gears. There are restrictions on the entry of the team inside during the collection we work with the medical staff in the collection rooms, in the operation theatres to ensure a smooth and a well organised collection and even at the lab we have protocols that ensures hygiene and safety within the team and, the operating rooms we have for processing are also well managed.

Your future plans to ensure the smooth collection of Cord Blood?To ensure business continuity we have our teams located very close to our lab itself, you know, so about 100+ member team are placed within a Kilometer of the operating facility. We have adequate stocks, lots of the testing and the processing, consumables that we use are imported. We, at least, maintain 3 month inventory. We also have onsite power back up systems which include a month of diesel supply, month of liquid nitrogen supply and the teams also have a plan that we have a back site also with arrangements done. If for any reason we have cut off of the Chennai centre we have arrangements with an alternate lab to ensure the continuity of the operations

See original here:
Stem cells from cord blood can now be used across many conditions: Mayur Abhaya, MD & CEO, LifeCell Internat.. - ETHealthworld.com

To Read More: Stem cells from cord blood can now be used across many conditions: Mayur Abhaya, MD & CEO, LifeCell Internat.. – ETHealthworld.com
categoriaBone Marrow Stem Cells commentoComments Off on Stem cells from cord blood can now be used across many conditions: Mayur Abhaya, MD & CEO, LifeCell Internat.. – ETHealthworld.com | dataDecember 28th, 2020
Read All

‘We had to take our health into our hands’ – Meet the siblings fighting for their lives with sickle cell disease – South West Londoner

By daniellenierenberg

Siblings Nabila Nakigozi and Fauzan Ssebaggala were diagnosed with sickle cell disease at birth, and with time running out they are taking action.

20-year old Nabila was also diagnosed with avascular necrosis the collapse of bones and as a result is losing her left hip.

She said: Sickle cell is very unpredictable. You can go from happy, to in pain and crying in a matter of minutes. Pain has stolen my childhood and now my adulthood.

Sickle cell disease (SCD) is a group of inherited red blood cell disorders. Those with SCD red blood cells are crescent or sickle shape. This can block blood flow through the body and can lead to many health problems including strokes and episodes of pain.

Fauzan, 24, is now disabled also due to avascular necrosis which has led to the collapse of his spine and hips.

He said: I spent last night crying in pain, every breath I take is painful.

There are two known cures for sickle cell, bone marrow and stem cell transplants.

After extensive research, the siblings have located a private doctor in India who specialises in sickle cell and are fundraising for the expensive but life- saving bone marrow transplant.

Nabila said: Discussions about this procedure is what should be happening within the NHS. We have waited for action but there is always an excuse.

On 11 November, The Parliaments Joint Committee released a report titled Black People, Racism and Human Rights.

The report found that more than 60% of Black people in the UK do not believe their health is as equally protected by the NHS compared to white people.

SCD commonly affects people of African and Caribbean descent.

Fauzan said: The NHS as a whole needs to re-evaluate its position on sickle cell because they can be very insensitive towards us.

There are assumptions that we are not really in pain and just addicted to morphine.

For Nabila, going through this with her brother makes every day easier.

She said: It might sound odd, but its probably the best thing that could have happened to both of us. We lean on each other for support.

But for Fauzan, seeing his sister suffer is difficult to watch.

He said: As an older brother, Im meant to be looking after her. Its heart-breaking knowing there are things I cant do for her.

Nabila is in hospital 80% of the time. I struggle looking into her eyes and confidently saying, tomorrow will be fine.

The east London duo are passionate about highlighting the pain those with SCD go through beyond the surface.

Nabila said: We were born in Uganda and within the African community it isnt always acknowledged that the disease affects us mentally too.

Fauzan added: Ive really struggled with my mental health, and I felt a lot of pressure as a result of not working.

Despite their struggles, the siblings hope to be a voice for those with SCD through their charitable fashion brand, Werent Born Rich.

They make streetwear clothing, with a portion of the profits going to sickle cell patients.

Nabila said: I want people to look at Werent Born Rich and be inspired. If I can be this sick and continue to fight, so can you.

Tracy Williams, project manager for blood donation at the Sickle Cell Society, has advocated through multiple projects for more Black and mixed heritage blood donors.

She manages two projects South London Gives and Give Blood, Spread Love.

Tracy said: Only 1% of people who give blood are of Black heritage. This number needs to increase to help those with sickle cell with Exchange Blood Transfusions.

We advocate for the patient voice, and of that of families affected by SCD. Our goal is to improve the overall wellbeing for people with sickle cell by accessing excellent treatment, mental health support and easily accessible ethnically matched blood.

Despite SCD being the fastest growing genetically inherited condition in the UK, research remains limited.

She said: We have seen positive changes however we would like to see more research for widely accessible treatments. We also continue to campaign for their exemption from prescription charges.

Williams message for the Black community is clear.

She said: Your blood is needed. Donating blood is safe and the process takes half an hour. Its your chance to literally save someones life.

If you are not from our target communities be an ally and share our message too.

Visit link:
'We had to take our health into our hands' - Meet the siblings fighting for their lives with sickle cell disease - South West Londoner

To Read More: ‘We had to take our health into our hands’ – Meet the siblings fighting for their lives with sickle cell disease – South West Londoner
categoriaBone Marrow Stem Cells commentoComments Off on ‘We had to take our health into our hands’ – Meet the siblings fighting for their lives with sickle cell disease – South West Londoner | dataDecember 28th, 2020
Read All

New class of drugs to treat blood and bone marrow cancers: Research – Hindustan Times

By daniellenierenberg

A group of scientists in the US, including an Indian-American from the prestigious Cleveland Clinic, have identified a potential new class of drugs that may prove effective in treating certain common types of blood and bone marrow cancers.

First published in the latest edition of Blood Cancer Discovery, the decade long research which reports that a new pharmacological strategy to preferentially target and eliminate leukemia cells with TET2 mutations, was carried out by Jaroslaw Maciejewski and his collaborator Babal Kant Jha from the Cleveland Clinic Department of Translational Hematology & Oncology Research.

Myeloid leukemias are cancers derived from stem and progenitor cells in the bone marrow that give rise to all normal blood cells.

One of the most common mutations involved in driving myeloid leukemias are found in the TET2 gene, which has been investigated for the last decade by Maciejewski and Jha.

In preclinical models, we found that a synthetic molecule called TETi76 was able to target and kill the mutant cancer cells both in the early phases of disease--what we call clonal hematopoiesis of indeterminate potential, or CHIP--and in fully developed TET2 mutant myeloid leukemia, said Dr Maciejewski.

According to a media release, the research team designed TETi76 to replicate and amplify the effects of a natural molecule called 2HG (2-hydroxyglutarate), which inhibits the enzymatic activity of TET genes.

The TET DNA dioxygenase gene family codes for enzymes that remove chemical groups from DNA molecules, which ultimately changes what genes are expressed and can contribute to the development and spread of disease.

While all members of the TET family are dioxygenases, the most powerful enzymatic activity belongs to TET2, the press release said.

Even when TET2 is mutated, however, its related genes TET1 and TET3 provide residual enzymatic activity. While significantly less, this activity is still enough to facilitate the spread of mutated cancer cells.

Maciejewskis and Jhas new pharmacologic strategy to selectively eliminate TET2 mutant leukemia cells centers on targeting their reliance on this residual DNA dioxygenase activity, it said.

We took lessons from the natural biological capabilities of 2HG, explained Jha, a principal investigator.

We studied the molecule and rationally designed a novel small molecule, synthesized by our chemistry group headed by James Phillips, PhD. Together, we generated TETi76a similar, but more potent version capable of inhibiting not just TET2, but also the remaining disease-driving enzymatic activity of TET1 and TET3, Jha said.

Cleveland Clinic said that the researchers studied TETi76s effects in both preclinical disease and xenograft models (where human cancer cells are implanted into preclinical models). Additional studies will be critical to investigate the small molecules cancer-fighting capabilities in patients.

We are optimistic about our results, which show not just that TETi76 preferentially restricts the growth and spread of cells with TET2 mutations, but also gives survival advantage to normal stem and progenitor cells, Jha said.

(This story has been published from a wire agency feed without modifications to the text.)

Follow more stories on Facebook and Twitter

Read more here:
New class of drugs to treat blood and bone marrow cancers: Research - Hindustan Times

To Read More: New class of drugs to treat blood and bone marrow cancers: Research – Hindustan Times
categoriaBone Marrow Stem Cells commentoComments Off on New class of drugs to treat blood and bone marrow cancers: Research – Hindustan Times | dataDecember 26th, 2020
Read All

He got his cheek swabbed at 24. Nothing happened for 14 years. – Las Vegas Review-Journal

By daniellenierenberg

Cade Cridland thought a lot about fate as he sat tethered to a machine that drained blood from one arm and pumped it back into his body through the other arm.

After four hours, blood stem cells processed by the machine would be flown thousands of miles to a young child he has never met. A child whose name he does not know.

A child battling blood cancer.

This story unfolded in a Denver hospital in September. But it began 14 years earlier with a split-second decision in Las Vegas when Cridland was 24.

Before the child was born.

Im not a religious person by any means, Cridland, now 38, said. But I do believe that theres a lot of fate that takes place in our actions on a day-to-day basis.

The year is 2006. George W. Bush is president.

And Cridland, a recent UNLV graduate with a bachelors degree in journalism and media studies, had just left his part-time job with Vegas PBS for a full-time job with the local chapter of the Leukemia and Lymphoma Society.

Through his new job, Cridland soon found himself at a donation drive, hosted by a charity called Be the Match, for a family desperately searching for a bone marrow donor.

For patients diagnosed with leukemia or lymphoma, a bone marrow or cord blood transplant may be their only hope for a cure.

Cridland was there to work the event, but he drew inspiration from those around him getting swabbed. Whats the harm, he thought.

That day, his DNA was packaged and shipped off to be entered in the National Bone Marrow Registry.

He wasnt a match. Life went on, and eventually Cridland forgot about the swab.

In the meantime, he moved on to a job with the Clark County School District, got married, adopted a dog, had two children, bought a house, got another dog.

Fourteen years came and went, and now it was 2020.

The phone call

The call came at the best time, during arguably one of the worst years in modern history. The 2020 pandemic was in full swing. Protests over racism and police brutality had taken hold of a divided nation.

Cridland, a spokesman for the school district, needed something good to focus on.

But when that something good came calling earlier this year, he almost didnt answer. A toll-free number lit up the screen. A telemarketer maybe, or a scam?

Cridland surprised himself and took the call.

I dont know if you remember this, Cridland recalled a woman on the other end explaining. But you gave a cheek swab at one of our events, and theres a possibility that this cheek swab is a match for a child in need of stem cells or marrow to help them fight blood cancer.

The woman, an employee of Be the Match, ended the call with a question: Would you be willing to donate?

She gave Cridland the weekend to think it over. But for Cridland and his wife, who have two young children, it was a no-brainer.

Not long after, a second cheek swab confirmed what the woman had told Cridland during their phone call.

He was a match for the patient. In this case, that meant at least eight specific genetic markers in Cridlands DNA, called human leukocyte antigens, matched the patients DNA.

Every one individual has their own unique genetic DNA code, said Erica Sevilla, a spokeswoman for Be the Match. What were looking to attach to that code is protein markers that tell your body what cells belong in the body and what cells do not. Essentially, youre looking to match immune systems between the donor and the patient.

From there, the patients doctor will decide the best course for treatment.

According to Be the Match, many believe that the only way to donate blood stem cells is through a surgical procedure, during which the donor receives anesthesia and a needle is used to extract liquid marrow from the pelvic bone. But 79 percent of donations are done through a nonsurgical procedure known as a peripheral blood stem cell donation.

The doctor in Cridlands donation case chose the nonsurgical route.

During the week leading up to the donation, Be the Match sent a nurse to Cridlands home in Henderson once a day for five consecutive days to administer injections of a medication that increased the number of blood-forming cells in Cridlands bloodstream.

Cridland and his wife were flown to Denver for the procedure.

At times throughout the donation process, which spanned about five months from the first phone call to the day of the procedure, Cridland would find himself moved to tears, overcome by his gratitude for the chance to help save a young child.

To me, the crazy thing about all this is that my actions from 14 years ago have had a dramatic effect on how somebody else is living in 2020, he said in an interview this month at his home. With all the negativity weve seen this year, this one family may look at 2020 as the best year of their lives because of this one specific moment in my life that took place 14 years ago.

Even now, three months removed from donation day, Cridland at random will break down in tears.

Sometimes he thinks about his blood pumping through the childs body. How a piece of him will always be with that child. How someone he has never met, and may never meet, could be such a close genetic match to him.

How were all more alike than we think.

Epilogue

I wish I could take this feeling, put it in a can and throw a lid on top, Cridland said of his experience donating stem cells.

If that were possible, Cridland said, he would pass it around like a party favor but he cant.

