Page 12«..11121314..2030..»

Research Efforts Seek to Further Explore the Potential of Uproleselan in AML – OncLive

By daniellenierenberg

The addition of the E-selectin antagonist uproleselan (GMI-1271) to chemotherapy has been shown to improve outcomes in patients with relapsed/refractory acute myeloid leukemia (AML), according to Tapan M. Kadia, MD, who added that based on these findings, the investigative agent is now under further exploration in several disease subsets and settings with varying unmet need.

The idea is that [uproleselan] may reduce or subvert chemotherapy resistance. This has been shown in several preclinical studies where mice that had been treated with cytarabine and had leukemic blasts left over after [treatment] showed that they had tight binding to E-selectin within the tumor microenvironment, Kadia explained. When uproleselan, or an antibody blocking E-selectin, was added, those cells then became sensitive to the cytarabine, suggesting that the E-selectin binding was leading to chemotherapy resistance. This [supported the hypothesis that] blocking E-selectin within the microenvironment can be an important mechanism to provide benefit in patients with AML.

Data from a phase 1/2 clinical trial (NCT02306291) showed that when uproleselan was administered at the recommended phase 2 dose of 10 mg/kg twice daily in combination with mitoxantrone, etoposide, and cytarabine (MEC), it produced a remission rate of 41% in those with relapsed/refractory disease (n = 47).1 In a cohort of patients with newly diagnosed disease who were at least 60 years of age (n = 25), the combination of uproleselan plus cytarabine and idarubicin (7+3) resulted in a remission rate of 72%.

Now, a phase 3 trial (NCT03616470) is examining MEC or fludarabine, cytarabine, and idarubicin (FAI) with or without uproleselan in patients with relapsed/refractory AML who are eligible for intensive chemotherapy in the salvage setting.2 Another phase 3 trial (NCT03701308) is exploring 7+3 chemotherapy with or without uproleselan in patients aged 60 years or older who are fit for intensive induction chemotherapy.3 Moreover, a phase 1/2 trial (NCT04848974) is evaluating cladribine and low-dose cytarabine in combination with uproleselan in difficult-to-treat patients with treated secondary AML.4

In an interview with OncLive, Kadia, an associateprofessor in the Department of Leukemia, of the Division of Cancer Medicine, at The University of Texas MD Anderson Cancer Center, discussed what makes uproleselan unique from other agents under investigation in AML and shed light on the many research efforts dedicated to further exploring its use in this disease.

Kadia: E-selectin is a relatively new target, but it is a protein that we have known about for many years. E-selectin is present on activated endothelial cells, [which are] the cells that make up a blood vessel. E-selectin is present, upregulated, and overexpressed in activated endothelial cells at the sites of inflammation and damage.

We [believe] E-selectin is meant to help attract or traffic leukocytes and white blood cells, including monocytes, neutrophils, and natural killer [NK] cells, to the sites of inflammation. Neutrophils, NK cells, and monocytes have E-selectin ligands, which are glycoproteins that are attracted to or attached to E-selectin. E-selectin on the endothelial cells helps to traffic these cells and adhere them to the endothelial cells.

More recently, E-selectin has become recognized as a potentially important marker in malignancy, because they are also expressed in endothelial cells associated with malignancy. For example, in solid tumors, there is a suggestion that it may have a role in metastasis or distant metastasis of solid tumors, such as colon cancer.

In leukemia and hematologic malignancies, the endothelial cells in bone marrow also overexpress E-selectin, particularly in advanced disease. They are expressed at higher levels in patients who have adverse-risk AML, patients who have been previously treated, and they allow the adherence of leukemic blasts of the malignant cells to the endothelial microenvironment within the bone marrow.

As [the endothelial cells do that], we believe that the E-selectin binding to these cells upregulates nuclear factor kappa B [NF-B] within the tumor or the blast, and elicits a type of chemotherapy resistance, or prosurvival pathways, that allow them to survive chemotherapy or treatment. Blocking this [from happening] has been the rationale behind [the development of] uproleselan. Blocking this may help prevent the trafficking of the blast cells to the bone marrow and from adhering to the bone marrow microenvironment, therefore inhibiting activation of the cancer survival pathways, such as NF-B.

Uproleselan is an antagonist of E-selectin that binds to E-selectin and prevents the interaction between E-selectin and E-selectin ligands, which are present on leukemia or AML blasts. It is an intravenous product that is given over 20 minutes twice daily.

[During] an initial study, [investigators] observed no significant toxicities [with uproleselan] as a single agent. The mechanism is that it blocks the interaction between the E-selectin and the E-selectin ligands on the blasts, therefore reducing the trafficking of these leukemic blasts to the bone marrow. It disrupts the adhesion-mediated drug resistance within the bone marrow microenvironment.

In that respect, it also inhibits the activation of potential cancer survival mechanisms, such as upregulation of NF-B, and may reduce chemotherapy-based toxicity that may occur. By reducing [E-selectin adhesion] and adding chemotherapy, you are treating cells that are potentially more sensitive to [chemotherapy].

The [hypothesis] was that blocking E-selectin would thereby sensitize the resistant leukemic blasts to chemotherapy, particularly in the salvage setting. You want to start in patients with relapsed/refractory AML.

This was a phase 1 study that looked at the combination of the E-selectin antagonist, uproleselan, with either MEC chemotherapy in patients with relapsed/refractory AML, or in combination with 7+3 chemotherapy in a small cohort of newly diagnosed patients with AML who were aged 60 years and older. Once patients achieved remission, they could also get uproleselan with their consolidation, whether it be MEC consolidation or intermediate-dose cytarabine-based consolidation.

A total of 66 patients with relapsed/refractory AML were treated, with a median age of 59 years of age. Moreover, 17% of those patients had prior transplant, and one-third of the patients had 2 or more induction regimens; [as such, it was] a heavily pretreated population. Fifty percent of patients had adverse-risk [disease] by European LeukemiaNet risk [classification].

If you look at the adverse [effects (AEs)], and this is 1 of the first striking observations, there may have been potentially lower toxicityparticularly along the gastrointestinal tract starting with mucositis, nausea, and vomitingthan what you would expect with MEC chemotherapy based on historical experience. The most common complications were infections, which are common in patients [with leukemia] who are treated with intensive chemotherapy.

When you look at efficacy among the 66 patients who were treated, the complete response [CR]/CR with incomplete count recovery [CRi] rate was [41%], and the early mortality [rate] was fairly low, at 9% at 60 days, which is reasonable. Patients who had a longer CR1 duration had a higher response rate at 75% vs those who had refractory disease or a short CR1 duration, [with] response rates in the range of 23% and 36%.

[Additionally], 69% of patients had minimal residual disease [MRD] negativity, which is good for a relapsed/refractory cohort setting. The efficacy was there, as seen by the overall response rate [ORR] of 39%, which is in line with what you would expect with salvage chemotherapy in the relapsed/refractory setting. The median overall survival [OS] of the patients is [8.8] months, [which is] promising for a study looking at relapsed/refractory AML.

One of the interesting correlative studies looked at E-selectin ligand expression on the blast cells and survival. Looking at baseline AML, a prior study suggested that patients whose blasts had high expression of E-selectin ligand had a more adverse prognosis then those with low expression. Moreover, E-selectin ligand overexpression [is known to] correlate with relapsed/refractory disease and adverse prognosis disease. As such, high E-selectin ligand is associated with a poor prognosis.

[However, in this correlative study,] patients who had high E-selectin ligand expression and were treated with uproleselan had a more favorable outcome, with a median OS of 12.7 months compared with 5.2 months in those who had low [E-selectin ligand] expression. That suggests that in those patients who typically would have a more adverse prognosis with high E-selectin ligand expression, when you added uproleselan, which blocked that interaction, their prognosis improved. That was an early signal that suggested that targeting that receptor flips the adverse prognosis associated with E-selectin ligand expression.

[The phase 1/2] study also had an arm of newly diagnosed patients, who were treated with 7+3 chemotherapy plus [uproleselan]. These were older patients with newly diagnosed AML; [this cohort was comprised of] 25 patients who had a median age of 67 years. Half of patients had secondary AML, which is commonly seen in that population.

Here, the rates of grade 3 or 4 mucositis were 0%, with about 20% [of patients experiencing] grade 1/2 mucositis, so lower rates in mucositis than we may have expected with intensive chemotherapy. The CR/CRi rate was 72% [with this approach], with 52% [of patients] achieving a complete remission. The early mortality [rate] at 60 days was 12%, [which is] higher than you might expect in older patients, but still reasonable and promising. The MRD negativity [rate] was 56% among the patients who were evaluated for it. As such, this was a pretty good response rate that was in line or higher than what you would expect with intensive chemotherapy.

Based on the promising data from the phase 1 trial, looking at patients with relapsed/refractory AML treated with MEC plus uproleselan, as well as the small cohort of frontline patients treated with uproleselan and 7+3, the sponsor decided to proceed with a couple of phase 3 randomized trials to register uproleselan for patients in these particular settings.

The primary end point for both studies is OS, to evaluate the combination of anti-leukemic activity uproleselan with the respective chemotherapy. Secondary end points also include trying to further study and nail down the incidence of severe oral mucositis. Is it less than what you would expect with the control arm?

The first is a randomized phase 3 study [NCT03616470] for patients between the ages of 18 years and 75 years, with relapsed/refractory AML who are eligible for intensive chemotherapy in the salvage setting. They may have had 1 or fewer allogeneic stem cell transplants [ASCTs] prior to enrollment. Patients are randomized [1:1] to either MEC or FAI chemotherapy, plus or minus uproleselan. If patients achieved remission, they could receive consolidation with high-dose [cytarabine] or intermediate-dose [cytarabine], plus or minus uproleselan. The primary end point of the study is OS. The study is in the early stages [and we] hope to see data in the next couple of years.

The second is an National Cancer Institute study [NCT03701308] that is looking at patients aged 60 years or older who are fit for intensive chemotherapy [in the frontline setting]. Patients who have secondary AML [will be included], but those with FLT3-mutated AML [will not], since there is a standard of care for that [in the form of] FLT3 inhibitors.

Here, patients are randomized [1:1] to 7+3 chemotherapy with or without uproleselan, with consolidation with intermediate-dose cytarabine, with or without uproleselan. The primary end point [is] OS, and there will be an interim analysis looking at event-free survival [EFS]. If there is an inferior EFS at the interim [analysis], then the study would be closed at that point for futility. Otherwise, it would continue to look for OS benefit [with this approach]. Hopefully, we will see some data in the next year or 2 [to shed light on whether] this is a good strategy [for these pateints].

The treatment paradigm in AML has shifted significantly over the past few years with the incorporation of new molecules, such as venetoclax [Venclexta], [plus] IDH1, IDH2, and FLT3 inhibitors. Things are changing rapidly, even as uproleselan is being developed.

Now, instead of saying we have patients who are older and fit for chemotherapy, you must ask [questions about mutations]. Does a patient have a FLT3 mutation? If so, maybe they should be treated with a FLT3 inhibitor combined with chemotherapy. Does a patient have an IDH1 or IDH2 mutation? Recent data from the 2021 ASH Annual Meeting suggested that the combination of ivosidenib [Tibsovo] and azacitidine showed a significant survival benefit in patients who are IDH1 mutated compared with azacitidine alone. As such, there is another option for that specific subset of patients.

We have other medications or intensive chemotherapy for patients who have secondary AML. [For example,] CPX-351 showed a significant survival benefit compared with 7+3 chemotherapy. Where does uproleselan fit in secondary AML? Well, if you start with the relapsed/refractory setting, there is no 1 standard of care. As such, if uproleselan does show significant benefit compared with MEC alone in terms of survival, that is one place to go.

[If patients] have FLT3-, IDH1-, or IDH2-mutated, options such as gilteritinib [Xospata] and ivosidenib are available for those respective subtypes. However, in those patients who do not have those mutations, [uproleselan] could be an option.

A [phase 1/2] pilot study [NCT03214562] that is being done by [investigators at The University of MD Anderson Cancer Center] looked at [the combination of] FLAG [fludarabine, cytarabine, granulocyte colonystimulating factor] plus idarubicin and venetoclax [in patients with relapsed/refractory AML] and showed very high rates of complete remission with MRD negativity. This is a very intensive study, that needs close follow-up and close safety evaluation, but certainly, [we are seeing] high response rates with most of the patients able to proceed to ASCT and good survival in the long term. How does uproleselan fit in that setting?

If [the addition of uproleselan] shows a benefit over MEC as a single agent, it is certainly an option. [Now, we must determine] which patients you would put on that particular study, if they have no targetable mutations or if they cannot tolerate intensive chemotherapy plus venetoclax, whether it be FLAG plus idarubicin/venetoclax, or a regimen we developed, [like CPX-351] plus venetoclax.

In the frontline setting, it gets even more difficult because frontline studies are looking at [combining] a hypomethylating agent [HMA] with venetoclax in older patients. This [approach] is currently approved for patients who are aged 75 and older, or those who are unfit for intensive chemotherapy. However, [this approach] may start to be applied to patients who are slightly younger than that or who are more fit than the most unfit patients. [Investigators] are examining HMA plus venetoclax in that older, fit population. New regimens, such as cladribine, low-dose cytarabine, plus venetoclax, have also demonstrated high response rates in that older, fit population.

A set of studies is evaluating [CTX-351 in secondary AML]. For patients with IDH1 mutations, we now have the option of HMA plus ivosidenib. For FLT3-mutated disease, we are still looking, but HMA/venetoclax has high response rates in that setting. Moreover, triplet combinations are also being investigated, where [agents such as] gilteritinib or quizartinib are being added to the backbone of HMA plus venetoclax.

In the frontline, so many different options [are available] for specific subtypes, so we must define where 7+3 plus uproleselan will fit in, if data are positive. This is still a question that will need to be answered.

We are conducting a trial in a specific subset of patients who do not have great options [available to them] right now: those with treated secondary AML. This is a population of patients who may have had myelodysplastic syndrome [MDS] or chronic myelomonocytic leukemia [CMML] prior to developing AML, which is very common in the population. These patients were treated with the standard of care, which is HMAs and 5-azacytidine or decitabine in the frontline for MDS or CMML.

Eventually, these patients may respond [to treatment], but they may then progress to AML. At the time of their progression, they are considered to have newly diagnosed AML, but they may have received months or years of HMAs. This [scenario] used to be [referred to as] HMA failure, but this is a specific subset of AML that arises from previously treated MDS or CMML. In these patients, the complete remission rates are in the range of 20% to 25% with standard agents, and early mortality is very high. These patients have a median OS in the range of 4 to 5 months at the time of diagnosis AML, so it is a difficult subset of patients [to treat] for whom there really is no therapy [available]. If you look at CPX-351 in that setting, which is treated secondary AML, outcomes are pretty much the same, with high rates of early mortality and poor OS.

We wanted to address this key subset of patients. One of the things that we learned from the preclinical studies with uproleselan is that E-selectin is upregulated and overexpressed in AML blasts that have been previously exposed to HMAs. AML or MDS blasts that have been treated with or exposed to HMAs upregulate E-selectin significantly. The rationale was if these patients who have failed or have been treated extensively with HMAs then develop AML, their blasts may have upregulated E-selectin, and they may be the ideal target for uproleselan in combination with chemotherapy.

