Page 117«..1020..116117118119..130140..»

The Future of Stem Cells: Opportunities at the Cutting Edge of Science

By raymumme

Stem cell technology representsone of the most fascinating and controversial medical advances of the past several decades. By now the enormous controversy which surrounded the use of federal funds to conduct scientific research on human stem cells during the George W. Bush administration has largely blown over. Five years have passed since President Obama lifted federal funding restrictions, and amazing progress has already been made in the field.

One can make a good case for stem cells being the most fascinating and versatile cells in the human body. This is precisely due to their stem role. In their most basic form, theyre capable of both replicating themselves an unlimited number of times and differentiating themselvesinto a huge number of other cell types. Muscle cells, brain cells, organ cells, and many others can all be created from stem cells. If youre interested, the NIH has an awesome introductionon stem cells on their website.

The question which has arisen since the discovery of thisamazing cell type has been how to harness their power and versatility. This is the primary focus of research today: how can we precisely control stem cells to perform whatever tasks we need them to do? Of course, other important issues, such as figuring out thebest places from which to harvest stem cells,exist.

Because of their role in the body, the number of potential applications for stem cells are truly stunning. From building custom cell clusters with 3D printers to curing a variety of diseases through bone marrow transplants, growingorgans for transplants, andeven growing edible meat, research is progressing at a frantic pace.

There are two particular areas of research which seem to hold the greatest promise at this point. The first is organs. Anyone who has ever been involved in an organ transplant knows how incredibly complex and difficult the process is. But difficulties like finding the right donor, preserving the organ, and finding enough supply to meet the incredible demand could all be overcome if we could simply use stem cells to grow a custom organ for each transplant from scratch.

Besides this perhaps science-fiction-sounding process of growing organs, theres also incredible excitement surrounding the potential of bone marrow transplants to cure diseases like HIVand Leukemia. This is done by implanting stem cells containing genetic mutations which confer immunity to a variety of diseases into a patients bone marrow, where they can begin naturally replicating and affecting the immune system.

Thisprocedurealso covers transplants designed simply to reintroduce healthy stem cells to help tackle a wider variety of ailments. Often, referred to as regenerative medicine as itinvolves stimulating the bodys preexisting repair mechanisms to help the healing process,thisprocedurealso offer great promise.

Naturally, the speed at which advances are being made in the field has led to problems as well. One recent well-publicized study which seemed to point to the possibility of achieving stimulus-triggered acquisition of pluripotency (essentially demonstrating a new type of stem cells) is now believedto have beenfraudulent.

See original here:
The Future of Stem Cells: Opportunities at the Cutting Edge of Science

To Read More: The Future of Stem Cells: Opportunities at the Cutting Edge of Science
categoriaBone Marrow Stem Cells commentoComments Off on The Future of Stem Cells: Opportunities at the Cutting Edge of Science | dataJanuary 13th, 2015
Read All

Research and Markets: U.S. Orthopedic Biomaterials Market – 2015 Executive Summary

By LizaAVILA

DUBLIN--(BUSINESS WIRE)--Research and Markets (http://www.researchandmarkets.com/research/kn8svz/u_s_orthopedic) has announced the addition of the "U.S. Orthopedic Biomaterials Market - 2015 (Executive Summary)" report to their offering.

The fastest growing segments involve stem cells, namely the segments for stem cell bone grafts and concentrated bone marrow. The products within these markets offer the greatest regenerative potential for healing bone.

Orthopedic biomaterial products compete with products that are more established and less expensive. Thus, clinical evidence is often an important deciding factor for orthopedic biomaterials over conventional forms of therapy especially in regards to reimbursement. However, the promise seen in some products such as bone marrow concentrate generates growth despite a lack of clinical evidence and reimbursement.

Key Topics Covered:

For more information visit http://www.researchandmarkets.com/research/kn8svz/u_s_orthopedic

See the original post:
Research and Markets: U.S. Orthopedic Biomaterials Market - 2015 Executive Summary

To Read More: Research and Markets: U.S. Orthopedic Biomaterials Market – 2015 Executive Summary
categoriaBone Marrow Stem Cells commentoComments Off on Research and Markets: U.S. Orthopedic Biomaterials Market – 2015 Executive Summary | dataJanuary 13th, 2015
Read All

MEN Comment: Join Jason Manford in donating to Anthony Nolan donor scheme

By Dr. Matthew Watson

Proud new dad Jason Manford has shared his baby joy over the weekend after welcoming his fifth child into the world.

But the birth has also given the comic and his girlfriend Lucy the opportunity to save a life.

The couple decided to take the unusual step of donating the umbilical cord and placenta to the Anthony Nolan Trust after meeting its team at St Marys Hospital.

The charity helps people with blood cancers matching them with donors if they need a stem cell, bone marrow or cord blood transplant.

It runs an umbilical cord and placenta collection programme in eight hospitals across the country, including St Marys.

Specialists collect the umbilical cord and placenta from donors after the birth and, instead of throwing them away, extract blood from them.

Stem cells in cord blood are adaptable which makes finding matches for donors easier and, as they are stored in a bank, they are available straight away.

Its a fantastic scheme and Jason has done a great service by raising awareness of it. Wed encourage any expecting parents to follow in his footsteps and find out more.

To find out more, go to their website.