So instead, hes hoping his story will inspire others, especially people of color, to join the registry and give the gift of a cure to another patient in need.

Currently, there is a severe shortage of diverse donors in the national registry, which consists of 22 million donors. More than 13 percent of the American population is Black, for example, yet only about 4 percent of registered donors are Black.

And the disparity is costing lives.

Matching is based on genetic markers that can be traced back to your grandparents and your great-grandparents, said Sevilla, the spokeswoman for Be the Match. Theyre traced back to the very origins of your family, so thats why people who are of European descent have an easier time finding a match, whereas people who descended from slavery, for example, have a harder time.

To join the National Bone Marrow Registry and request a cheek swab kit, visit http://www.join.bethematch.org.

Meanwhile, as of mid-December, Cridland knew only that the patient had received his stem cells. He wasnt sure, even, if hed ever meet the child.

Both parties must consent to meeting, and different countries operate under varied cooling-off periods. For some countries, a patient and a donor must wait two years before they can meet or even speak.

As a donor, Cridland was told the patients age, specific diagnosis and city and country of residence. But he is not allowed to disclose that information to protect the patients privacy.

According to Be The Match, 50 percent of all marrow or stem cell donations are international.

We are either exporting cells or importing cells, said Sevilla, the charity spokeswoman.

Cridland gave his consent for the patients family to reach out to him in the future. For now, its a waiting game.

If the moment comes that they try to connect, Ill be there, he said.

Contact Rio Lacanlale at rlacanlale@reviewjournal.com or 702-383-0381. Follow @riolacanlale on Twitter.

Continued here:
He got his cheek swabbed at 24. Nothing happened for 14 years. - Las Vegas Review-Journal

To Read More: He got his cheek swabbed at 24. Nothing happened for 14 years. – Las Vegas Review-Journal
categoriaBone Marrow Stem Cells commentoComments Off on He got his cheek swabbed at 24. Nothing happened for 14 years. – Las Vegas Review-Journal | dataDecember 26th, 2020
Read All

Study clarifies the impact of getting old on hematopoietic stem cells – Microbioz India

By daniellenierenberg

By shifting mouse elderly hematopoietic stem cells (aged HSCs) to the environment of young mice (bone marrow niche), it was shown that the pattern of stem cell gene expression was rejuvenated to that of young hematopoietic stem cells. On the other hand, the function of elderly HSCs failed to recover in the young bone marrow niche. The epigenome (DNA methylation) of aged HSCs didnt change significantly even in the young bone marrow niche, and DNA methylation profiles were found to be a better index than the gene expression pattern of aged HSCs.

A research group headed by Professor Atsushi Iwama in the Division of Stem Cell and Molecular Medicine, The Institute of Medical Science, The University of Tokyo (IMSUT) declared these world-first Outcomes and was published in the Journal of Experimental Medicine (online) on November 24th.

The results will contribute to the development of treatments for age-related blood diseases.

Professor Atsushi Iwama, Lead Scientist, IMSUT

The research group investigated whether rejuvenating aged HSCs in a young bone marrow market environment would rejuvenate.

Tens of thousands of elderly hematopoietic stem/progenitor cells gathered from 20-month-old mice were transplanted into 8-week-old young mice without pretreatment like irradiation. After two months of follow-up, they collected bone marrow cells and performed flow cytometric analysis.

The research team also transplanted 10-week-old young mouse HSCs for comparison. In addition, engrafted aged HSCs were fractionated and RNA sequence analysis and DNA methylation analysis were conducted.

They discovered that engrafted elderly HSCs were less capable of producing hematopoietic cells compared to younger HSCs. They also showed that differentiation of aged HSCs into multipotent progenitor cells was persistently impaired even in the young bone marrow market, and that the direction of differentiation was biased. It was found that the transfer of aged HSCs into the young bone marrow market does not enhance their stem cell function.

A more detailed analysis may reveal mechanisms that irreversibly affect aged HSC functionAging studies focusing on HSCs have been chased in mice with a bone marrow transfer model. However, the effect of aging on HSCs remains to be clarified.

Professor Iwama says as follows. This analysis has a substantial impact because it clarified the effect of aging on HSCs. Our results are expected to contribute to further elucidation of the mechanism of aging in HSCs and comprehension of the pathogenic mechanism of age-related blood disorders.

Source:

Journal reference:

Kuribayashi, W.,et al.(2020) Limited rejuvenation of aged hematopoietic stem cells in young bone marrow niche.Journal of Experimental Medicine.doi.org/10.1084/jem.20192283.

Go here to read the rest:
Study clarifies the impact of getting old on hematopoietic stem cells - Microbioz India

To Read More: Study clarifies the impact of getting old on hematopoietic stem cells – Microbioz India
categoriaBone Marrow Stem Cells commentoComments Off on Study clarifies the impact of getting old on hematopoietic stem cells – Microbioz India | dataDecember 26th, 2020
Read All

Scientists find new class of drugs that may treat blood, bone marrow cancer – Business Standard

By daniellenierenberg

A group of scientists in the US, including an Indian-American from the prestigious Cleveland Clinic, have identified a potential new class of drugs that may prove effective in treating certain common types of blood and bone marrow cancers.

First published in the latest edition of Blood Cancer Discovery, the decade long research which reports that a new pharmacological strategy to preferentially target and eliminate leukemia cells with TET2 mutations, was carried out by Jaroslaw Maciejewski and his collaborator Babal Kant Jha from the Cleveland Clinic Department of Translational Hematology & Oncology Research.

Myeloid leukemias are cancers derived from stem and progenitor cells in the bone marrow that give rise to all normal blood cells.

One of the most common mutations involved in driving myeloid leukemias are found in the TET2 gene, which has been investigated for the last decade by Maciejewski and Jha.

In preclinical models, we found that a synthetic molecule called TETi76 was able to target and kill the mutant cancer cells both in the early phases of disease--what we call clonal hematopoiesis of indeterminate potential, or CHIP--and in fully developed TET2 mutant myeloid leukemia," said Dr Maciejewski.

According to a media release, the research team designed TETi76 to replicate and amplify the effects of a natural molecule called 2HG (2-hydroxyglutarate), which inhibits the enzymatic activity of TET genes.

The TET DNA dioxygenase gene family codes for enzymes that remove chemical groups from DNA molecules, which ultimately changes what genes are expressed and can contribute to the development and spread of disease.

While all members of the TET family are dioxygenases, the most powerful enzymatic activity belongs to TET2, the press release said.

Even when TET2 is mutated, however, its related genes TET1 and TET3 provide residual enzymatic activity.

While significantly less, this activity is still enough to facilitate the spread of mutated cancer cells.

Maciejewski's and Jha's new pharmacologic strategy to selectively eliminate TET2 mutant leukemia cells centers on targeting their reliance on this residual DNA dioxygenase activity, it said.

We took lessons from the natural biological capabilities of 2HG, explained Jha, a principal investigator.

We studied the molecule and rationally designed a novel small molecule, synthesized by our chemistry group headed by James Phillips, PhD. Together, we generated TETi76a similar, but more potent version capable of inhibiting not just TET2, but also the remaining disease-driving enzymatic activity of TET1 and TET3, Jha said.

Cleveland Clinic said that the researchers studied TETi76's effects in both preclinical disease and xenograft models (where human cancer cells are implanted into preclinical models). Additional studies will be critical to investigate the small molecule's cancer-fighting capabilities in patients.

We are optimistic about our results, which show not just that TETi76 preferentially restricts the growth and spread of cells with TET2 mutations, but also gives survival advantage to normal stem and progenitor cells, Jha said.

(Only the headline and picture of this report may have been reworked by the Business Standard staff; the rest of the content is auto-generated from a syndicated feed.)

Business Standard has always strived hard to provide up-to-date information and commentary on developments that are of interest to you and have wider political and economic implications for the country and the world. Your encouragement and constant feedback on how to improve our offering have only made our resolve and commitment to these ideals stronger. Even during these difficult times arising out of Covid-19, we continue to remain committed to keeping you informed and updated with credible news, authoritative views and incisive commentary on topical issues of relevance.We, however, have a request.

As we battle the economic impact of the pandemic, we need your support even more, so that we can continue to offer you more quality content. Our subscription model has seen an encouraging response from many of you, who have subscribed to our online content. More subscription to our online content can only help us achieve the goals of offering you even better and more relevant content. We believe in free, fair and credible journalism. Your support through more subscriptions can help us practise the journalism to which we are committed.

Support quality journalism and subscribe to Business Standard.

Digital Editor

More:
Scientists find new class of drugs that may treat blood, bone marrow cancer - Business Standard

To Read More: Scientists find new class of drugs that may treat blood, bone marrow cancer – Business Standard
categoriaBone Marrow Stem Cells commentoComments Off on Scientists find new class of drugs that may treat blood, bone marrow cancer – Business Standard | dataDecember 26th, 2020
Read All

CAR T-Cell Therapies Are Set to Expand Into More Hematologic Malignancy Indications – Targeted Oncology

By daniellenierenberg

Multiple chimeric antigen receptor (CAR) T-cell therapies for the treatment of lymphomas and multiple myeloma have moved forward in the regulatory process, with 1 new FDA approval in 2020 and others anticipated in the near future.

In July, brexucabtagene autoleucel (Tecartus; KTEX19) received accelerated approval for the treatment of adult patients with relapsed or refractory mantle cell lymphoma (MCL) based on the results of the phase 2 ZUMA-2 trial (NCT02601313), bringing the treatment landscape of this hematologic malignancy into a new era.1

This approval is only the very beginning, and we are walking into a sophisticated CAR T-cell therapy era with many constructs being designed with [different mechanisms of action], Michael Wang, MD, said in an interview with Targeted Therapies in Oncology (TTO).

Additional actions by the FDA this year included granting priority review designations to lisocabtagene maraleucel (liso-cel) for the treatment of adult patients with relapsed or refractory (R/R) large B-cell lymphoma, after at least 2 prior therapies,2 as well as to idecabtagene vicleucel (ide-cel; bb2121)as treatment of adult patients with multiple myeloma who have received at least 3 prior therapies, including an immunomodulatory drug (IMiD), a proteasome inhibitor (PI), and an anti-CD38 antibody.3

The approval of brexucabtagene autoleucel, an antiCD19 CAR T-cell product, in MCL was based on objective response rate (ORR) data from patients treated on a single-arm trial who had previously received anthracycline- or bendamustine-containing chemotherapy, an anti-CD20 antibody, and a Bruton tyrosine kinase inhibitor (n = 74).2,4 Eligible patients received leukapheresis and optional bridging therapy, followed by conditioning chemotherapy and a single infusion of brexucabtagene autoleucel 2 106CAR T cells/kg.

The results of ZUMA-2 were published in the New England Journal of Medicine in April and demonstrated a 93% (95% CI, 84%-98%) ORR in 60 response-evaluable patients, 67% (95% CI, 53%-78%) of whom had a complete response (CR). ORRs were consistent across key patient subgroups. Two patients (3%) each had stable and progressive disease.

Progression-free and overall survival (OS) rates at 12 months were 61% and 83%, respectively, and 57% of patients remained in remission at the 12.3-month median follow-up.4 Cytokine release syndrome (CRS) was the most concerning adverse event, occurring in 91% of patients; grade 3 or higher CRS occurred in 15%.

Notably, the patient cohort comprised patients with a median of 3 prior lines of therapy (range, 1-5) and more than half (56%) were considered to have intermediateor high-risk features by the simplified Mantle Cell Lymphoma International Prognostic Index at baseline.

Before CAR T-cell therapy, we did not have any effective means [of getting patients with high-risk MCL into remission]. We used allogeneic transplantation [and] were able to put some of the patients into a long-term remission, but at a heavy price of mortality, said Wang, a professor in the Department of Lymphoma & Myeloma, Division of Cancer Medicine at The University of Texas MD Anderson Cancer Center in Houston. Overall, this brings hope to the high-risk patient population. It looks as though fewer patients are relapsing.

Lisocabtagene Maraleucel In February, the FDA granted liso-cel a priority review designation, an action supported by the safety and efficacy findings of the phase 1 TRANSCEND-NHL-001 trial (NCT02631044).2

Histologic subtypes eligible for treatment included diffuse large B-cell lymphoma (DLBCL); high-grade double- or triple-hit B-cell lymphoma; transformed DLBCL from indolent lymphoma; primary mediastinal B-cell lymphoma; and grade 3B follicular lymphoma. Patients were administered 2 sequential infusions of CD8+ and CD4+ CAR T cells following optional bridging therapy and lymphodepleting chemotherapy and were assigned to 1 of 3 target dose levels: 50 106 (1 or 2 doses), 100 106 , or 150 106 CAR-positive T cells. Investigators determined that the recommended target dose was 100 106 CAR-positive T cells.