We took that specific subset of patients, and we are studying the combination of uproleselan plus cladribine and low-dose cytarabine [as part of a phase 1/2 trial (NCT04848974)]. The cladribine and low-dose cytarabine regimen has been developed at MD Anderson and, for many years now, has been used in frontline AML and treated secondary AML. In that specific subset [of treated secondary AML], we have seen a response rate [ranging from] 35% to 40% in the frontline [setting].

Since it is not [additional treatment with a] HMA, this backbone in combination with uproleselan is being studied in patients with treated secondary AML, with the end point of safety, [as well as] secondary end points of remission rate and OS in this difficult population, where there is a [need] that needs to be critically addressed.

More here:
Research Efforts Seek to Further Explore the Potential of Uproleselan in AML - OncLive

To Read More: Research Efforts Seek to Further Explore the Potential of Uproleselan in AML – OncLive
categoriaBone Marrow Stem Cells commentoComments Off on Research Efforts Seek to Further Explore the Potential of Uproleselan in AML – OncLive | dataApril 15th, 2022
Read All

Hoth Therapeutics surges on preclinical data for cancer therapy – Seeking Alpha

By daniellenierenberg

luismmolina/E+ via Getty Images

Hoth Therapeutics (NASDAQ:HOTH) has gained ~135% in the pre-market Monday after the development-stage pharmaceutical company announced encouraging preclinical data for its investigational cancer therapy, HT-KIT.

KIT is designed to target the receptor tyrosine kinase KIT in mast cells, required for the normal functioning of bone marrow-derived hematopoietic stem cells. The mutations of the KIT pathway are linked to human cancers, such as gastrointestinal stromal tumors and mast cell-derived cancers.

According to the company, a team of researchers, who were part of a scientific research agreement with North Carolina State University, found that KIT protein expression, signaling, and function reduced in response to HT-KIT mRNA frame-shifting approach on mast cell leukemia cells in vitro.

The treatment was found to have prevented cancer cell growth and induced cell death over 72 hours.

Additionally, in a mouse model with mast cell leukemia, the tumor growth and infiltration of other organs reduced, and tumor cell death rose when HT-KIT induced frameshifted c-KIT mRNA, Hoth (HOTH) said.

Our next round of preclinical studies are underway and we are excited to utilize the results for our planned Pre-IND meeting with FDA later this year," Chief Executive Robb Knie said.

HT-KIT was granted the FDAs Orphan Drug designation early this year.

See the rest here:
Hoth Therapeutics surges on preclinical data for cancer therapy - Seeking Alpha

To Read More: Hoth Therapeutics surges on preclinical data for cancer therapy – Seeking Alpha
categoriaBone Marrow Stem Cells commentoComments Off on Hoth Therapeutics surges on preclinical data for cancer therapy – Seeking Alpha | dataApril 15th, 2022
Read All

Strategy of Stem Cell Transplantation for Bone Regeneration with Functionalized Biomaterials and Vascularized Tissues in Immunocompetent Mice -…

By daniellenierenberg

The use of human bone marrow mesenchymal stem cells (hBMSCs) to regenerate and repair bone tissue defects is a complex research field of bone tissue engineering; nevertheless, it is a hot topic. One of the biggest problems is the limited survival and osteogenic capacity of the transplanted cells within the host tissue. Even for hBMSCs with their low immunogenicity, the body will still cause a local immune-inflammatory response directed against the allogeneic cells and thereby reduce the activity of the transplanted cells. Even in the case of successful transplantation, the lack of vascularization at the transplantation site makes it difficult for the transplanted cells to exchange nutrients and metabolic wastes that ultimately affects bone regeneration. In this study, we covalently modified alginate with RGD and QK peptides that were injected subcutaneously into immunocompetent mice. Histological analysis, as well as ELISA techniques, proved that this method is able to provide bioactive stem cell transplant beds containing functionalized biomaterials and vascularized surrounding tissues. Inflammation-related factors, such as IL-2, IL-6, TNF-, and IFN-, around the cell graft beds decreased with time and were lowest at the second week. Then, the hBMSCs were injected into the cell transplantation beds intended to form vascularized bonelike tissues that were evaluated by micro-computed tomography (Micro CT), histological, and immunohistochemical analyses. The results showed that the expression of osteogenesis-related proteins RUNX2, COL1A1, and OPN, as well as the expression of angiogenic factor vWF and cartilage-related protein COL2A1 were significantly upregulated in the hBMSC-derived osteogenic tissue. These results suggest that the stem cell transplantation strategy by constructing bioactive cell transplant beds is effective to enhance the bone regeneration capacity of hBMSCs and holds great potential in bone tissue engineering.

See the original post:
Strategy of Stem Cell Transplantation for Bone Regeneration with Functionalized Biomaterials and Vascularized Tissues in Immunocompetent Mice -...

To Read More: Strategy of Stem Cell Transplantation for Bone Regeneration with Functionalized Biomaterials and Vascularized Tissues in Immunocompetent Mice -…
categoriaBone Marrow Stem Cells commentoComments Off on Strategy of Stem Cell Transplantation for Bone Regeneration with Functionalized Biomaterials and Vascularized Tissues in Immunocompetent Mice -… | dataApril 3rd, 2022
Read All

Stem Cells Turn Into Bone When Sound Waves Are Near – TechTheLead

By daniellenierenberg

Share

Share

Share

Email

A breakthrough made by Australian researchers might change the way doctors treat a broken or missing bone. Turns out stem cells can turn into bone if certain conditions are met.

Normally, bone can be made only of mesenchymal stem cells (MSCs) which are biologically found in the bone marrow.

Extracting them from there is a difficult and painful procedure while doing so at scale is beyond tricky.

But this could change any moment now after Australian researchers found that stem cells can be converted into bone when a certain type of sound waves are used.

Tests had previously shown that low frequency vibrations were great at inducing cell differentiation but the process took over a week and the results were mixed at best.

Nobody had bothered to look into high frequency sound waves until now. RMIT researchers took a microchip capable of dispersing sound waves in the Mhz range and turned it at MSCs in silicon oil on a culture plate.

The team noticed that after exposing the cells to 10MhZ signals for 10 minutes daily for five days, the markers indicating the bone conversion appeared.

We can use the sound waves to apply just the right amount of pressure in the right places to the stem cells, to trigger the change process, said Leslie Yeo, co-lead researcher on the study. Our device is cheap and simple to use, so could easily be upscaled for treating large numbers of cells simultaneously vital for effective tissue engineering.

This discovery, detailed in the journalSmall, eliminates the need of drugs to make stem cells behave this way. Moreover, the MSCs can be pulled from a variety of places, like fast tissue, not just bone marrow.

By injecting them into the body in case of an injury or disease, they can start working on a new bone faster and more efficient.

Watch These Goldfish Drive a Wheeled Platform!

Paralyzed Man Sends Tweet With Brain Chip In a Worlds First

Facebook Twitter LinkedIn Reddit WhatsApp

Subscribe to our website and stay in touch with the latest news in technology.

You will soon receive relevant content about the latest innovations in tech.

There was an error trying to subscribe to the newsletter. Please try again later.

See the rest here:
Stem Cells Turn Into Bone When Sound Waves Are Near - TechTheLead

To Read More: Stem Cells Turn Into Bone When Sound Waves Are Near – TechTheLead
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cells Turn Into Bone When Sound Waves Are Near – TechTheLead | dataApril 3rd, 2022
Read All

Jasper Therapeutics to Present Updated Data on JSP191 Conditioning in SCID Patients at the 2022 Clinical Immunology Society Annual Meeting – Yahoo…

By daniellenierenberg

Jasper Therapeutics

REDWOOD CITY, Calif., March 31, 2022 (GLOBE NEWSWIRE) -- Jasper Therapeutics, Inc. (NASDAQ: JSPR), a biotechnology company focused on hematopoietic cell transplant therapies, today announced that updated data from the Companys ongoing study of JSP191 as single agent conditioning prior to allogeneic hematopoietic stem cell (HSC) re-transplant in patients with severe combined immunodeficiency (SCID) has been accepted for presentation as a late-breaking poster at the 2022 Clinical Immunology Society (CIS) Annual Meeting, to be held in Charlotte, North Carolina from March 31 to April 3, 2022.

Title: Update: Single-Agent Conditioning with Anti-CD117 Antibody JSP191 Shows Donor Engraftment, Nave Lymphocyte Production, and Clinical Benefit in Patients with Severe Combined Immunodeficiency (SCID)Date and Time: Friday, April 1, 2022, 1:00-2:00 p.m. ET

This updated data indicates that JSP191 at 0.6mg/kg can deplete blood stem cells, leading to long-term donor cell engraftment, immune reconstitution which positively affects the clinical status of SCID patients who suffer from poor T cell and negligible B cell immunity because they failed their first transplant, said Wendy Pang, MD, Ph.D., Senior Vice President of Research and Translational Medicine of Jasper Therapeutics. This population of SCID patients is largely without treatment options and rely on supportive therapies like life long IVIG to provide some level of immune protection. JSP191 based conditioning may provide these patients with the best chance of a safe and successful transplant and reconstituted immune system.

CIS attendees are the primary caregivers for the immune deficient patient population, we are pleased to be able to present this data at the 2022 CIS annual meeting, Ronald Martell, CEO of Jasper. We believe that with our successful clinical efforts, we are one step closer, and uniquely positioned to deliver a targeted non-genotoxic conditioning agent to patients with SCID.

Story continues

About JSP191

JSP191 is a humanized monoclonal antibody in clinical development as a conditioning agent that blocks stem cell factor receptor signaling leading to clearance of hematopoietic stem cells from bone marrow, creating an empty space for donor or genetically modified transplanted stem cells to engraft. To date, JSP191 has been evaluated in more than 100 healthy volunteers and patients. Three clinical trials for myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML), severe combined immunodeficiency (SCID) and Fanconi anemia are currently enrolling. The Company plans a new study of JSP191 as a second-line therapeutic in lower risk MDS patients in 2022 as well as to a pivotal study in MDS/AML transplant in early 2023. Enrollment in additional studies are planned in patients with sickle cell disease, chronic granulomatous disease and GATA2 MDS who are undergoing hematopoietic cell transplantation.

About Jasper Therapeutics

Jasper Therapeutics is a biotechnology company focused on the development of novel curative therapies based on the biology of the hematopoietic stem cell. The company is advancing two potentially groundbreaking programs. JSP191, an anti-CD117 monoclonal antibody, is in clinical development as a conditioning agent that clears hematopoietic stem cells from bone marrow in patients undergoing hematopoietic cell transplantation. It is designed to enable safer and more effective curative allogeneic hematopoietic cell transplants and gene therapies. In parallel, Jasper Therapeutics is advancing its preclinical mRNA engineered hematopoietic stem cell (eHSC) platform, which is designed to overcome key limitations of allogeneic and autologous gene-edited stem cell grafts. Both innovative programs have the potential to transform the field and expand hematopoietic stem cell therapy cures to a greater number of patients with life-threatening cancers, genetic diseases and autoimmune diseases than is possible today. For more information, please visit us at jaspertherapeutics.com.

Forward-Looking Statements

Certain statements included in this press release that are not historical facts are forward-looking statements for purposes of the safe harbor provisions under the United States Private Securities Litigation Reform Act of 1995. Forward-looking statements are sometimes accompanied by words such as believe, may, will, estimate, continue, anticipate, intend, expect, should, would, plan, predict, potential, seem, seek, future, outlook and similar expressions that predict or indicate future events or trends or that are not statements of historical matters. These forward-looking statements include, but are not limited to, statements regarding the potential long-term benefits of hematopoietic stem cells (HSC) engraftment following targeted single-agent JSP191 conditioning in the treatment of severe combined immunodeficiency (SCID) and Jaspers ability to potentially deliver a targeted non-genotoxic conditioning agent to patients with SCID. These statements are based on various assumptions, whether or not identified in this press release, and on the current expectations of Jasper and are not predictions of actual performance. These forward-looking statements are provided for illustrative purposes only and are not intended to serve as, and must not be relied on by an investor as, a guarantee, an assurance, a prediction or a definitive statement of fact or probability. Actual events and circumstances are difficult or impossible to predict and will differ from assumptions. Many actual events and circumstances are beyond the control of Jasper. These forward-looking statements are subject to a number of risks and uncertainties, including general economic, political and business conditions; the risk that the potential product candidates that Jasper develops may not progress through clinical development or receive required regulatory approvals within expected timelines or at all; risks relating to uncertainty regarding the regulatory pathway for Jaspers product candidates; the risk that clinical trials may not confirm any safety, potency or other product characteristics described or assumed in this press release; the risk that Jasper will be unable to successfully market or gain market acceptance of its product candidates; the risk that Jaspers product candidates may not be beneficial to patients or successfully commercialized; patients willingness to try new therapies and the willingness of physicians to prescribe these therapies; the effects of competition on Jaspers business; the risk that third parties on which Jasper depends for laboratory, clinical development, manufacturing and other critical services will fail to perform satisfactorily; the risk that Jaspers business, operations, clinical development plans and timelines, and supply chain could be adversely affected by the effects of health epidemics, including the ongoing COVID-19 pandemic; the risk that Jasper will be unable to obtain and maintain sufficient intellectual property protection for its investigational products or will infringe the intellectual property protection of others; and other risks and uncertainties indicated from time to time in Jaspers filings with the SEC. If any of these risks materialize or Jaspers assumptions prove incorrect, actual results could differ materially from the results implied by these forward-looking statements. While Jasper may elect to update these forward-looking statements at some point in the future, Jasper specifically disclaims any obligation to do so. These forward-looking statements should not be relied upon as representing Jaspers assessments of any date subsequent to the date of this press release. Accordingly, undue reliance should not be placed upon the forward-looking statements.

Contacts:John Mullaly (investors)LifeSci Advisors617-429-3548jmullaly@lifesciadvisors.com

Jeet Mahal (investors)Jasper Therapeutics650-549-1403jmahal@jaspertherapeutics.com

Visit link:
Jasper Therapeutics to Present Updated Data on JSP191 Conditioning in SCID Patients at the 2022 Clinical Immunology Society Annual Meeting - Yahoo...

To Read More: Jasper Therapeutics to Present Updated Data on JSP191 Conditioning in SCID Patients at the 2022 Clinical Immunology Society Annual Meeting – Yahoo…
categoriaBone Marrow Stem Cells commentoComments Off on Jasper Therapeutics to Present Updated Data on JSP191 Conditioning in SCID Patients at the 2022 Clinical Immunology Society Annual Meeting – Yahoo… | dataApril 3rd, 2022
Read All

Rheumatoid Arthritis Stem Cell Therapy Market Assessment, With Major Top Companies Analysis, Geographic Analysis, Growing Opportunities Data By…

By daniellenierenberg

Prophecy Market Research delivered a business report on the Rheumatoid Arthritis Stem Cell Therapy which is the best creation of trust and skill. The report is a top to bottom assessment of the different attributes and future development possibilities during the figure time frame. To uncover every doable way, our examiners applied different strategies. It contains every one of the overall significant organizations to help our clients in understanding their thorough strategies and cutthroat climate.