VIEW GALLERY

Excerpt from:
MEN Comment: Join Jason Manford in donating to Anthony Nolan donor scheme

To Read More: MEN Comment: Join Jason Manford in donating to Anthony Nolan donor scheme
categoriaBone Marrow Stem Cells commentoComments Off on MEN Comment: Join Jason Manford in donating to Anthony Nolan donor scheme | dataJanuary 12th, 2015
Read All

Bedford clinic seeks stem cell match for man with leukemia

By raymumme

If youre between 17 and 35 years old, you may be able to save Chris LeBruns life.

LeBrun, 48, was diagnosed with leukemia last May. The accountant and father of two learned last fall that he needs a stem cell donation to beat the disease.

But the donor cant be just anyone. It has to be someone who is a match for the genetic markers in the proteins of LeBruns white blood cells.

That sounds complicated, but the test to find a genetic match is quite simple. Just by swiping the inside of the mouth with a cotton swab, enough cells are collected to determine whether a match has been found.

Donors between 17 and 35 are accepted, and males are preferred, as transplants from men tend to be more successful.

On Saturday in Bedford, 36 people joined the stem cell registry through Canadian Blood Services to try to help LeBrun and others with certain forms of cancer, bone marrow deficiency diseases, anemia and other immune system and metabolic disorders.

LeBrun lives in Cambridge, Ont., but has deep ties to Nova Scotia, says his longtime friend, Barb Leighton.

Leighton describes her friend as a community leader who volunteers tirelessly for causes that are important to him.

Hes very quiet, very humble, very modest, not at all for attention. Complete, pure altruism, she says.

It seems that LeBruns community spirit runs in the family. His great-uncle, Gerald LeBrun, was a well-regarded Bedford doctor who regularly made house calls long after that practice fell out of fashion. Saturdays stem cell clinic was held at the LeBrun Recreation Centre, which was named after the doctor.

Read more here:
Bedford clinic seeks stem cell match for man with leukemia

To Read More: Bedford clinic seeks stem cell match for man with leukemia
categoriaBone Marrow Stem Cells commentoComments Off on Bedford clinic seeks stem cell match for man with leukemia | dataJanuary 11th, 2015
Read All

More on this story:

By NEVAGiles23

The first bone marrow donors inspired by toddler Margot Martini have donated their stem cells.

Margot, who lost her battle with leukaemia last year after a worldwide search for a donor, inspired thousands of people in the UK to join the stem cell register.

The two-year-old's father, Yaser, has just learnt the donor drive has now flagged up its first two matches with people in need of bone marrow donation.

Mr Martini said: "The response to Margots donor appeal saw more than 35,000 people joined the UK register as potential stem cell donors. As a result, statistically this means that over the next 10 years, more than 500 people will now have the option of a potentially life saving bone marrow transplant.

"Delete Blood Cancer UK inform us that the first of the Team Margot registrants has actually donated their stem cells to a patient in need, which heralds Margots legacy.

"And it gets better: the second Team Margot donor is scheduled to give bone marrow later this month.

"Thank you so much to everyone who has registered and to all those who are encouraging just one more to do the same."

Margot's mother Vicki grew up in Essington and has family across Wolverhampton.

Read the rest here:
More on this story:

To Read More: More on this story:
categoriaBone Marrow Stem Cells commentoComments Off on More on this story: | dataJanuary 10th, 2015
Read All

Health Beat: Stem cells: A weapon for Huntington's?

By Sykes24Tracey

SAN FRANCISCO -

Mike Hinshaw and Katie Jackson have been a couple since college, but they've known each other much longer.

"We've been together forever. I've actually known Mike since I was five years old," Jackson said.

A marriage and three kids later, they've been through good times and bad. The worst came nine years ago when Hinshaw found out he had Huntington's disease.

"My father had it. He died from it," Hinshaw explained.

Huntington's causes uncontrollable movements and mental decline. There's no cure.

"Unfortunately, it ends in death. It's a fatal disease," said Dr. Vicki Wheelock, neurologist, health sciences clinical professor of neurology and director of HDSA Center of Excellence at UC Davis.

Now, researchers are gearing up for a new trial in humans. Patients will have special bone marrow stem cells injected directly into their brains.

"We've engineered them to make a growth factor that's like a fertilizer for the neurons," said Dr. Jan Nolta, professor and director of the Institute for Regenerative Cures at UC Davis.

That growth factor, BDNF, restored healthy brain cells and reduced behavior deficits in mice. Researchers hope the stem cells will also be the answer to slowing the disease in humans.

Read the original:
Health Beat: Stem cells: A weapon for Huntington's?

To Read More: Health Beat: Stem cells: A weapon for Huntington's?
categoriaBone Marrow Stem Cells commentoComments Off on Health Beat: Stem cells: A weapon for Huntington's? | dataJanuary 6th, 2015
Read All

Bone marrow and stem cell transplants for chronic myeloid …

By LizaAVILA

Stem cells are very early blood cells. They are normally found in the bone marrow. Doctors use growth factor injections to make some of them move into the bloodstream. This makes it easier to collect them. You have growth factors as an injection just under the skin, usually in your tummy (abdomen), or into an arm or a leg. You have these once a day, for up to 10 days at a time and can learn to give them yourself at home.

Growth factor injections can cause itching around the injection site. You may have some aching in your bones after you have had a few injections. This is because there are a lot of blood cells being made inside the bones. The aching is usually easy to control with a mild painkiller, such as paracetamol. The pain will go away after a day or so.