In the 256 patients who received at least 1 dose of liso-cel and were included in the efficacy-evaluable group, the ORR was 73% (95% CI, 67%-78%), with 53% (95% CI, 47%-59%) achieving a CR. Investigators observed all-grade CRS (42%) and neurological events (30%), but most cases were grade 1 or 2 in severity.

Due to relatively low rates of CRS and neurological events, the administration of liso-cel has been explored in both the inpatient and outpatient settings. One that included a cohort of patients treated in the outpatient setting with proper monitoring versus the traditional inpatient setting demonstrated consistent safety.6

Based on these results, the indication is that you can deliver [liso-cel] in the outpatient setting and the outcomes are good compared with those treated in the inpatient setting, explained study author Carlos R. Bachier, MD, the director of cellular research at Sarah Cannon in Nashville, Tennessee, in an interview with TTO. Aside from that, they also showed that liso-cel could be safely administered outside of university programs and in more community-based programs, most of them being aligned [with] or part of stem cell and bone marrow transplant programs.

The target action date for a decision on the biologics license application (BLA) for liso-cel was extended twice in 2020 and remains under review. In May, the FDA moved the Prescription Drug User Fee Act (PDUFA) goal date out 3 months from its original August deadline.2,7 Bristol Myers Squibb, the company responsible for developing the product, submitted additional information to the agency following the initial BLA submission, which resulted in more review time. Once again, the target action date was pushed in November, this time due to incomplete manufacturing facility inspections resulting from ongoing travel restrictions due to COVID-19. The FDA provided no new action date.8

For patients with multiple myeloma, the B-cell maturation antigen (BCMA)-targeting CAR T-cell therapy idecel is currently under review for approval in patients who have received at least 3 prior therapiesincluding an immunomodulatory drug (IMiD), a proteasome inhibitor (PI), and an anti-CD38 antibodybased on results of the phase 2 KarMMa trial (NCT03361748).9

Updated trial results were presented at the American Society of Clinical Oncology 2020 Virtual Scientific Program, and showed that both the primary and key secondary end points of ORR and CR rate were 75% and 33%, respectively. The median duration of response was 10.7 months, and the median progression-free survival was 8.8 months in all patients receiving ide-cel. Corresponding medians were 19.0 and 20.2 months among those achieving a CR or stringent CR. The median OS was 19.4 months in all treated patients.

The 128 patients treated received 1 of 3 target dose levels: 150, 300, or 450 106 CAR-positive T cells. The investigators noted that the highest efficacy outcomes were seen in patients in the 450 106 CAR-positive T-cell group, with an ORR of 82% and a 39% CR rate.

The incidence of CRS was 84% across the treatment cohort and increased with higher target doses. Overall, less than 6% of patients have grade 3 or higher CRS and only 1 patient in the highest target dose cohort had a grade 5 event. Neurological toxicity was low across target doses, with no grade 4 or 5 events reported.

At baseline, the majority of patients (51%) had high tumor burden, 39% had extramedullary disease, and 35% had high-risk cytogenetics including deletion 17p or translocations in t(4;14) or t(14;16).

In May, the FDA issued a refusal letter regarding the BLA for ide-cel because the Chemistry, Manufacturing, and Control (CMC) module required more information before they could complete the review.10 In September, the resubmitted application received a priority review and the agency assigned a PDUFA action date of March 27, 2021.11

If approved, ide-cel would be the first CAR T-cell therapy available for the treatment of patients with multiple myeloma.

References:

1. FDA approves brexucabtagene autoleucel for relapsed or refractory mantle cell lymphoma. FDA. Updated July 27, 2020. Accessed November 18, 2020. https://bit. ly/3pEDQV5

2. US Food and Drug Administration (FDA) accepts for priority review Bristol-Myers Squibbs biologics license application (BLA) for lisocabtagene maraleucel (liso-cel) for adult patients with relapsed or refractory large B-cell lymphoma. Press release. Bristol Myers Squibb. February 13, 2020. Accessed November 18, 2020. https:// bit.ly/37ruQbs

3. US Food and Drug Administration (FDA) accepts for priority review Bristol Myers Squibb and bluebird bio application for anti-BCMA CAR T cell therapy idecabtagene vicleucel (ide-cel, bb2121). Press release. Bristol Myers Squibb. September 22, 2020. Accessed November 18, 2020. https://bit.ly/3kDhakH

4. Wang M, Munoz J, Goy A, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020;382(14):1331-1342. doi:10.1056/ NEJMoa1914347

5. Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396(10254):839-852. doi:10.1016/ S0140-6736(20)31366-0

6. Bachier CR, Palomba ML, Abramson JA, et al. Outpatient treatment with lisocabtagene maraleucel (liso-cel) in 3 ongoing clinical studies in relapsed/refractory (R/R) large B cell non-Hodgkin lymphoma (NHL), including second-line transplant noneligible (TNE) patients: Transcend NHL 001, Outreach, and PILOT. Paper presented at: 2020 Transplantation & Cellular Therapy Meetings; February 19-23, 2020; Orlando, FL. Abstract 29. Accessed November 18, 2020. bit.ly/37I7DC9

7. Bristol Myers Squibb provides update on biologics license application (BLA) for lisocabtagene maraleucel (liso-cel). Press release. Bristol Myers Squibb. May 6, 2020. Accessed November 18, 2020.https://bit.ly/2YFWAs8

8. Bristol Myers Squibb provides regulatory update on lisocabtagene maraleucel (liso-cel). News release. Business Wire. November 16, 2020. Accessed November 18, 2020. https://bwnews.pr/3pKQMZI

9. Bristol Myers Squibb and bluebird bio announce submission of biologics license application (BLA) for anti-BCMA CAR T cell therapy idecabtagene vicleucel (ide-cel, bb2121) to FDA. Press release. Bristol Myers Squibb. March 31, 2020. Accessed November 18, 2020. https://bit.ly/2JwKbxO

10. Bristol Myers Squibb and bluebird bio provide regulatory update on idecabtagene vicleucel (ide-cel, bb2121) for the treatment of patients with multiple myeloma. News release. Business Wire. May 13, 2020.Accessed November 18, 2020. https:// bwnews.pr/3cpgJa1

11. US Food and Drug Administration (FDA) accepts for priority review Bristol Myers Squibb and bluebird bio application for anti-BCMA CAR T cell therapy idecabtagene vicleucel (ide-cel, bb2121). Press release. Bristol Myers Squibb. September 22, 2020. Accessed November 18, 2020. https://bit.ly/3kDhakH

Originally posted here:
CAR T-Cell Therapies Are Set to Expand Into More Hematologic Malignancy Indications - Targeted Oncology

To Read More: CAR T-Cell Therapies Are Set to Expand Into More Hematologic Malignancy Indications – Targeted Oncology
categoriaBone Marrow Stem Cells commentoComments Off on CAR T-Cell Therapies Are Set to Expand Into More Hematologic Malignancy Indications – Targeted Oncology | dataDecember 26th, 2020
Read All

Organ and Tissue Transplantation and Alternatives – GlobeNewswire

By daniellenierenberg

New York, Dec. 21, 2020 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Organ and Tissue Transplantation and Alternatives" - https://www.reportlinker.com/p096592/?utm_source=GNW g., kidneys, liver, heart-lung, pancreas, intestines) and the tissue transplantation (e.g., bone, skin, cornea, heart valve) markets, along with the pharmaceuticals that accompany each market.

Also included are experimental xenografts and artificial organs; tissue transplants; and cell transplants (e.g., bone marrow, cord blood, peripheral blood, islet cell). The report touches on the use of fetal cells, stem cells and altered cancer cells.

The arrangement of this report offers an overview of the key elements in the transplantation process: tissue typing, procurement and preservation, immunosuppressants for solid organ and tissue transplants, and postoperative monitoring. International markets are discussed, and information is provided on industry structure and the regulatory environment.

Within each section are discussions of commercialization opportunities for each segment of the market. New or emerging devices, techniques and pharmaceuticals are highlighted.

Profiles of leading companies involved with solid organ transplantation, tissue transplantation, and alternative technologies are included. The report provides information on company placement within the market and strategic analyses of the companies available and emerging products.

An appendix featuring various terms and processes used in transplantation is provided at the end of the report.

This report cites autologous products only in relation to their impact on the market for allografts. It does not include blood products, except for peripheral and umbilical cord blood as a source of stem cells.

By geography, the market has been segmented into the North America, Europe, Asia-Pacific, and Rest of the World regions. Detailed analysis of the market in major countries such as the U.S., Germany, the U.K., Italy, France, Spain, Japan, China, India, Brazil, Mexico, GCC countries and South Africa will be covered in the regional segment. For market estimates, data will be provided for 2019 as the base year, with estimates for 2020 and forecast value for 2024.

Report Includes:- 26 data tables and 37 additional tables- An overview of the global organ and tissue transplantation and alternatives market- Estimation of the market size and analyses of market trends, with data from 2018 to 2019, estimates for 2020 and projection of CAGR through 2024- Details about organ and tissue transplantation and alternatives, their pathophysiology and affects, and major advancement and latest trends- A look at the regulatory scenarios and initiatives by government organization- Analysis of current and future market dynamics and identification of key drivers, restraints and opportunities such as increasing incidence of organ donations, improved awareness about organ donations, side effects of organ and tissue transplantation and antibiotic resistance infections- Coverage of emerging procedures and products in development and discussion on prevalence of major chronic diseases which initiates organ damage or donation- Discussion on the role of the organ procurement organization and information on transplantation process and preparation and coverage of issues like black market donors- Impact analysis of COVID-19 on organ and tissue transplantation and alternatives market- Market share analysis of the key companies of the industry and coverage of events like mergers & acquisitions, joint ventures, collaborations or partnerships, and other key market strategies- Company profiles of major players of the industry, including Abiomed Inc., Bayer AG, F. Hoffmann-La Roche & Co., Johnson & Johnson, Novartis AG, Pfizer Inc. and XVIVO Perfusion

Summary:The global organ and tissue transplantation and alternatives market was valued at REDACTED in 2019.The market is expected to grow at a compound annual growth rate (CAGR) of REDACTED to reach approximately REDACTED by 2024.

Growth of the global market is attributed to factors such as the growing prevalence of obesity, diabetes, cancer, and other chronic diseases which leads to organ damage, a strong product regulatory scenario, and strong investment in research and development activities by key market players including Abbott Laboratories, Cryolife Inc., Bristol-Myers Squibb, Novartis Ag, F. Hoffmann-La Roche Ltd., Medtronic, Arthrex Inc., Depuy Synthes (Johnson & Johnson), and Allosource.

Although various factors facilitate the global market for organ and tissue transplantation and alternatives, certain parameters such as challenges in HLA sequencing and gaps in supply and demand can constrain market growth.For instance, although there is an increasing need for organ transplants, the shortage of organs worldwide limits the number of transplant procedures performed, and in turn creates an impact on transplant diagnostics procedures.

An increasing number of candidates on the waiting list for organ transplant procedures worldwide further widens this gap of availability and requirement of organs for transplant purposes.

Successful organ and tissue transplantation began to arrive in the mid-1970s when tissue typing coupled with the use of cyclosporine provided more successful graft and patient survival. Today, patient and graft survival for kidney transplants is higher than 90% for the first year post-transplant, and often the success rate is 80% to 90% for five years post-transplant, with some recipients living more than 20 years after their transplant.

Continuing developments in organ procurement, organ preservation, tissue typing, and immunosuppressant use have bolstered successful transplantation surgical techniques. Evolving posttransplant drug and testing regimens have added to the success rate with close post-transplant monitoring and immunosuppressant dosage review.Read the full report: https://www.reportlinker.com/p096592/?utm_source=GNW

About ReportlinkerReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________

More:
Organ and Tissue Transplantation and Alternatives - GlobeNewswire

To Read More: Organ and Tissue Transplantation and Alternatives – GlobeNewswire
categoriaBone Marrow Stem Cells commentoComments Off on Organ and Tissue Transplantation and Alternatives – GlobeNewswire | dataDecember 22nd, 2020
Read All

FDA Resumes eIND Approval for Severe-to-Critical COVID-19 Patients Use of Vyrologix (leronlimab) Following Full Enrollment in CytoDyn’s Phase 3 Trial…

By daniellenierenberg

FDAs decision will enable CytoDyn to respond to ongoing requests for leronlimab until Phase 3 trial data is unblinded

VANCOUVER, Washington, Dec. 22, 2020 (GLOBE NEWSWIRE) -- CytoDyn Inc. (OTC.QB: CYDY), (CytoDyn or the Company"), a late-stage biotechnology company developing Vyrologix (leronlimab-PRO 140), a CCR5 antagonist with the potential for multiple therapeutic indications, announced today a treating physician has received authorization from the U.S. Food and Drug Administration (FDA) to administer leronlimab for a COVID-19 patient under emergency IND (eIND).