The noticeable players in the worldwide Rheumatoid Arthritis Stem Cell Therapy are

Mesoblast Ltd., Roslin Cells, Regeneus Ltd, ReNeuron Group plc, International Stem Cell Corporation, TiGenix and others

Our investigator have partitioned the report into segments so you might become familiar with the overall market undiscovered possibility in every one.

Get Sample Copy of This Report @ https://www.prophecymarketinsights.com/market_insight/Insight/request-sample/4815

The market elements are analyzed inside and out in the outline segment. This part is an unquestionable requirement perused for anybody settling on information driven choices. It talks about how Rheumatoid Arthritis Stem Cell Therapy functions, as well as market size and volume. The report is coordinated in straightforward organizations and incorporates outlines, tables, and charts to inspect the information and uncover the secret example in the numbers. Besides, the report incorporates verifiable deals and income data as well as guage designs for the following not many years.

The development and limiting elements are given their own fragment to help our clients in observing the Rheumatoid Arthritis Stem Cell Therapy touch spots and problem areas. The ends attracted this part depend on trustworthy and more significant position sources. Our specialists have utilized an assortment of market projection ways to deal with furnish our clients with reliable outcomes.

The Rheumatoid Arthritis Stem Cell Therapy is isolated into different groupings in the division segment. The fragment is an inside and out assessment of every classification, which is grouped by its qualities and expansiveness. Weve recorded every one of the measurements along with subjective clarifications to assist clients with appreciating the expected broadness of each class before very long. To dispose of errors in current realities and discoveries, the report utilizes an assortment of measurable methodologies. Moreover, an assortment of pattern projection approaches are utilized to uncover future development angles and prospects.

By Product Type (Allogeneic Mesenchymal Stem Cells, Bone Marrow Transplant and Adipose Tissue Stem Cells)

By End-User (Hospitals, Ambulatory Surgical Centers and Specialty Clinics)

By Region (North America, Europe, Asia Pacific, Latin America, and Middle East & Africa)

Mesoblast Ltd., Roslin Cells, Regeneus Ltd, ReNeuron Group plc, International Stem Cell Corporation, TiGenix and others

Promising Regions & Countries Mentioned In The Rheumatoid Arthritis Stem Cell Therapy Report:

The local review area inspects all potential market scenes in specific areas before very long. Its an exhaustive assessment of the Rheumatoid Arthritis Stem Cell Therapy possible districts. The examination additionally remembers a contextual investigation for significant market members to help shoppers distinguish and understand powerful techniques in the overall Rheumatoid Arthritis Stem Cell Therapy , as well as likely boundaries. Our master experts checked the data and endeavored to protect the most ideal degree of exactness.

Segmentation Overview:

By Product Type (Allogeneic Mesenchymal Stem Cells, Bone Marrow Transplant and Adipose Tissue Stem Cells)

By End-User (Hospitals, Ambulatory Surgical Centers and Specialty Clinics)

By Region (North America, Europe, Asia Pacific, Latin America, and Middle East & Africa)

Download PDF Brochure for report overview @ https://www.prophecymarketinsights.com/market_insight/Insight/request-pdf/4815

Purposes Behind Buying Rheumatoid Arthritis Stem Cell Therapy Report-

openings both developed and arising regions.

Understanding the tactics that support marketable interest in terms of products, segmentation, and assiduity verticals can help you make better opinions.

Get In-depth TOC @ https://www.prophecymarketinsights.com/market_insight/Global-Rheumatoid-Arthritis-Stem-Cell-Therapy-Market-4815

Why Buy From Us?

Prophecy Market Insights is particular statistical surveying, investigation, promoting/business technique, and arrangements that offers vital and strategic help to clients for settling on very much informed business choices and to distinguish and accomplish high-esteem valuable open doors in the objective business region. We likewise assist our clients with tending to business challenges and give the most ideal answers for conquer them and change their business.

Contact Us:

Mr. Alex (Sales Manager)

Prophecy Market Insights

Phone: +1 860 531 2701

Email: [emailprotected]

Read more from the original source:
Rheumatoid Arthritis Stem Cell Therapy Market Assessment, With Major Top Companies Analysis, Geographic Analysis, Growing Opportunities Data By...

To Read More: Rheumatoid Arthritis Stem Cell Therapy Market Assessment, With Major Top Companies Analysis, Geographic Analysis, Growing Opportunities Data By…
categoriaBone Marrow Stem Cells commentoComments Off on Rheumatoid Arthritis Stem Cell Therapy Market Assessment, With Major Top Companies Analysis, Geographic Analysis, Growing Opportunities Data By… | dataApril 3rd, 2022
Read All

MicroRNA-631 deriving from bone marrow mesenchymal stem cell exosomes facilitates the malignant behavior of non-small cell lung cancer via modulating…

By daniellenierenberg

This article was originally published here

Bioengineered. 2022 Apr;13(4):8382-8395. doi: 10.1080/21655979.2022.2036891.

ABSTRACT

The exosomes (Exo) had always been considered as transport vectors for microRNA (miRNA). An increasing number of data had clarified the influence of Exo on the cell progression of non-small cell lung cancer (NSCLC). Nevertheless, its specific mechanism had not yet been verified. This work was to explore the potential mechanism of Exo-derived miR-631 targeting and regulating E2F family of transcription factor 2 (E2F2) to repress the malignant behavior of NSCLC cells. Test of microRNA (miR)-631 and E2F2 in NSCLC was performed. BMSCs-Exo that altered miR-631 was co-cultured with NSCLC cells. Detection of the cloning and progression of NSCLC cells was performed. Testification of the targeting of miR-631 with E2F2 was conducted. In vivo experiments were performed to verify the results in vitro. In short, elevation of miR-631 Exo repressed the advancement and phosphatidylinositol 3-kinase/Akt activation of NSCLC cells, while silence of miR-631 was in the opposite. In terms of mechanism, miR-631 exerted the influence via targeting E2F2. The coincident results were obtained in animal models. In brief, BMSC-Exo mediated E2F2 via delivering miR-631 to NSCLC cells to modulate the malignant behavior of NSCLC.

PMID:35353027 | DOI:10.1080/21655979.2022.2036891

See the original post:
MicroRNA-631 deriving from bone marrow mesenchymal stem cell exosomes facilitates the malignant behavior of non-small cell lung cancer via modulating...

To Read More: MicroRNA-631 deriving from bone marrow mesenchymal stem cell exosomes facilitates the malignant behavior of non-small cell lung cancer via modulating…
categoriaBone Marrow Stem Cells commentoComments Off on MicroRNA-631 deriving from bone marrow mesenchymal stem cell exosomes facilitates the malignant behavior of non-small cell lung cancer via modulating… | dataApril 3rd, 2022
Read All

Effect of oxidative stress-induced autophagy on proliferation and apoptosis of hMSCs – Newswise

By daniellenierenberg

Abstract:

Background:

Objective:To observe the effect of H2O2 induced oxidative stress on autophagy and apoptosis of human bone marrow mesenchymal stem cells (hBMSCs).

Method: The hBMSCs were separated and cultured by density gradient centrifugation combined with adherence method. They were divided into blank group (with medium only), 3-MA (autophagy inhibitor) pretreatment group (with 2 ml of 5 mM 3-MA medium), H2O2 Intervention group (add 2ml medium containing 0.05mM H2O2), H2O2+3-MA treatment group (add 2ml medium containing 5mM 3-MA, then add 2ml medium containing 0.05mM H2O2). DCFH-DA staining was used to detect cellular reactive oxygen species (ROS) levels,and CCK-8 analysis was used to detect the effects of different concentrations (0,50,100,200,400mol/L) of H2O2 on the proliferation of hBMSCs; Monodansylcadaverine(MDC) Fluorescent amine probe staining, Lysosome Red Fluorescent Probe (Lyso-Tracker Red) staining to observe the level of autophagy; Immunofluorescence staining to detect the expression of LC3A/B; Flow cytometry (Annexin V/PI) to detect cell apoptosis Circumstances; Protein chip detection of autophagy-related proteins; Western blot detection of Beclin1, mTOR, p-mTOR, LC3A/B, and Cleaved caspase-3 protein expression.

Result: After treating hBMSCs with different concentrations of H2O2 (0,50,100,200,400mol) for 24h ,48h, and 72h, with the increase of H2O2 concentration, the cell proliferation ability decreased; while with the extension of time, the cell proliferation ability increased not significantly; 50mol cell proliferation ability is the strongest. Compared with the blank group and 3-MA group, the H2O2 intervention group increased the level of intracellular ROS, increased autophagosomes, and significantly decreased the apoptosis rate; up-regulated Beclin1, mTOR, LC3A/B and Cleaved caspase-3 protein expression, and down-regulated p-mTOR Protein expression level. Compared with the autophagy inhibitor 3-MA group, the H2O2+3-MA group increased the level of intracellular ROS, increased autophagosomes, and did not significantly increase the apoptosis rate; up-regulated the protein expression of Beclin1, mTOR, LC3A/B and Cleaved caspase-3 Down-regulate the expression of p-mTOR protein.

Conclusion: H2O2 can induce hMSCs to produce oxidative stress response. Under oxidative stress conditions, hMSCs can promote protective autophagy and reduce cell apoptosis or the level of apoptosis caused by excessive autophagy.

See more here:
Effect of oxidative stress-induced autophagy on proliferation and apoptosis of hMSCs - Newswise

To Read More: Effect of oxidative stress-induced autophagy on proliferation and apoptosis of hMSCs – Newswise
categoriaBone Marrow Stem Cells commentoComments Off on Effect of oxidative stress-induced autophagy on proliferation and apoptosis of hMSCs – Newswise | dataApril 3rd, 2022
Read All

Personalized Cell Therapy Market Size by Applications, Company Profiles, Product Types, Revenue and Forecast to 2026 ChattTenn Sports – ChattTenn…

By daniellenierenberg

The latest study of the Personalized Cell Therapy MarketStatistics2022Report providesan elaborative analysis of the market size, industry share, growth, development, and competitive landscape. The report also provides a comprehensive analysis of the sales volume, revenue, gross margin, and price growth in the Personalized Cell TherapyMarket. Many key points covered in the report, include recent development in the global market, such as mergers and acquisitions, SWOT analysis, competitive landscape, industry trends, and company profiles.

Leading Key Players Covered in the GlobalPersonalized Cell Therapy Market Research Report:

Novartis AG, Vericel Corporation, Bellicum Pharmaceuticals, MolMed SpA, Cytori Therapeutics Inc, Gilead Sciences, Inc, Celgene Corporation, Bluebird Bio, Aurora Biopharma Inc, Saneron CCEL TherapeuticsInc, Kuur Therapeutics, MediGene AG, Sangamo Therapeutics

Get a Sample PDF of the Report @ https://www.alexareports.com/report-sample/2856089

Market Segment by Types:

By Cell Type, Hematopoietic Stem Cell, Skeletal Muscle Stem Cell/Mesenchymal Stem Cells/Lymphocytes, By Technique, Platelet Transfusions/Bone Marrow Transplantation/Packed Red Cell Transfusions/Organ Transplantation

Market Segment by Applications:

Cardiovascular Diseases, Neurological Disorders, Inflammatory Diseases, Diabetes, Cancer

Market Segment by Regions:

Table of Contents

Section 1 Personalized Cell Therapy Market Overview

Section 2 Global Personalized Cell Therapy Market Key Players Share

Section 3 Key PlayersPersonalized Cell Therapy Business Introduction

Section 4 Global Personalized Cell Therapy Market Segmentation (By Region)

Section 5 Global Personalized Cell Therapy Market Segmentation (by Product Type)

Section 6 Global Personalized Cell Therapy Market Segmentation (by Application)

Section 7 Global Personalized Cell Therapy Market Segmentation (by Channel)

Section 8 Personalized Cell Therapy Market Forecast 2021-2026

Section 9 Personalized Cell Therapy Application and Client Analysis

Section 10 Personalized Cell Therapy Manufacturing Cost of Analysis

Section 11 Conclusion

Section 12 Methodology and Data Source

If any customization or requirements in the research study, please let us know Alexa Reportsoffer the report as you want.

Customized Report @ https://www.alexareports.com/send-an-enquiry/2856089

About Us:

Alexa Reports is a globally celebrated premium market research service provider, with a strong legacy of empowering businesses with years of experience. We help our clients by implementing a decision support system through progressive statistical surveying, in-depth market analysis, and reliable forecast data.

Contact Us:

Alexa Reports

8829 Applegate St.

Los Angeles, CA 90042

United States

Ph no: +1-408-844-4624

Email: [emailprotected]

See the original post:
Personalized Cell Therapy Market Size by Applications, Company Profiles, Product Types, Revenue and Forecast to 2026 ChattTenn Sports - ChattTenn...

To Read More: Personalized Cell Therapy Market Size by Applications, Company Profiles, Product Types, Revenue and Forecast to 2026 ChattTenn Sports – ChattTenn…
categoriaBone Marrow Stem Cells commentoComments Off on Personalized Cell Therapy Market Size by Applications, Company Profiles, Product Types, Revenue and Forecast to 2026 ChattTenn Sports – ChattTenn… | dataApril 3rd, 2022
Read All

Port Austin woman gives gift of life with marrow donation – Huron Daily Tribune

By daniellenierenberg

One of the most important sacrifices a person can make is to offer the gift of life to another. Especially if they dont know whos receiving the gift, and they have to give up something they may need like the marrow in their bones.

Donating bone marrow to someone who is in distress, and may die without a transplant, is a selfless act. Blood diseases, such as leukemia, are horrific, causing tiredness, infections, and pain. A bone marrow transplant replaces damaged or diseased blood forming cells, also called stem cells, with healthy stem cells.

Those in need of a bone marrow transplant are put on a waiting list, because they need to be matched by a donor. Fortunately, there is a registry for those willing to donate their bone marrow.

Caitlin Stone-Webber of Port Austin was willing. She registered to be a donor while in college.

Back in 2011, I was a student at Central Michigan University, Stone-Webber said. There was a student who had a form of leukemia. They were doing a bone marrow drive, testing anyone who was willing to go on the registry, to see if there was a match on campus.

She was not compatible, but her name remained on the registry.

Its an international registry, Stone-Webber said. There are a lot of different groups that help build up this registry.

Five years ago, Stone-Webber received word she had matched. She went through a process of confirmation. Something happened on the recipients end, so the process wasnt completed. Two years later, the same thing happened. Earlier this year, she was contacted again. This time, the donation went through.

Upon receipt of the notification that shed matched, Stone-Webber was required to undergo a physical. The donation process is tiring, and the donor needs to be in good health.

The physical included checking her veins.

Even though its bone marrow, it no longer has to be hip surgery, Stone-Webber said. They can do whats called peripheral cell donation.

Peripheral blood stem celldonation is a method of collecting blood-forming cells for the transplant. The same blood-forming cells that are found in bone marrow are also found in the circulating (peripheral) blood. It is a procedure called apheresis.

They take your blood from one arm, Stone-Webber said. It goes through a machine, takes out your stem cells, and goes back in your other arm.

In addition to the physical, she also had to have injections that raised her stem cell count.

You do four days of injections, Stone-Webber said. And then the day of the procedure, you receive injections, as well.

The injections leading up to the procedure were given at her home.

