Lifeline Skin Care Launches Daily Defense Anti-Aging Skincare Complex Using Groundbreaking Technology and Science to …
By Dr. Matthew Watson
Carlsbad, CA (PRWEB) April 10, 2014
Most baby boomers grew up not knowing about the importance of sun protection. The term SPF wasnt even invented until 1962. So lets blame those lines and wrinkles, age spots and skin laxity on the sun! According to the Environmental Protection Agency, as much as 90 percent of skin aging is caused by sun exposure. New ingredients are emerging that are changing the long-held belief that UV skin damage is irreversible. In fact, studies show when the skin is exposed to extracts from human stem cells it helps repair and rejuvenate itself. Lifeline Skin Care, the only line of skin care products in the world based on growth factors from human stem cells, will launch its new Daily Defense Complex in April in spas and physician offices nationwide. The super-potent formula will firm, tone and defend skin and also integrates easily into post-procedure protocols and homecare regimens.
Lifeline Skin Care uses growth factors that have been extracted from human stem cells, said Simon Craw, Ph.D., of International Stem Cell Corporation, the parent company of Lifeline Skin Care. Stem cells have the natural ability to identify and repair damaged cells. In the laboratory, we discovered how stem cells can rejuvenate many different types of cells, including skin cells. The proteins and growth factors that are extracted from these stem cells can reduce the appearance of the signs of aging--lines, wrinkles and loss of radiance.
Dermatologists believe that women dont get serious about anti-aging skin care until theyre in their 30s, when fine lines and wrinkles begin to appear. But the 40th birthday is the real game changer, said Dr. Elizabeth Hale of Complete Skin MD in New York City. After age 40, fine lines deepen into full fledged wrinkles, and dark spots and age spots begin to surface. Its at this point that women start to look for more advanced and results-oriented skin care ingredients.
Key ingredients in the new Daily Defense Complex help to repair previous photoaging and protect against future UV damage. Collagen and elastin production have been proven in vitro to increase by 46-55%. Collagen and elastin are two key proteins that make skin appear firmer and younger-looking.
Daily Defense Complex is designed for all skin types but it is particularly recommended for mature or photodamaged skin. It retails for $160.00 and is available from physicians, spas and lifelineskincare.com. For more information, please visit http://www.lifelineskincare.com
About Lifeline Skin Care Lifeline Skin Care develops, markets and sells advanced topical anti-aging skin care products based on technology developed and patented by International Stem Cell Corporation. The technology uses ingredients that have been extracted from ISCOs human, parthenogenetic stem cells and are known to reduce the visible signs of skin aging. Lifeline is distributed in the USA and internationally through physicians and spas. For more information visit http://www.lifelineskincare.com
About International Stem Cell Corporation International Stem Cell Corporation is focused on the therapeutic applications of human parthenogenetic stem cells (hpSCs) and the development and commercialization of cell-based research and cosmetic products. ISCO's core technology, parthenogenesis, results in the creation of pluripotent human stem cells from unfertilized oocytes (eggs) hence avoiding ethical issues associated with the use or destruction of viable human embryos. ISCO scientists have created the first parthenogenetic, homozygous stem cell line that can be a source of therapeutic cells for hundreds of millions of individuals of differing genders, ages and racial background with minimal immune rejection after transplantation. hpSCs offer the potential to create the first true stem cell bank, UniStemCell. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology (http://www.lifelinecelltech.com), and stem cell-based skin care products through its subsidiary Lifeline Skin Care (http://www.lifelineskincare.com). More information is available at http://www.internationalstemcell.com.
See the original post:
Lifeline Skin Care Launches Daily Defense Anti-Aging Skincare Complex Using Groundbreaking Technology and Science to ...