Nader Pourhassan, Ph.D., President and Chief Executive Officer of CytoDyn, commented, We are very thankful the FDA is allowing severe-to-critical COVID-19 patients access to Vyrologix (leronlimab) again under eIND while we await the unblinding of data from our recently completed Phase 3 registrational trial. We are receiving daily requests from families seeking our drug for a loved one with COVID-19. In recent months, leronlimab received more than 60 eIND authorizations from the FDA, and during the pendency of our COVID-19 trials, we deferred seeking authorizations for eINDs in order to accelerate the pace of enrollment. Now that enrollment has been completed, we are pleased to be able to assist once again and remain hopeful the upcoming results of our Phase 3 trial will enable leronlimab to be more readily available for severe-to-critical COVID-19 patients.

CytoDyns Phase 2b/3 trial to evaluate the efficacy and safety ofleronlimabfor patients with severe-to-critical COVID-19 indications is a two-arm, randomized, double blind, placebo controlled, adaptive design multicenter study. Patients are randomized to receive weekly doses of 700 mg leronlimab, or placebo. Leronlimab and placebo are administered via subcutaneous injection. The study has three phases: Screening Period, Treatment Period, and Follow-Up Period. The primary outcome measured in this study is: all-cause mortality at Day 28. Secondary outcomes measured are: (1) all-cause mortality at Day 14, (2) change in clinical status of subject at Day 14, (3) change in clinical status of subject at Day 28, and (4) change from baseline in Sequential Organ Failure Assessment (SOFA) score at Day 14.

About Coronavirus Disease 2019 CytoDyn completed its Phase 2 clinical trial (CD10) for COVID-19, a double-blinded, randomized clinical trial for mild-to-moderate patients in the U.S. which produced statistically significant results for NEWS2. CytoDyn completed enrollment of 390 patients in its Phase 2b/3 randomized clinical trial for the severe-to-critically ill COVID-19 population and expects to release results in mid-January 2021.

About Leronlimab (PRO 140) The FDA has granted a Fast Track designation to CytoDyn for two potential indications of leronlimab for critical illnesses. The first indication is a combination therapy with HAART for HIV-infected patients and the second is for metastatic triple-negative breast cancer. Leronlimab is an investigational humanized IgG4 mAb that blocks CCR5, a cellular receptor that is important in HIV infection, tumor metastases, and other diseases, including NASH.Leronlimab has completed nine clinical trials in over 800 people and met its primary endpoints in a pivotal Phase 3 trial (leronlimab in combination with standard antiretroviral therapies in HIV-infected treatment-experienced patients).

In the setting of HIV/AIDS, leronlimab is a viral-entry inhibitor; it masks CCR5, thus protecting healthy T cells from viral infection by blocking the predominant HIV (R5) subtype from entering those cells. Leronlimab has been the subject of nine clinical trials, each of which demonstrated that leronlimab could significantly reduce or control HIV viral load in humans. The leronlimab antibody appears to be a powerful antiviral agent leading to potentially fewer side effects and less frequent dosing requirements compared with daily drug therapies currently in use.

In the setting of cancer, research has shown that CCR5 may play a role in tumor invasion, metastases, and tumor microenvironment control. Increased CCR5 expression is an indicator of disease status in several cancers. Published studies have shown that blocking CCR5 can reduce tumor metastases in laboratory and animal models of aggressive breast and prostate cancer. Leronlimab reduced human breast cancer metastasis by more than 98% in a murine xenograft model. CytoDyn is, therefore, conducting a Phase 1b/2 human clinical trial in metastatic triple-negative breast cancer and was granted Fast Track designation in May 2019.

The CCR5 receptor appears to play a central role in modulating immune cell trafficking to sites of inflammation. It may be crucial in the development of acute graft-versus-host disease (GvHD) and other inflammatory conditions. Clinical studies by others further support the concept that blocking CCR5 using a chemical inhibitor can reduce the clinical impact of acute GvHD without significantly affecting the engraftment of transplanted bone marrow stem cells.CytoDyn is currently conducting a Phase 2 clinical study with leronlimab to support further the concept that the CCR5 receptor on engrafted cells is critical for the development of acute GvHD, blocking the CCR5 receptor from recognizing specific immune signaling molecules is a viable approach to mitigating acute GvHD. The FDA has granted orphan drug designation to leronlimab for the prevention of GvHD. Due to the lack of patients during the COVID-19 pandemic, the Company is closing down its Phase 2 trial for acute GvHD.

About CytoDyn CytoDyn is a late-stage biotechnology company developing innovative treatments for multiple therapeutic indications based on leronlimab, a novel humanized monoclonal antibody targeting the CCR5 receptor. CCR5 appears to play a critical role in the ability of HIV to enter and infect healthy T-cells. The CCR5 receptor also appears to be implicated in tumor metastasis and immune-mediated illnesses, such as GvHD and NASH.

CytoDyn has successfully completed a Phase 3 pivotal trial with leronlimab in combination with standard antiretroviral therapies in HIV-infected treatment-experienced patients. The FDA met telephonically with Company key personnel and its clinical research organization and provided written responses to the Companys questions concerning its recent Biologics License Application (BLA) for this HIV combination therapy in order to expedite the resubmission of its BLA filing for this indication.

CytoDyn has completed a Phase 3 investigative trial with leronlimab as a once-weekly monotherapy for HIV-infected patients. CytoDyn plans to initiate a registration-directed study of leronlimab monotherapy indication. If successful, it could support a label extension. Clinical results to date from multiple trials have shown that leronlimab can significantly reduce viral burden in people infected with HIV. No drug-related serious site injection reactions reported in about 800 patients treated with leronlimab and no drug-related SAEs reported in patients treated with 700 mg dose of leronlimab. Moreover, a Phase 2b clinical trial demonstrated that leronlimab monotherapy can prevent viral escape in HIV-infected patients; some patients on leronlimab monotherapy have remained virally suppressed for more than six years.

CytoDyn is also conducting a Phase 1b/2 clinical trial with leronlimab in metastatic triple-negative breast cancer. More information is at http://www.cytodyn.com.

Forward-Looking StatementsThis press release contains certain forward-looking statements that involve risks, uncertainties and assumptions that are difficult to predict. Words and expressions reflecting optimism, satisfaction or disappointment with current prospects, as well as words such as "believes," "hopes," "intends," "estimates," "expects," "projects," "plans," "anticipates" and variations thereof, or the use of future tense, identify forward-looking statements, but their absence does not mean that a statement is not forward-looking. Forward-looking statements specifically include statements about leronlimab, its ability to have positive health outcomes, the possible results of clinical trials, studies or other programs or ability to continue those programs, the ability to obtain regulatory approval for commercial sales, and the market for actual commercial sales. The Company's forward-looking statements are not guarantees of performance, and actual results could vary materially from those contained in or expressed by such statements due to risks and uncertainties including: (i) the sufficiency of the Company's cash position, (ii) the Company's ability to raise additional capital to fund its operations, (iii) the Company's ability to meet its debt obligations, if any, (iv) the Company's ability to enter into partnership or licensing arrangements with third parties, (v) the Company's ability to identify patients to enroll in its clinical trials in a timely fashion, (vi) the Company's ability to achieve approval of a marketable product, (vii) the design, implementation and conduct of the Company's clinical trials, (viii) the results of the Company's clinical trials, including the possibility of unfavorable clinical trial results, (ix) the market for, and marketability of, any product that is approved, (x) the existence or development of vaccines, drugs, or other treatments that are viewed by medical professionals or patients as superior to the Company's products, (xi) regulatory initiatives, compliance with governmental regulations and the regulatory approval process, (xii) general economic and business conditions, (xiii) changes in foreign, political, and social conditions, and (xiv) various other matters, many of which are beyond the Company's control. The Company urges investors to consider specifically the various risk factors identified in its most recent Form 10-K, and any risk factors or cautionary statements included in any subsequent Form 10-Q or Form 8-K, filed with the Securities and Exchange Commission. Except as required by law, the Company does not undertake any responsibility to update any forward-looking statements to take into account events or circumstances that occur after the date of this press release.

CONTACTSInvestors: Michael MulhollandOffice: 360.980.8524, ext. 102mmulholland@cytodyn.com

Read more:
FDA Resumes eIND Approval for Severe-to-Critical COVID-19 Patients Use of Vyrologix (leronlimab) Following Full Enrollment in CytoDyn's Phase 3 Trial...

To Read More: FDA Resumes eIND Approval for Severe-to-Critical COVID-19 Patients Use of Vyrologix (leronlimab) Following Full Enrollment in CytoDyn’s Phase 3 Trial…
categoriaBone Marrow Stem Cells commentoComments Off on FDA Resumes eIND Approval for Severe-to-Critical COVID-19 Patients Use of Vyrologix (leronlimab) Following Full Enrollment in CytoDyn’s Phase 3 Trial… | dataDecember 22nd, 2020
Read All

The 11 most mind-blowing, awe-inspiring health discoveries and innovations of 2020 – Business Insider – Business Insider

By daniellenierenberg

MSPhotographic/Getty Images

Most kids with peanut allergies do not outgrow them. But, with a little help, some might be able to better tolerate accidental exposures.

In January, the Food and Drug Administration approved Palforzia, a new drug designed to help kids who are allergic to peanuts react better, if they are accidentally exposed.

"Because there is no cure, allergic individuals must strictly avoid exposure to prevent severe and potentially life-threatening reactions," Dr. Peter Marks, director of the FDA's Center for Biologics Evaluation and Research said at the time in a news release. "When used in conjunction with peanut avoidance, Palforzia provides an FDA-approved treatment option to help reduce the risk of these allergic reactions."

Palforzia is not designed to be administered during an allergic reaction, instead it works as an allergy exposure therapy: children ages 4 through 17 receive daily doses of peanut powder under clinical supervision, and slowly up-dose it over time.

In clinical trials, the strategy worked well, but not perfectly. When peanut-allergic kids were fed 600 milligrams of peanut protein, 67.2% of Palforzia recipients who'd been using the medication for six months tolerated it, while only 4% of the control group did.

See original here:
The 11 most mind-blowing, awe-inspiring health discoveries and innovations of 2020 - Business Insider - Business Insider

To Read More: The 11 most mind-blowing, awe-inspiring health discoveries and innovations of 2020 – Business Insider – Business Insider
categoriaBone Marrow Stem Cells commentoComments Off on The 11 most mind-blowing, awe-inspiring health discoveries and innovations of 2020 – Business Insider – Business Insider | dataDecember 22nd, 2020
Read All

Orchard Therapeutics Receives EC Approval for Libmeldy for the Treatment of Early-Onset Metachromatic Leukodystrophy (MLD) – GlobeNewswire

By daniellenierenberg

First gene therapy to receivefull EU marketing authorization for eligible MLD patients

One-time treatment with Libmeldy has been shown to preserve motor and cognitive function

Achievement shared with research alliance partners Fondazione Telethon and Ospedale San Raffaele

BOSTON and LONDON and MILAN, Italy, Dec. 21, 2020 (GLOBE NEWSWIRE) -- Orchard Therapeutics (Nasdaq: ORTX), a global gene therapy leader, and its research alliance partners Fondazione Telethon and Ospedale San Raffaele, today announced that the European Commission (EC) granted full (standard) market authorization for Libmeldy (autologous CD34+ cells encoding the ARSA gene), a lentiviral vector-based gene therapy approved for the treatment of metachromatic leukodystrophy (MLD), characterized by biallelic mutations in theARSAgene leading to a reduction of the ARSA enzymatic activity in children with i) late infantile or early juvenile forms, without clinical manifestations of the disease, or ii) the early juvenile form, with early clinical manifestations of the disease, who still have the ability to walk independently and before the onset of cognitive decline. Libmeldy is the first therapy approved for eligible patients with early-onset MLD.

MLD is a very rare, fatal genetic disorder caused by mutations in the ARSA gene which lead to neurological damage and developmental regression. In its most severe and common forms, young children rapidly lose the ability to walk, talk and interact with the world around them, and most pass away before adolescence. Libmeldy is designed as a one-time therapy that aims to correct the underlying genetic cause of MLD, offering eligible young patients the potential for long-term positive effects on cognitive development and maintenance of motor function at ages at which untreated patients show severe motor and cognitive impairments.

Todays EC approval of Libmeldy opens up tremendous new possibilities for eligible MLD children faced with this devastating disease where previously no approved treatment options existed, said Bobby Gaspar, M.D., Ph.D., chief executive officer of Orchard. Libmeldy is Orchards first product approval as a company, and I am extremely proud of the entire team who helped achieve this milestone. We are grateful for and humbled by the opportunity to bring this remarkable innovation to young eligible patients in the EU.

With Libmeldy, a patients own hematopoietic stem cells (HSCs) are selected, and functional copies of the ARSA gene are inserted into the genome of the HSCs using a self-inactivating (SIN) lentiviral vector before these genetically modified cells are infused back into the patient. The ability of the gene-corrected HSCs to migrate across the blood-brain barrier into the brain, engraft, and express the functional enzyme has the potential to persistently correct the underlying disease with a single treatment.

