Page 118«..1020..117118119120..130140..»

Stem cell transplant does not cure SHIV/AIDS after irradiation of infected rhesus macaques

By raymumme

PUBLIC RELEASE DATE:

25-Sep-2014

Contact: Guido Silvestri gsilves@emory.edu 404-727-9139 PLOS

A study published on September 25th in PLOS Pathogens reports a new primate model to test treatments that might cure HIV/AIDS and suggests answers to questions raised by the "Berlin patient", the only human thought to have been cured so far.

Being HIV-positive and having developed leukemia, the Berlin patient underwent irradiation followed by a bone-marrow transplant from a donor with a mutation that abolishes the function of the CCR5 gene. The gene codes for a protein that facilitates HIV entry into human cells, and the mutationin homozygous carriers who, like the donor, have two defective copiesprotects against HIV infection.

Several factors could have contributed to the cure of HIV/AIDS in the patient: (1) the ablation of blood and immune cells following irradiation killed all or many of the viral reservoir cells that are not eliminated by antiretroviral treatment (ART); (2) the CCR5 deletion mutation in the donor cells protected them and their progeny from HIV infection; (3) a "graft versus host" reaction occurred, where the transplanted cells and their progeny recognize the host cells as foreign and attacked and eliminated HIV-positive reservoir cells that survived the irradiation.

Guido Silvestri, from Emory University in Atlanta, USA, and colleagues investigated the relative contribution of the irradiation to eliminate the reservoir of HIV-infected cells. The scientists worked with the animal model of Simian Immunodeficiency Virus (SIV, a close relative of HIV that infects primates and causes a disease similar to AIDS) infection in rhesus macaques. Using a total of six monkeys (three of which served as controls and did not receive transplants) they performed, for the first time, hematopoietic stem cell transplantation in rhesus macaques infected with a chimeric simian/human immunodeficiency virus (SHIV) and treated with ART.

The researchers harvested hematopoetic stem cells from three macaques prior to infection (of all six animals) with SHIV. They also treated the macaques with ART to reduce viral load and mimic the situation in human HIV-infected patients on ART. They then exposed the three monkeys from which they had collected hematopietic stem cells to a high dose of radiation. This killed most of their existing blood and immune cells, including between 94 and 99% of their CD4-T cellsthe main target of HIV infectionin the blood. The irradiation was followed by transplantation of each monkey's own virus-free hematopoietic stem cells. The latter can regenerate the blood and immune cells, and did so in all three monkeys within 3 to 6 weeks. Because the transplanted cells are not from a different donor, no graft versus host disease would be expected, and none was observed.

After that time, the scientists stopped ART in all six monkeys. As expected, the virus rebounded rapidly in the control animals. Of the three transplanted animals, two also showed a rapid rebound. The third monkey developed kidney failure two weeks after ART was stopped and was euthanized. It still had undetectable levels of virus in the blood at that time, but post-mortem analysis showed low levels of viral DNA in a number of tissues, arguing that none of the three transplanted monkeys was cured.

The researchers acknowledge a number of limitations of the study, including the small number of monkeys, and the relatively short period of ART prior to irradiation and transplantation. Nonetheless, they say their study "supports the hypothesis that myeloablative total body irradiation can cause a significant decrease in the viral reservoir in blood cells, even though it was not sufficient to eliminate all reservoirs". Their results, they say, suggest that in the cure of the Berlin patient, "the use of the CCR5 mutant donor and/or the presence of graft versus host disease played a significant role".

Original post:
Stem cell transplant does not cure SHIV/AIDS after irradiation of infected rhesus macaques

To Read More: Stem cell transplant does not cure SHIV/AIDS after irradiation of infected rhesus macaques
categoriaBone Marrow Stem Cells commentoComments Off on Stem cell transplant does not cure SHIV/AIDS after irradiation of infected rhesus macaques | dataSeptember 25th, 2014
Read All

Tonsil stem cells could someday help repair liver damage without surgery

By LizaAVILA

PUBLIC RELEASE DATE:

24-Sep-2014

Contact: Michael Bernstein m_bernstein@acs.org 202-872-6042 American Chemical Society @ACSpressroom

The liver provides critical functions, such as ridding the body of toxins. Its failure can be deadly, and there are few options for fixing it. But scientists now report in the journal ACS Applied Materials & Interfaces a way to potentially inject stem cells from tonsils, a body part we don't need, to repair damaged livers all without surgery.

Byeongmoon Jeong and colleagues point out that currently, the only established method for treating liver failure or severe cases of liver disease is complete or partial transplantation. But the need is much greater than the number of available organs. Plus, surgery has inherent risks and a hefty price tag. A promising alternative in development is transplanting liver cells. One such approach involves using adult stem cells to make liver cells. Stem cells from bone marrow could be used, but they have limitations. Recently, scientists identified another source of adult stem cells that could be used for this purpose tonsils. Every year, thousands of surgeries are performed to remove tonsils, and the tissue is discarded. Now it could have a new purpose, but scientists needed a way to grow them on a 3-D scaffold that mimics real liver tissue. Jeong's team set out to do just that.