After your course of injections, you will have regular blood tests to see how many stem cells are in your blood. When there are enough, you will have them collected. Collecting stem cells takes 3 or 4 hours. You sit in a chair or lie down on a couch and have a fine tube put into a vein in each of your arms. The nurse attaches these to a machine called a stem cell separator. Your blood passes out of one drip, through the machine and back into your body through the other drip. The machine filters the stem cells out of your blood but gives you the rest of the cells and the plasma back. The donor stem cells are frozen and stored. Most donors need to have another collection the following day, to make sure there are enough cells.

Read more:
Bone marrow and stem cell transplants for chronic myeloid ...

To Read More: Bone marrow and stem cell transplants for chronic myeloid …
categoriaBone Marrow Stem Cells commentoComments Off on Bone marrow and stem cell transplants for chronic myeloid … | dataJanuary 3rd, 2015
Read All

Teenager celebrating New Year after being given the gift of life

By LizaAVILA

IT was a wish that most teenagers take for granted.

Under-going gruelling treatment for a rare form of leukaemia in a hospital isolation chamber, Kitty Aplin-Haynes longed for the freedom to live life to the full like most girls her age.

But the cancer, which had spread to her brain and central nervous system, was so aggressive, her only hope of that freedom was a life-saving bone marrow transplant.

However, today the 18-year-old is at home and her wish has come true.

She can now look forward to laughing with friends and starting college after being told she is in remission thanks to the ultimate gift from a stranger, the gift of life.

Kitty is recovering after the bone marrow transplant plus a second procedure to boost her immune system from the same anonymous donor and she has another reason to smile.

Campaign Her family and friends desperate campaign to raise awareness of her plight will also save other lives as more than 130 people have signed up to the bone marrow register.

Kitty said: Many young people die waiting for a donor because only half of those who need a bone marrow transplant every year in the UK are lucky enough to find a match so I feel incredibly lucky.

Im overwhelmed my donor has donated his stem cells to me, not once, but twice.

Read the original post:
Teenager celebrating New Year after being given the gift of life

To Read More: Teenager celebrating New Year after being given the gift of life
categoriaBone Marrow Stem Cells commentoComments Off on Teenager celebrating New Year after being given the gift of life | dataJanuary 2nd, 2015
Read All

Down to the Bone: The Need for API Bone Marrow Donors

By raymumme

Anyone can be a bone marrow donor, but when it comes to finding a match, race can be everything. There are certain genetic markers that doctors will look for when searching for a match -- and if a match is made, a transplant can then be scheduled. If someone is in need of a transplant, the process can be daunting, especially if there is only a small pool of donors that share a similar ethnicity.

There are many bone marrow donor services throughout the country, but the Asian American Donor Program (AADP) is a champion nonprofit dedicated to increasing the availability of potential stem cells donors for patients with life threatening diseases curable by a stem cell transplant. Based in Alameda, CA, AADP holds donor registration drives and outreach events to Asian, Pacific Islander, and mixed race communities in the Bay Area.

Stem cells are found inside bone marrow, and those cells can turn into red blood cells, white blood cells and platelets. AADP explains that red blood cells carry oxygen throughout the body; white blood cells help fight infections; and platelets help control bleeding. Diseases like leukemia, sickle cell anemia, blood cancers, and many other immune diseases can be treated with a bone marrow or stem cell transplant. This soft tissue is incredibly important to our health.

To learn more about why bone marrow donation is important, and why it is particularly important in Asian Pacific American and mixed race communities, I reached out to Ruby Law, AADP's Recruitment Director.

Hyphen: When does one need a bone marrow donation, and what does it do?

Ruby Law: Disease can affect the marrows ability to function. When this happens, a bone marrow or cord blood transplant could be the best treatment option. For some diseases, transplant offers the only potential cure. A bone marrow or cord blood transplant replaces unhealthy blood-forming cells with healthy ones. Blood-forming cells are also called blood stem cells. Blood stem cells are immature cells that can grow into red blood cells, white blood cells and platelets. Every year, 12,000 patients with blood diseases such as leukemia and lymphoma, sickle cell and other life-threatening diseases need a bone marrow or umbilical cord blood transplant.

Hyphen: Why is bone marrow donation important for Asian Pacific American and mixed-Asian Pacific Americans communities to address in discussions about health?

RL: A patient needs a matching donor for a successful transplant. The closer the match, the better for the patient. Patients are more likely to match someone from their own race or ethnicity. For example a Chinese patient will most likely need a Chinese donor, while a Japanese patient will most likely need a Japanese donor. Out of 10 million registrants in the United States, only 7% of the registrants are Asian and only 4% are of mixed race. Most Asian or Mixed Asian patients cannot find any matching donor in the registry because there are not enough Asian, mixed Asian and minority donors.

Ruby Law, Asian American Donor Program (AADP) Recruitment Director

More:
Down to the Bone: The Need for API Bone Marrow Donors

To Read More: Down to the Bone: The Need for API Bone Marrow Donors
categoriaBone Marrow Stem Cells commentoComments Off on Down to the Bone: The Need for API Bone Marrow Donors | dataDecember 31st, 2014
Read All

Andrew donates bone marrow after hearing about brave boy

By raymumme

KINDHEARTED Andrew Gibson is giving somebody the gift of life, after being inspired by a workmates little boy.

Andrew, 29, from Southend, signed up to the bone marrow transplant register after hearing about 21-month-old Jack Kleinberg.

Jack, of St James Gardens, Westcliff, is facing the second bone marrow transplant in his short life to help him beat two life-threatening conditions.

His parents are hoping the op will fight the effects of Wiskott Aldrich syndrome and familial Mediterranean fever.