Because of my size, I actually had to have two shots each day, one in each arm, Stone-Webber said. The nurse would come in, take my vitals, give the shots and then wait to make sure there was no reaction.

Although some people work throughout this stage, Stone-Webber took time off.

So I was able to just go to bed, she said. I was very tired, and my bones hurt. Thats where your bodys creating these extra stem cells ... in your bones. I was very aware of where every bone in my body was, but not at the same time. The first day it was in my legs. They hurt. The second day it was in my hips. One day it was in my toes. It was the strangest thing.

It was a normal part of the process.

They say to prepare for that, that your bones are going to hurt, Stone-Webber said.

She was told to take Tylenol for pain, as well as, oddly enough, Claritin, which relieves allergies.

They said they dont really know what part of the (Claritin) makes it work, but it works, Stone-Webber said.

The procedure took place at a hospital, although Stone-Webber isnt allowed to say where.

When you donate to someone, you stay anonymous until a year from the donation date, she said. I had to sign a confidentially document saying I could talk about the procedure I can talk about my experience. But I cant talk about where I donated.

Details on the identity of the recipient are unknown to her.

I know gender, Stone-Webber said. I know age. I know country. And, I know the type of leukemia. I didnt know what country they were in until post donation. Thats something I thought was real cool about being able to donate right now, is that with the world the way it is, to be able to help someone without knowing their political affiliation, or religion. None of that mattered. I was just helping another person.

Due to the fact that the bone marrow registry is international there are also national registries potential donors should be aware they may have to travel if they match. Stone-Webbers expenses, including travel, food, and lodging, were covered by the nonprofit organization the donation was set up through.

I was never billed for anything, Stone-Webber said.

All it cost her was time and a little discomfort.

The way I looked at it is, anyone can be sick for four or five days in order to save someones life, Stone-Webber said.

The actual donation took place in the course of one day. She was hooked up to a machine that recycled her blood. Due to her size her veins werent large enough for the procedure Stone-Webber required a catheter to be inserted in her jugular vein.

I could feel the catheter when I swallowed, she said. And when they pulled it out, I could feel a little bit of discomfort. For a couple days afterward, there were times I was a little uncomfortable.

Once the procedure started, Stone-Webber was confined to a hospital bed. She was given medication that allowed her to remain still, so the machine could recycle her blood.

It went in and out the same port, she said. I was hooked up to the machine for five hours, and it cycled my blood through the machine four and a half times. It was kind of cool to think someone has invented this machine that can cycle blood. Because of the injections, my body was still making stem cells, so that machine could continue to get out everything this recipient could need.

A bone marrow transplant is beneficial to those receiving the new stem cells. In some cases it may even provide a cure for their disease.

Its mostly for blood-related cancers, Stone-Webber said. There may be other blood-related disorders and diseases that it could help with. In some cases the donation is a treatment to kind of stall things. In others, its a cure. I was told the day of the donation, that my donation would be a cure that when the patient received my donated stem cells, it would cure their leukemia providing its a successful donation and their body accepts it.

The bone marrow registry can be accessed through a number of nonprofit organizations, including http://www.dkms.org and http://www.bethematch.org, which Stone-Webber worked with.

As of now, she knows her stem cells have been received by the recipient, but has no idea of the outcome. At the end of the year required by her confidentiality agreement, she would like to know whether or not they were affective. After all, her stem cells are now in someone else.

I think we now connect in a different way than most people would, Stone-Webber said. I think I would like the opportunity to know how theyre doing.

That connection is a bone marrow transplant, the gift of life. Stone-Webber would do it again.

For further information on bone marrow transplants and the bone marrow registry, email Stone-Webber at caitlinstone22@gmail.com or visit http://www.dkms.org or http://www.bethematch.org.

Go here to read the rest:
Port Austin woman gives gift of life with marrow donation - Huron Daily Tribune

To Read More: Port Austin woman gives gift of life with marrow donation – Huron Daily Tribune
categoriaBone Marrow Stem Cells commentoComments Off on Port Austin woman gives gift of life with marrow donation – Huron Daily Tribune | dataMarch 22nd, 2022
Read All

Jasper Therapeutics Announces Management Changes to Strengthen Leadership Team – BioSpace

By daniellenierenberg

REDWOOD CITY, Calif., March 21, 2022 (GLOBE NEWSWIRE) --Jasper Therapeutics, Inc. (NASDAQ: JSPR), a biotechnology company focused on hematopoietic cell transplant therapies, today announced changes to its management team, including the promotions of Jeet Mahal to the newly created position of Chief Operating Officer, and of Wendy Pang, M.D., Ph.D., to Senior Vice President of Research and Translational Medicine. Both promotions are effective as of March 21, 2022. Jasper also announced that a new position of Chief Medical Officer has been created, for which an active search is underway. Judith Shizuru, M.D. PhD, co-founder, and Scientific Advisory Board Chairwoman will lead clinical development activities on an interim basis and Kevin Heller, M.D., EVP of Research and Development, will be transitioning to a consultant role.

Based on the recent progress with JSP191, our anti-CD117 monoclonal antibody, as a targeted non-toxic conditioning agent and our mRNA hematopoietic stem cell program we have decided to advance Jaspers organizational structure with the creation of the roles of Chief Operating Officer and Chief Medical Officer and by elevating our research and translational medicine team to report directly to the CEO, said Ronald Martell, CEO of Jasper Therapeutics. We also are pleased that Dr. Shizuru will lead clinical development activities on an interim basis, a role she served during the companys founding in 2019.

These changes will allow us to advance our upcoming pivotal trial of JSP191 in AML/ MDS and execute on our pipeline opportunities with a best-in-class organization, continued Mr. Martell. We also wish to thank Dr. Heller for his help advancing JSP191 through our initial AML/MDS transplant study.

In the two plus years since we founded Jasper and received our initial funding, the company has been able to advance JSP191 in two clinical studies, develop our mRNA stem cell graft platform and publicly list on NASDAQ, said Dr. Shizuru, co-founder and member of the Board of Directors of Jasper Therapeutics. These changes will strengthen the companys ability to advance the field of hematopoietic stem cell therapies and bring cures to patients with hematologic cancers, autoimmune diseases and debilitating genetic diseases."

Mr. Mahal joined Jasper in 2019 as Chief Finance and Business Officer and has led Finance, Business Development, Marketing and Facilities/ IT since the companys inception. Prior to joining Jasper, he was Vice President, Business Development and Vice President, Strategic Marketing at Portola Pharmaceuticals, where he led the successful execution of multiple business development partnerships for Andexxa, Bevyxxaand cerdulatinib. He also played a key role in the companys equity financings, including its initial public offering and multiple royalty transactions. Earlier in his career, Mr. Mahal was Director, Business and New Product Development, at Johnson & Johnson on the Xareltodevelopment and strategic marketing team. Mr. Mahal holds a BA in Molecular and Cell Biology from U.C. Berkeley, a Masters in Molecular and Cell Biology from the Illinois Institute of Technology, a Masters in Engineering from North Carolina State University and an MBA from Duke University.

Dr. Pang joined Jasper in 2020 and has led early research and development including leading creation of the companys mRNA stem cell graft platform and playing a pivotal role in advancing JSP191 across multiple clinical studies. Previously Dr. Pang was an Instructor in the Division of Blood and Marrow Transplantation at Stanford University and the lead scientist in the preclinical drug development of an anti-CD117 antibody program. She was the lead author on the proof-of-concept studies showing that an anti-CD117 antibody therapy targets disease-initiating human hematopoietic (blood cell-forming) stem cells in myelodysplastic syndrome (MDS). She has authored numerous publications on the characterization of hematopoietic stem and progenitor cell behavior in hematopoieticdiseases, as well as hematopoietic malignancies, including MDS and acute myeloid leukemia (AML), and in hematopoietic stem cell transplantation. Dr. Pang earned her AB and BM in Biology from Harvard University and her MD and PhD in cancer biology from Stanford University.

Dr. Shizuru is a Professor of Medicine (Blood and Marrow Transplantation) and Pediatrics (Stem Cell Transplantation) at StanfordUniversity.She is the clinician-scientist co-founder of Jasper Therapeutics. Dr. Shizuru is an internationally recognized expert on the basic biology of blood stem cell transplantation and the translation of this biology to clinical protocols.Dr Shizuruis a member of the Stanford Blood and Marrow Transplantation (BMT) faculty, the Stanford Immunology Program, and the Institute for Stem Cell Biology and Regenerative Medicine. Shehas been an attending clinicianattendedon the BMT clinical service since 1997.Currently, she oversees a research laboratory focused on understanding the cellular and molecular basis of resistance to engraftment of transplantedallogeneic bone marrow blood stemcells and the way in which bone marrow grafts modify immune responses.Dr. Shizuru earned her BA from Bennington College and her MD and PhD in immunology from Stanford University

About Jasper Therapeutics

Jasper Therapeutics is a biotechnology company focused on the development of novel curative therapies based on the biology of the hematopoietic stem cell. The company is advancing two potentially groundbreaking programs. JSP191, an anti-CD117 monoclonal antibody, is in clinical development as a conditioning agent that clears hematopoietic stem cells from bone marrow in patients undergoing a hematopoietic cell transplantation. It is designed to enable safer and more effective curative allogeneic hematopoietic cell transplants and gene therapies. Jasper is also advancing JSP191 as a potential therapeutic for patients with lower risk Myelodysplastic Syndrome (MDS). Jasper Therapeutics is also advancing its preclinical mRNA hematopoietic stem cell graft platform, which is designed to overcome key limitations of allogeneic and autologous gene-edited stem cell grafts. Both innovative programs have the potential to transform the field and expand hematopoietic stem cell therapy cures to a greater number of patients with life-threatening cancers, genetic diseases and autoimmune diseases than is possible today. For more information, please visit us at jaspertherapeutics.com.

Forward-Looking Statements

Certain statements included in this press release that are not historical facts are forward-looking statements for purposes of the safe harbor provisions under the United States Private Securities Litigation Reform Act of 1995. Forward-looking statements are sometimes accompanied by words such as believe, may, will, estimate, continue, anticipate, intend, expect, should, would,plan,predict,potential,seem,seek,future,outlookandsimilarexpressionsthat predict or indicate future events or trends or that are not statements of historical matters. These forward-looking statements include, but are not limited to, statements regarding the potentialof the Companys JSP191 and mRNA engineered stem cell graft programs. Thesestatementsarebasedonvariousassumptions,whetherornotidentifiedinthispressrelease, and on the current expectations of Jasper and are not predictions of actual performance. These forward-lookingstatementsareprovidedforillustrativepurposesonlyandarenotintendedtoserve as, and must not be relied on by an investor as, a guarantee, an assurance, a prediction or a definitivestatementoffactorprobability.Actualeventsandcircumstancesaredifficultorimpossible to predict and will differ from assumptions. Many actual events and circumstances are beyond the control of Jasper. These forward-looking statements are subject to a number of risks and uncertainties, including general economic, political and business conditions; the risk that the potential product candidates that Jasper develops may not progress through clinical development or receive required regulatory approvals within expected timelines or at all; risks relating to uncertainty regarding the regulatory pathway for Jaspers product candidates; the risk that prior study results may not be replicated; the risk that clinical trials may not confirm any safety, potency or other product characteristics described or assumed in this press release; the risk that Jasper will be unable to successfully market or gain market acceptance of its product candidates; the risk that Jaspers product candidates may not be beneficialtopatientsorsuccessfullycommercialized;patientswillingnesstotrynewtherapiesand the willingness of physicians to prescribe these therapies; the effects of competition on Jaspers business; the risk that third parties on which Jasper depends for laboratory, clinical development, manufacturing and other critical services will fail to perform satisfactorily; the risk thatJaspers business, operations, clinical development plans and timelines, and supply chain could be adversely affected by the effects of health epidemics, including the ongoing COVID-19 pandemic; the risk that Jasper will be unable to obtain and maintain sufficient intellectual property protection foritsinvestigationalproductsorwillinfringetheintellectualpropertyprotectionofothers;andother risks and uncertainties indicated from time to time in Jaspers filings with the SEC. If any of these risksmaterializeorJaspersassumptionsproveincorrect,actualresultscoulddiffermateriallyfrom the results implied by these forward-looking statements. While Jasper may elect to update these forward-lookingstatementsatsomepointinthefuture,Jasperspecificallydisclaimsanyobligation to do so. These forward-looking statements should not be relied upon as representing Jaspers assessmentsofanydatesubsequenttothedateofthispressrelease.Accordingly,unduereliance should not be placed upon the forward-lookingstatements.

Contacts:

John Mullaly (investors)LifeSci Advisors617-429-3548jmullaly@lifesciadvisors.com

Jeet Mahal (investors)Jasper Therapeutics650-549-1403jmahal@jaspertherapeutics.com

See the original post here:
Jasper Therapeutics Announces Management Changes to Strengthen Leadership Team - BioSpace

To Read More: Jasper Therapeutics Announces Management Changes to Strengthen Leadership Team – BioSpace
categoriaBone Marrow Stem Cells commentoComments Off on Jasper Therapeutics Announces Management Changes to Strengthen Leadership Team – BioSpace | dataMarch 22nd, 2022
Read All

Nano-Improvements to Rheumatoid Arthritis Stem Cell Therapy Show Success – AZoNano

By daniellenierenberg

An article published in the journal Biomaterials shows that [emailprotected]2 nanoparticles (NPs) synthesized with a short bacteriophage-selected mesenchymal stem cell(MSC) targeting peptide allowed the MSCs to take up these NPs. NP-modified MSCs produced greatly improved therapy of Rheumatoid Arthritis(RA) using stem cells.

Study:Highly effective rheumatoid arthritis therapy by peptide-promoted nanomodification of mesenchymal stem cells. Image Credit:Emily frost/Shutterstock.com

RA, which is marked by progressive joint degeneration andsynovial inflammation, is one ofthe primary widespread inflammatory arthritis thataffectsaround 1 % of the global population, however, it currently lacks an effective treatment.

Glucocorticoids (GCs), disease-modifying anti-rheumatic drugs (DMARDs) and non-steroidal anti-inflammatory drugs (NSAIDs)are the three maintypes of medicationscurrently used in clinical practice.

GCs and NSAIDscan help with joint pain and stiffness, but they may cause side effects such asheart problems, osteoporosis, infections andgastric ulcers.

Standard DMARDs, like methotrexate (MTX), can lessen swelling by inhibiting the synthesis of pro-inflammatory cytokines and have little effect on cartilage degeneration. MTX, on the other hand, has a short plasma half-lifeand a poor concentration of the drug in the inflammatory region of the body.

Other side effects may also include liver and kidney damage, bone marrow depletion, and gastrointestinal problems. Biological DMARDs have been rapidly developed in recent years, thoughtheir action slows the progression of structural damage by reducing inflammation and have issues including drug resistance and the potential to cause significant infections and malignant tumors.

Multilineage differentiation, inflammatory site and immunomodulationhoming are all features of MSCs. These distinctivecharacteristicsallowMSCs to become apotential treatmentfora variety ofinflammatory and degenerativediseases, including the treatment of RA,through cell therapy. Unfortunately, over 50 % of patients do not react to MSC treatment, and the therapeutic benefit of MSCs is only temporary.