Former NIH stem-cell chief joins New York foundation
By Dr. Matthew Watson
Nature News Blog
10 Apr 2014 | 22:47 BST | Posted by Sara Reardon | Category: stem cells
Stem-cell biologist Mahendra Rao, who resigned last week as director of the US National Institutes of Healths Center for Regenerative Medicine (CRM), has a new job. On April 9, he was appointed vice-president for regenerative medicine at the New York Stem Cell Foundation (NYSCF), a non-profit organization that funds embryonic stem cell research.
Rao left the National Institutes of Healthabruptly on 28 March, apparently due to disagreements about the number of clinical trials of stem cell therapies that NIHs intramural CRM programme would conduct. CRM was established in 2010 to shepherd therapies using iPS cells adult cells that have been reprogrammed to an embryonic state into clinical translation. One of CRMs potential therapies, which will use iPS cells to treat macular degeneration of the retina, will continue moving toward clinical trials at the NIH, although several others were not funded. NIH officials say that CRM will not continue in its current direction, but the fate of the centers remaining budget and resources is undecided.
Rao says that he wants to move more iPS cell therapies toward trials than NIH had been willing to do. He has already joined the advisory boards of several stem cell therapy companies: Q Therapeutics, a Salt Lake City-based neural stem cell company he co-founded, as well as Cesca Therapeutics formerly known as ThermoGenesis of Rancho Cordova, California, and Stemedica of San Diego, both of which are developing cell-based therapies for cardiac and vascular disorders.
Rao says that his initial focus at NYSCF will be developing iPS cell lines for screening, and formulating a process for making clinical grade cell lines from a patients own cells.
Read the original:
Former NIH stem-cell chief joins New York foundation
PRP and Stem Cell Therapy for Osteoarthritis – Video
By Dr. Matthew Watson
PRP and Stem Cell Therapy for Osteoarthritis
By: Latest Pain Relief Solutions
Paralysed patients regain movement after spinal implant
By Dr. Matthew Watson
NEW YORK: Four men who had each been paralysed from the chest down for more than two years and been told their situation was hopeless regained the ability to voluntarily move their legs and feet though not to walk after an electrical device was implanted in their spines, researchers reportedyesterday.
The success, albeit in a small number of patients, offers hope that a fundamentally new treatment can help many of the 6 million paralyzed Americans, including the 1.3 million with spinal cord injuries. Even those whose cases are deemed so hopeless they are not offered further rehabilitation might benefit, scientists say.
The results also cast doubt on a key assumption about spinal cord injury: that treatment requires damaged neurons to regrow or be replaced with, for instance, stem cells. Both approaches have proved fiendishly difficult and, in the case of stem cells, controversial.
The big message here is that people with spinal cord injury of the type these men had no longer need to think they have a lifelong sentence of paralysis, Dr Roderic Pettigrew, director of the National Institute of Biomedical Imaging and Bioengineering, part of the National Institutes of Health, said in an interview. They can achieve some level of voluntary function, which he called a milestone in spinal cord injury research. His institute partly funded the study, which was published in the journal Brain.
The partial recovery achieved by hopeless patients suggests that physicians and rehabilitation therapists may be giving up on millions of paralyzed people. Thats because physical therapy can mimic some aspects of the electrical stimulation that the device provided, said Susan Harkema, a specialist in neurological rehab at the University of Louisvilles Kentucky Spinal Cord Injury Research Center (KSCIRC), who led the new study.
One of the things this research shows is that there is more potential for spinal cord injury patients to recover even without this electrical stimulation, she said in an interview. Today, patients are not given rehab because they are not considered good investments. We should rethink what theyre offered, because rehabilitation can drive recovery for many more than are receiving it.
Baseball star
The research built on the case of a single paralyzed patient that Harkemas team reported in 2011. College baseball star Rob Summers had been injured in a hit-and-run accident in 2006, paralyzing him below the neck.
In late 2009, Summers received the epidural implant just below the damaged area. The 2.5-ounce (72-gram) device began emitting electrical current at varying frequencies and intensities, stimulating dense bundles of neurons in the spinal cord. Three days later he stood on his own. In 2010 he took his first tentative steps.