After hearing Jacks story, from Jacks mum, Vicki Parrott, a workmate at the Hood Groups Southend insurance office, Andrew donated stem cells for use by an un-named patient in need.

Andrew was disappointed to learn he wouldnt be a match for Jack, but decided to go ahead all the same and Ms Parrott is delighted her son's example is helping others in need.

She said: At the office Christmas party, I found out Andrew, who had joined the Anthony Nolan bone marrow register when Jack first got ill, was recently called up as a match. He donated his stem cells a month ago to a stranger.

I couldn't believe it. I was so emotional and hugged him loads. I dont know if well ever meet Jacks donor, so this is the closest thing weve had.

Its overwhelming to think theres someone out there whos had a second chance at life because of Jacks story. Itsmade my year.

Andrew said: There was an email going around at work, urging people to sign up to the Anthony Nolan register, as a way of showing our support for Vicki and her son Jack, who had just been diagnosed. Id never heard of Anthony Nolan before, but I didnt hesitate. Seeing Vicki at the Christmas party really made it sink in what Id done. It was an emotional moment and it was clear how much it meant to her.

Continue reading here:
Andrew donates bone marrow after hearing about brave boy

To Read More: Andrew donates bone marrow after hearing about brave boy
categoriaBone Marrow Stem Cells commentoComments Off on Andrew donates bone marrow after hearing about brave boy | dataDecember 31st, 2014
Read All

Stem cell registry will make cancer treatment cheaper

By Sykes24Tracey

NEW DELHI: India may soon have an official database on stem cell donors and recipients. The health ministry is evaluating a proposal along with All India Institute of Medical Sciences (AIIMS) to create a donor registry as part of the National Health Mission (NHM), a senior official told TOI.

The proposal suggests enrolling all district hospitals in the first phase to seek stem cell details from across the country. "Once a stem cell donor registry is in place, a willing donor can be contacted and one can coordinate easily. Also, this would enhance access to safe blood," the official said.

Stem cells, found in bone marrow, are like building blocks which can grow into any normal cell of the body such as red blood cells to carry oxygen, white blood cells to fight infection, or platelets to stop bleeding.

Apart from the donor registry, the ministry is also looking at creating facilities for human leucocyte antigen (HLA) typing. HLA-typing is a process conducted for matching donors and recipients of stem cell. HLA-typing is necessary to minimize rejection of stem cell transplant, experts say.

Once created, this would be the first government registry in the country. Till now, such registries have been run in the country by a few NGOs such as Bharat Stem Cells.

According to Bharat Stem Cells, there is usually 25% chance of a patient finding a matching donor within the family. The rest depend on unrelated voluntary stem cell donors.

Stem cell therapy has been shown to be effective in various blood disorders and in treatment of cancer. It is widely used in bone marrow transplantation. However, stem cell treatment remains expensive because of limited research as well as unavailability and lack of coordination between donors and recipients. Some private hospitals charge as much as Rs 1 lakh per session for stem cell therapy. On an average, stem cell treatment is estimated to cost around Rs 15-16 lakh.

According to the official, the idea behind including stem cell into NHM is to make it affordable by creating records and providing facilities.

Stay updated on the go with The Times of Indias mobile apps. Click here to download it for your device.

More:
Stem cell registry will make cancer treatment cheaper

To Read More: Stem cell registry will make cancer treatment cheaper
categoriaBone Marrow Stem Cells commentoComments Off on Stem cell registry will make cancer treatment cheaper | dataDecember 30th, 2014
Read All

Malones donate $42.5 million to CSU for new stem-cell research facility

By Dr. Matthew Watson

John and Leslie Malone pose with Maikel at Harmony Sporthorses, December 2, 2014.

The largest ever cash donation to Colorado State University stems from a novel treatment to get a dressage horse with a bum knee back into the show ring.

John and Leslie Malone's $42.5 million gift, announced Monday, will create the CSU Institute for Biologic Translational Therapies in the College of Veterinary Medicine and Biomedical Sciences, a 100,000-square-foot facility to develop stem-cell research into commercially viable treatments for animals and humans.

"This is the largest cash gift in the history of the university and it's absolutely staggering," said Brett Anderson, CSU's vice president for advancement. "It really allows us to be the best in the nation."

The Malone money will fund half of the $65 million cost to construct the facility. The school is looking for more donations to match the Malones' contribution. So far, an additional $10 million has been raised.

The Malones also provided $10 million to cover the Institute's operating expenses once the facility is built.

"The Malones have been so gracious. We asked them if they want to put their name on the building, but they said if it's helpful to you in order to get another major donor, we are happy to let you name it for someone else," Anderson said. "They are an incredible couple."

John Malone, who made his millions at the helm of Tele-Communications Inc. and now chairs the giant Liberty Media Corp., and his wife, Leslie, could not be reached for comment on Monday.

The Malones, who raise and train dressage and jumping horses on a ranch near Kiowa, last year donated $6 million to the school to establish the Leslie A. Malone Presidential Chair in Equine Sports Medicine.

They later brought Blixt, their dressage horse with a bad knee, to the vet school's Orthopaedic Research Center.

Here is the original post:
Malones donate $42.5 million to CSU for new stem-cell research facility

To Read More: Malones donate $42.5 million to CSU for new stem-cell research facility
categoriaBone Marrow Stem Cells commentoComments Off on Malones donate $42.5 million to CSU for new stem-cell research facility | dataDecember 30th, 2014
Read All

Freezing newborns own stem cells for possible future use

By JoanneRUSSELL25

CORDLIFE is now the largest network of private cord blood banks in Asia Pacific with state-of-the-art cord-blood and tissue processing and cryopreservation facilities in the country.