The EC approval of Libmeldy comes more than a decade after the first patient was treated in clinical trials performed at our Institute, and ushers in a remarkable and long-awaited shift in the treatment landscape for eligible MLD patients, said Luigi Naldini, M.D, Ph.D., director of the San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget) in Milan, Italy. Our team at SR-Tiget has been instrumental in advancing the discovery and early-stage research of this potentially transformative therapy to clinical trials in support of its registration through more than 15 years of studies supported by Fondazione Telethon and Ospedale San Raffaele, and we are extremely proud of this achievement and what it means for patients and the field of HSC gene therapy.

MLD is a heart-breaking disease that causes immeasurable suffering and robs children of the chance of life, said Georgina Morton, chairperson of ArchAngel MLD Trust. As a community, we have been desperate for a treatment for young MLD patients, and we are incredibly excited to now have such a ground-breaking option approved in the EU.

The marketing authorization for Libmeldy is valid in all 27 member states of the EU as well as the UK, Iceland, Liechtenstein and Norway. Orchard is currently undertaking EU launch preparations related to commercial drug manufacturing, treatment site qualification and market access.

Data Supporting the Clinical and Safety Profile of Libmeldy

The marketing authorization for Libmeldy is supported by clinical studies in both pre- and early- symptomatic, early-onset MLD patients performed at the SR-Tiget. Early-onset MLD encompasses the disease variants often referred to as late infantile (LI) and early juvenile (EJ). Clinical efficacy was based on the integrated data analysis from 29 patients with early-onset MLD who were treated with Libmeldy prepared as a fresh (non-cryopreserved) formulation. Results of this analysis indicate that a single-dose intravenous administration of Libmeldy is effective in modifying the disease course of early-onset MLD in most patients.

Clinical safety was evaluated in 35 patients with MLD (the 29 patients from the integrated efficacy analysis as well as six additional patients treated with the cryopreserved formulation of Libmeldy). Safety data indicate that Libmeldy was generally well-tolerated. The most common adverse reaction attributed to treatment with Libmeldy was the occurrence of anti-ARSA antibodies (AAA) reported in five out of 35 patients. Antibody titers in all five patients were generally low and no negative effects were observed in post-treatment ARSA activity in the peripheral blood or bone marrow cellular subpopulations, nor in the ARSA activity within the cerebrospinal fluid. In addition to the risks associated with the gene therapy, treatment with Libmeldy is preceded by other medical interventions, namely bone marrow harvest or peripheral blood mobilization and apheresis, followed by myeloablative conditioning, which carry their own risks. During the clinical studies, the safety profiles of these interventions were consistent with their known safety and tolerability.

For further details, please see the Summary of Product Characteristics (SmPC).

About MLD and Libmeldy

MLD is a rare and life-threatening inherited disease of the bodys metabolic system occurring in approximately one in every 100,000 live births. MLD is caused by a mutation in the arylsulfatase-A (ARSA) gene that results in the accumulation of sulfatides in the brain and other areas of the body, including the liver, gallbladder, kidneys, and/or spleen. Over time, the nervous system is damaged, leading to neurological problems such as motor, behavioral and cognitive regression, severe spasticity and seizures. Patients with MLD gradually lose the ability to move, talk, swallow, eat and see. In its late infantile form, mortality at five years from onset is estimated at 50% and 44% at 10 years for juvenile patients.1

Libmeldy (autologous CD34+ cell enriched population that contains hematopoietic stem and progenitor cells (HSPC) transduced ex vivo using a lentiviral vector encoding the human arylsulfatase-A (ARSA) gene), also known as OTL-200, is approved in the European Union for the treatment of MLD in eligible early-onset patients. In the U.S., OTL-200 is an investigational therapy which has not been approved by the U.S. Food and Drug Administration (FDA) for any use. Libmeldy was acquired from GSK in April 2018 and originated from a pioneering collaboration between GSK and the Hospital San Raffaele and Fondazione Telethon, acting through their joint San Raffaele-Telethon Institute for Gene Therapy in Milan, initiated in 2010.

About Orchard

Orchard Therapeutics is a global gene therapy leader dedicated to transforming the lives of people affected by rare diseases through the development of innovative, potentially curative gene therapies. Our ex vivo autologous gene therapy approach harnesses the power of genetically modified blood stem cells and seeks to correct the underlying cause of disease in a single administration. In 2018, Orchard acquired GSKs rare disease gene therapy portfolio, which originated from a pioneering collaboration between GSK and the San Raffaele Telethon Institute for Gene Therapy in Milan, Italy. Orchard now has one of the deepest and most advanced gene therapy product candidate pipelines in the industry spanning multiple therapeutic areas where the disease burden on children, families and caregivers is immense and current treatment options are limited or do not exist.

Orchard has its global headquarters inLondonandU.S.headquarters inBoston. For more information, please visitwww.orchard-tx.com, and follow us on Twitter and LinkedIn.

Availability of Other Information About Orchard

Investors and others should note that Orchard communicates with its investors and the public using the company website (www.orchard-tx.com), the investor relations website (ir.orchard-tx.com), and on social media (Twitter andLinkedIn), including but not limited to investor presentations and investor fact sheets,U.S. Securities and Exchange Commissionfilings, press releases, public conference calls and webcasts. The information that Orchard posts on these channels and websites could be deemed to be material information. As a result, Orchard encourages investors, the media, and others interested in Orchard to review the information that is posted on these channels, including the investor relations website, on a regular basis. This list of channels may be updated from time to time on Orchards investor relations website and may include additional social media channels. The contents of Orchards website or these channels, or any other website that may be accessed from its website or these channels, shall not be deemed incorporated by reference in any filing under the Securities Act of 1933.

About Fondazione Telethon, Ospedale San Raffaele and the San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget)

Based in Milan, Italy, the San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget) is a joint venture between the Ospedale San Raffaele, a clinical-research-university hospital established in 1971 to provide international-level specialized care for the most complex and difficult health conditions, and Fondazione Telethon, an Italian biomedical charity born in 1990 and focused on rare genetic diseases. SR-Tiget was established in 1995 to perform research on gene transfer and cell transplantation and translate its results into clinical applications of gene and cell therapies for different genetic diseases. Over the years, the Institute hasgiven a pioneering contribution to the field with relevant discoveries in vector design, gene transfer strategies, stem cell biology, identity and mechanism of action of innate immune cells. SR-Tiget has also established the resources and framework for translating these advances into novel experimental therapies and has implemented several successful gene therapy clinical trials for inherited immunodeficiencies, blood and storage disorders, which have already treated >115 patients and have led through collaboration with industrial partners to the filing and approval of novel advanced gene therapy medicines.

For more information:

Forward-Looking Statements

This press release contains certain forward-looking statements about Orchards strategy, future plans and prospects, which are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. Such forward-looking statements may be identified by words such as anticipates, believes, expects, plans, intends, projects, and future or similar expressions that are intended to identify forward-looking statements. Forward-looking statements include express or implied statements relating to, among other things, Orchards business strategy and goals, including its plans and expectations for the commercialization of Libmeldy, and the therapeutic potential of Libmeldy, including the potential implications of clinical data for eligible patients. These statements are neither promises nor guarantees and are subject to a variety of risks and uncertainties, many of which are beyond Orchards control, which could cause actual results to differ materially from those contemplated in these forward-looking statements. In particular, these risks and uncertainties include, without limitation:: the risk that prior results, such as signals of safety, activity or durability of effect, observed from clinical trials of Libmeldy will not continue or be repeated in our ongoing or planned clinical trials of Libmeldy, will be insufficient to support regulatory submissions or marketing approval in the US or to maintain marketing approval in the EU, or that long-term adverse safety findings may be discovered; the inability or risk of delays in Orchards ability to commercialize Libmeldy, including the risk that we may not secure adequate pricing or reimbursement to support continued development or commercialization of Libmeldy; the risk that the market opportunity for Libmeldy, or any of Orchards product candidates, may be lower than estimated; and the severity of the impact of the COVID-19 pandemic on Orchards business, including on clinical development, its supply chain and commercial programs. Given these uncertainties, the reader is advised not to place any undue reliance on such forward-looking statements.

Other risks and uncertainties faced by Orchard include those identified under the heading "Risk Factors" in Orchards quarterly report on Form 10-Q for the quarter endedSeptember 30, 2020, as filed with theU.S. Securities and Exchange Commission(SEC), as well as subsequent filings and reports filed with theSEC. The forward-looking statements contained in this press release reflect Orchards views as of the date hereof, and Orchard does not assume and specifically disclaims any obligation to publicly update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as may be required by law.

Contacts

InvestorsRenee LeckDirector, Investor Relations+1 862-242-0764Renee.Leck@orchard-tx.com

MediaChristine HarrisonVice President, Corporate Affairs+1 202-415-0137media@orchard-tx.com

1 Mahmood et al. Metachromatic Leukodystrophy: A Case of Triplets with the Late Infantile Variant and a Systematic Review of the Literature.Journal of Child Neurology2010, DOI:http://doi.org/10.1177/0883073809341669

The rest is here:
Orchard Therapeutics Receives EC Approval for Libmeldy for the Treatment of Early-Onset Metachromatic Leukodystrophy (MLD) - GlobeNewswire

To Read More: Orchard Therapeutics Receives EC Approval for Libmeldy for the Treatment of Early-Onset Metachromatic Leukodystrophy (MLD) – GlobeNewswire
categoriaBone Marrow Stem Cells commentoComments Off on Orchard Therapeutics Receives EC Approval for Libmeldy for the Treatment of Early-Onset Metachromatic Leukodystrophy (MLD) – GlobeNewswire | dataDecember 22nd, 2020
Read All

Comparison of concentrated fresh mononuclear cells and …

By daniellenierenberg

Autologous bone marrow mononuclear cell (BMMNC) transplantation has been widely studied in recent years. The fresh cell cocktail in BMMNCs, without going through the in vitro culture process, helps to establish a stable microenvironment for osteogenesis, and each cell type may play a unique role in bone regeneration. Our study compared the efficacy of concentrated fresh BMMNCs and cultured bone marrow-derived mesenchymal stem cells (BMSCs) in Beagle dogs for the first time. Fifteen-millimeter segmental bone defects were created in the animals tibia bones. In BMMNCs group, the defects were repaired with concentrated fresh BMMNCs combined with -TCP (n = 5); in cultured BMSC group, with in vitro cultured and osteo-induced BMSCs combined with -TCP (n = 5); in scaffold-only group, with a -TCP graft alone (n = 5); and in blank group, nothing was grafted (n = 3). The healing process was monitored by X-rays and single photon emission computed tomography. The animals were sacrificed 12months after surgery and their tibias were harvested and analyzed by microcomputed tomography and hard tissue histology. Moreover, the microstructure, chemical components, and microbiomechanical properties of the regenerated bone tissue were explored by multiphoton microscopy, Raman spectroscopy and nanoindentation. The results showed that BMMNCs group promoted much more bone regeneration than cultured BMSC group. The grafts in BMMNCs group were better mineralized, and they had collagen arrangement and microbiomechanical properties similar to the contralateral native tibia bone. These results indicate that concentrated fresh bone marrow mononuclear cells may be superior to in vitro expanded stem cells in segmental bone defect repair. 2020 The Authors. STEM CELLS TRANSLATIONAL MEDICINE published by Wiley Periodicals LLC on behalf of AlphaMed Press.

PubMed

Visit link:
Comparison of concentrated fresh mononuclear cells and ...

To Read More: Comparison of concentrated fresh mononuclear cells and …
categoriaBone Marrow Stem Cells commentoComments Off on Comparison of concentrated fresh mononuclear cells and … | dataDecember 21st, 2020
Read All

How Researchers Are Making Do in the Time of COVID-19 – The Wire Science

By daniellenierenberg

Image: UN/Unsplash.

One of the astonishing aspects of the human response to the COVID-19 pandemic has been how quickly scientists pivoted to studying every facet of the virus in order to mitigate the loss of life and plan for a return to normalcy. At the same time, a lot of non-coronavirus research ground to a near halt.

With research labs and offices shuttered for all but essential workers, many scientists were stuck at home, their fieldwork and meetings canceled and planned experiments kicked down the road as they struggled to figure out how to keep their research programs going. Many took the opportunity to catch up on writing grants and papers; some in between caring for kids came up with strategic workarounds to keep the scientific juices flowing.

To gauge how researchers in different fields are managing,Knowable Magazine spoke with an array of scientists and technical staff among them a specialist keeping alive genetically important strains of fruit flies, the maintenance chief of an astronomical observatory working to keep telescopes safe and on standby during the lockdown, and a paediatrician struggling to manage clinical trials for a rare genetic disease. Here are a few slices of scientific life during the pandemic.

Agnieszka Czechowicz, Stanford University School of Medicine

Czechowicz is a paediatrician in Stanfords division of stem cell transplantation and regenerative medicine, where she manages a research group that develops new therapies and conducts clinical trials on rare genetic diseases.