His partial recovery became a media sensation, but even the Louisville team thought that epidural stimulation could benefit only spinal cord patients who had some sensation in their paralyzed limbs, as Summers did. We assumed that the surviving sensory pathways were crucial for this recovery, Harkema said.
The rest is here:
Paralysed patients regain movement after spinal implant
News 12: Stem Cell Therapy for Pain – Video
By Dr. Matthew Watson
News 12: Stem Cell Therapy for Pain
By: Latest Pain Relief Solutions
Continued here:
News 12: Stem Cell Therapy for Pain - Video
Stem Cells May Rejuvenate Failing Hearts, Study Suggests
By Dr. Matthew Watson
By Dennis Thompson HealthDay Reporter
MONDAY, March 31, 2014 (HealthDay News) -- Stem cells injected directly into heart muscle can help patients suffering from severe heart failure by improving an ailing heart's ability to pump blood, a new Danish trial indicates.
Doctors drew stem cells from patients' own bone marrow, and then injected those cells into portions of the heart where scar tissue seemed to interfere with heart function, explained lead researcher Dr. Anders Bruun Mathiasen. He is a research fellow in the Cardiac Catheterization Lab at Rigshospitalet University Hospital Copenhagen.
Within six months of treatment, patients who received stem cell injections had improved heart pumping function compared to patients receiving a placebo, according to findings that were to be presented Monday at the American Academy of Cardiology's annual meeting in Washington, D.C.
"We know these stem cells can initiate the growth of new blood vessels and heart muscle tissue," Mathiasen said. "That's what we think has happened."
If larger follow-up trials prove the treatment's effectiveness, it could provide hope for people suffering from untreatable heart failure.
"Heart failure is one of the biggest causes of death. If you can save lives or improve their symptoms, then a treatment like this would be extremely beneficial," said Dr. Cindy Grines, a cardiologist with the Detroit Medical Center and a spokeswoman for the American College of Cardiology.
The treatment could delay the need for a heart transplant and extend the lives of people who can't qualify for a transplant, Grines added.
This new clinical trial included 59 patients with severe heart failure who were considered untreatable. It is the largest randomized trial to test the potential of stem cell injections in treating heart disease, the researchers said.
In the trial, 39 patients received injections of stem cells into their heart muscle through a catheter inserted in the groin. The procedure required only local anesthesia, Mathiasen said. The other 20 received saline injections.
Originally posted here:
Stem Cells May Rejuvenate Failing Hearts, Study Suggests
New human trial shows stem cells are effective for failing …
By Dr. Matthew Watson
Patients with severe ischemic heart disease and heart failure can benefit from a new treatment in which stem cells found in bone marrow are injected directly into the heart muscle, according to research presented at the American College of Cardiology's 63rd Annual Scientific Session.
"Our results show that this stem cell treatment is safe and it improves heart function when compared to placebo," said Anders Bruun Mathiasen, M.D., research fellow in the Cardiac Catherization Lab at Rigshospitalet University Hospital Copenhagen, and lead investigator of the study. "This represents an exciting development that has the potential to benefit many people who suffer from this common and deadly disease."
Ischemic heart disease, also known as coronary artery disease, is the number one cause of death for both men and women in the United States. It results from a gradual buildup of plaque in the heart's coronary arteries and can lead to chest pain, heart attack and heart failure.
The study is the largest placebo-controlled double-blind randomized trial to treat patients with chronic ischemic heart failure by injecting a type of stem cell known as mesenchymal stromal cells directly into the heart muscle.
Six months after treatment, patients who received stem cell injections had improved heart pump function compared to patients receiving a placebo. Treated patients showed an 8.2-milliliter decrease in the study's primary endpoint, end systolic volume, which indicates the lowest volume of blood in the heart during the pumping cycle and is a key measure of the heart's ability to pump effectively. The placebo group showed an increase of 6 milliliters in end systolic volume.