Firstly, MSCs are susceptible to the inflammatory milieu and so lose their functions of immune-regulationwhen disclosed in an inflamed joint. Reactive oxygen species (ROS) are thought to be engaged in the inflammation development of RA and hence damaging to MSCs, as seen by the gradualdecline in the quantity of MSCs in RA patients' synovial fluid.

Secondly, while the direct impacts of MSCs on tissue regeneration in RA are unknown, an evidentclinical experiment found that MSC injections increased hyaline cartilage regeneration in RA patients. Nevertheless, the unregulated distinction of MSCs can alsoresult in the development of tumors andthe inability of cartilage repair.

As a result, it is important for an optimal stem cell strategy to include MSCs that have the ability to preserve their bio functions and chondrogenically develop to regenerate cartilage under the oxidative stress caused by RA.

According to thisstudy, RA therapy could be enhanced byshort targeting peptide-promoted nanomodification of MSCs. To begin with, [emailprotected]2 NPs wereproduced due to some of theirelements' appealing features. Mn and Cu both are critical trace components in the human body, and they play a keyrole in the production of natural Mnsuperoxide dismutase (SOD) and Cu-ZnSOD, respectively.

Cu and Mn can also encourage stem cell chondrogenesis. The study further explains the modification of [emailprotected]2 NPs with MSC-targeting peptides to increase the passage of the nanoparticles into MSCs since transporting nanomaterials into modifications of MSCs is still a difficult task.

To make [emailprotected]2/MET NPs, [emailprotected]2 NPs were injected with metformin. Lastly, MSCs were allowedto take up these NPs and utilizethem to effectively limit synovial inflammation and maintain cartilage structure, alleviating arthritic symptoms greatly.

This study demonstrates that VCMM-MCSs werecreated by engineering MSCs with catalase (CAT) and superoxide dismutase (SOD)- like activity using dynamically MSC-targeting [emailprotected]2/MET NPs.

The biological features of these cells required in stem cell treatment, such as chondrogenesis, anti-inflammation, cell migration, and increased survival under oxidative stress, were improved by VCMM-MCSs.

Consequently, the VCMM-MSCs injections reduced cartilage damage andsynovial hyperplasiain adjuvant-induced arthritis (AIA) as well as collagen-induced arthritis (CIA) models, substantially reducing arthritic symptoms. Since oxidative stress is present in numerous degenerative and inflammatory disorders, this strategy of altering MSCs with NPs could be applied to treat a number of other disorders as well as to achieve faster tissue healing using stem cell therapy.

Lu, Y., Li, Z. et al. (2022). Highly effective rheumatoid arthritis therapy by peptide-promoted nanomodification of mesenchymal stem cells. Biomaterials. Available at: https://www.sciencedirect.com/science/article/pii/S0142961222001132?via%3Dihub

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

See original here:
Nano-Improvements to Rheumatoid Arthritis Stem Cell Therapy Show Success - AZoNano

To Read More: Nano-Improvements to Rheumatoid Arthritis Stem Cell Therapy Show Success – AZoNano
categoriaBone Marrow Stem Cells commentoComments Off on Nano-Improvements to Rheumatoid Arthritis Stem Cell Therapy Show Success – AZoNano | dataMarch 22nd, 2022
Read All

Family calls on East Asians to help by donating much-needed stem cells – China Daily

By daniellenierenberg

London-based leukaemia patient Yvette Chin, 41, has just months to live unless a stem cell donor is found. PROVIDED TOCHINA DAILY

The family of a Chinese leukaemia patient in the United Kingdom has launched an urgent appeal calling for the East Asian community around the world to become stem cell donors.

Yvette Chin, 41, from London has acute lymphoblastic leukaemia, a rare aggressive blood cancer, and has just months to live unless a donor can be found.

Her brother, Colin Chin, 48, and sister-in-law Serena Chin are urging more people in the Chinese and East Asian community to register as stem cell donors to increase the chances of saving her life.

According to charity Anthony Nolan, which works in the areas of leukaemia and hematopoietic stem cell transplantation, 75 percent of UK patients will not find a matching donor in their families.

Only 72 percent of patients from white Caucasian backgrounds can find the best possible match from a stranger. This drops to 37 percent for patients from a minority ethnic background.

Yvette, who was diagnosed with the disease in May 2021, needs to have a stem cell transplant with a 90 percent genetic match.

The family hopes more people in the East Asian community in the UK and internationally can sign up to a bone marrow register to help Yvette and others in a similar position.

"Our family has registered but it's not enough. I hope if more people from the community know how quick and easy it is to do, and that it's literally lifesaving, we can find a match," Colin said.

"Not just for Yvette, but also for others who don't have time to wait. I'm asking for everyone to sign up and share #SwabForYvette on social media to spread awareness that we all have the power to save lives with a simple mouth swab."

Yvette's sister-in-law Serena hopes their campaign will help more people in ethnic minority groups gain a better understanding of what being a stem cell donor involves.

"When we looked into it, we realize Yvette isn't the only one in the community who needed this and that others are waiting for a donor, waiting for that second chance of life," she said. "Of course, we hope we find a match for Yvette, but I hope also we help save other people's lives as well who are in the same situation."

Yvette, a keen explorer who has scaled Mount Kilimanjaro, has been in and out of hospital for chemotherapy since her diagnosis last year. She took part in an experimental trial but in February she was told the trial had failed.

"After the trial, the leukaemia came back with so much ferocity and we still don't have a match, my brother wasn't a match and that was the reality that it was going to be difficult," Yvette said. "It feels like the stars have to align so much with me being in remission and finding a match."

Reshna Radiven, head of communications and engagement at DKMS UK, an international nonprofit bone marrow donor center, said ethnic minority communities are massively under-represented, especially the Chinese, Pakistani, Bangladeshi, Black-African and Black-Caribbean communities.

"There is an element of hesitancy, for some of the communities we know they don't trust the health system or the system generally in the countries that they're resident in," Radiven said. "But there is also a fundamental lack of awareness of the need for stem cell donors and the impact a stem cell donation can have for a cancer patient."

She added more work needs to be done to communicate and encourage people to become donors.

"You're very likely to find a match from a donor who is from the same ethnic community as you, so it's really important for all people to be represented in the register," Radiven said. "We offer the family and the patient hope, which is really significant when you're in a very difficult situation.

"In a world where we're trying to bridge the gap of inequality, we just want to get the word out there to encourage more bone marrow donations and blood too," Yvette said.

"I feel like the East Asian community has trepidation about doing that, so if they don't do it for me, then do it for someone else and bridge that stark statistic between our white Caucasian counterparts and everybody else."

Link:
Family calls on East Asians to help by donating much-needed stem cells - China Daily

To Read More: Family calls on East Asians to help by donating much-needed stem cells – China Daily
categoriaBone Marrow Stem Cells commentoComments Off on Family calls on East Asians to help by donating much-needed stem cells – China Daily | dataMarch 22nd, 2022
Read All

MPAL leukemia: Symptoms, diagnosis, and treatments – Medical News Today

By daniellenierenberg

Mixed-phenotype acute leukemia (MPAL) is a rare type of blood cancer. Typically, a doctor can classify the cancer as acute myeloid leukemia (AML) or acute lymphoblastic leukemia (ALL), depending on the cells involved. However, MPAL presents with features of both AML and ALL.

Leukemia describes a cancer of the blood or bone marrow. There are many types of leukemia, and doctors typically classify them as either acute (sudden) or chronic (slow), depending on how quickly the cancer develops. They can then further classify these cancers depending on whether they affect myeloid or lymphocytic blood cells.

MPAL refers to a rare subtype of leukemia that displays no clear sign of origin and presents with features of both AML and ALL.

In this article, we will discuss MPAL leukemia, including the symptoms, diagnosis, treatment options, and outlook.

Mixed-phenotype acute leukemia (MPAL) is a rare type of acute leukemia where leukemia cells present with both myeloid and lymphocytic features. Some may also refer to this type of leukemia as acute leukemia of ambiguous lineage (ALAL), mixed-lineage leukemia, and acute undifferentiated leukemia.

In 2008, the World Health Organization (WHO) introduced the term MPAL to classify this group of blood cancers. Previously, the scientific community used other terms such as biphenotype acute leukemia to label these diseases.

A doctor may also further classify MPAL into bilineal or biphenotypic leukemia. The former refers to two separate populations of cells with myeloid and lymphoid origin, while the latter describes a single population of leukemia cells that express markers of both lymphoid and myeloid origin.

Some evidence suggests that the frequency of MPAL is 3%, while other research indicates that it accounts for roughly 25% of all acute leukemia diagnoses. MPAL can affect both children and adults.

As with other types of acute leukemia, the exact cause of MPAL is currently unknown. Some evidence suggests that MPAL may derive from alterations in blood stem cells that have the ability to undergo myeloid and lymphoid differentiation.

Research indicates that genetic alterations are associated with acute leukemias and may explain the abnormal development and maturation of white blood cells.

Certain genomic alterations may drive the biphenotypic expression in leukemia cells. Chromosome alterations that are often present in individuals with MPAL include Philadelphia chromosome and chromosome 11q23 abnormalities.

Potential risk factors for developing leukemia may include:

The symptoms of MPAL can occur suddenly and typically relate to problems with bone marrow. Symptoms can include:

Many of these symptoms are common to other conditions, including other types of leukemia. However, healthcare practitioners are aware of symptoms that may indicate MPAL leukemia and will request further testing if they think it is necessary.

Initially, doctors will likely use the same tools for diagnosing other forms of leukemia. These may include:

Due to the lack of consensus on the diagnostic criteria for MPAL, it can be difficult to diagnose the condition. The WHO diagnostic criteria provide a small list of specific lineage markers that can help diagnose MPAL.

Health experts use an immunophenotyping method, known as flow cytometry, on blood or bone marrow samples to identify these markers on leukemia cells.

This technique uses light to detect and measure the characteristics of cells. For an MPAL diagnosis, the sample will contain markers of both myeloid and lymphoid origin. This can also help guide if an AML or ALL treatment regimen will be more appropriate for a treatment plan.

If a doctor suspects an MPAL diagnosis, they will likely request genetic testing to identify the presence of genetic alterations, such as Philadelphia chromosome and chromosome 11q23 abnormalities. This is because a person with these alterations may require a more intensive treatment plan.

Treatment options for MPAL leukemia will vary depending on the diagnosis, age, and medical history. As MPAL leukemia is challenging to treat, the treatment plan is often intensive and usually starts quickly after diagnosis.

A 2018 systematic review and meta-analysis and a 2017 review both suggest that using a chemotherapy regimen for ALL or a combined ALL/AML regimen can result in a better outcome for people with MPAL leukemia than using chemotherapy that doctors use only for AML. A 2019 paper also suggests that ALL treatment may be preferable for treating MPAL.

A 2020 study notes that in cases of MPAL with a Philadelphia chromosome abnormality, the use of targeted therapy such as tyrosine kinase inhibitors can help to improve outcomes.

Doctors may consider other treatments if these options do not provide a satisfactory response. For example, they may use immunotherapies, which activate the immune system to detect and attack cancer cells. A doctor may also perform a stem cell transplant to eradicate any remaining leukemia cells in the bone marrow.

Historically, the outlook for individuals with MPAL has not been very positive. However, with more research and advances in treatment options, the outlook is improving. While it remains hard to predict the overall survival for those with MPAL, evidence suggests that factors that may predict a less positive outcome include:

A 2017 retrospective study suggested the three-year overall survival rate for MPAL was 56.3%, compared with the 5-year survival rate of 65% for leukemia in general. Like other acute leukemias, the quicker the diagnosis and treatment of MPAL, the higher the chance of recovery.

MPAL is a rare form of blood cancer that presents with clinical features of AML and ALL. As with other acute leukemias, the exact cause is unknown, but many cases are associated with genetic abnormalities. Due to its rarity and various diagnostic criteria, it can be a difficult condition to diagnose.

Treatment options vary depending on an individuals diagnosis, age, and medical history but may include chemotherapy, targeted therapy, immunotherapy, and stem cell transplants. While the outlook for MPAL is generally poorer than other leukemias, advances in research and treatments are improving outcomes.

Excerpt from:
MPAL leukemia: Symptoms, diagnosis, and treatments - Medical News Today

To Read More: MPAL leukemia: Symptoms, diagnosis, and treatments – Medical News Today
categoriaBone Marrow Stem Cells commentoComments Off on MPAL leukemia: Symptoms, diagnosis, and treatments – Medical News Today | dataMarch 22nd, 2022
Read All

‘Without you there is no cure’ – Teenager’s call for stem cell donors in mission to support Anthony Nolan Trust – Shields Gazette

By daniellenierenberg

Abbie Young was 16 when she was given the devastating news that her body was suffering from severe Aplastic Anaemia.

With her bone marrow failing, medics at Newcastles Royal Victoria Infirmary Ward 3 were in a race against time to find a stem cell donor who could give her a fighting chance.

Abbie, now 18, is on the road to recovery thanks to the Anthony Nolan Trust.

To say thank you for saving her life, the Harton Academy pupil is aiming to help boost the charitys work by hosting a fundraising day at school on Friday, April 8.

Abbie, who hopes to become an Anthony Nolan youth ambassador, is aiming to encourage others to sign up as stem cell donors and help save lives.

She said: I just feel really grateful that someone out there took the time to sign up to the stem cell register and that one choice someone made, has saved my life.

I know some kids die waiting for a donor, so I will always be forever grateful for what my donors did and to the Anthony Nolan Trust.

The teenager discovered her bone marrow was failing her after her mum became concerned over the number of bruises her daughter had. Abbie was diagnosed in January 2020.

Mum Caroline, 49, said: We went to the doctors who sent Abbie to South Tyneside Hospital for blood tests.

Abbie was at the hospital on the Friday (January 10), then by Saturday morning we had a knock on the door and there was an ambulance outside, they had come for Abbie.

They took us to Sunderland hospital and her dad followed up in the car, where they did more tests, they thought she had leukaemia, so we were transferred straight to the RVI.

According to information from Great Ormond Street Hospital, severe Aplastic Anaemia only affects around 30 to 40 children in the UK each year.

After Abbies older siblings, brother Sam, 26, and sister Kate, 21, were found not to be matches, a donor from Germany was found with the charitys help.

Abbies first transplant was in May 2020, but with the country in Covid lockdown, the stem cells had to be frozen due to restrictions.

The first transplant failed, believed in part due to the stem cells having been frozen.

The Anthony Nolan Trust stepped in and a second donor was found, but the cells were not frozen this time at the request of the hospital.

Caroline added: It is so hard when it's your child's life is suddenly put into the hands of a stranger. You're waiting for someone you don't know to come forward and help save your child's life.

The teenager underwent her second transplant in July 2020 and following a number of blood transfusions, the treatment started to work.

But due to complexities, she needed to have a top-up from her second donor at a later date.

Throughout Abbies treatment, which also included several doses of chemotherapy, radiotherapy and the top-up donation dose, she needed to stay confined in a bubble with only Caroline, dad Karl and nursing staff for company.

Abbie, of Beacon Glade, told the Gazette she felt like shed lost her purpose while receiving treatment and that losing her hair felt like the worst day of my life.

She explained: I was in denial about the whole thing. I knew I was bruising easily, but I didn't want to do anything about it. I was in denial about everything.