The researchers encapsulated tonsil-derived stem cells in a heat-sensitive liquid that turns into a gel at body temperature. They added substances called growth factors to encourage the stem cells to become liver cells. Then, they heated the combination up to a normal body temperature. The result was a 3-D, biodegradable gel that contained functioning liver cells. The researchers conclude that the same process has promise with some further tweaking for ideal conditions as an injectable tissue engineering technique to treat liver disease without surgery.

###

The authors acknowledge funding from the National Research Foundation of Korea.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 161,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

See more here:
Tonsil stem cells could someday help repair liver damage without surgery

To Read More: Tonsil stem cells could someday help repair liver damage without surgery
categoriaBone Marrow Stem Cells commentoComments Off on Tonsil stem cells could someday help repair liver damage without surgery | dataSeptember 24th, 2014
Read All

Tse Named Director of Bone Marrow Transplantation Division at University of Louisville

By NEVAGiles23

Contact Information

Available for logged-in reporters only

Newswise LOUISVILLE, Ky. William Tse, M.D., associate professor of medicine and eminent scholar in hematologic malignancies research at the Mary Babb Randolph Cancer Center at West Virginia University, has been named the new director of Bone Marrow Transplantation at the University of Louisville James Graham Brown Cancer Center, a part of KentuckyOne Health. Tse will join UofL Nov. 1.

Tse will hold the Marion F. Beard Endowed Chair in Hematology Research at UofL and become a member of the cancer centers Developmental Biology Program.

Dr. Tse is emerging as one of the thought leaders in bone marrow transplantation, said Donald Miller, M.D., Ph.D., director of the JGBCC. He has trained and worked at several of the leading blood cancer programs in the nation. We look forward to his leading our program at UofL.

Tse has been at West Virginia since 2009, where he also is the co-leader the Osborn Hematologic Malignancies Program. Prior to joining West Virginia, Tse was on the faculty at the University of Colorado Denver, where he was the director of translational research program for bone marrow transplantation and hematologic malignancies. He also previously was with Case Western Reserve University and the Fred Hutchinson Cancer Research Center/University of Washington Medical Center.

Tse is active in national organizations, serving in several capacities with the American Society of Hematology, including section chair for the annual meetings Oncogene Section and bone marrow transplantation outcome section, as well as the American Society of Clinical Oncology as an annual meeting abstract reviewer and the section chair on geriatric oncology. Tse also serves leadership roles on several editorial boards including as the senior editor of the American Journal of Blood Research, stem cell biomarkers section editor for Biomarker Research, senior editor of the American Journal of Stem Cells and the academic editor of PLoS One.

A graduate of the Sun Yat-Sen University School of Medicine in Guangzhou, Guangdong, in China, he did a thoracic surgical oncology residency at Sun Yat-Sen University Cancer Center in Guangzhou before completing postdoctoral research fellowships in medical biophysics, immunology and cancer at the Princess Margaret Hospital/Ontario Cancer Institute and the Hospital for Sick Children in Ontario, Canada. He completed clinical pathology and internal medicine residencies at North Shore-Long Island Jewish Hospital before undertaking a senior medical fellowship in clinical research and medical oncology divisions at the Fred Hutchinson Cancer Research Center at the University of Washington Medical Center.

Follow this link:
Tse Named Director of Bone Marrow Transplantation Division at University of Louisville

To Read More: Tse Named Director of Bone Marrow Transplantation Division at University of Louisville
categoriaBone Marrow Stem Cells commentoComments Off on Tse Named Director of Bone Marrow Transplantation Division at University of Louisville | dataSeptember 23rd, 2014
Read All

Colchester teen becomes one of the UK's youngest stem cell donors

By daniellenierenberg

A teenager who gave stem cells to save the life of a stranger is backing a national campaign to find more donors.

In June, Celyn Evans, 17, became one of the youngest people in the UK to donate stem cells.

The Colchester Royal Grammar School sixth-form student is supporting Anthony Nolans Save a Life at 16 campaign.

The charity wants HMRC to include details about stem cell donation when it writes to teens with their National Insurance numbers ahead of their 16th birthday.

Celyn, of West Mersea, said: You often hear that young people are self absorbed and not interested in helping others, but I think thats wrong.

People just need to be made aware of how they can help. That is why I am supporting this campaign.

Celyn joined the bone marrow donor register last September when his brothers friend developed leukaemia.

He was not able to help the family friend, but in February, Anthony Nolan contacted him to say he was a possible match for another patient in need of a potentially life-saving transplant.

Celyn agreed to donate and, after a series of check-ups, made the donation in London in June.

Like 90 per cent of donors, he gave his stem cells through a simple, outpatient process similar to giving blood.

Read the original:
Colchester teen becomes one of the UK's youngest stem cell donors

To Read More: Colchester teen becomes one of the UK's youngest stem cell donors
categoriaBone Marrow Stem Cells commentoComments Off on Colchester teen becomes one of the UK's youngest stem cell donors | dataSeptember 23rd, 2014
Read All

Local man shares his story of stem cell donation

By daniellenierenberg

When a child became ill, Jim Pattison was one of many who stepped up as a potential bone marrow donor.