The study included 59 patients with chronic ischemic heart disease and severe heart failure. Each patient first underwent a procedure to extract a small amount of bone marrow. Researchers then isolated from the marrow a small number of mesenchymal stromal cells and induced the cells to self-replicate. Patients then received an injection of either saline placebo or their own cultured mesenchymal stromal cells into the heart muscle through a catheter inserted in the groin.
"Isolating and culturing the stem cells is a relatively straightforward process, and the procedure to inject the stem cells into the heart requires only local anesthesia, so it appears to be all-in-all a promising treatment for patients who have no other options," Mathiasen said.
Although there are other therapies available for patients with ischemic heart disease, these therapies do not help all patients and many patients continue to face fatigue, shortness of breath and accumulation of fluid in the lungs and legs.
Previous studies have shown mesenchymal stromal cells can stimulate repair and regeneration in a variety of tissues, including heart muscle. Mathiasen said in the case of ischemic heart failure, the treatment likely works by facilitating the growth of new blood vessels and new heart muscle.
The study also supports findings from previous, smaller studies, which showed reduced scar tissue in the hearts of patients who received the stem cell treatment, offering additional confirmation that the treatment stimulates the growth of new heart muscle cells.
Read the rest here:
New human trial shows stem cells are effective for failing ...
Doctor who started a cancer center at SLU became one of its first patients
By Dr. Matthew Watson
Dr. Friedrich Schuening came to St. Louis to start a bone marrow transplant center at St. Louis University. In November 2012, the month before he was scheduled to open the facility, he was attending a conference when he felt a shortness of breath.
Tests disclosed that he had leukemia, the disease in which he was an expert. When the bone marrow transplant center opened, he became one of the first patients.
I never would have thought, in my wildest dreams, after having treated a disease my whole professional life that I would be a patient myself, he told the Post-Dispatch at the time.
Dr. Schuening underwent two bone marrow transplants. The first was in February 2013, and a month later he was back at work treating patients. But his leukemia returned, and doctors performed a second transplant in June 2013.
His leukemia went into remission. But the bone marrow transplant, although successful, led to complications that caused his death, according to one of his physicians, Dr. Mark J. Fesler.
Dr. Schuening died on Thursday (March 27, 2014) at Barnes-Jewish Hospital. He was 71 and had lived in Creve Coeur.
He devoted his life to treating patients with blood cancers. He was an internationally known expert in stem cells, regenerative medicine and bone marrow transplants. He wrote more than 120 scientific papers.
He came to St. Louis University in May 2011, to start his third bone marrow transplant center. The first two were at the University of Wisconsin at Madison and Vanderbilt University, according to St. Louis University.
Friedrich Georg Schuening was born in 1942 in Trier, Germany. His father served in the German Navy, and his mother taught school.
At first, Dr. Schuening studied theology at the University of Mainz in Germany. Instead of going into the ministry, he began studying psychiatry, then switched to medicine to study the body. He earned an M.D. at the University of Hamburg.
Original post:
Doctor who started a cancer center at SLU became one of its first patients
$2.5 million Defense Department grant funds gene therapy study for Lou Gehrig's disease
By Dr. Matthew Watson
PUBLIC RELEASE DATE:
1-Apr-2014
Contact: Sandy Van sandy@prpacific.com 808-526-1708 Cedars-Sinai Medical Center
LOS ANGELES (April 1, 2014) The Cedars-Sinai Regenerative Medicine Institute has received a $2.5 million grant from the Department of Defense to conduct animal studies that, if successful, could provide the basis for a clinical trial of a gene therapy product for patients with Lou Gehrig's disease, also called amyotrophic lateral sclerosis, or ALS.
The incurable disorder attacks muscle-controlling nerve cells motor neurons in the brain, brainstem and spinal cord. As the neurons die, the ability to initiate and control muscle movement is lost. Patients experience muscle weakness that steadily leads to paralysis; the disease usually is fatal within five years of diagnosis. Several genes have been identified in familial forms of ALS, but most cases are caused by a complex combination of unknown genetic and environmental factors, experts believe.