"I knew people lost their hair with treatment but I thought I'd be the one who didn't. Then I did and I was devastated.

I just felt like I had lost my purpose. When I lost my hair, it felt like the worst day of my life, I had had also put on quite a bit of weight.

Following her treatment and a number of blood and platelet transfusions, Abbie was finally able to ring the bell on leaving Ward 3 in August 2020; but she still needed to shield to give her body the best chance of survival.

Now, shes studying Biology, Chemistry and Psychology at A-Level and focusing on supporting the life-saving charity with her fundraising mission.

At time of writing and with weeks to go until her fundraising day at school more than 1,500 has been donated to her JustGiving page.

On her page, she said: Without you there is no cure. For someone with blood cancer, a stem cell transplant could be their last chance of survival.

Mum Caroline added: The hospital, the staff on Ward 3, were brilliant and the nurses were amazing. They were more like friends than medical professionals.

"At the time, you couldn't mix with anyone, so they were a good support to us as a family and to Abbie.

Abbie's school has also been supportive. Sir Ken, who is the school's executive head teacher, would call every day and ask how she was.

When it happened, teachers would drop off books for Abbie and they were even talking about a teacher going into a bubble, so that they could invigilate her for her GCSE exams. But the exams never happened because of Covid.

"We will be forever grateful for everyone's support.

Abbie and her family would like to thank the following companies who have donated prizes to help raise funds through a raffle or have donated to her JustGiving page. They include:

Support your Gazette and become a subscriber today.

Enjoy unlimited access to all of our news and sport, see fewer ads, experience faster load times, test your brain with daily puzzles and get access to exclusive newsletters.

Your support for our journalism means we can continue telling South Tynesides stories for generations to come.

Read more from the original source:
'Without you there is no cure' - Teenager's call for stem cell donors in mission to support Anthony Nolan Trust - Shields Gazette

To Read More: ‘Without you there is no cure’ – Teenager’s call for stem cell donors in mission to support Anthony Nolan Trust – Shields Gazette
categoriaBone Marrow Stem Cells commentoComments Off on ‘Without you there is no cure’ – Teenager’s call for stem cell donors in mission to support Anthony Nolan Trust – Shields Gazette | dataMarch 22nd, 2022
Read All

Hemolysis: Types, causes, and treatments – Medical News Today

By daniellenierenberg

Hemolysis refers to the destruction of red blood cells (RBCs). Typically, RBCs can live for up to 120 days before the body naturally destroys them. However, certain conditions and medications may cause them to break down quicker than usual.

RBCs, or erythrocytes, are one of the main components of blood. They have the shape of a slightly indented, flattened disk and help transport oxygen to and from the lungs. The average life span of a healthy RBC is roughly 4 months.

Typically, the body will destroy old or damaged RBCs in the spleen or in other parts of the body through a process known as hemolysis.

Usually, the body is capable of quickly replacing RBCs, producing around 2 million blood cells every second. However, people may experience symptoms of anemia if the body has a low number of RBCs due to excessive hemolysis.

In this article, we discuss hemolysis in detail, including its potential causes and treatment options.

Hemolysis is the breakdown of RBCs. Some people may also refer to hemolysis by other names, such as hematolysis, erythrolysis, or erythrocytolysis.

Hemolysis is a natural bodily process that occurs when RBCs become too old. As RBCs age, they begin to lose certain properties and work less efficiently. For example, they may lose their deformability, which allows them to reversibly change shape to pass through blood vessels.

As RBCs begin to lose functionality, they accumulate signals that initiate erythrocyte turnover. The body typically performs hemolysis in the spleen. As blood filters through this organ, it is able to detect any old or damaged RBCs. Then, large white blood cells, or macrophages, break down these RBCs.

However, some conditions, medications, and toxins may cause RBCs to break down quicker than usual.

A doctor may measure a persons hematocrit levels. This refers to the percentage of RBCs in the body. A typical hematocrit level can vary depending on many factors, such as age and race. However, low levels may suggest a high turnover of RBCs.

There are many potential factors that may lead to hemolysis. The cause of hemolysis can be extrinsic, coming from an outside source, or intrinsic, which is when it comes from the RBC itself.

Extrinsic causes include certain conditions or outside factors that destroy RBC, such as:

Certain conditions may result in changes within the RBC itself, which can lead to hemolysis. This can include deformities in the cell structure and metabolism or in the hemoglobin structure.

These conditions may include:

Excessive hemolysis can lead to hemolytic anemia. This refers to a group of conditions that present with symptoms similar to those of other types of anemia, due to hemolysis occurring too fast or too often.

The condition can develop suddenly or slowly, and it can be mild or severe. Possible symptoms may include:

Symptoms of severe hemolytic anemia may include:

Hemolytic disease of the newborn, which health experts also call erythroblastosis fetalis, is a blood condition in which a rhesus (Rh) factor incompatibility occurs during pregnancy. This refers to a protein that may be present on the surface of RBCs.

If a person with Rh-negative blood becomes pregnant, and the fetus inherits Rh-positive blood from the persons partner, it can result in a harmful immune response. Around 13 in 1,000 people experience this reaction.

During pregnancy, blood from the fetus can cross the placenta and enter the parents blood. With Rh incompatibility, the parents immune system may recognize this blood as foreign material and produce antibodies against the Rh-positive blood.

This is more likely to occur after the first pregnancy, since the pregnant persons immune system will recognize the fetuss blood as foreign and have antibodies ready. If doctors detect this early, they can prevent this condition by giving the parent an Rh immunoglobulin (RHIg) to prevent their immune system from producing antibodies.

A person will receive RHIg as an injection at 28 weeks of pregnancy to prevent the production of antibodies, and within 72 hours of delivering the baby with Rh-positive blood to prevent the production of antibodies that could affect a future pregnancy.

AIHA is a rare condition in children, affecting 0.8 in 100,000 children under the age of 18 years. It can occur after a recent viral infection or after using certain drugs. It can also be due to some conditions.

The most common form of AIHA in children is due to warm-reactive antibodies. The term warm-reactive refers to the fact that optimal antigen binding occurs close to body temperature at 98.6F.

A 2021 study notes that a sudden presentation of AIHA is often life threatening and progresses quickly, requiring prompt diagnosis, treatment, and monitoring.

Initially, a doctor will review a persons symptoms and medical history and perform a physical examination.

If they suspect hemolytic anemia, they may request the following tests:

Treatment options will depend on the cause of hemolysis. Moreover, doctors will consider the following when creating a treatment plan:

Treatments may include:

The byproducts of RBC destruction can cause reactions that can damage multiple organs. Complications due to hemolytic anemia can include:

Arrhythmia, cardiomyopathy, heart failure, and iron deficiency are other possible complications.

It is advisable for a person to consult a doctor if they experience any of the following symptoms:

Hemolysis is a natural process where the body destroys older RBCs that no longer work efficiently. However, some conditions, medications, and toxins may cause RBCs to break down prematurely.

When this occurs, people may experience symptoms of anemia, such as fatigue, dizziness, and headaches. In other cases, symptoms can be more severe.

A person exhibiting early signs of anemia should consult a doctor for a prompt diagnosis and treatment.

See original here:
Hemolysis: Types, causes, and treatments - Medical News Today

To Read More: Hemolysis: Types, causes, and treatments – Medical News Today
categoriaBone Marrow Stem Cells commentoComments Off on Hemolysis: Types, causes, and treatments – Medical News Today | dataMarch 22nd, 2022
Read All

The Incredible Story of Emily Whitehead & CAR T-Cell Therapy : Oncology Times – LWW Journals

By daniellenierenberg

Emily Whitehead:

Emily Whitehead

Warriors come in all shapes and sizes. Take for example Emily Whitehead, as fresh-faced a 16-year-old as has ever graced the planet. Her eyes nearly sparkle with intellectual curiosity and dreams for a fulfilling future. But Emily is not a typical teen. She is the first pediatric patient in the world to receive CAR T-cell therapy for relapsed/refractory acute lymphoblastic leukemia (ALL). She is a singular figure in the annals of medicine. She is a soldier on the front lines of the war on cancer. And like the shot heard round the world, her personal medical assault sparked a revolution in cancer care that continues to power forward.

It has been 10 years since the only child of Thomas and Kari Whitehead of Philipsburg, PA, received an infusion of CAR T cells at the hands of a collaborative medical team from the Children's Hospital of Philadelphia (CHOP) and the Hospital of the University of Pennsylvania. That team included, among others, luminary CAR T-cell therapy pioneer, Carl June, MD, the Richard W. Vague Professor in Immunotherapy in the Department of Pathology and Laboratory Medicine and Director of the Center for Cellular Immunotherapies at Penn's Perelman School of Medicine; as well as Stephan Grupp, MD, PhD, Professor of Pediatrics at the Perelman School of Medicine (at that time, Director of the Cancer Immunotherapy Program at CHOP) and now Section Chief for Cell Therapy and Transplant at the hospital. He had been working with June on cell therapies since 2000.

Tremendous progress has flowedgushedfrom the effort to save Emily Whitehead; many more lives have been saved around the globe since that fatefulyet nearly fatalundertaking. While all the progress that has come from this story must be our ultimate theme, it cannot be fully appreciated without knowing how it came to be.

In 2010, Emily, then 5 years old, went from a being a healthy youngster one day, to a child diagnosed with ALL. Chemotherapy typically works well in pediatric ALL patients; Emily was one of the exceptions. After 2 years of intermittent chemotherapy, she continued to relapse. And when a bone marrow transplant seemed the only hope left, her disease was out of control and the treatment just wasn't possible. The Whiteheads were told by her medical team in Hershey, PA, nothing more could be done. They were instructed to take Emily home where she could die peacefully, surrounded by family.

But peaceful surrender didn't interest the Whiteheads; they rejected any version of giving up. It ran contrary to Tom Whitehead's vision of her recovery, something he said was revealed to him in the whispers. He saw, in a prophetic whispering dream, that Emily would be treated in Philadelphia. More importantly, he saw she would survive. It is as if it happened yesterday, said Tom, remembering how unrelentingly he called doctors at CHOP and said, We're coming there, no matter what you can or cannot do. We're not letting it end like this.

Since we treated Emily, we have treated more than 420 patients with CAR T cells at CHOP. She launched a whole group to be treated with this therapy; thousands have been treated around the world.Stephan Grupp, MD, PhD

A combination of persistence and perfect timing provided the magic bullet. It was just the day before that CHOP received approval to treat their first pediatric relapsed/refractory ALL patient with CAR T cells in a trial. And standing right there, on the threshold of history, was that deathly sick little girl named Emily.

At that time, only a scant few terminal adult patients had ever received the treatment, which is now FDA-approved as tisagenlecleucel and developed in cooperation with CHOP and the University of Pennsylvania. When three adults were treated, two experienced quick and complete remission of their cancers. Could CAR T-cell therapy perform a miracle for Emily? A lot would ride on the answer.

On March 1, 2012, Emily was transferred to CHOP and a few days later an apheresis catheter was placed in her neck; her T cells were extracted and sent to a lab. Emily received more chemotherapy, which knocked out her existing immune system, and she was kept in isolation for 6 weeks. Waiting.

Finally, over 3 days in April, Emily's re-engineered T cells, weaponized with chimeric antigen receptors, were infused back into her weakening body. But Emily did not rise like a Phoenix from the ashes of ALL. Instead, she sunk into the feverish fire of cytokine release syndrome (CRS), and experienced a worse-than-anticipated reaction. The hope for a swift victory seemed to be disappearing.

I can still see Emily's blood pressure dropping down to 53/29, her fever going up to 105F, her body swelling beyond recognition, her struggle to breathe, said Tom, of the most nightmarish period of his life. Doctors induced a coma, and Emily was put on a ventilator. For 14 days, her death seemed imminent. Doctors told us Emily had a one in a thousand chance of surviving, said Tom. They said she could die at any moment. But she didn't.

Medical team members who fought alongside the young patient are unwavering heroes in Emily's story. But at the time of her massive struggle, they too were exhausted and battle-scarred, descending into the quicksand of what could have been a failing trial, grasping for some life-saving branch of stability. They knew if CRS could be overcome, the CAR T cells might work a miracle as they had done for those earlier adult patients. But the CRS was severe. There was no obvious antidote; time was running out.

I recall Dr. June saying he believed Emily was past the point where she could come back and recover, said her father. And he said if she didn't turn around, this whole immunotherapy revolution would be over.

The Whiteheads enjoy Penn State football games not far from their hometown. The family has often taken part in Penn State's THON, a 48-hour dance marathon that raises funds for childhood cancer.

June confirmed to Oncology Times that he and Grupp believed Emily would not survive the night. It was mentioned to the Whiteheads that perhaps they should just concentrate on comfort care measures and stop all the ICU interventions, he recalled. I believed she was going to die on the trial due to all the toxicity. I even drafted a letter to our provost to give a heads up.

When the first patient in a trial dies, that's called a Grade 5 toxicity, June noted. That closes the trial as well. It goes right into the trash bin and you have to start all over again. But fortunately, that letter never left my outbox. We decided to continue one more day, and an amazing event happened.

Grupp, offering context to the mysterious amazing event, said it was clear that Emily's extreme CRS was caused by the infusion of cells that he himself had placed in her fragile body. He said he felt an enormous sense of responsibility and incredible urgency as he watched the child struggle to live.

It was not until the CHOP/Penn team received results from a test profiling cytokines in Emily's body that a new flicker of hope sparked. Though Emily had many cytokine abnormalities, the one most strikingly abnormal, interleukin-6 (IL-6), caught the team's attention. It is not made by T cells, and should not have been part of the critical mix. Though there were very few cytokines that had drugs to target them individually, IL-6 was one that did. So the doctors decided to repurpose tocilizumab, an arthritis drug, as a last-ditch effort at saving their young patient.

We treated Emily with tocilizumab out of desperation, June admitted. Steve [Grupp] has told me that when he went to the ICU with tocilizumab as a rescue attempt for CRS, the ICU docs called him a cowboy. The ICU docs had given up hope for Emily. But she turned aroundunbelievably rapidly. Today, tocilizumab is the standard of care for CRS, and the only drug approved by the FDA for that complication. Emily's recovery was huge for the entire field.

Grupp reflected on the immensity of the moment. If things had gone differently, if Emily had experienced fatal toxicity, it would have been devastating to her family and to the medical team. And it might have ended the whole research endeavor. It would have set us back years and years. The impact that Emily and her family had on the field is nothing short of transformational, he declared.

Since we treated Emily, we have treated more than 420 patients with CAR T cells at CHOP. She launched a whole group to be treated with this therapy; thousands have been treated around the world, Grupp noted. And, if not for Emily, we wouldn't be in the position we are in todaywith five FDA-approved [CAR T-cell] products: four for adults and one for kids. And I think it also important to point out that the very first CAR-T approval, thanks to Emily, was in pediatric ALL.

June noted that between 2010 and the time of Emily's treatment in 2012, My work was running like a shoestring operation. I had to fire people because I couldn't get grants to support the infrastructure of the research. It was thought there was no way beyond an academic enterprise to actually make customized T cells, then mail and deliver them worldwide, he recalled.