Agnieszka Czechowiczs father suffers from severe Parkinsons disease. The coronavirus pandemic forced him to remain indoors and away from people, robbing him of the physical conditioning and social interactions he needs to cope with his disease. A recent fall left him in the hospital, bringing the additional worry that he might contract COVID-19 there and isolating him further.

For Czechowicz, his situation brought into sharp relief the challenges the coronavirus has forced upon those carrying out clinical trials, including those she is running, which involve patients traveling to hospitals around the country. Would I have him travel to any clinical site right now for a new Parkinsons treatment? she says. Absolutely not.

The pandemic forced Czechowicz to halt clinical trials she oversees for a rare genetic disease of children called Fanconi anAemia, a condition that impairs the bodys ability to repair damaged DNA and often leads to bone marrow failure and cancer. The treatment Czechowicz and colleagues are testing involves extracting blood-forming stem cells from the patients bone marrow, inserting a healthy copy of a missing or malfunctioning gene and then reinfusing those cells back into the patient.

Every aspect of what I do is massively impacted by the pandemic, Czechowicz says. One of her early-stage clinical trials involves testing the safety of the therapy. But during the initial shutdown which started in mid-March and lasted for two months her patients could not readily travel to Stanford for the necessary follow-up visits, and remote monitoring was difficult.

Theres special blood testing and bone marrow testing that we need to do. In particular, its critical to get the samples to make sure the patients, for example, arent developing leukAemia, she says. Theres no way to know that without really checking the bone marrow. She had to clear large hurdles to get her patients evaluated.

Another early-stage trial, designed to determine the effectiveness of the therapy, also had to stop enrolling new patients. Because speed is important when it comes to treating Fanconi anaemia the children are likely losing stem cells all the time any delay in treatment can be a source of great anxiety for their parents. Czechowicz had to explain to them why the trials were temporarily halted. It was really challenging to have these discussions with the families, she says.

With the easing of travel and workplace restrictions, the families began traveling to Stanford in June but with infections back on the rise, many families are becoming hesitant again, says Czechowicz. Fortunately, her trials are small, so she can guide each family through the process of safely resuming the trials and continuing with follow-up. Her own team also has to follow strict safety protocols. For example, even though her lab has 10 members, only two can be in the lab at any one time, and only one parent is allowed into the clinic with the child.

Not all clinical trials can pay such close attention to individual patients. Large trials with hundreds of patients can involve multiple sites and require much more monitoring, so resuming those remains difficult. Also, restrictions on working full bore are slowing the pipeline for new therapies. The impact of that, were not going to see for many years to come, Czechowicz says.

Abolhassan Jawahery, University of Maryland, College Park

Jawahery is a particle physicist and a member of LHCb, one of the main experiments at the Large Hadron Collider (LHC) at CERN, the particle physics laboratory near Geneva.

In December 2018, well before the coronavirus pandemic began, the LHC shut down for upgrades. Housed in a 27-kilometre-long tunnel about 100 meters underground, the LHC accelerates two beams of protons, one clockwise and one counterclockwise, and makes them collide head-on at four locations. There, four gigantic subterranean detectors ATLAS, CMS, LHCb and ALICE sift through the debris of particles created by the collisions, looking for evidence of new physics. (For example, ATLAS and CMS found the Higgs boson, the fundamental particle of the Higgs field, which gives all elementary particles their mass.)

For its next set of experiments, which aim to probe the properties of subatomic particles with greater precision, the LHC needed to increase the intensity of its proton beams. Consequently, the four detectors needed to be upgraded too, to handle the resultant higher temperatures and increased radiation at the sites of the particle collisions. The work was on track for a restart around May 2021 until the pandemic swept all the scientists careful plans away.

The LHC and its four detectors are each run by a separate collaboration. CERN, which manages the LHC, is hopeful it can restart the collider by February 2022. They think that they can get the accelerator going if there are no more major catastrophic events, says physicist Abolhassan Jawahery. But the impact on the four detectors is less clear.

For the LHCb upgrade, Jawaherys team at the University of Maryland had been working on building about 4,000 extremely sensitive electronic circuit boards. These boards have to be burned in before they can be sent to CERN. We put them in an oven, literally cooking the boards and then running extensive tests in order to get them ready so that we can put them in the accelerator and run them for 10 to 20 years, says Jawahery. And none of that could be done during the pandemic shutdown.

The team resumed its work in June, but with restrictions put in place by the state of Maryland. Jawahery runs two labs, and for months was allowed only two people at a time in one lab and three in the other, making progress extremely slow. Still, his team is fortunate that it does not depend on supplies from countries hit hard by the coronavirus. Other labs werent so lucky. Scientists in Milan, for example, built some electronics and detector components for the LHCb, and a lab at Syracuse University in New York built sensors that relied on shipments from Milan. When Milan was completely closed down at the height of the pandemic, Syracuse, too, stopped working on Milan-dependent components.

For Jawahery the lockdown had a silver lining. The LHCs most recent run had produced about 25 gigabytes of data per second but his team had found little time to analyse any of it before the pandemic. We were complaining that we were spending all our time building the new instrument and the data keeps on coming, he says. When he and his team were locked out of their labs, they turned to their data backlog. We could do actual physics, he says. We are already getting ready to publish some papers.

Gordon Gray, Princeton University

Gray is a professionalDrosophila specialist in the department of molecular biology.

Gordon Gray has been called the chef de cuisine of Princetons fly kitchen, where he has been feeding flies for 46 years. He concocts meals for millions of fruit flies, at least 150 litres each week. When the pandemic hit in March and universities around the world shut down, Princeton deemed Grays work an essential service: The Drosophilafruit flies could not be allowed to die off.

Princetons flies include mutant and transgenic strains everything from ones that allow researchers to study the genes that influence normal development of a fly embryos organs, to those that have cancer-causing mutations. If the flies starved, researchers would need months or years to recreate these strains, says Princeton molecular biologist Elizabeth Gavis. And often, as techniques in molecular biology improve, the biologists reexamine flies they had studied earlier to get a more fine-grained understanding, making it worthwhile to preserve the strains.

Normally, if a lab had to shut down, researchers would send their flies to stock centres, such as one at Bowling Green State University in Ohio, that preserve the flies as part of their genetic library. But the stock centres couldnt handle Princetons flies, so Gray found himself on his own. Its basically catch as catch can with regards to the various labs here, just to keep things operational, he says.

For months, university pandemic restrictions have allowed only one person to be in Grays kitchen at a time. This has caused problems. Before the pandemic began, Gray, who is in his late 60s, had started training someone as a backup. But because of the one-person restriction, Gray and his trainee havent been able to work together. Gray envisions doing so soon, while wearing masks, keeping nearly 12 feet apart and communicating using hand signals.

To whip up a batch of fly food, or media, Gray uses a 50-litre steel cauldron, to which is attached a mixer that looks like an outboard motor. Gray fills the cauldron with water and adds agar, sugars, yeasts, salts and cornmeal, then brings it to a boil, all the while stirring watchfully. You dont want it to boil over, because when it does you wind up with a gigantic pancake on the floor, which you have to scoop up immediately because it gels, he says. Once the suspension cools to the right temperature, Gray adds an acid to inhibit mould, then dispenses precise amounts of the media into bottles and vials.

Even before the pandemic, Grays kitchen was isolated, to keep errant fruit flies from contaminating the pristine media. But at least he could work regular hours, because he knew the rhythms of the 10 or so fly labs he cooked for. That has changed. Labs, restricted to two occupants at a time, are now working seven days a week on rotating shifts. Gray comes in to work at all hours, because he cannot predict when each batch of fly food will run out and hell need to cook more.

He tries to work mostly at night to avoid coming into contact with others. But he still worries for his health, given his asthma and age-related risk. The relentless pandemic is taking a toll. Its exhausting, he says. It doesnt help not knowing when we will return to a sense of normalcy.

Celeste Kidd, University of California, Berkeley

Kidd is a child developmental psychologist who uses behavioural tests and computational methods to understand how children acquire knowledge.

When UC Berkeley locked down in March, Celeste Kidd found herself closeted at home, dealing simultaneously with virtual meetings and her three-year-old son. During the early days of the pandemic, Kidd kept a supply of treats handy, and when her toddler came up to her during a meeting shed sneak him some under the desk. But she hadnt accounted for how long the pandemic would last. It turns out thats not a good strategy, long term, she says. I was very literally rewarding him for bad behaviour.

Kidds son soon learned that acting up during her meetings meant more candy. I knew that would happen. I did it anyway because I didnt have the bandwidth to come up with a better solution, she says. But Kidd knew from her own research that children are also extremely flexible and can unlearn behaviours. Eventually, she had a chat with her son. First, she admitted to him that she had made a mistake by giving him candy when he disrupted her meetings, and that was bad of her. Then she brought in new rules: no candy for misbehaving and misbehaviour could even mean no treats for the rest of day. We had some meltdown moments, says Kidd. But he gets it now and he doesnt do those things.

Her son may be the only child Kidd gets to interact with during the pandemic. Thats a huge loss for her research, because the bulk of her work focuses on young children. In normal times, families would bring their children to her lab, where her research team would track their gaze as they watched videos. In one study, for example, infants about seven to nine months old would look away (demonstrating lack of interest) when the events in the video were either too complex or too simple, suggesting that infants use their cognitive resources for stimuli that have just the right amount of information.

Such work, of course, requires the presence of parent, child and researchers, all in the same room. None of that is going to happen anytime soon, she says. Those families are not going to feel comfortable coming in for a while.

Kidd is also concerned about the impact of the pandemic on younger scientists. One of her undergraduate students had spent six months working on a study aimed at exploring the complexity of kids play patterns using physical objects and their relation to working memory and other cognitive resources. The university had approved the protocol, but shelter-in-place orders went into effect the week the first child was to come for the experiment. I feel so bad for her as a young scientist, to have done all this hard work and then right when you get to the fun part, which is collecting the data and finding out if her ideas have lasting merit, she doesnt get to do that part, Kidd says.

The situation might be even worse for grad students and postdocs. All of them are experiencing a big blow to morale in general, because there is so much uncertainty about what the future holds, she says. University budget cuts mean fewer slots for graduate students and fewer jobs for postdocs. Its very hard to stay motivated and get things done when youre not sure if there will be a payoff in the future, says Kidd. Thats literally a study that we ran in the lab so were all acutely aware of it.

Maxime Boccas, ESO Paranal Observatory

Boccas is the head of maintenance, support and engineering at the European Southern Observatorys Paranal Observatory in Chile.

When the massive domes of the Very Large Telescope, a constellation of four 8-meter-class telescopes atop Mount Paranal in Chiles Atacama Desert, open to the night sky each evening and the telescopes get ready for observations, its like a dragon waking up.

When the pandemic hit in March, the dragon on Mount Paranal closed its eyes to the cosmos and slept the first shutdown in its 20-year history, which included a major earthquake in 2010 that paralyzed much of the rest of Chile. For those who had to leave Paranal, it was like being sent away from home. We spend 40% of our life here, says Maxime Boccas, who oversaw the process of ensuring an orderly shutdown of the sites scientific and technical facilities. We work and sleep here, and we stay here eight days in a row. Some of Boccass colleagues have been doing that for 20 to 25 years. Leaving Paranal was like leaving their second home. That was a weird feeling.

The skeleton staff just 20 of the normal 150 or so people remained on site kept the observatory safe, ensuring that essential systems continued working: computers that astronomers were accessing remotely, the fire detection system and the earthquake protection system essential for protecting the 8-meter-wide primary mirrors from Chiles frequent quakes. The mirrors will likely never be made again, says Boccas. All the factories that cast and polished them are dismantled. If we lost a mirror, it would take between 5 and 10 years to build up the factory again and fabricate it. So each mirror has an airbag a tube that inflates around it when the system detects tremors and other protections.

During the shutdown, astronomers kept their fingers crossed. They were anxious that no big thing, like a supernova in our galaxy, would explode, Boccas says. The heavens have been quiet, but the six-month shutdown harmed research that involves continuously monitoring the same patch of the sky for transient phenomena such as gamma ray bursts. It creates a hole in their science program, says Boccas.

The observatory began a slow return to normalcy on September 9. Boccas is overseeing the reawakening of each telescope, one at a time. The staff still less than full strength is now working in shifts that have doubled from 8 to 15 days to limit the amount of travel to and from the site. The four large telescopes are now up and running again, and Boccas hopes they will be back to working together as one by the end of January.

Boccas, his crew and a few lucky astronomers are glad to be back at Paranal. It really feels like a family and I think everyone has noticed that, he says. Even in the kitchen, they have to cook for 30 people instead of 150, so the quality of the food is different, its slightly better.

But even as people return to the observatory, Boccas worries about long-term effects of the shutdown. Given the reduced staff, he has had to cut down on the frequency of preventive maintenance tasks, such as changing belts and lubricating motors, potentially shortening the lifetime of some components. We will not know until six months, a year or three years from now, he says.