Because ALS affects a higher-than-expected percentage of military veterans, especially those returning from overseas duties, the Defense Department invests $7.5 million annually to search for causes and treatments. The Cedars-Sinai study, led by Clive Svendsen, PhD, professor and director of the Regenerative Medicine Institute at Cedars-Sinai Medical Center, and Genevive Gowing, PhD, a senior scientist in his laboratory, also will involve a research team at the University of Wisconsin, Madison and a Netherlands-based biotechnology company, uniQure, that has extensive experience in human gene therapy research and development.
The research will be conducted in laboratory rats bred to model a genetic form of ALS. If successful, it could have implications for patients with other types of the disease and could translate into a gene therapy clinical trial for this devastating disease.
It centers on a protein, GDNF, that promotes the survival of neurons. In theory, transporting GDNF into the spinal cord could protect neurons and slow disease progression, but attempts so far have failed, largely because the protein does not readily penetrate into the spinal cord. Regenerative Medicine Institute scientists previously showed that spinal transplantation of stem cells that were engineered to produce GDNF increased motor neuron survival, but this had no functional benefit because it did not prevent nerve cell deterioration at a critical site, the "neuromuscular junction" the point where nerve fibers connect with muscle fibers to stimulate muscle action.
Masatoshi Suzuki, PhD, DVM, assistant professor of comparative biosciences at the University of Wisconsin, Madison, who previously worked in the Svendsen Laboratory and remains a close collaborator, recently found that stem cells derived from human bone marrow and engineered to produce GDNF protected nerve cells, improved motor function and increased lifespan when transplanted into muscle groups of a rat model of ALS.
"It seems clear that GDNF has potent neuroprotective effects on motor neuron function when the protein is delivered at the level of the muscle, regardless of the delivery method. We think GDNF will be able to help maintain these connections in patients and thereby keep the motor neuron network functional," Suzuki said.
See original here:
$2.5 million Defense Department grant funds gene therapy study for Lou Gehrig's disease
Ancient Virus DNA Gives Stem Cells the Power to Transform
By Dr. Matthew Watson
Charles Q. Choi
A virus that invaded the genomes of humanity's ancestors millions of years ago now plays a critical role in the embryonic stem cells from which all cells in the human body derive, new research shows.
The discovery sheds light on the role viruses play in human evolution and could help scientists better understand how to use stem cells in advanced therapies or even how to convert normal cells into stem cells.
Embryonic stem cells are pluripotent, meaning they are capable of becoming any other kind of cell in the body. Scientists around the world hope to use this capability to help patients recover from injury and disease.
Researchers have struggled for decades to figure out how pluripotency works. These new findings reveal that "material from viruses is vital in making human embryonic stem cells what they are," said computational biologist Guillaume Bourque at McGill University in Montreal, a co-author of the study published online March 30 in Nature Structural & Molecular Biology.
Viral Invasion
To make copies of itself, a virus has to get inside a cell and co-opt its machinery. When one type of virus called a retrovirus does this, it slips its own genes into the DNA of its host cell. The cell is then tricked into assembling new copies of the retrovirus. The most infamous retrovirus is HIV, the virus behind AIDS.
In rare cases, retroviruses infect sperm or egg cells. If that sperm or egg becomes part of a person, their cells will contain retrovirus DNA, and they can pass that DNA on to their descendants. Past research suggests that at least 8 percent of the human genome is composed of these so-called endogenous retroviruses-leftovers from retroviral infections our ancestors had millions of years ago.
Scientists long thought that endogenous retroviruses were junk DNA that didn't do anything within the human genome, said study co-author Huck-Hui Ng, a molecular biologist at the Genome Institute of Singapore.
However, recent studies have revealed that might not be true for one class of endogenous retroviruses known as human endogenous retrovirus subfamily H. HERV-H DNA was surprisingly active in human embryonic stem cells but not in other regular types of human cells.