Once considered a medical waste, the blood left in the umbilical cordthe part of the placenta that delivers nutrients to a fetusafter a baby is delivery is now known to be a rich source of blood-forming stem cells.

These cells have been found to be potentially useful in treating diseases that require stem cell transplants (also called bone marrow transplants) such as certain kinds of leukemia or lymphoma, aplastic anemia (a blood disorder in which the bodys bone marrow doesnt make enough new blood cells), severe sickle cell disease and severe combined immunodeficiency.

Unlike with bone marrow, which is obtained through a painful medical procedure, there is only one chance to collect this seemingly precious stuff: immediately after the babys birth.

This is why a number of expectant parents in the country are being offered a chance to save stem cells from their babys umbilical cord blood via what is known as cord-blood banking.

Safeguard

Cordlife Philippines medical director Arvin Faundo said: Its a type of safeguard because the genetically unique stem cells have current and potential uses in medical treatment. No parent wishes his/her child to experience the heartbreaking effects of any illness. What we at Cordlife offer them is the chance to prepare for potential eventualitiesto secure the future well-being and happiness of their family.

Cordlife Philippines is a subsidiary of Cordlife Group Ltd., a company listed on the Singapore Exchange. Launched in February 2010 as the Philippines first and only cord-blood processing and cryopreservation facility, its facility was ISO-certified and built in accordance to global gold standards such as the American Association of Blood Banks.

The 365-day facility, located within UP-Ayala Land TechnoHub in Quezon City, is equipped with the worlds most advanced fully automated cord-blood processing system, the Swiss-made Sepax.

CordLife uses the US FDA-approved cryogenic storage pouch.

Read more here:
Freezing newborns own stem cells for possible future use

To Read More: Freezing newborns own stem cells for possible future use
categoriaBone Marrow Stem Cells commentoComments Off on Freezing newborns own stem cells for possible future use | dataDecember 26th, 2014
Read All

Brother's transplant holds the gift of life for Densley family

By LizaAVILA

Hard road: Cooper Densley gets a kiss from mother Olivia as brothers Jackson (left), and Fletcher play around him with father Andrew (right). Photo: Simon O'Dwyer

Santa Claus delivered some wonderful gifts to Cooper Densley this year, but none of them compare to one he received from his brother Jackson in October.

In a potentially life-saving exchange, Jackson Densley, 2, donated stem cells found in his bone marrow to his older brother Cooper, 4, three months ago.

Their parents,Oliviaand AndrewDensley, are hoping the transplant will help cure Cooper of a rare genetic condition he was diagnosed with last year: Wiskott-Aldrich Syndrome.

The disorder weakens the immune system, leaving sufferers vulnerable to infections, and it reduces the production of platelets - blood cells that keep bleeding under control.

Advertisement

It means children suchasCooper can get extremely sick from common coughs and colds and a knock to the head while playing sport could trigger fatal bleeding in the brain.

The only known treatment is a stem cell transplant which can be derived from bone marrow or umbilical cord blood from a healthy donor whose tissue matches that of the recipient. When those cells are put in to the recipient's bloodstream, they can develop into normal immune cells and platelets.

Without a donation, the average life expectancy for people with the condition is 15 to 20 years.

Shortly after Mr and MrsDensleywere told about Cooper's diagnosis in 2013, MrsDensleyfell pregnant with their fifth baby, prompting hope blood from their newborn's umbilical cord could provide stem cells for Cooper.

Continue reading here:
Brother's transplant holds the gift of life for Densley family

To Read More: Brother's transplant holds the gift of life for Densley family
categoriaBone Marrow Stem Cells commentoComments Off on Brother's transplant holds the gift of life for Densley family | dataDecember 26th, 2014
Read All

Did stem cells really help Gordie Howe?

By LizaAVILA

Dr. Murray Howe and his hockey great father, Gordie Howe, on a fishing trip in Saskatchewan in 2013.

Hockey legend Gordie Howe is making a dramatic recovery from a serious stroke thanks to stem cell therapy developed by San Diego-based Stemedica, his family says. Some medical scientists aren't so sure, however.

Howe, 86, suffered the stroke in late October, leaving him unable to walk and disoriented. He began improving within hours after receiving the stem cells in early December, said Dr. Murray Howe, a radiologist and one of Howes sons. For example, Howe insisted on walking to the bathroom, which he previously could not do.

"If I did not witness my father's astonishing response, I would not have believed it myself," Murray Howe said by email Thursday. "Our father had one foot in the grave on December 1. He could not walk, and was barely able to talk or eat."

"Our father's progress continues," the email continued. "Today, Christmas, I spoke with him on FaceTime. I asked him what Santa brought him. He said 'A headache.' I told him I was flying down to see him in a week. He said, 'Thanks for the warning.'"

Howe is receiving speech and physical therapy at his home in Lubbock, Texas, and his therapists say he is much better than before receiving the stem cells.

Howe received the treatment from Novastem, a Mexican stem cell company that has licensed the use of Stemedica's cells for clinical trials approved by the Mexican government. Howe was given neural stem cells to help his brain repair damage, and stem cells derived from bone marrow to improve blood circulation in the brain. The procedure took place at Novastem's Clinica Santa Clarita in Tijuana.