Herald photo by Jodi Schellenberg

Jim Pattison was given two paperweights for his stem cell donation. He decided to become a donor in 1996, but was not a match until after 2010.

In 1996, Pattison was one of many who went on the bone marrow transplant list to help a one and a half year old child who was diagnosed with acute myeloid leukemia. The organizers of the donor drive expected maybe 50 people to show up and were shocked by the close to 400 who attended.

Sadly, the family didnt find a match and the girl died, but Pattison decided to stay on the registry.

They asked if I wanted to stay on and my answer was that if I would do it for Abigail I would do it for anybody, he said.

Throughout the years, Pattison was asked to test for more markers to see if he would be a match for someone else. He did his last test in 2010 and heard back a short time later with the news he was a match.

Pattison was chosen for a peripheral stem cell donation, which is different from a bone marrow transplant because it is less invasive.

I first went to where the stem cells are collected and had a physical, he explained. They sent me back with some drugs that I had to have injected here, that stimulate the stem cells to grow. I had four injections before I went.

They were looking to make sure I had a high enough level of stem cells to make the donation, he added.

More:
Local man shares his story of stem cell donation

To Read More: Local man shares his story of stem cell donation
categoriaBone Marrow Stem Cells commentoComments Off on Local man shares his story of stem cell donation | dataSeptember 23rd, 2014
Read All

Colchester: Selfless teen stem cell donor Celyn Evans backs campaign to find more young heroes

By Dr. Matthew Watson

Celyn Evans, 17, from Colchester, has donated stem cells to save the life of a complete stranger. Pictured with the stem cells.

Monday, September 22, 2014 10:49 AM

A selfless teenager from Colchester who donated stem cells to a stranger is backing a campaign to help find more young heroes.

To send a link to this page to a friend, you must be logged in.

In June Celyn Evans, 17, became one of the youngest such donors in the UK.

He was contacted by the Anthony Nolan Trust as a possible match after joining the bone marrow register last September when his brothers friend developed leukaemia.

Now he is supporting Anthony Nolans Save A Life At 16 campaign, calling on HMRC to include details about stem cell donation when it writes to people with their National Insurance number ahead of their 16th birthday.

Celyn said: You often hear that young people are self absorbed and not interested in helping others, but I think thats wrong. People just need to be made aware of how they can help.

Its a very simple process, and I am surprised more people dont do it. But I think its just down to people knowing about it, which is where Anthony Nolans idea comes in.

For more information or to join the register visit the Anthony Nolan Trust website.

Visit link:
Colchester: Selfless teen stem cell donor Celyn Evans backs campaign to find more young heroes

To Read More: Colchester: Selfless teen stem cell donor Celyn Evans backs campaign to find more young heroes
categoriaBone Marrow Stem Cells commentoComments Off on Colchester: Selfless teen stem cell donor Celyn Evans backs campaign to find more young heroes | dataSeptember 23rd, 2014
Read All

Bone paste could provide treatment for ostoeporosis

By raymumme

About three million Briton currently suffer osteoporosis which is affected by a number factors such as genes, a lack of exercise and poor diet and results in about 60,000 hip, 50,000 wrist and 120,000 spinal fractures every year, according to the National Osteoporosis Society, costing about 1.7 billion in health and social care.

Dr Ifty Ahmed, a researcher at Nottingham University, said his team wanted to provide a preventative treatment, strengthening the bones of those at risk before they suffered a fracture.

Speaking at the Regener8 conference on regenerative medicine, in Leeds last week, he said: Our aim would be to use screening to spot people who are at risk, then strengthen their bones before they get fractures.

It means that rather than waiting until people have a fall and break something, we would try to stop that ever happening, along with the consequences, loss of independence, surgery and secondary illnesses.

Previous attempts have been made to find ways of strengthening thinning bones but the difficulties of protecting the fragile stem cells has meant no such treatments have yet been developed.

Dr Ahmeds team hope to overcome this problem by puncturing the tiny hollow spheres of calcium phosphate allowing the stem cells to migrate inside them where they are protected.

The experimental treatment has not yet been trialled on humans.

It would involve extracting stem cells from a patients bone marrow and mixing them with the microspheres before injecting the paste into the vulnerable bones.

Dr Ahmed said: "If it works, this kind of treatment could be done in a day.

Until now the team have been funded by the Engineering and Physical Sciences Research Council but they are now looking for a commercial partner.

Read the rest here:
Bone paste could provide treatment for ostoeporosis

To Read More: Bone paste could provide treatment for ostoeporosis
categoriaBone Marrow Stem Cells commentoComments Off on Bone paste could provide treatment for ostoeporosis | dataSeptember 21st, 2014
Read All

New molecule allows for up to 10-fold increase in stem cell transplants

By LizaAVILA

Investigators from the Institute for Research in Immunology and Cancer (IRIC) at the Universit de Montral have just published, in the journal Science, the announcement of the discovery of a new molecule, the first of its kind, which allows for the multiplication of stem cells in a unit of cord blood. Umbilical cord stem cells are used for transplants aimed at curing a number of blood-related diseases, including leukemia, myeloma and lymphoma. For many patients this therapy comprises a treatment of last resort.