This article is part ofReset: The Science of Crisis & Recovery, an ongoing series exploring how the world is navigating the coronavirus pandemic, its consequences and the way forward. Reset is supported by a grant from the Alfred P. Sloan Foundation.

Anil Ananthaswamy is a science journalist who enjoys writing about cosmology, consciousness and climate change. Hes a 2019-20 MIT Knight Science Journalism fellow. His latest book is Through Two Doors at Once. http://www.anilananthaswamy.com.

This article originally appeared in Knowable Magazine, an independent journalistic endeavour from Annual Reviews.

See original here:
How Researchers Are Making Do in the Time of COVID-19 - The Wire Science

To Read More: How Researchers Are Making Do in the Time of COVID-19 – The Wire Science
categoriaBone Marrow Stem Cells commentoComments Off on How Researchers Are Making Do in the Time of COVID-19 – The Wire Science | dataDecember 21st, 2020
Read All

Stem Cell or Bone Marrow Transplant Side Effects

By daniellenierenberg

Problems soon after transplant

Many of the problems that can happen shortly after the transplant come from having the bone marrow wiped out by medicines or radiation just before the transplant. Others may be side effects of the conditioning treatments themselves.

Your transplant team can help you cope with side effects. Some can be prevented, and most can be treated to help you feel better.This is not a complete list and you should tell your doctor or transplant team about any problems you have or changes you notice. Some of these problems can be life-threatening, so its important to be able to reach your doctor or transplant team at night, on weekends, and during holidays. Ask for their after hours contact numbers to makesure you will be able to do this.

Mucositis (inflammation or sores in the mouth) is a short-term side effect that can happen with chemo and radiation. It usually gets better within a few weeks after treatment, but it can make it very painful to eat and drink.

Good nutrition is important for people with cancer. If mouth pain or sores make it hard to eat or swallow, your transplant team can help you develop a plan to manage your symptoms.

Because chemotherapy drugs can cause severe nausea and vomiting, doctors often give anti-nausea medicines at the same time as chemo to try to prevent it. As much as possible, the goal is to prevent nausea and vomiting, because its easier to prevent it than it is to stop it once it starts. Preventive treatment should start before chemo is given and should continue for as long as the chemo is likely to cause vomiting, which can be up to 7 to 10 days after the last dose.

No one drug can prevent or control chemo-related nausea and vomiting 100% of the time. In many cases, two or more medicines are used. Youll need to tell your transplant team how well the medicines are controlling your nausea and vomiting. If they arent working, they will need to be changed.

For at least the first 6 weeks after transplant, until the new stem cells start making white blood cells (engraftment), you can easily get serious infections. Bacterial infections are most common during this time, but viral infections that were controlled by your immune system can become active again. Fungal infections can also be an issue. And even infections that cause only mild symptoms in people with normal immune systems can be quite dangerous for you. This is because right after the transplant you don't have many white blood cells that are working well, and they are the primary immune cells that fight off infections.

You may be given antibiotics to try to prevent infections until your blood counts reach a certain level. For instance, pneumocystis pneumonia (often called PCP) is a common infection thats easy to catch. Even though the germ doesnt harm people with normal immune systems, for others it can cause fever, cough, and serious breathing problems. Antibiotics are often used to keep transplant patients from getting this.

Your doctor may check you before the transplant for signs of certain infections that may become active after transplant, and give you special medicines to keep those germs under control. For example, the virus called CMV (cytomegalovirus) is a common infection that many adults have or had in the past. Adults with healthy immune systems may not have any symptoms because their immune system can keep the virus under control. But, CMV can be a cause of serious pneumonia in people who have had transplants, because the transplant lowers the amount of white blood cells they have. Pneumonia from CMVmainly happens to people who were already infected with CMV, or whose donor had the virus. If neither you nor your donor had CMV, the transplant team might follow special precautions to prevent this infection while you are in the hospital.

After engraftment, the risk of infection is lower, but it still can happen. It can take 6 months to a year after transplant for the immune system to work as well as it should. It can take even longer for patients with graft-versus-host disease (GVHD, see below). It's important to talk to your cancer care team about your risk for infection during this time.

Because of the increased risk, you will be watched closely for signs of infection, such as fever, cough, shortness of breath, or diarrhea. Your doctor may check your blood often, and extra precautions will be needed to keep you from being exposed to germs. While in the hospital, everyone who enters your room must wash their hands well. They may also wear gowns, shoe coverings, gloves, and masks.

Since flowers and plants can carry bacteria and fungi, theyre not allowed in your room. For the same reason, you may be told not to eat certain fresh fruits and vegetables. All your food must be well cooked and handled very carefully by you and family members. You might need to avoid certain foods for a while.

You may also be told to avoid contact with soil, feces (stool, both human and animal), aquariums, reptiles, and exotic pets. Your team may tell you to avoid being near disturbed soil, bird droppings, or mold. You will need to wash your hands after touching pets. Your family may need to move the cats litter box away from places you eat or spend your time. Also, you should not clean pet cages or litter boxes during this time. Instead, give this task to a family member or friend.

Your transplant team will tell you and your family in detail about the precautions you need to follow. There are many viruses, bacteria, and fungi that can cause infection after your transplant. You may be at risk for some more than others.

Despite all these precautions, patients often develop fevers, one of the first signs of infection. In fact, sometimes fever is the only sign of infection, so it's very important to contact your cancer care team if you have one or if you have any other signs of infection. You'll probably be asked to take your temperature by mouth every day or twice a day for a while. And your cancer care team will let you know when you should call in your temperature to them. If you get a fever, tests will be done to look for possible causes of the infection (chest x-rays, urine tests, and blood cultures) and antibiotics will be started.

After transplant, youre at risk for bleeding because the conditioning treatment destroys your bodys ability to make platelets. Platelets are the blood cells that help blood to clot. While you wait for your transplanted stem cells to start working, your transplant team may have you follow special precautions to avoid injury and bleeding.

Platelet counts are low for at least several weeks after transplant. In the meantime, you might notice easy bruising and bleeding, such as nosebleeds and bleeding gums. If your platelet count drops below a certain level, a platelet transfusion may be needed. Youll need to follow precautions until your platelet counts stay at safe levels.

It also takes time for your bone marrow to start making red blood cells, and you might need red blood cell transfusions from time to time as you recover.

For more information on the transfusion process, see Blood Transfusion and Donation.

Pneumonitis is a type of inflammation (swelling) in lung tissue thats most common in the first 100 days after transplant. But some lung problems can happen much later even 2 or more years after transplant.

Pneumonia caused by infection happens more often, but pneumonitis may be caused by radiation, graft-versus-host disease, or chemo rather than germs. Its caused by damage to the areas between the cells of the lungs (called interstitial spaces).

Pneumonitis can be severe, especially if total body irradiation was given with chemo as part of the pre-transplant (conditioning) treatment. Chest x-rays will be taken in the hospital to watch for pneumonitis as well as pneumonia. Some doctors will do breathing tests every few months if you have graft-versus-host disease (see next section).

You should report any shortness of breath or changes in your breathing to your doctor or transplant team right away. There are many other types of lung and breathing problems that also need to be handled quickly.

Graft-versus-host disease (GVHD) can happen in allogeneic transplants when the immune cells from the donor see your body as foreign. (Remember: The recipients immune system has mostly been destroyed by conditioning treatment and cannot fight back, so the new stem cells make up most of the immune system after transplant.) The donor immune cells may attack certain organs, most often the skin, gastrointestinal (GI) tract, and liver. This can change the way the organs work and increase the chances of infection.

GVHD reactions are very common and can range from barely noticeable to life-threatening. Doctors think of GVHD as acute or chronic. Acute GVHD starts soon after transplant and lasts a short time. Chronic GVHD starts later and lasts a long time. A person could have one, both, or neither type of GVHD.

Acute GVHD can happen 10 to 90 days after a transplant, though the average time is around 25 days.

About one-third to one-half of allogeneic transplant recipients will develop acute GVHD. Its less common in younger patients and in those with closer HLA matches between donor and the patient.

The first signs are usually a rash, burning, and redness of the skin on the palms and soles. This can spread over the entire body. Other symptoms can include:

Doctors try to prevent acute GVHD by giving drugs that suppress the immune system, such as steroids (glucocorticoids), methotrexate, cyclosporine, tacrolimus, or certain monoclonal antibodies. These drugs are given before acute GVHD starts and can help prevent serious GVHD. Still, mild GVHD will almost always happen in allogeneic transplant patients. Other drugs are being tested in different combinations for GVHD prevention.

The risk of acute GVHD can also be lowered by removing immune cells called T-cells from the donor stem cells before the transplant. But this can also increase the risk of viral infection, leukemia relapse, and graft failure (which is discussed later). Researchers are looking at new ways to remove only certain cells, called alloactivated T-cells, from donor grafts. This would reduce the severity of GVHD and still let the donor T-cells destroy any cancer cells left.

If acute GVHD does occur, it is most often mild, mainly affecting the skin. But sometimes it can be more serious, or even life-threatening.

Mild cases can often be treated with a steroid drug applied to the skin (topically) as an ointment, cream, or lotion, or with other skin treatments. More serious cases of GVHD might need to be treated with a steroid drug taken as a pill or injected into a vein. If steroids arent effective, other drugs that affect the immune system can be used.

Chronic GVHD

Chronic GVHD can start anywhere from about 90 to 600 days after the stem cell transplant. A rash on the palms of the hands or the soles of the feet is often the earliest sign. The rash can spread and is usually itchy and dry. In severe cases, the skin may blister and peel, like a bad sunburn. A fever may also develop. Other symptoms of chronic GVHD can include:

Chronic GVHD is treated with medicines that suppress the immune system, much like those used for acute GVHD. These drugs can increase your risk of infection for as long as you are treated for GVHD. Most patients with chronic GVHD can stop the immunosuppressive drugs after their symptoms improve.

Hepatic veno-occlusive disease (VOD) is a serious problem in which tiny veins and other blood vessels inside the liver become blocked. Its not common, and it only happens in people with allogeneic transplants, and mainly in those who got the drugs busulfan or melphalan as part of conditioning, or treatment that was given before the transplant.

VOD usually happens within about 3 weeks after transplant. Its more common in older people who had liver problems before the transplant, and in those with acute GVHD. It starts with yellowing skin and eyes, dark urine, tenderness below the right ribs (this is where the liver is), and quick weight gain (mostly from fluid that bloats the belly). It is life-threatening, so early diagnosis of VOD is very important. Researchers continue to find ways to try to measure a person's chances of getting VOD so that treatment can start as soon as possible.

Grafts fail when the body does not accept the new stem cells (the graft). The stem cells that were given do not go into the bone marrow and multiply like they should. Graft failure is more common when the patient and donor are not well matched and when patients get stem cells that have had the T-cells removed. It can also happen in patients who get a low number of stem cells, such as a single umbilical cord unit. Still, its not very common.

Graft failure can lead to serious bleeding and/or infection. Graft failure is suspected in patients whose counts do not start going up within 3 to 4 weeks of a bone marrow or peripheral blood transplant, or within 7 weeks of a cord blood transplant.

Although it can be very upsetting to have this happen, these people can get treated with a second dose of stem cells, if they are available. Grafts rarely fail, but if they do it can result in death.

The type of problems that can happen after a transplant depend on many factors, such as the type of transplant done, the pre-transplant chemo or radiation treatment used, the patients overall health, the patients age when the transplant was done, the length and degree of immune system suppression, and whether chronic graft-versus-host-disease (GVHD) is present and how bad it is. The problems can be caused by the conditioning treatment (the pre-transplant chemotherapy and radiation therapy), especially total body irradiation, or by other drugs used during transplant (such as the drugs that may be needed to suppress the immune system after transplant). Possible long-term risks of transplant include:

The medicines used in transplants can harm the bodys organs, such as the heart, lungs, kidneys, liver, bones/joints, and nervous system. You may need careful follow-up with close monitoring and treatment of the long-term organ problems that the transplant can cause. Some of these, like infertility, should be discussed before the transplant, so you can prepare for them.

Its important to find and quickly treat any long-term problems. Tell your doctor right away if you notice any changes or problems. Physical exams by your doctor, blood work, imaging tests, lung/breathing studies, and other tests will help look for and keep tabs on organ problems.

As transplant methods have improved, more people are living longer and doctors are learning more about the long-term results of stem cell transplant. Researchers continue to look for better ways to care for these survivors to give them the best possible quality of life.

The goal of a stem cell transplant in cancer is to prolong life and, in many cases, even cure the cancer. But in some cases, the cancer comes back (sometimes called relapse or recurrence depending on when it might occur after a transplant). Relapse or recurrence can happen a few months to a few years after transplant. It happens much more rarely 5 or more years after transplant.