Read the rest here:
Ancient Virus DNA Gives Stem Cells the Power to Transform
'Mini heart' invented to help return venous blood
By Dr. Matthew Watson
George Washington University (GW) researcher Narine Sarvazyan, Ph.D., has invented a new organ to help return blood flow from veins lacking functional valves. A rhythmically contracting cuff made of cardiac muscle cells surrounds the vein acting as a 'mini heart' to aid blood flow through venous segments. The cuff can be made of a patient's own adult stem cells, eliminating the chance of implant rejection.
"We are suggesting, for the first time, to use stem cells to create, rather than just repair damaged organs," said Sarvazyan, professor of pharmacology and physiology at the GW School of Medicine and Health Sciences. "We can make a new heart outside of one's own heart, and by placing it in the lower extremities, significantly improve venous blood flow."
The novel approach of creating 'mini hearts' may help to solve a chronic widespread disease. Chronic venous insufficiency is one of the most pervasive diseases, particularly in developed countries. Its incidence can reach 20 to 30 percent in people over 50 years of age. It is also responsible for about 2 percent of health care costs in the United States. Additionally, sluggish venous blood flow is an issue for those with diseases such as diabetes, and for those with paralysis or recovering from surgery.
This potential new treatment option, outlined in a recently published paper in the Journal of Cardiovascular Pharmacology and Therapeutics, represents a leap for the tissue engineering field, advancing from organ repair to organ creation. Sarvazyan, together with members of her team, has demonstrated the feasibility of this novel approach in vitro and is currently working toward testing these devices in vivo.
Story Source:
The above story is based on materials provided by George Washington University. Note: Materials may be edited for content and length.
View post:
'Mini heart' invented to help return venous blood
Two Cedars-Sinai Heart Institute Physicians Honored by American College of Cardiology
By Dr. Matthew Watson
Contact Information
Available for logged-in reporters only
Newswise LOS ANGELES (March 27, 2014) Two Cedars-Sinai Heart Institute physician-researchers have been named recipients of prestigious awards from the American College of Cardiology.
Eduardo Marbn, MD, PhD, director of the Cedars-Sinai Heart Institute and a pioneer in developing cardiac stem cell treatments, will be awarded the 2014 Distinguished Scientist Award (Basic Domain) by the 40,000-member medical society during its 63rd Annual Scientific Session on March 31.
Sumeet Chugh, MD, associate director of the Heart Institute and a leading expert on heart rhythm disorders such as sudden cardiac arrest and atrial fibrillation, is to receive the Simon Dack Award for Outstanding Scholarship in recognition of Chughs contributions to the organizations peer-reviewed medical journals.
Dr. Marbn has earned the prestigious title of Distinguished Scientist by pioneering the development of stem cell treatments that can regenerate healthy heart muscle, said Shlomo Melmed, MD, senior vice president of Academic Affairs, dean of the Cedars-Sinai medical faculty and the Helene A. and Philip E. Hixon Chair in Investigative Medicine. Dr. Chugh is leading the quest to unlock the mysteries of how to prevent sudden cardiac arrest, which is 99 percent fatal. Their work is advancing life-saving treatments for patients all over the world and is a testament to the outstanding work of the Heart Institute.
Using techniques that he invented to isolate and grow stem cells from a patient's own heart tissue, Marbn designed and completed the first-in-human cardiac stem cell trial, called CADUCEUS, funded by the National Institutes of Health. The study was the first to show that stem cell therapy can repair damage to the heart muscle caused by a heart attack. Currently, a new, multicenter stem cell clinical trial called ALLSTAR is measuring the effectiveness of donor heart stem cells in treating heart attack patients.
A native of Cuba, Marbn came to the United States with his parents at age 6 as a political refugee. He earned his bachelor's degree in mathematics from Wilkes College in Pennsylvania, and then attended the Yale University School of Medicine in a combined MD/PhD program. Among the many honors Marbn has received are the Basic Research Prize of the American Heart Association the Research Achievement Award of the International Society for Heart Research, the Gill Heart Institute Award and the Distinguished Scientist Award of the American Heart Association.