Directed by Dr. Guy Sauvageau, principal investigator at IRIC and hematologist at the Maisonneuve-Rosemont Hospital, the research has the potential to multiply by 10 the number of cord blood units available for a transplant in humans. In addition, it will considerably reduce the complications associated with stem cell transplantation. And it will be particularly useful for non-Caucasian patients for whom compatible donors are difficult to identify.

A clinical study using this molecule, named UM171 in honor of the Universit de Montral, and a new type of bioreactor developed for stem culture in collaboration with the University of Toronto will be initiated in December 2014 at the Maisonneuve-Rosemont Hospital.

According to Dr. Guy Sauvageau, "This new molecule, combined with the new bioreactor technology, will allow thousands of patients around the world access to a safer stem cell transplant. Considering that many patients currently cannot benefit from a stem cell transplant for lack of matching donors, this discovery looks to be highly promising for the treatment of various types of cancer."

The Centre of Excellence for Cellular Therapy at the Maisonneuve-Rosemont Hospital will serve as production unit for these stem cells, and grafts will then be distributed to patients in Montreal, Quebec City and Vancouver for this first Canadian clinical study. Tangible results should be available one year later, that is, in December 2015. The significance of this new discovery is such that over time, conclusive clinical results could revolutionize the treatment of leukemia and other blood-related illnesses.

"These extraordinary advances result from the efforts of a remarkable team that includes extremely gifted students and postdoctoral investigators working in the IRIC laboratories," adds Dr. Guy Sauvageau. "Among them, the first authors of this publication: Iman Fars, doctoral student, and Jalila Chagraoui, research officer, along with the professionals in IRIC's medical chemistry core facility under the direction of Anne Marinier, who optimized the therapeutic properties of this new molecule."

Context

Umbilical cord blood from newborn children is an excellent source of hematopoietic stem cells for stem cell transplants, since their immune system is still immature and the stem cells have a lower probability of inducing an adverse immune reaction in the recipient.

Furthermore, it is not necessary for the immunological compatibility between donor and recipient to be perfect, unlike in a bone marrow transplant. However, in most cases the number of stem cells obtained from an umbilical cord is much too low for treating an adult, and its use is confined above all to the treatment of children. With the new molecule UM171 it will be possible to multiply stem cells in culture and to produce enough of them to treat adults, especially those who are not Caucasian, and who because of the lack of donors have limited access to transplants.

Collaborators from the Maisonneuve-Rosemont Hospital, the British Columbia Cancer Agency, the Ontario Cancer Institute and the Fred Hutchison Cancer Research Center also played an important role in evaluating the biological properties of this new molecule, and those from the University of Toronto in developing the bioreactor.

Read more:
New molecule allows for up to 10-fold increase in stem cell transplants

To Read More: New molecule allows for up to 10-fold increase in stem cell transplants
categoriaBone Marrow Stem Cells commentoComments Off on New molecule allows for up to 10-fold increase in stem cell transplants | dataSeptember 20th, 2014
Read All

Bone Marrow Recipient Meets Donor Who Saved His Life

By JoanneRUSSELL25

Two men who changed each others lives forever by being on the giving and receiving ends of a bone marrow transplant met for the first time today and had their first chance to say, Thank you, face-to-face.

Thank you so much, Joe Yannantuono, 33, said to his bone marrow donor, Justin Jenkins, 35, as he embraced him in a hug in a live, emotional meeting on Good Morning America.

Yannantuono, not very long ago, was waging a two-year long battle for his life against stage 4 lymphoma.

WATCH: Robin Roberts Celebrates 1-Year Anniversary of Bone Marrow Transplant

Toddler Meets Life-Saving Bone Marrow Donor

As his wife, Christine Buono, and his 4-year-old son, JJ Yannantuono, stood by his side, the family, from Staten Island, N.Y., got the unbelievable news that a man in Texas, a stranger, was a rare 10 for 10 genetic bone marrow match.

That stranger in Texas, Jenkins, of Dallas, had registered to be a bone marrow donor by chance 15 years ago when he was 21-years-old and donated blood because they were offering free snacks.

Soon after Jenkins was found to be a match, his stem cells were transported by airplane to New York and transplanted into Yannatuonos body in December 2012 at Memorial Sloan Kettering Cancer Center.

For more than one year after the successful transplant, Yannantuono had no idea whose cells he was now carrying in his body.

As Yannantuono was rebuilding his life, Jenkins life was thrown a tragic curveball. His mother, who raised him on her own and had been a big part of his donation journey, was killed in a car crash.

Read the rest here:
Bone Marrow Recipient Meets Donor Who Saved His Life

To Read More: Bone Marrow Recipient Meets Donor Who Saved His Life
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Recipient Meets Donor Who Saved His Life | dataSeptember 20th, 2014
Read All

World Breakthrough: A New Molecule Allows for an Increase in Stem Cell Transplants

By NEVAGiles23

Contact Information

Available for logged-in reporters only

Newswise Investigators from the Institute for Research in Immunology and Cancer (IRIC) at the Universit de Montral have just published, in the prestigious magazine Science, the announcement of the discovery of a new molecule, the first of its kind, which allows for the multiplication of stem cells in a unit of cord blood. Umbilical cord stem cells are used for transplants aimed at curing a number of blood-related diseases, including leukemia, myeloma and lymphoma. For many patients this therapy comprises a treatment of last resort.