Such use of unproven stem cell therapies outside the U.S. clinical trial system draws objections from some American health care professionals. They warn of the potential for abuse, say there's a lack of rigorous scientific standards, and call for tighter federal regulation of the proliferation of stem cell treatments.

Nevertheless, patients with ailments that don't response to approved treatments continue to seek such care. These patients and families say they have the right to make their own judgments. And they may not have time to wait for proof, so they're willing to take a chance.

Stemedica says it follows U.S. government law, and requires those licensing its stem cells in foreign countries to obey the laws of those countries.

See the original post here:
Did stem cells really help Gordie Howe?

To Read More: Did stem cells really help Gordie Howe?
categoriaBone Marrow Stem Cells commentoComments Off on Did stem cells really help Gordie Howe? | dataDecember 26th, 2014
Read All

New Technique for Bioengineering Stem Cells Shows Promise in HIV Resistance

By Sykes24Tracey

Sacramento, Calif. (PRWEB) December 22, 2014

Using modified human stem cells, a team of UC Davis scientists has developed an improved gene therapy strategy that in animal models shows promise as a functional cure for the human immunodeficiency virus (HIV) that causes AIDS. The achievement, which involves an improved technique to purify populations of HIV-resistant stem cells, opens the door for human clinical trials that were recently approved by the U.S. Food and Drug Administration.

We have devised a gene therapy strategy to generate an HIV-resistant immune system in patients, said Joseph Anderson, principal investigator of the study and assistant professor of internal medicine. We are now poised to evaluate the effectiveness of this therapy in human clinical trials.

Anderson and his colleagues modified human stem cells with genes that resist HIV infection and then transplanted a near-purified population of these cells into immunodeficient mice. The mice subsequently resisted HIV infection, maintaining signs of a healthy immune system.

The findings are now online in a paper titled Safety and efficacy of a tCD25 pre-selective combination anti-HIV lentiviral vector in human hematopoietic stem and progenitor cells, and will be published in the journal Stem Cells.

Using a viral vector, the researchers inserted three different genes that confer HIV resistance into the genome of human hematopoietic stem cells cells destined to develop into immune cells in the body. The vector also contains a gene which tags the surface of the HIV-resistant stem cells. This allows the gene-modified stem cells to be purified so that only the ones resistant to HIV infection are transplanted. The stem cells were then delivered into the animal models, with the genetically engineered human stem cells generating an HIV-resistant immune system in the mice.

The three HIV-resistant genes act on different aspects of HIV infection one prevents HIV from exposing its genetic material when inside a human cell; another prevents HIV from attaching to target cells; and the third eliminates the function of a viral protein critical for HIV gene expression. In combination, the genes protect against different HIV strains and provide defense against HIV as it mutates.

After exposure to HIV infection, the mice given the bioengineered cells avoided two important hallmarks of HIV infection: a drop in human CD4+ cell levels and a rise in HIV virus in the blood. CD4+ is a glycoprotein found on the surface of white blood cells, which are an important part of the normal immune system. CD4+ cells in patients with HIV infection are carefully monitored by physicians so that therapies can be adjusted to keep them at normal level: If levels are too low, patients become susceptible to opportunistic infections characteristic of AIDS. In the experiments, mice that received the genetically engineered stem cells and infected with two different strains of HIV were still able to maintain normal CD4+ levels. The mice also showed no evidence of HIV virus in their blood.

Although other HIV investigators had previously bioengineered stem cells to be resistant to HIV and conducted clinical trials in human patients, efforts were stymied by technical problems in developing a pure population of the modified cells to be transplanted into patients. During the process of genetic engineering, a significant percentage of stem cells remain unmodified, leading to poor resistance when the entire population of modified cells is transplanted into humans or animal models. In the current investigation, the UC Davis team introduced a handle onto the surface of the bioengineered cells so that the cells could be recognized and selected. This development achieved a population of HIV-resistant stem cells that was greater than 94 percent pure.

Developing a technique to purify the population of HIV-resistant stem cells is the most important breakthrough of this research, said Anderson, whose laboratory is based at the UC Davis Institute for Regenerative Cures. We now have a strategy that shows great promise for offering a functional cure for the disease.

Visit link:
New Technique for Bioengineering Stem Cells Shows Promise in HIV Resistance

To Read More: New Technique for Bioengineering Stem Cells Shows Promise in HIV Resistance
categoriaBone Marrow Stem Cells commentoComments Off on New Technique for Bioengineering Stem Cells Shows Promise in HIV Resistance | dataDecember 23rd, 2014
Read All

People urged to donate bone marrow as tot faces third transplant

By daniellenierenberg

A LITTLE boy faces his third bone marrow transplant before his second birthday.

Jack Kleinberg has battled against two life-threatening conditions as he suffers from familial mediterranean fever and WiskottAldrich syndrome, which affects one in 10 million children and means he has to live in virtual isolation.

His parents, Rob and Vicki, live with the knowledge that any part of his body can stop working at any time from a simple fall or infection.

The couple, of St James Gardens, Westcliff, spend much of their time travelling to Great Ormond Street Hospital for Jack to receive treatment to keep him alive.

The family includes Robs children from a previous relationship, Oliver, 14 and Sophia, ten.

Vicki, 28, said: Its a 24/7 job, but we wouldnt change it for the world. Oliver and Sophia didnt see Jack for the first year because he was in hospital. Its become normal for them to come home and wash and change into sterile clothes before they can see Jack, because of the danger of infection for him. Jack has had one full transplant and a top-up transplant and is waiting for a potential donor for a possible third transplant.