If cancer comes back, treatment options are often quite limited. A lot depends on your overall health at that point, and whether the type of cancer you have responds well to drug treatment. Treatment for those who are otherwise healthy and strong may include chemotherapy or targeted therapy. Some patients who have had allogeneic transplants may be helped by getting white blood cells from the same donor (this is called donor lymphocyte infusion) to boost the graft-versus-cancer effect. Sometimes a second transplant is possible. But most of these treatments pose serious risks even to healthier patients, so those who are frail, older, or have chronic health problems are often unable to have them.

Other options may include palliative (comfort) care, or a clinical trial of an investigational treatment. Its important to know what the expected outcome of any further treatment might be, so talk with your doctor about the purpose of the treatment. Be sure you understand the benefits and risks before you decide.

Along with the possibility of the original cancer coming back (relapse) after it was treated with a stem cell transplant, there is also a chance of having a second cancer after transplant. Studies have shown that people who have had allogeneic transplants have a higher risk of second cancer than people who got a different type of stem cell transplant.

A cancer called post-transplant lymphoproliferative disease (PTLD), if it occurs, usually develops within the first year after the transplant. Other conditions and cancers that can happen are solid tumor cancers in different organs, leukemia, and myelodysplastic syndromes. These other conditions, if they occur, tend to develop a few years or longer after the transplant.

Risk factors for developing a second cancer are being studied and may include:

Successfully treating a first cancer gives a second cancer time (and the chance) to develop. No matter what type of cancer is treated, and even without the high doses used for transplant, treatments like radiation and chemo can lead to a second cancer in the future.

Post-transplant lymphoproliferative disorder (PTLD) is an out-of-control growth of lymph cells, actually a type of lymphoma, that can develop after an allogeneic stem cell transplant. Its linked to T-cells (a type of white blood cell that is part of the immune system) and the presence of Epstein-Barr virus (EBV). T-cells normally help rid the body of cells that contain viruses. When the T-cells arent working well, EBV-infected B-lymphocytes (a type of white blood cell) can grow and multiply. Most people are infected with EBV at some time during their lives, but the infection is controlled by a healthy immune system. The pre-transplant treatment given weakens the immune system, allowing the EBV infection to get out of control, which can lead to a PTLD.

Still, PTLD after allogeneic stem cell transplant is fairly rare. It most often develops within 1 to 6 months after allogeneic stem cell transplant, when the immune system is still very weak.

PTLD is life-threatening. It may show up as lymph node swelling, fever, and chills. Theres no one standard treatment, but its often treated by cutting back on immunosuppressant drugs to let the patients immune system fight back. Other treatments include white blood cell (lymphocyte) transfusions to boost the immune response, using drugs like rituximab to kill the B cells, and giving anti-viral drugs to treat the EBV.

Even though PTLD doesnt often happen after transplant, its more likely to occur with less well-matched donors and when strong suppression of the immune system is needed. Studies are being done to identify risk factors for PTLD and look for ways to prevent it in transplant patients who are at risk.

Most people who have stem cell transplants become infertile (unable to have children). This is not caused by the cells that are transplanted, but rather by the high doses of chemo and/or radiation therapy used. These treatments affect both normal and abnormal cells, and often damage reproductive organs.

If having children is important to you, or if you think it might be important in the future, talk to your doctor about ways to protect your fertility before treatment. Your doctor may be able to tell you if a particular treatment will be likely to cause infertility.

After chemo or radiation, some women may find their menstrual periods become irregular or stop completely. This doesnt always mean they cannot get pregnant, so birth control should be used before and after a transplant. The drugs used in transplants can harm a growing fetus.

The drugs used during transplant can also damage sperm, so men should use birth control to avoid starting a pregnancy during and for some time after the transplant process. Transplants may cause temporary or permanent infertility for men as well. Fertility returns in some men, but the timing is unpredictable. Men might consider storing their sperm before having a transplant.

For more information on having children after being treated for canceror sexual problems related to cancer treatment, see Fertility and Sexual Side Effects.

Continue reading here:
Stem Cell or Bone Marrow Transplant Side Effects

To Read More: Stem Cell or Bone Marrow Transplant Side Effects
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cell or Bone Marrow Transplant Side Effects | dataDecember 19th, 2020
Read All

Every Patient Treated With CRISPR Gene Therapy for Blood Diseases Continues to Thrive, More Than a Year On – Good News Network

By daniellenierenberg

18 months into the first serious clinical trials of CRISPR gene therapy for sickle cell disease and beta-thalassemiaand all patients are free from symptoms and have not needed blood transfusions.

Sickle cell disease (SCD) can cause a variety of health problems including episodes of severe pain, called vaso-occlusive crises, as well as organ damage and strokes.

Patients with transfusion-dependent thalassemia (TDT) are dependent on blood transfusions from early childhood.

The only available cure for both diseases is a bone marrow transplant from a closely related donor, an option that is not available for the vast majority of patients because of difficulty locating matched donors, the cost, and the risk of complications.

In the studies, the researchers goal is to functionally cure the blood disorders using CRISPR/Cas9 gene-editing by increasing the production of fetal hemoglobin, which produces normal, healthy red blood cells as opposed to the misshapen cells produced by faulty hemoglobin in the bodies of individuals with the disorders.

The clinical trials involve collecting stem cells from the patients. Researchers edit the stem cells using CRISPR-Cas9 and infuse the gene-modified cells into the patients. Patients remain in the hospital for approximately one month following the infusion.

Prior to receiving their modified cells, the seven patients with beta thalassemia required blood transfusions approximately every three to four weeks and the three patients with SCD suffered episodes of severe pain roughly every other month.

All the individuals with beta thalassemia have been transfusion independent since receiving the treatment, a period ranging between two and 18 months.

Similarly, none of the individuals with SCD have experienced vaso-occlusive crises since CTX001 infusion. All patients showed a substantial and sustained increase in the production of fetal hemoglobin.

15 months on, and the first patient to receive the treatment for SCD, Victoria Gray, has even been on a plane for the first time.

Before receiving CRISPR gene therapy, Gray worried that the altitude change would cause an excruciating pain attack while flying. Now she no longer worries about such things.

She told NPR of her trip to Washington, D.C: It was one of those things I was waiting to get a chance to do It was exciting. I had a window. And I got to look out the window and see the clouds and everything.

MORE: MIT Researchers Believe Theyve Developed a New Treatment for Easing the Passage of Kidney Stones

This December, theNew England Journal of Medicinepublishedthe first peer-reviewed research paperfrom the studyit focuses on Gray and the first TDT patient who was treated with an infusion of billions of edited cells into their body.

There is a great need to find new therapies for beta thalassemia and sickle cell disease, saidHaydar Frangoul, MD,Medical Director of Pediatric Hematology and Oncology at Sarah Cannon Research Institute, HCA Healthcares TriStar Centennial Medical Center. What we have been able to do through this study is a tremendous achievement. By gene editing the patients own stem cells we may have the potential to make this therapy an option for many patients facing these blood diseases.

READ: For the First Time in the US, Surgeons Pump New Life into Dead Donor Heart for Life-Saving Transplant

Because of the precise way CRISPR-Cas9 gene editing works, Dr. Frangoul suggested the technique could potentially cure or ameliorate a variety of diseases that have genetic origins.

As GNN has reported, researchers are already using CRISPR to try and treat cancer, Parkinsons, heart disease, and HIV, as well.

Source: American Society of Hematology

The rest is here:
Every Patient Treated With CRISPR Gene Therapy for Blood Diseases Continues to Thrive, More Than a Year On - Good News Network

To Read More: Every Patient Treated With CRISPR Gene Therapy for Blood Diseases Continues to Thrive, More Than a Year On – Good News Network
categoriaBone Marrow Stem Cells commentoComments Off on Every Patient Treated With CRISPR Gene Therapy for Blood Diseases Continues to Thrive, More Than a Year On – Good News Network | dataDecember 19th, 2020
Read All

Understanding Bone Marrow/Stem Cell Transplant | Knight …

By daniellenierenberg

Stem cell transplants from bone marrow or blood offer lifesaving treatment. They are also taxing physically and emotionally.

Its important to know:

What are stem cells?

Blood cells are short-lived and must be replaced. Blood-forming stem cells (hematopoietic cells)divide and multiply. Some mature into one of three blood cell types:

Stem cells are found in bone marrow, in the bloodstream and in umbilical cord blood. In the bloodstream, they are called peripheral blood stem cells (PBSCs). Stem cells from any of these sources can be used in transplants.

What are stem cell transplants?

With a stem cell transplant, a doctor gives you healthy replacementcells that help you fight infection and disease. Doctors most often use stem cell transplants to treat blood disorders and blood cancers that:

A transplant is like a blood transfusion. There are three types:

How stem cell transplants work

Youundergo a process called conditioning. Chemotherapy, radiation therapy or both are used todestroycancer cells and healthy cells that could keep your body from accepting transplanted cells.

New cells are added toyour bloodstream with an IV. The cellscollect in your bone marrow, where they produce new blood cells. Because conditioning leaves your immune system weak, you will need two to three weeks of monitoring.

Who gets a transplant?

At the OHSU Knight Cancer Institute, we consider every person with blood cancer for a stem cell transplant. It might be right for you if your cancer didnt respond to other treatment or if your cancer came back after treatment.

Our providers meet at weekly gatherings called tumor boards to develop the best treatment options for each patient.

Our team considers factors such as your:

Youll want to consider:

What disorders do transplants treat?

Bone marrow/stem cell transplants may be an option to treat:

Leukemias:

Lymphomas:

Other blood cancers and blood disorders:

Other conditions:

Types of stem cell transplants

There are two main types of transplants, each with risks and benefits. OHSU is the only place in Oregon that offers allogeneic transplants.

Autologous transplant

What is it?This type uses your own stem cells. This eliminates the risk of your body rejecting donor cells or of donor cells attacking your body. A relapse may be more likely, though, because you wont have healthy donated cells to attack any diseased cells that remain after conditioning.

How it works:Your care team collects bone marrow using a hollow needle or draws blood and uses a machine to separate out stem cells. The stem cells are frozen. After the conditioning process, the cells are transplanted using anIV drip.

Allogeneic transplant

What is it? We use cells from a donor. Sometimes your own cells are too diseased to collect and reuse. Donor cells are more aggressive in killing any diseased cells left after conditioning. The risk is that they may aggressively target your healthy cells as well, a complication called graft-versus-host disease.

How it works: After the conditioning process, we transplant healthy donor cells using anIV drip. The donor cells help your body rebuild your immune system. A donor can be a relative or someone else whose marrow matches yours.

Allogeneic transplants include:

Bone marrow donors

OHSU has participated in Be The Match: The National Marrow Donor Program since 1996. This program helps people find a lifesaving marrow or PBSC donor. Donors must meet medical guidelinesand should expect to spend 20 to 30 hours in treatment over four to six weeks.

Testing:To find the closest match, doctors will test your blood and a potential donors blood to find their human leukocyte antigen (HLA) type.

HLA markers:Everyone inherits a set of HLA markers from their parents. These markers, contained in almost all of your cells, tell your body which cells belong to you. The more matching markers you and a donor have, the better your chances of a successful transplant. OHSU has success with haploidentical transplants, however, in which as few as half the markers match.

Transplant risks

As with any procedure, transplants involve risks. Your care team will discuss these with you in detail.

Infection: Chemotherapy and radiation therapy weaken your immune system. You are at high risk of infection for up to six weeks until your new cells make healthy blood cells. Your care team will keep you in a safe environment with protection against airborne germs. You will receive safety instructions for going home.

Low platelets:Your platelets will be low for three or more weeks. We will take great care to help you avoid injury or bleeding. Some patients may need a blood transfusion to replace platelets.

Pain:Mouth or throat pain is a common side effect of chemotherapy and radiation therapy. It may cause difficulty eating or swallowing for a few weeks.

Graft failure: Transplant (graft) failure occurs when the body rejects the donor cells. This is rare with stem cell transplants but more common when HLA types are poorly matched.

Graft-versus-host disease:This happens when transplanted cells from the donor attack the recipients tissue and organs. This common complication can range from mild to life-threatening.

Organ damage:Chemotherapy and radiation can leave lasting damage. Well monitor you closely for signs of any problem.

Infertility:The chemotherapy and radiation therapy used before transplants typically result in infertility. OHSU fertility expertscan offer options to preserve your ability to have children before treatment begins.

Physical and emotional effects

Transplants are difficult. They require weeks in or near the hospital, away from work and regular activities. Our cancer social workerscan provide support to you and your family before, during and after treatment:

Read the original here:
Understanding Bone Marrow/Stem Cell Transplant | Knight ...

To Read More: Understanding Bone Marrow/Stem Cell Transplant | Knight …
categoriaBone Marrow Stem Cells commentoComments Off on Understanding Bone Marrow/Stem Cell Transplant | Knight … | dataDecember 17th, 2020
Read All

Page 25«..1020..24252627..3040..»


Copyright :: 2024