Directed by Dr. Guy Sauvageau, principal investigator at IRIC and hematologist at the Maisonneuve-Rosemont Hospital, this world breakthrough has the potential to multiply by 10 the number of cord blood units available for a transplant in humans. In addition, it will considerably reduce the complications associated with stem cell transplantation. And it will be particularly useful for non-Caucasian patients for whom compatible donors are difficult to identify.

A clinical study using this molecule, named UM171 in honor of the Universit de Montral, and a new type of bioreactor developed for stem culture in collaboration with the University of Toronto will be initiated in December 2014 at the Maisonneuve-Rosemont Hospital.

According to Dr. Guy Sauvageau, This new molecule, combined with the new bioreactor technology, will allow thousands of patients around the world access to a safer stem cell transplant. Considering that many patients currently cannot benefit from a stem cell transplant for lack of matching donors, this discovery looks to be highly promising for the treatment of various types of cancer.

The Centre of Excellence for Cellular Therapy at the Maisonneuve-Rosemont Hospital will serve as production unit for these stem cells, and grafts will then be distributed to patients in Montreal, Quebec City and Vancouver for this first Canadian clinical study. Tangible results should be available one year later, that is, in December 2015. The significance of this new discovery is such that over time, conclusive clinical results could revolutionize the treatment of leukemia and other blood-related illnesses.

These extraordinary advances result from the efforts of a remarkable team that includes extremely gifted students and postdoctoral investigators working in the IRIC laboratories, adds Dr. Guy Sauvageau. Among them, the first authors of this publication: Iman Fars, doctoral student, and Jalila Chagraoui, research officer, along with the professionals in IRICs medical chemistry core facility under the direction of Anne Marinier, who optimized the therapeutic properties of this new molecule.

Context

Umbilical cord blood from newborn children is an excellent source of hematopoietic stem cells for stem cell transplants, since their immune system is still immature and the stem cells have a lower probability of inducing an adverse immune reaction in the recipient.

See more here:
World Breakthrough: A New Molecule Allows for an Increase in Stem Cell Transplants

To Read More: World Breakthrough: A New Molecule Allows for an Increase in Stem Cell Transplants
categoriaBone Marrow Stem Cells commentoComments Off on World Breakthrough: A New Molecule Allows for an Increase in Stem Cell Transplants | dataSeptember 18th, 2014
Read All

The war on leukemia: How the battle for cell production could be decisive

By NEVAGiles23

PUBLIC RELEASE DATE:

18-Sep-2014

Contact: Luke Harrison l.harrison.1@bham.ac.uk University of Birmingham @unibirmingham

A key step in understanding the nature of the fight for superiority between mutated genes and normal genes could lead to new therapies to combat leukaemia, say researchers from the University of Birmingham and Newcastle University.

The study, published in Cell Reports, investigated Acute Myeloid Leukaemia to understand why leukemic cells are not able to develop normally into mature blood cells.

Stem cells in the bone marrow generate billions of different blood cells each day. The process resembles a production line with genes acting as regulators to control each step of the blood formation.

Leukaemia arises when the DNA encoding regulators in the stem cells is changed by a mutation. When a mutation occurs in the relevant regulator genes, the finely balanced order of the production line is disrupted with drastic consequences.

A chain reaction occurs, with the function of other regulators in the process being altered. The new cells no longer develop into normal blood cells, but leukemic cells that multiply and begin to take over the body.

Professor Constanze Bonifer, of the University of Birmingham, explained, "This particular leukaemia is characterised by a mutation in a gene that produces a rogue regulator. That is, one that is not normally made and behaves in a different way. The knock-on effect of that one mutation is huge."

The team showed that this aberrant regulator switches off hundreds of other genes, many of them regulators themselves, by using state of the art technology that looks at the activity of all genes within a cell. As a consequence of the drastically altered production line, normal blood formation cannot happen, and leukemic cells are formed.

Go here to see the original:
The war on leukemia: How the battle for cell production could be decisive

To Read More: The war on leukemia: How the battle for cell production could be decisive
categoriaBone Marrow Stem Cells commentoComments Off on The war on leukemia: How the battle for cell production could be decisive | dataSeptember 18th, 2014
Read All

Desperate search for bone marrow donor goes private for Mississauga woman

By LizaAVILA

MISSISSAUGA Dorothy Vernon-Brown is on the search of her life.

When she was diagnosed with acute myaloid leukemia in August, 2013, the Mississauga mother said it was like a huge kick in the gut.

She underwent chemotherapy shortly after the diagnosis, which helped her into remission, but to survive, she has been told her only chance is a bone marrow transplant.

Bone marrow cells rescue patients from the lethal effect of chemotherapy, says Vernon-Browns oncologist, Dr. Mark Minden.

Since starting a relationship with Canadas stem cell and marrow network, One Match, Vernon-Browns search has come up empty.

Vernon-Brown says she is desperate: Recent tests show lower white blood cell counts in her blood an indication the cancer may be coming back.