Vicki said: People think it is a painful process, but these days it is a stem cell transplant where if a donor is found to be suitable, they are given an injection the week before, which makes the body release bone marrowcells into the blood stream which are then taken like a normal blood donation. It takes just 20 minutes of someones time and saves so many lives. The transplants have given Jack 25 per cent of the cells he needs. Without them, he wouldnt have lived past his first birthday.

We are trying to get through Christmas and then we will decide on whether, if a donor is found, Jack has another full stem cell transplant or whether we let him live his life, with all its restrictions, for a while because he has spent so much time in hospital.

For more information about becoming a donor, visit http://www.anthonynolan.org

Rugby club is pitching in

Follow this link:
People urged to donate bone marrow as tot faces third transplant

To Read More: People urged to donate bone marrow as tot faces third transplant
categoriaBone Marrow Stem Cells commentoComments Off on People urged to donate bone marrow as tot faces third transplant | dataDecember 20th, 2014
Read All

Doctors think stem cell injections could provide hope for Huntington disease patients

By Dr. Matthew Watson

SOUTH BEND, Ind.--- Mike and Katie have been a couple since college, but they've known each other much longer.

"We've been together forever," said Mike.

"I've actually known Mike since I was 5-years-old," said Katie.

A marriage and three kids later they've been through good times, and bad. The worst came nine-years-ago when Mike found out he had Huntington's disease.

Huntington's is a deadly, inherited disease that affects about 30,000 Americans; 150,000 more are at risk.

Until now there has been no hope for these patients, who typically die of the disease within 15 years of diagnosis.

"My father had it, said Mike. He died from it."

Huntington's causes uncontrollable movements and mental decline, there is no cure.

"Unfortunately, it ends in death, said Dr. Vicki Wheelock, a neurologist at UC Davis Health System. It's a fatal disease."

Now researchers are gearing up for a new trial in humans.

Go here to read the rest:
Doctors think stem cell injections could provide hope for Huntington disease patients

To Read More: Doctors think stem cell injections could provide hope for Huntington disease patients
categoriaBone Marrow Stem Cells commentoComments Off on Doctors think stem cell injections could provide hope for Huntington disease patients | dataDecember 20th, 2014
Read All

Youngest bone marrow transplant patients at higher risk of cognitive decline

By LizaAVILA

Toddlers who undergo total body irradiation in preparation for bone marrow transplantation are at higher risk for a decline in IQ and may be candidates for stepped up interventions to preserve intellectual functioning, St. Jude Children's Research Hospital investigators reported. The findings appear in the current issue of the Journal of Clinical Oncology.

The results clarify the risk of intellectual decline faced by children, teenagers and young adults following bone marrow transplantation. The procedure is used for treatment of cancer and other diseases. It involves replacing the patient's own blood-producing stem cells with those from a healthy donor.

Researchers tracked IQ scores of 170 St. Jude patients before and for five years after transplantation, making this the most comprehensive effort yet to determine how the procedure affects intelligence. The patients ranged in age from 4 months to 23 years when their transplants occurred. The procedure had little lasting impact on the IQ scores of most patients.

"For the great majority of patients, these findings provide reassurance that transplantation will not have a significant negative impact on cognitive development," said corresponding author Sean Phipps, Ph.D., chair of the St. Jude Department of Psychology. "We have also identified a high-risk group of younger patients who may benefit from more intensive interventions, including developmental stimulation and other rehabilitative therapies designed to prevent a decline in intellectual functioning and aid in recovery."

The high-risk group includes patients whose transplants occurred when they were aged 3 years or younger and involved total body irradiation (TBI). TBI is used to prepare patients for transplantation by killing remaining cancer cells and protecting the transplanted cells from their immune systems. TBI is associated with a range of short-term and long-term side effects. At St. Jude, therapeutic advances have significantly reduced the use of TBI in bone marrow transplantations.

Previous studies of bone marrow transplantation survivors reported conflicting results about the long-term impact of age and TBI on cognitive abilities.

Before transplantation, the average IQ scores of all patients in this study were in the normal range. One year after transplantation, average IQ scores of patients aged 5 and younger had declined sharply. But scores of most patients rebounded in subsequent years. Five years after the procedure, IQ scores for most patients, even the youngest survivors, had largely recovered and fell within the range of normal intelligence.

Patients in the high-risk group were the lone exception. IQ scores of patients who were both aged 3 or younger when their transplants occurred and who received TBI failed to recover from the first-year decline. Five years after transplantation, these survivors had average IQ scores in the low-normal range of intelligence. Their scores were more than 16 points lower than the scores of patients who were just as young when their transplants occurred but did not receive TBI.

Of the 72 patients in this study whose transplants included TBI, researchers found there was a long-term impact on intellectual functioning only of patients who were aged 3 or younger at transplantation.

"The significant first-year decline reflects the intensity of transplantation, which our results suggest leads to greater disruption in development in the youngest children than was previously recognized," said the study's first author Victoria Willard, Ph.D., a St. Jude psychology department research associate.

Read more:
Youngest bone marrow transplant patients at higher risk of cognitive decline

To Read More: Youngest bone marrow transplant patients at higher risk of cognitive decline
categoriaBone Marrow Stem Cells commentoComments Off on Youngest bone marrow transplant patients at higher risk of cognitive decline | dataDecember 11th, 2014
Read All

Experts in Leukemia and Bone Marrow Transplant Prepare for Upcoming Pivotal Trial of Innovative Targeted Payload …

By JoanneRUSSELL25

Contact Information

Available for logged-in reporters only

Newswise An innovative targeted payload immunotherapy that is being readied for a Phase 3 clinical trial (due to begin in the first half of 2015), received a favorable endorsement from Actinium Pharmaceuticals Scientific Advisory Board (SAB). The nod occurred after the members conducted its year-end meeting to review the progress of Iomab-B, a radiolabeled antibody being developed as a part of bone marrow transplant regimen initially in relapsed and refractory AML patients ages 55 and older.