But then everything changed. We experienced that initial success; it was totally exciting. It was a career-defining moment and the culmination of decades of research. It led to a lot of recognition, both for my contribution and for the team here at the University of Pennsylvania and at CHOP.

Today, hundreds of pharmaceutical and biotech companies are developing innovations. Hundreds of labs are making next-generation approaches to improve in this area, June noted. Today, I'm a kid in a candy shop because all kinds of things are happening. We have funding thanks to the amazing momentum from Emily. She literally changed the landscape of modern cancer therapy.

Grupp said the continuing CAR T-cell program at CHOP offers evidence of success in a broad perspective. There are two things to look at, he offered. The first is how well patients do with their therapy in terms of getting into remission. A month after getting their cells, are they in remission or not? A study with just CHOP patients showed that more than 90 percent met that bar (N Engl J Med 2014; doi: 10.1056/NEJMoa1407222). Worldwide, the numbers appear to be in the 80 percent range (N Engl J Med 2018; doi: 10.1056/NEJMoa1709866). So, I would say it is a highly successful therapy.

We now have trials using different cell types, like natural killer cells, monocytes, and stem cells, noted Carl June, MD, at Penn's Perelman School of Medicine. An entirely new field has opened because of our initial success. This is going to continue for a long time, making more potent cells that cover all kinds of cancer.

The other big question, Grupp noted: How long does remission last? We are probably looking at about 50 percent of patients remaining in remission long-term, which is to say years after the infusion. The farther out we go, the fewer patients there are to look at because it just started with Emily in 2012, reminded Grupp. We have Emily now 10 years out, and other patients who are at 5, 6, 7, 8 years out, but most were treated more recently than that. We need to follow them longer.

June said registries of patients treated with CAR T-cell therapy are being kept worldwide by various groups, including the FDA. CAR T-cell therapy happened fastest in the U.S., but it's gained traction in Japan, Europe, Australia, and they all have databases. The U.S. database for CAR T cells will probably be the best that exists, because the FDA requires people treated continue follow-up for at least 15 years, he explained.

This will provide important information about any long-term complications, and the relapse rate. If patients do get cancer again, will it be a new one or related to the first one we treated? We will follow the outcomes, he noted. Clinicians are teaching us a lot about how to use the informationat what stage of the disease the therapy is best used, and which patients are most likely to respond. This can move us forward.

June mentioned that Grupp is collaborating with the Children's Oncology Group ALL Committee led by Mignon Loh, MD, at the University of California in San Francisco.

They are conducting a national trial to explore using CAR T cells as a frontline therapy in newly diagnosed patients, he detailed. Emily was treated when she had pounds and pounds of leukemia in her body; ideally we don't want to wait so long. There are a lot of reasons to believe it would work as a frontline therapy and spare patients all the complications of previous chemotherapy and/or radiation. The good news is that the clinical trial is under way, and I suspect we may know the answer within 2 years.

The only true measure of success in Emily's case is the state of her health. When asked if she is considered cured, June said, All we can do is a lot of prognostication. We know with other therapies in leukemia, the most similar being bone marrow transplants, if you go 5 years without relapsing, basically you are considered cured. We don't know with CAR T cells because Emily is the first one. We have no other history. But she's at a decade now, and in lab data we cannot find any leukemia in her. So by all of the evidence we haveand by looking in the magic eight ballI believe Emily is cured.

One might think that going through such a battle for life would be enough for any one person, any one family. But for Emily and her parents, her survival was just the beginning of a larger assault. All of them saw the experience as a way to provide interest in continuing research, education for patients as well as physicians, and an extension of hope to other patients about to succumb to a cancerous enemy.

Tom thought back to one particular occasion, all those years ago, when Emily finally slept peacefully through the night in her hospital bed. I should have felt nothing but relief, but I heard a mother crying in the hallway. Her child, who has been in the room next door, had died that morning, he recalled. I am constantly reminded of how fortunate we are. There are so many parents fighting for their children who do not have a good outcome.

As soon as Emily regained her strength and resumed normal childhood activities, the family began travelling with members of the medical team, joining in presentations at meetings and conferences throughout the world. They wanted to give a human face to the potential of CAR T-cell therapy, and as such they willingly became a powerful tool to raise understanding and essential research dollars. In 2016, the Whiteheads founded the Emily Whitehead Foundation (www.emilywhiteheadfoundation.org) ...to help fund research for new, less toxic pediatric treatments, and to give other families hope.

We decided to hold what we called the Believe Ball in 2017. We asked lots of companies to sponsor a child who had received CAR T-cell treatment to come with their family to the ball at no cost to them. Each company's representative would be seated with the child and family they sponsored, and would meet the doctors and scientists involved in the research, as well as members of industry and pharma, to see exactly where research dollars are going. We implored these companies to move the cancer revolution forward with sponsorship. When it all shook out, we had around 35 CAR T-cell families together for the first time, said Tom.

He noted proudly that since the foundation's debut, donations have been consistent and now have totaled an impressive $1.5 million.

When the Emily Whitehead Foundation had a virtual gala recently, it awarded a $50,000 grantthe Nicole Gularte Fight for Cures Ambassador Awardto a young researcher working to get another trial started. The award is named for a woman who found her way to CAR T-cell trials at Penn through the Whitehead Foundation. The treatment extended her life by 5 years during which time Gularte became an advocate for other cancer patients, travelled with the Whiteheads, and made personal appearances whenever she thought she could be of help or inspiration. Eventually, she would relapse and succumb, but she assured Tom Whitehead, These were 5 of the best years of my life. I think my time here on Earth was meant to help cancer research move forward.'

While raising funds for progress is important, the Whiteheads' work is not just about bringing in money. It's also about education.

We want to send a message to all oncologists; they need to be more informed about these emerging treatments when their patients ask for help, Tom noted. In the beginning of CAR T-cell therapy, a lot of doctors were against it. It's hard to believe, but some still are, though not as much. We need more education so that oncologists give patients a chance to get to big research hospitals for cutting-edge treatments before everything else has failed.

June said he regularly interacts with patients Tom or the foundation refer to him. Such unawareness happens with all new therapies, he noted. The people most familiar with them are at academic medical centers. But only about 10 percent of patients actually go to academic centers, the rest are in community centers where newer therapies take much longer to roll out, he explained.

So much of Emily's life has been chronicled through the eyes of observers. But since her watershed medical intervention, she has grown into a well-travelled, articulate young woman who talks easily about her life. I used to let my father do all the talking, but I am finding my own voice now, she said, having granted an interview to Oncology Times.

I'm currently 16 years old and I'm a junior at high school. Just like when I was younger, cows are my favorite animals, she offered with a laugh. I still love playing with our chihuahua, Luna. In school, I love my young adult literature class because I really like reading. Besides that, I like art and film. And I'm in really good health today.

She mentioned her health casually, almost as an afterthought. I really don't have any memory of my treatment at this point, she revealed, but, the experiences that I've had since then have really shaped who I am. Traveling is a huge part of my life now and something I look forward to. We've been to conferences at a lot of distant places. I'm so grateful that I get to travel with my family and make these memories that I will have forever, while still being able to advocate for less toxic treatment options and raising money for cancer research. All of that is really important to me.

Reminded that she has already obtained fame as pediatric patient No. 1 for CAR T-cell therapy, Emily considered her status for a moment then commented, I don't really like to base the progress of the therapy on my story and what I went through. Instead, I like to take my experience and use it to advocate for all patients so that what happened to me does not have to be repeated and endured by another family. My hope is that CAR T-cell therapy will become a frontline treatment option and be readily available, so pediatric patients can get back to a normal life as soon as possible. I want to tell people if conventional treatments do not work, other options do exist. Overall, I am grateful that I can encourage others to keep fighting. That's the main thing; I am grateful.

After a brief pause, Emily continued, I always tell oncologists and scientists that the work they are doing is truly saving children's lives. It allows these kids to grow up, be with their friends and families, take vacations, play with their dogs, and someday go to college, just like me. They are not only saving patients' lives, they are saving families. The work they do does not go unnoticed or unappreciated. Again, I am really so grateful.

Appreciation is a two-way street, and June said he and his team appreciate and draw inspiration from Emily on a daily basis. Her picture hangs on the wall of our manufacturing center, June stated. Some of the technicians who were in high school when Emily was infused are now manufacturing CAR T cells. They learned so much from Emily's experience; she continues to be a big motivator. She's helped my team galvanize and see that the work can really benefit people.

Grupp said the success that is embodied in Emily Whitehead has spurred additional successes, and new inroads in CAR T-cell therapy. There are more applications now, especially in other blood cancerslymphoma and myeloma, in addition to leukemia. We've seen a lot of expansion there.

He noted a national trial is under way for an FDA-approved therapy called idecabtagene vicleucel, which can benefit multiple myeloma patients. All other CAR Ts target the same target, CD19. But this goes after an entirely different target, BCMA. The fact that we now have approval in something that isn't aimed at CD19 is very exciting. And there are others coming right behind it.

The field also has seen further expansion ...into adults being treated safely, because initially there was concern that these drug therapies were too powerful for safe treatment in older adults, detailed Grupp. Now we know that is clearly not the case, and that is great news, particularly because multiple myeloma most often occurs in people over 60.

The use of CAR T cells in solid tumors continues to be challenging, although Grupp noted, We have certainly seen hints of patients with solid tumors having major responses and going into remission with CAR T cells. It is still a small handful of patients, so we haven't perfected the recipe for solid tumors yet. But I am absolutely confident we will have the answers in a very short numberperhaps 2-4of years.

June said, since Emily's infusion, CAR T cells have matured and gotten better. There are many ways that has happened, he informed. We have different kinds of CAR designs to improve and increase the response rates, to decrease the CRS, or to target other kinds of bone marrow cancers. One that is not curable with a lot of therapies is acute myeloid leukemia (AML), so we have a huge group at Penn and CHOP working on AML specifically. And there is the whole field of solid cancer; we have teams working on pancreatic, prostate, breast, brain, and lung cancer now.

In addition to targeting different types of cancer, June said contemporary research is also exploring the use of different types of cells. Our initial CAR T trial used T cells, and that is what all the FDA-approved CARs are. But we now have trials using different cell types, like natural killer cells, monocytes, and stem cells. An entirely new field has opened because of our initial success. This is going to continue for a long time, making more potent cells that cover all kinds of cancer, not just leukemia and lymphoma.

Is this the beginning of the end of cancer? Is this that Holy Grail called a cure to cancer? It's a question June has pondered.

Some people do think that, he answered. They believe the immune system is the solution. And that's a huge statement. President Biden has made a big investment in this work, with the Cancer Moonshot. He's accelerated this research at the federal level. But we just don't know how long it is going to take. Fortunately, a lot of good minds are working hard to make an end to cancer a reality.

As the battle grinds on, June said he applies something he's learned over time, with reinforcement from Tom and Kari Whitehead. They were bulldogs. When it came to getting treatment for Emily, they just wouldn't take no for an answer. They demonstrated the importance of never giving up. That's what happened; they would not surrender. I think that is why Emily is alive today.

Valerie Neff Newitt is a contributing writer.

The Emily Whitehead Foundation and the Whitehead family take extraordinary advantage of a variety of media to reach patients and physicians and optimize educational opportunities.

Here is the original post:
The Incredible Story of Emily Whitehead & CAR T-Cell Therapy : Oncology Times - LWW Journals

To Read More: The Incredible Story of Emily Whitehead & CAR T-Cell Therapy : Oncology Times – LWW Journals
categoriaBone Marrow Stem Cells commentoComments Off on The Incredible Story of Emily Whitehead & CAR T-Cell Therapy : Oncology Times – LWW Journals | dataMarch 22nd, 2022
Read All

UC Davis researchers find dual cytokine blockage as a novel treatment against graft-versus-host disease in blood stem cell transplantations – The…

By daniellenierenberg

Cytokines TNF and IL-6 can cause severely damaging inflammatory effects as a result of stem cells attacking host cells of blood cancer patients

By BRANDON NGUYEN science@theaggie.org

Researchers at the UC Davis Medical Center recently discovered a novel treatment against graft-versus-host disease (GVHD), a potentially lethal inflammatory condition that can arise following stem cell transplantation, which treats blood cancers and disorders. Allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) to treat some blood cancers and disorders involves injecting a donors bone marrow stem cells, also known as graft, into blood cancer patients undergoing chemotherapy and radiation therapy.

Dr. William Murphy, a professor at the UC Davis School of Medicine under the Department of Dermatology and Internal Medicine and senior author of the study, further explained what GVHD is under the context of blood cancers.

If we take stem cells from another source, usually trying to match as much as we can from a related source such as a sibling, there seems to be an anti-tumor effect, Murphy said. This desired, beneficial effect from stem cell transplantation is called the graft-versus-tumor (GVT) effect. But the graft-versus-host disease means those immune cells can also attack not just the cancer, but the recipient or patient, which occurs pretty often.

The medical dilemma Murphy and his team of researchers faced involved maximizing GVT effects while minimizing GVHD during stem cell treatment to help the patient effectively fight off the tumor. Logan Vick, a graduate student under Murphys lab at the UC Davis Medical Center and a co-author of the study, talked about the major findings that help minimize GVHD in allo-HSCT patients.

In graft-versus-host disease, something that can be picked up as a symptom is this release of cytokines, which are inflammatory proteins, Vick said. TNF and IL-6, which are two inflammatory cytokines, are often used as tools of the immune system to combat either viruses or different pathogens, but prolonged inflammation can have consequences. So by blocking these two cytokines, what we call a dual cytokine blockade, can help ameliorate GVHD.

The cytokines, TNF and IL-6, that Vick focuses on can cause a cytokine storm, which can occur during GVHD when donor immune stem cells attack the hosts healthy cells instead of the tumor and induce inflammation caused by cytokines. GVHD and the dangerous cytokine storm effect has been a problem for stem cell transplantation treatments, but Murphys team of researchers have just found a potential cure to GVHD while still maintaining the efficacy of the treatment.

Lam T. Khuat, a postdoctoral researcher at Murphys lab and the first author of the study, summarized the beneficial results from dual cytokine blockage.

Many treatments for GVHD involve suppressing the bodys immunity, which can inhibit beneficial GVT effects, Khuat said via email. For this reason, it was important to determine if blocking these cytokines impacted the GVT response. Fortunately, anti-tumor effects remained after the transplant and with the combined intervention.

Clinical methods have often employed single cytokine blockades; however, with the novel finding that dual cytokine blockades can minimize the proinflammatory responses induced by GVHD, the treatment can also be applied in other health conditions that require stem cell transplantation or reducing inflammatory side effects.

Normally, when you have an overactive immune system, whether its autoimmune disorders or GVHD or even in viral infections, the treatments sometimes blanket immunosuppression with steroids, Murphy said. Well, that works because they turn off the immune system, but in the case of cancer and viral infections, you want a working immune system. The beauty of using this double block, which can be applied in other clinical settings, is it doesnt suppress the immune system while preventing the inflammation and the damage.

Written by: Brandon Nguyen science@theaggie.org

Original post:
UC Davis researchers find dual cytokine blockage as a novel treatment against graft-versus-host disease in blood stem cell transplantations - The...