But shes also worried about how few donors are from the black community. Vernon-Brown has been told her chance of finding a compatible donor are one in 10,000.

Genetics are key in finding potential stem cell and bone marrow donors says, One Match patient and transplant liaison, MaryLynn Pride said.

There is only a 25 per cent chance that even a sibling will be a match, says Pride. We have patients from all ethnic communities that are currently in need of a stem cell transplant.

Black Canadians makes up only 1 percent of all Canadians registered as potential donors, according to Pride.

Link:
Desperate search for bone marrow donor goes private for Mississauga woman

To Read More: Desperate search for bone marrow donor goes private for Mississauga woman
categoriaBone Marrow Stem Cells commentoComments Off on Desperate search for bone marrow donor goes private for Mississauga woman | dataSeptember 17th, 2014
Read All

21 infused with new UM stem cell

By raymumme

Written by Lidia Dinkova on September 17, 2014

A partnership between University of Miami researchers and a Georgia-based biomedical company this month made a new type of stem cell commercially available for bone regeneration and healing.

The marrow-isolated adult multi-lineage inducible cell, known as the MIAMI cell, is the result of 15 years of research by the University of Miami.

Since the stem cell was made commercially available, about 21 patients have been treated with a MIAMI cell infusion.

We are controlling the release to make sure it goes very smoothly, said Tracy S. Anderson, president and CEO of Vivex Biomedical Inc.

Vivex invested in the research and development of the cell and licensed the technology from UM for orthopedic use. The company has contracted with the universitys tissue bank to develop the cell for commercial use and pays an undisclosed royalty back to UM from sales.

Before the MIAMI cell goes to full national release in January 2015, Vivex is controlling the use of the cell.

I am going very slowly and selectively with the surgeons we are working with, Mr. Anderson said. Anytime you have a new product like this, you have to make sure that it goes smoothly.

Mr. Anderson didnt want to disclose revenue generated from the sale of the MIAMI cell, only saying that it has been significant.

So far, the MIAMI cell has been used in bone regeneration and healing in Utah, Florida, Georgia, Michigan, Illinois and Ohio.

Read more from the original source:
21 infused with new UM stem cell

To Read More: 21 infused with new UM stem cell
categoriaBone Marrow Stem Cells commentoComments Off on 21 infused with new UM stem cell | dataSeptember 17th, 2014
Read All

Quebec leukemia patient Mai Duong finds stem cell donor

By JoanneRUSSELL25

A Quebec womans desperate, months-long search for a compatible stem cell or umbilical cord match is over.

Mai Duong, a 34-year-old Vietnamese-Canadian battling acute leukemia, announced Tuesday that she has finally found a match.

"I'm going to have the transplant and hopefully everything will go well and hopefully I'll have a new marrow," Duong tearfully told reporters Tuesday. "I just hope I'm going to beat cancer once and for all."

"A woman gave birth to her child and has donated her baby's umbilical cord to save another life," reads a post on the Save Mai Duong Facebook page. "Thank you dear mommy, we cannot fathom the importance of your gesture. I am very moved."

Duong beat cancer last year, after chemotherapy that she had to terminate a 15-week pregnancy to undergo.

She was in remission until May, when blood tests revealed the leukemia had returned.

"Seventy per cent of people who had that type of leukemia were just cured with chemotherapy and unfortunately I'm in the 30 per cent," she said at the time.

Doctors said Duong would need a bone marrow transplant or cord blood stem cells and she needed it fast. Despite being on the international list, doctors struggled to find a match.

Duong said, for people who aren't Caucasian, finding the right donor can be like searching for a needle-in-a-haystack.

"Less than one per cent of the 25 million donors worldwide are Vietnamese," she wrote on her website. "All ethnic communities are severely under-represented in the world donor bank, making finding a compatible donor very difficult for me and countless others who are currently waiting for a transplant."

Read the rest here:
Quebec leukemia patient Mai Duong finds stem cell donor

To Read More: Quebec leukemia patient Mai Duong finds stem cell donor
categoriaBone Marrow Stem Cells commentoComments Off on Quebec leukemia patient Mai Duong finds stem cell donor | dataSeptember 16th, 2014
Read All

Knee arthritis one year after bone marrow stem cells by Harry Adelson, N.D. – Video

By Dr. Matthew Watson


Knee arthritis one year after bone marrow stem cells by Harry Adelson, N.D.
Christine discusses her results of her stem cell injection by Dr Harry Adelson for her arthritic knees http://www.docereclinics.com.

By: Harry Adelson, N.D.

Go here to read the rest:
Knee arthritis one year after bone marrow stem cells by Harry Adelson, N.D. - Video

To Read More: Knee arthritis one year after bone marrow stem cells by Harry Adelson, N.D. – Video
categoriaBone Marrow Stem Cells commentoComments Off on Knee arthritis one year after bone marrow stem cells by Harry Adelson, N.D. – Video | dataSeptember 12th, 2014
Read All

BioEden's Chief Scientific Officer Says Viable Stem Cells Can Be Found in Adult Teeth

By raymumme

(PRWEB UK) 11 September 2014

Without doubt the best stem cells are those found in the baby teeth of young children.