The group met prior to the 56th American Society of Hematology (ASH) Annual Meeting and Exposition in San Francisco and was Chaired by John Pagel, MD PhD of the Fred Hutchinson Cancer Research Center and Swedish Cancer Institute in Seattle and included senior members from Memorial Sloan Kettering Cancer Center, MD Anderson Cancer Center and other leading institutions. The SABs goal is to further the development of Iomab-B as a myeloablative agent for older relapsed and refractory AML patients. If approved, Iomab-B should increase the number of patients eligible for curative bone marrow transplant (BMT, also known as HSCT) and improve clinical outcomes.

Richard Champlin MD, Chair of Stem Cell Transplantation and Cellular Therapy at MD Anderson Cancer Center, stated, We are impressed with progress in Iomab-B development and are looking forward to starting the trial. Iomab-B treatment would be an important new addition to our unfortunately very limited armamentarium for the most difficult-to-treat AML patients, and could potentially change the way refractory AML in older patients is treated.

As an international leader in the field of hematopoietic stem cell transplantation (HSCT), Dr. Champlin pioneered the use of donor transplants and lower doses of chemotherapy, reducing mortality rates along the way. Under his leadership, the MD Anderson HSCT program grew to become the largest in the world.

The Company updated the SAB on progress made in 2014, including refining and completing the Phase 3 protocol, progress in manufacturing centralization and scale-up, CRO engagement and the completion of other administrative items. Plans for 2015 were also reviewed, including assembly of the IND (Investigational New Drug) Application for submission to FDA early next year, clinical trial sites selection, preparation of ancillary materials and other items related to the upcoming pivotal trial. This study is planned as the final clinical trial prior to potential FDA clearance and approval.

Dr. Dragan Cicic, Chief Medical Officer of Actinium stated: "Actinium is committed to the ongoing development of Iomab-B with a multi-center Phase 3 pivotal trial due to begin in 2015. With the continued support and input from our world renowned scientific advisors, we are moving quickly to advance Iomab-B development. The SAB meeting further supported our belief that, if approved by FDA, Iomab-B could significantly change the treatment paradigm for elderly relapsed and refractory AML patients by providing a potentially curative pathway for majority of patients who today have a life expectancy of 5 or fewer months."

About AML Acute myeloid leukemia (AML) is an aggressive cancer of the blood and bone marrow. It is characterized by an uncontrolled proliferation of immature blast cells in the bone marrow. The American Cancer Society estimates there will be approximately 18,860 new cases of AML and approximately 10,460 deaths from AML in the U.S. in 2014, most of them in adults. Patients over age 60 comprise the majority of those diagnosed with AML, with a median age of a patient diagnosed with AML being 67 years. Treatment approaches in this population are limited because a majority of these individuals are judged too frail and unable to tolerate standard induction chemotherapy or having forms of disease generally unresponsive to currently available drugs. Elderly, high risk patients ordinarily have a life expectancy of 5 or fewer months if treated with standard chemotherapy, and only about a third of them receive this treatment because of toxicity of and limited responses to the available therapy. The other two-thirds receive best supportive care, with 2 months survival, according to Oran and Weisdorf (Haematologica 2012; 1916-24).

About Iomab-B Iomab-B will be used in preparing patients for hematopoietic stem cell transplantation (HSCT), the fastest growing hospital procedure in the U.S. The Company established an agreement with the FDA that the path to a Biologics License Application (BLA) submission could include a single, pivotal Phase 3 clinical study if it is successful. The trial population in this two arm, randomized, controlled, multicenter trial will be refractory and relapsed Acute Myeloid Leukemia (AML) patients over the age of 55. The trial size was set at 150 patients with 75 patients per arm. The primary endpoint in the pivotal Phase 3 trial is durable complete remission, defined as a complete remission lasting at least 6 months and the secondary endpoint will be overall survival at one year. There are currently no effective treatments approved by the FDA for AML in this patient population and there is no defined standard of care. Iomab-B has completed several physician sponsored clinical trials examining its potential as a conditioning regimen prior to HSCT in various blood cancers including the Phase 1/2 study in relapsed and/or refractory AML patients. The results of these studies in over 300 patients have demonstrated the potential of Iomab-B to create a new treatment paradigm for bone marrow transplants by: expanding the pool to ineligible patients who do not have any viable treatment options currently; enabling a shorter and safer preparatory interval for HSCT; reducing post-transplant complications; and showing a clear survival benefit including curative potential.

See original here:
Experts in Leukemia and Bone Marrow Transplant Prepare for Upcoming Pivotal Trial of Innovative Targeted Payload ...

To Read More: Experts in Leukemia and Bone Marrow Transplant Prepare for Upcoming Pivotal Trial of Innovative Targeted Payload …
categoriaBone Marrow Stem Cells commentoComments Off on Experts in Leukemia and Bone Marrow Transplant Prepare for Upcoming Pivotal Trial of Innovative Targeted Payload … | dataDecember 10th, 2014
Read All

Page 117«..1020..116117118119..130140..»


Copyright :: 2025