Chugh, the Pauline and Harold Price Chair in Cardiac Electrophysiology, is an expert in the performance of radio frequency ablation procedures as well as the use of pacemakers, defibrillators and biventricular devices to correct heart rhythm problems. The author of more than 250 articles and abstracts in professional journals, Chugh initiated and directs the ongoing Oregon Sudden Unexpected Death Study, a large, comprehensive assessment of sudden cardiac arrest in a community of 1 million residents. Chugh leads the World Health Organization panel that is charged with performing a worldwide assessment of heart rhythm disorders for the Global Burden of Disease Study.
After earning his medical degree from Government Medical College Patiala, India, Chugh spent the first year of his internal medicine residency at Tufts Newton Wellesley Hospital in Boston and the next two years at Hennepin County Medical Center in Minneapolis. He completed a fellowship in cardiology at the University of Minnesota and a fellowship in clinical cardiac electrophysiology at Mayo Clinic in Rochester, Minn.
Read more from the original source:
Two Cedars-Sinai Heart Institute Physicians Honored by American College of Cardiology
CardioWise Software Chosen for National Heart Study
By Dr. Matthew Watson
by Mark Carter on Wednesday, Mar. 26, 2014 1:49 pm
CardioWise CEO Jack Coats
CardioWise has partnered with federal agencies to provide its cardiac analysis software for a national clinical research study, the Fayetteville startup announced Wednesday.
The beta site agreement is with the National Institutes of Health and the National Heart, Lung & Blood Institute. It will study the use of bone marrow stem cells during cardiac surgery to treat heart muscle dysfunction associated with ischemic heart disease or damage from heart attack, according to a news release.
Details of the study are available here. The study will be conducted at the NIH Heart Center at Suburban Hospital in Bethesda, Md. Suburban Hospital is a member of the Johns Hopkins Medicine system.
The software,Multiparametric Strain Analysis (MPSA), was developed to analyze the three-dimensional motion of the heart acquired from cardiac MRI images. It then compares the analysis to the motion of a normal heart model.
"The objectives of the study are to test the safety and effectiveness of bone marrow stromal stem cell injections given during heart surgery to treat heart muscle damage," said CardioWise CEO Jack Coats. "The CardioWise MPSA software will be used to help to determine the efficacy of the stem cell treatment."
Coats said the analysis detects portions of the heart that are moving abnormally and demonstrates to what degree the heart muscle has been affected.
"Since MRI uses no ionizing radiation or contrast, it is completely non-invasive and poses minimal risk to the patient," he said. "This allows the patient to be followed through the course of treatment and to measure outcomes of interventions such as the stem cell therapy. In the near future, CardioWise MPSA may aid doctors to determine what intervention, such as surgery, stent insertion or drug, is most appropriate for the patient who presents with cardiovascular disease symptoms."
CardioWise is a client firm of Innovate Arkansas and a portfolio company of VIC Technology Venture Development of Fayetteville.
Read more from the original source:
CardioWise Software Chosen for National Heart Study
Stem Cells Shed Light on Treatments for Bipolar Disorder
By Dr. Matthew Watson
These neurons derived from stem cells made from the skin of people with bipolar disorder communicated with one another differently than neurons made from the skin of people without bipolar disorder.(Credit: University of Michigan)
Bipolar disorder is known to run in families, but scientists have yet to pinpoint the genes involved. Now they have a powerful new tool in the hunt: stem cells.
In a first-of-its-kind procedure, researchers from the University of Michigan have created stem cells from the skin of people with bipolar disorder, and then coaxed the cells into neurons. This has allowed scientists, for the first time, to directly measure cellular differences between people with bipolar disorder and people without.
In the future the cells could provide a greater understanding of what causes the disease, and allow for the development of personalized medications specific to each patients cells.