Why? Apart from their unique ability to morph and change into other stem cells, thus treating a far wider range of illnesses and conditions, mesenchymal stem cells can proliferate outside the body, and where children are concerned no tooth extraction is needed as they fall out naturally. Above all it is important to remember that the best type of cells are those which are young, and therefore have not been contaminated by a lifetime of use and exposure.

So does that mean for adults there is no hope for stem cell retrieval from their adult teeth and little chance of success if they are needed in stem cell therapy?

Not necessarily, says Mike Byrom, Chief Scientific Officer at specialist tooth stem cell bank, BioEden.

Stem cell therapy is not a black and white type of event. There are varying degrees of success based on many factors of which the capacity of the cells is one. The functional capacity of a 44 year old cell is not as good as that of a 6 year old but that does not mean that they have no value. Our requirements for storing material mean that the cells demonstrate acceptable growth rates, expected cellular morphology and growth characteristics which indicate their ability to differentiate into tissue specific lineage cell types. If the cells do not meet our minimum criteria for usefulness we will not store them.'

Aside from these tests we cannot make any specific guarantees about the cells usefulness. Adults should not be put off attempting to store their stem cells and can have faith that if we successfully complete the process of stem cell extraction then the cells are of high enough quality to be useful should they be required.

BioEden do not make any charge for the process of harvesting stem cells where no viable stem cells can be found.

Read this article:
BioEden's Chief Scientific Officer Says Viable Stem Cells Can Be Found in Adult Teeth

To Read More: BioEden's Chief Scientific Officer Says Viable Stem Cells Can Be Found in Adult Teeth
categoriaBone Marrow Stem Cells commentoComments Off on BioEden's Chief Scientific Officer Says Viable Stem Cells Can Be Found in Adult Teeth | dataSeptember 12th, 2014
Read All

Study sheds light on how stem cells can be used to treat lung disease

By NEVAGiles23

PUBLIC RELEASE DATE:

9-Sep-2014

Contact: Lauren Anderson lauren.anderson@europeanlung.org 1-142-672-876 European Lung Foundation http://www.twitter.com/EuropeanLung

Munich, Germany: A new study has revealed how stem cells work to improve lung function in acute respiratory distress syndrome (ARDS).

Previous studies have shown that stem cells can reduce lung inflammation and restore some function in ARDS, but experts are not sure how this occurs. The new study, which was presented at the European Respiratory Society's International Congress today (09 September 2014), brings us a step closer to understanding the mechanisms that occur within an injured lung.

ARDS is a life-threatening condition in which the efficiency of the lungs is severely reduced. It is caused by damage to the capillary wall either from illness or a physical injury, such as major trauma. ARDS is characterised by excessive and dysregulated inflammation in the lung and patients require mechanical ventilation in order to breathe.

Although inflammation is usually a method by which the body heals and copes with an infection, when the inflammation is dysregulated it can lead to severe damage. Immune cells known as macrophages can coordinate the inflammatory response by driving or suppressing inflammation, depending on the stimulation.

The researchers investigated whether stem cells can affect the stimulation of the macrophages and promote the state in which they will suppress the inflammation.

They tested this in an animal model using human bone marrow-derived stem cells. Mice were infected with live bacteria to induce acute pneumonia and model the condition of ARDS. The results showed that treatment with stem cells led to significant reductions in lung injury, inflammation and improved bacterial clearance. Importantly, when stem cells were given to animals that had their macrophages artificially removed, the protective effect was gone. This suggests that the macrophages are an important part of the beneficial effects of stem cells seen in this model of ARDS.

These results were further supported by experiments where stem cells were applied to human macrophages in samples of fluid taken from lungs of patients with ARDS. Again, the stem cells were able to promote the anti-inflammatory state in the human macrophage cells. The authors have identified several proteins, secreted by the stem cells, that would be responsible for this effect.

Link:
Study sheds light on how stem cells can be used to treat lung disease

To Read More: Study sheds light on how stem cells can be used to treat lung disease
categoriaBone Marrow Stem Cells commentoComments Off on Study sheds light on how stem cells can be used to treat lung disease | dataSeptember 9th, 2014
Read All

One Lucky Little Girl

By JoanneRUSSELL25

CHILHOWIE, Va. You wouldnt think from seeing her smile and watching her run and play that there is anything wrong with 5-year-old Nevaeh Bruner of Chilhowie.

But shes lucky to be alive and faces a lengthy procedure that could be her only chance for survival.

Pam Troxel Buchanan, the little girls great aunt, and Donna Hamm, her great-great aunt, are taking care of Nevaeh and tear up just thinking about what this little girl has been through and what she faces in her fight to live.

She is a very strong little girl. I couldnt do it, said Buchanan.

Nevaeh has been diagnosed with aplastic anemia, a rare disease that causes a complete failure of production of all types of blood cells. As a result, the bone marrow contains large numbers of fat cells instead of the blood-producing cells that would normally be present. It is a potentially fatal blood disease in which there are not enough stem cells in the bone marrow or the stem cells have stopped working effectively.

Buchanan said that last November Nevaehs teacher at Chilhowie Elementary School noticed bruising on her body. She had shown no other symptoms of illness, Buchanan said, so her parents were advised to take her to Niswonger Childrens Hospital in Johnson City, Tennessee, where there is a St. Jude affiliate clinic.