To Read More: UC Davis researchers find dual cytokine blockage as a novel treatment against graft-versus-host disease in blood stem cell transplantations – The…
categoriaBone Marrow Stem Cells commentoComments Off on UC Davis researchers find dual cytokine blockage as a novel treatment against graft-versus-host disease in blood stem cell transplantations – The… | dataJanuary 18th, 2022
Read All

Bone Marrow-Derived Stem Cells (BMSCS) Market Size Is Expected To Generate Huge Revenue and Competitive Outlook Industrial IT – Industrial IT

By daniellenierenberg

Bone Marrow-Derived Stem Cells (BMSCS) Marketanalysis report gives a clear idea on various segments that are relied upon to observe the quickest business development amid the estimated forecast frame. This report indicates a professional and all-inclusive study of the market which concentrates on primary and secondary drivers, market share, competitor analysis, leading segments and geographical analysis. With the particular base year and the historic year, definite estimations and calculations are carried out in this business report. The globalBone Marrow-Derived Stem Cells (BMSCS) Marketreport displays a comprehensive study on production capacity, consumption, import, and export for all the major regions across the globe.

The report refers to standard research methodologies to offer entire and precise market analysis, statistical assessment and an upright industry projection. The Bone Marrow-Derived Stem Cells (BMSCS) market report offers a profound study derived from various analytical tools that elaborate about forthcoming opportunities to facilitate strategic and tactical business decisions to improve profitability. The report provides such enlightenment of the Bone Marrow-Derived Stem Cells (BMSCS) industry that helps to monitor the performance of the market is surrounded by the rapid evolvements and aggressive competitiveness.

Free Sample Includes:

Get Latest Free Exclusive Sample (350 Pages PDF) Report: To Know the Impact of COVID-19 on Bone Marrow-Derived Stem Cells (BMSCS) MarketReport:https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-bone-marrow-derived-stem-cells-bmscs-market&KA

Bone marrow-derivedstem cells(BMSCS) market is expected to gain market growth in the forecast period of 2020 to 2027. Data Bridge Market Research analyses the market to growing at a CAGR of 10.4% in the above-mentioned forecast period. Increasing awareness regarding the benefits associates with the preservation of bone marrow derived stem cells will boost the growth of the market.

Later on, the report assesses gross sales (volume & value), market share, market size, market growth rate based variety of applications.The Bone Marrow-Derived Stem Cells (BMSCS) report also focuses on regional and provincial markets to analyze manufacturers, niche market segments, industry environment, raw material resources, and rivalry of the specific marketplace.

Key Players in Bone Marrow-Derived Stem Cells (BMSCS) Marketcovers the complete in-depth information, which in brief coversthere:

To Receive an Extensive List of Important Regions, Ask For TOC Here:https://www.databridgemarketresearch.com/toc/?dbmr=global-bone-marrow-derived-stem-cells-bmscs-market&KA

While performing in a specific industry it is highly essential to determine forthcoming possibilities, therefore the Bone Marrow-Derived Stem Cells (BMSCS) market report covers all-inclusive evaluation based on upcoming business and investment opportunities, market restraining factors, business threats, challenges, regulatory alliance as well as industry environment. With the help of the proposed valuable insight reader could achieve its predetermined business goals.

Additionally, the report converse about lucrative businessstrategies implemented by key competitors, which might include recent acquisitions, partnerships, amalgamations, wind-ups, and product launches.It also offers a detailed explanation of the competitive landscape on a minute level that provides a wise acumen to a reader to be ahead of the curve.

Prominent Key Players Covered in the report:

CBR Systems, Inc, Cordlife Sciences India Pvt. Ltd., Cryo-Cell International, Inc.ESPERITE N.V., LifeCell International Pvt. Ltd., StemCyte India Therapeutics Pvt. Ltd, PerkinElmer Inc, Global Cord Blood Corporation., Smart Cells International Ltd., Vita 34 among other domestic and global players. (Customization Available)

Why choose us:

Table of Content:

Chapter 1: Bone Marrow-Derived Stem Cells (BMSCS) Overview, Product Overview, Market Segmentation, Market Overview of Regions, Market Dynamics, Limitations, Opportunities and Industry News and Policies.

Chapter 2: PEST (Political, Economic, Social and Technological) Analysis of Bone Marrow-Derived Stem Cells (BMSCS) Market.

Chapter 3: Value Analysis, Production, Growth Rate and Price Analysis by Type of Bone Marrow-Derived Stem Cells (BMSCS).

Chapter 4: Downstream Characteristics, Consumption and Market Share by Application of Bone Marrow-Derived Stem Cells (BMSCS).

Chapter 5: Production Volume, Price, Gross Margin, and Revenue ($) of Bone Marrow-Derived Stem Cells (BMSCS) by Regions.

Chapter 6: Bone Marrow-Derived Stem Cells (BMSCS) Production, Consumption, Export, Market Trends and Competitive Landscape.

Chapter 7: Bone Marrow-Derived Stem Cells (BMSCS) Market Status and SWOT Analysis by Regions.

Chapter 8: Competitive Landscape, Product Introduction, Company Profiles, Market Distribution Status by Players of Bone Marrow-Derived Stem Cells (BMSCS).

Chapter 9: Bone Marrow-Derived Stem Cells (BMSCS) Market Analysis and Forecast by Type and Application.

Chapter 10: Market Analysis and Forecast by Regions.

Chapter 11: Industry Characteristics, Key Factors, New Entrants SWOT Analysis, Investment Feasibility Analysis.

Chapter 12: Market Conclusion.

Chapter 13: Appendix Such as Methodology and Data Resources of This Research.

If you have any customized requirements that need to be added, we will be happy to include them to enrich the final research study.

For Any Queryor Customization need to add in Bone Marrow-Derived Stem Cells (BMSCS) Market Report Kindly Follow this URL:https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-bone-marrow-derived-stem-cells-bmscs-market&KA

See the original post:
Bone Marrow-Derived Stem Cells (BMSCS) Market Size Is Expected To Generate Huge Revenue and Competitive Outlook Industrial IT - Industrial IT

To Read More: Bone Marrow-Derived Stem Cells (BMSCS) Market Size Is Expected To Generate Huge Revenue and Competitive Outlook Industrial IT – Industrial IT
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow-Derived Stem Cells (BMSCS) Market Size Is Expected To Generate Huge Revenue and Competitive Outlook Industrial IT – Industrial IT | dataJanuary 18th, 2022
Read All

Covid-19 immunity: How antibodies, B cells, and T cells tackle omicron – Vox.com

By daniellenierenberg

Over the past two years, the United States has seen more than 63 million Covid-19 cases, with some people infected more than once. More than 240 million people in the US have received at least one dose of a Covid-19 vaccine. More than 60 million have received three.

While Covid-19 infections are never a good thing, these numbers still add up to a glimmer of good news: A large majority of Americans now have some immunity against SARS-CoV-2, the virus that causes Covid-19. Thats a big step toward defanging the disease.

When the human body is infected by the virus or encounters a fragment of the pathogen in a vaccine, our immune systems change in subtle but important ways. Across a huge swath of the population, these changes could eventually help transform Covid-19 from a world-stopping catastrophe into a mild annoyance.

Antibodies, proteins that attach to the virus, are a critical part of the immune response and are often the center of discussions about protection from Covid-19. But they rise during infection and decline naturally over time. Fortunately, antibodies are not the whole story when it comes to the immune system.

Other, longer-lasting tools against infection are hiding inside our bones. The immune system draws on stem cells living in bone marrow to produce an array of components that we dont hear as much about. They form many kinds of white blood cells that jump into action right away when they encounter a virus for the first time, and that essentially take notes to start planning for the next infection.

Its this immune system memory thats key to long-term protection against Covid-19. Whats reassuring is that as white blood cells get more practice against SARS-CoV-2, they seem to get better at containing the virus even when it evolves into new variants. That appears to be happening in the omicron wave of Covid-19.

Omicron is the most transmissible variant of the coronavirus known to date. It also appears to be better at dodging immune protection from Covid-19 vaccines. Cases have reached record levels in many parts of the United States, and hospitals are once again straining under the burden.

But the fraction of cases leading to hospitalizations and deaths appears to be far smaller compared to other variants. While there are more reports of breakthrough infections and reinfections with omicron, many previously exposed people report mild, cold-like symptoms.

One reason is that the virus itself appears to have mutated in a way that leads to fewer dangerous complications. Yet its also clear that widespread immunity is absorbing some of the worst effects of the disease, a hopeful trend that is likely to continue in 2022 and beyond.

The world is full of so many things that can make us sick viruses, bacteria, parasites, fungi, even mutated versions of our own cells. The threats are varied and unrelenting, but so too is our immune system. Its an orchestra of cells, proteins, organs, and pathways that all harmonize to keep invaders at bay. In simplified form, heres how.

When a pathogen like the coronavirus enters the body for the first time, it confronts the innate immune system, which provides generalized protection against all pathogens, but isnt always enough to prevent illness on its own. After an infection takes root, the immune system launches a more targeted response with whats known as the adaptive immune system.

Neutralizing antibodies form the pillar of the adaptive immune system. The virus is studded with spike proteins (giving it its namesake corona, meaning crown in Latin), which attach to human cells to begin the infection process. Y-shaped antibodies can attach to the spikes on the virus and prevent it from entering cells, thereby neutralizing the pathogen. The parts of a virus that can trigger an immune response are known as antigens.

In general, neutralizing antibodies keep you from getting infected in the first place, said Lewis Lanier, chair of the microbiology and immunology department at the University of California San Francisco.

Neutralizing antibodies are picky about the parts of the virus they recognize, known as epitopes. If those attachment points on the virus change, as they do in many coronavirus variants, antibodies can become less effective. In the months following an infection or immunization, the amount of these neutralizing antibodies declines as well. Thats expected. Making antibodies takes a lot of energy, so the body makes fewer of them after an infection is gone.

That decline may sound worrisome, but the immune system has other powerful tools in its shed. To start, there are non-neutralizing antibodies. These dont directly interfere with how the virus functions, but they can help the immune system detect infected cells and mark them for destruction. This is a crucial task because viruses cant make copies of themselves on their own: They need to commandeer a host cell to reproduce. Once a virus enters a cell, its not accessible to neutralizing antibodies, but non-neutralizing antibodies that learned to recognize infected cells can still raise the alarm.

The task of eliminating infected cells falls to a group of white blood cells known as cytotoxic T cells, sometimes called killer T cells. They arise from stem cells in bone marrow and cause infected cells to self-destruct, without messing with normal cells.

T cells, they cannot prevent infection, said Lanier. The only way a T cell can recognize you have an infection is after a cell has been infected.

Helper T cells are another important white blood cell variety. They spur the production of antibodies by a different group of white blood cells called B cells. B cells form in bone marrow and then migrate to lymph nodes or the spleen.

After an infection or a vaccination, some B cells and T cells stick around, becoming memory B cells and T cells. They sit idle, sometimes for decades, waiting to see if a pathogen returns. If it does, they can quickly reactivate.

This is why we a decline in neutralizing antibody counts isnt always a disaster. Even if concentrations of neutralizing antibodies dip so low that they can no longer prevent an infection, other parts of the immune system can spool up to make sure the virus doesnt do too much damage.

There is a window of time after virus gets into the body before it really starts manifesting disease in the person, said Deborah Fuller, a professor of microbiology at the University of Washington School of Medicine. That window of time enables the immune system that has been vaccinated and has memory immune responses to recall very quickly and shut down the virus before it actually causes disease.

Some health officials now say that Covid-19 is so rampant that most people are likely to become infected at some point. Its hard to process whats actually happening right now, which is most people are going to get Covid, Janet Woodcock, acting commissioner of the Food and Drug Administration told the Senate health committee on Tuesday. What we need to do is make sure the hospitals can still function, transportation, other essential services are not disrupted while this happens.

However, waves of infection can crest just as quickly as they form. Countries like the United Kingdom and South Africa experienced awful omicron spikes but subsequently saw precipitous drops in cases thereafter. Omicron cases also appear to be leveling off in some parts of the US, a sign that a decline may be ahead.

Whether these spikes in Covid-19 cases lead to severe health outcomes hinges on the teamwork of B cells, T cells, and antibodies, and how they hold up against any new mutations in the virus. Its an area of active research for scientists.

Vaccines and prior infection may not prevent you from being infected by the next waves of variants, but it may well keep you out of the hospital, Lanier said.

For the past two years, with recurring spikes in Covid-19 cases, neutralizing antibodies have taken center stage. Were really more concerned right now in the middle of the pandemic about the durability of that antibody because what were trying to do is prevent transmission, said Fuller. But that could change.

Neutralizing antibodies remain a key benchmark for vaccines: Scientists judge the success and timing of vaccines in part by measuring the number of antibodies they provoke in our blood, and how long the antibodies stick around. When the mRNA vaccines from Moderna and Pfizer/BioNTech were in development, they demonstrated that they could elicit a high level of neutralizing antibodies. Further clinical trials showed that this translated to more than 90 percent efficacy in preventing illness.

The next test is how well antibody production ramps back up if the same virus invades again. It can take up to two weeks to generate antibodies after being exposed to a virus for the first time, but production can ramp up much faster during a second infection.

At the same time, a virus is rarely the same when it comes back. Viruses mutate frequently as they reproduce, and RNA viruses like SARS-CoV-2 are especially prone to change. Versions of the virus with distinct groupings of mutations are categorized as variants, like omicron, delta, and alpha. Our immune systems are getting stronger and faster, but changes to the virus still have the potential to throw them for a loop.

Already, some companies are developing omicron-specific vaccines, but they may not hit the market for months. The reformulated shots may be too little, too late. In the meantime, we have to rely on the immunity we already have, including boosts to our antibody counts that come from booster doses of Covid-19 vaccines.

There is still much to learn about how all the elements of the immune system work together over time to hold off Covid-19, and some of the answers will only become evident with time. And the odd behavior of omicron is forcing researchers to rethink what theyve learned.

The good news is that many aspects of our immune system also appear to handle the latest variant well. From what Ive seen, the T cell responses are still working rather well against omicron, said Brianne Barker, a vaccine researcher at Drew University. I think that weve still got a bit of time in which immune protections will remain intact.

Immunity will continue building across the population and will blunt the sharp edges of the pandemic, even as the virus changes. Covid-19 is unlikely to go away entirely. As it circulates, it will continue to mutate and may cause sporadic outbreaks. But our immune systems are making progress.

As you expose the human body, even to the same antigen over and over again, our immune system evolves as well, Fuller said. What were starting to see in people with third immunizations is an antibody [response] that is broader.

Its a good sign that improvements in our immune system are likely to outpace changes in the virus. But the pandemic has also made it clear that there is nothing about its trajectory we can take for granted. While the cells within us may shield against infection, its still a good idea to limit transmission of the virus in any other way we can. The fewer people it infects, the fewer unpleasant surprises ahead.

Original post:
Covid-19 immunity: How antibodies, B cells, and T cells tackle omicron - Vox.com

To Read More: Covid-19 immunity: How antibodies, B cells, and T cells tackle omicron – Vox.com
categoriaBone Marrow Stem Cells commentoComments Off on Covid-19 immunity: How antibodies, B cells, and T cells tackle omicron – Vox.com | dataJanuary 18th, 2022
Read All

Page 12«..11121314..2030..»


Copyright :: 2024