Buchanan said they spent a month running tests and the doctors told Nevaehs parents that her blood count was so low that she would not have lived much longer had she not received treatment. The little girl, who was 4-years-old at the time, has undergone numerous procedures, including surgery, transfusions, chemotherapy and radiation. She is taking oral chemotherapy and having blood transfusions as needed, but she is being weaned off the chemo to undergo a bone marrow transplant.

The chemo is also causing her kidneys to malfunction, bringing her close to kidney failure, Buchanan said.

She will always be in stage two kidney disease, Buchanan said. She will have sensitive kidneys and have to live with that.

The only option at this point is a bone marrow transplant, Buchanan said. Two donor matches have been found and the procedure will take place at St. Jude in Memphis, Tennessee, at the end of this year or next spring, Buchanan said.

Read the original here:
One Lucky Little Girl

To Read More: One Lucky Little Girl
categoriaBone Marrow Stem Cells commentoComments Off on One Lucky Little Girl | dataSeptember 9th, 2014
Read All

Help Anthony Nolan save a life at 16

By JoanneRUSSELL25

So, when teenagers receive their National Insurance number through the post, why not also include an invitation to join the Anthony Nolan bone marrow register, and give them a chance to save a life at 16?

Email your MP to ask them to support Anthony Nolan's plan

Stem cell donations can play a crucial role in the treatment of blood cancers such as leukaemia and non-Hodgkin's lymphoma. In the UK each year 2,000 people with blood cancer need a donation of healthy cells, and every single one of them depends on the kindness of a stranger. This is where the Anthony Nolan register comes in.

When a patient needs a lifesaving transplant, their medical team works with us to find a match.

Today there are over half a million people on our donor register. That number grew by 55,000 names last year.

But only six per cent of those donors are aged between 16 and 20, and we need many more in this age group to come forward. We know that young people are more likely to be chosen by doctors as donors for people with blood cancer.

This is why Anthony Nolan recruits young people from the age of 16 and why sending registration information with National Insurance numbers could be such an important move.

Similar measures have been taken before. The Driver and Vehicle Licensing Agency includes information on organ donation when it delivers new driving licences. This is an innovative way to get individuals to think about a small but significant commitment they can make to help others.

Young people such as Victoria Rathmill and Celyn Evans are ground-breakers, and should be applauded as pioneers. What they have done takes courage. But the point of being a pioneer is to forge a path that others will follow. Our proposal, a simple awareness-raising measure, will help a great many people. It won't even cost the taxpayer a penny, as all expenses will be paid by Anthony Nolan.

We already have over 530,000 incredible people on our register, which is an amazing achievement. Sadly, its not enough. If we are to find a match for every person who needs one, we urgently need more people in their teens and twenties to sign up in the fight against blood cancer. By taking on our proposal, the Government can make it easier for young people to do just that.

Read this article:
Help Anthony Nolan save a life at 16

To Read More: Help Anthony Nolan save a life at 16
categoriaBone Marrow Stem Cells commentoComments Off on Help Anthony Nolan save a life at 16 | dataSeptember 8th, 2014
Read All

Stem cells could cut high rate of cornea transplant rejection

By Sykes24Tracey

Human trials on the effectiveness of using adult stem cells in the fight against cornea transplant rejection could be under way within the next five years.

Corneal eye disease is the fourth most common cause of blindness in the world and affects more than 10 million people worldwide. New research from NUI Galway has found that transplant rejection rates could be reduced to as low as 10% by administering a stem cell grown from the bone marrow of adult donors.

Although 100,000 people worldwide undergo cornea transplants each year, about 30% are unsuccessful due to rejection by the patients own immune system.

An unhealthy cornea affects vision by scattering or distorting light and causing glare and blurred vision.

Corneal transplants are the most widely used treatments where the diseased or scarred cornea is replaced with healthy tissue from an organ donor.

Researchers from NUI Galways Regenerative Medicine Institute previously found that mesenchymal stem cells (MSC) release chemicals capable of adjusting the immune system balance in the body.

The cells can be readily obtained and grown from the bone marrow of adult donors and the finding led them to study their usefulness in combating cornea transplant rejection.

The teams lead scientist, Dr Oliver Treacy, said the model system they developed led to an increase in cells called regulatory T-cells, which dampen down inflammation, and a decrease in the number of natural killer cells, key players in the rejection process.

Consultant ophthalmologist at Galway University Hospital, Gerry Fahy, who was involved in the study, said corneal transplant rejection could result in blindness and was not uncommon in high-risk patients.

This important research presents a potentially new avenue of treatment to prevent transplant rejection and save vision in this vulnerable group of patients, said Mr Fahy.

Go here to see the original:
Stem cells could cut high rate of cornea transplant rejection

To Read More: Stem cells could cut high rate of cornea transplant rejection
categoriaBone Marrow Stem Cells commentoComments Off on Stem cells could cut high rate of cornea transplant rejection | dataSeptember 7th, 2014
Read All

Page 118«..1020..117118119120..130140..»


Copyright :: 2024