The team from Michigan took skin cell samples from 22 people with bipolar disorder and 10 people without the disorder. Under carefully controlled conditions, they coaxed adult skin cells into an embryonic stem cell-like state. These cells, called induced pluripotent stem cells, then had the potential to transform into any type of cell. With further coaxing, the cells became neurons.
This gives us a model that we can use to examine how cells behave as they develop into neurons. Already, we see that cells from people with bipolar disorder are different in how often they express certain genes, how they differentiate into neurons, how they communicate, and how they respond to lithium, study co-leader Sue OShea said in a news release.
Researchers published their findings Wednesday in the journalTranslational Psychiatry.
The research team discovered intriguing differences between stem cellsand neuronsfrom bipolar individuals and those from healthy people.
For one thing, bipolar stem cells expressed more genes associated with receiving calcium signals in the brain. Calcium signals play an important role in neuron development and function. Therefore, the new findings support the idea that genetic differences expressed early in life may contribute to the development of bipolar disorder later in life.
Once the stem cells turned into neurons, researchers tested how they reacted to lithium, a typical treatment for the disorder. The tests showed that lithium normalized the behavior of neurons from bipolar patients by altering their calcium signalingfurther confirmation that this cellular pathway should be of key interest in future studies of the disease.
Excerpt from:
Stem Cells Shed Light on Treatments for Bipolar Disorder
Leading Surgeons Warn Against Media Hype About Tracheal Regeneration
By Dr. Matthew Watson
Contact Information
Available for logged-in reporters only
Newswise Beverly, MA, March 24, 2014 Reports of the two earliest tissue-engineered whole organ transplants using a windpipe, or trachea, created using the patient's own stem cells, were hailed as a breakthrough for regenerative medicine and widely publicized in the press. However, two leading transplant surgeons in Belgium warn of the dangers of media attention, and urge that tracheal bioengineering be demonstrated as both effective and safe before further transplants take place. Their views are published in an Editorial in The Journal of Thoracic and Cardiovascular Surgery, an official publication of the American Association for Thoracic Surgery.
In 2008, surgeons repopulated a donor trachea with cells from a 30-year-old woman, which they then transplanted into the patient. In 2011, a 36-year-old man who had been suffering from late-stage tracheal cancer was given a new trachea made from a synthetic scaffold seeded with his own stem cells. Both procedures were carried out by Professor Paolo Macchiarini and colleagues (Barcelona, 2008, and Sweden, 2011).
In 2012, an article in The New York Times, A First: Organs Tailor-Made With Bodys Own Cells, recognized tracheal regeneration as the first regenerative medicine procedure designed to implant bioartificial organs. The achievement was touted as the beginning of complex organ engineering for the heart, liver, and kidneys, and it was suggested that allotransplantation along with immunosuppression might become problems of the past.
Major medical breakthroughs deserve the necessary press attention to inform the medical community and public of the news, say Pierre R. Delaere, MD, PhD, and Dirk Van Raemdonck, MD, PhD, from the Department of Otolaryngology Head & Neck Surgery and the Department of Thoracic Surgery, University Hospital Leuven, Belgium. Unfortunately, misrepresentation of medical information can occur and is particularly problematic when members of the professional and public press are misled to believe unrealistic medical breakthroughs.
The authors raise doubts regarding whether a synthetic tube can transform into a viable airway tube, pointing out that the mechanism behind the transformation from nonviable construct to viable airway cannot be explained with our current knowledge of tissue healing, tissue transplantation, and tissue regeneration. Cells have never been observed to adhere, grow, and regenerate into complex tissues when applied to an avascular or synthetic scaffold and, moreover, this advanced form of tissue regeneration has never been observed in laboratory-based research, say the authors.
Delaere and Van Raemdonck reviewed the information gathered from published reports on three patients who received bioengineered tracheas and unpublished reports on an additional 11 patients. Although there were differences between the techniques used, production of the bioengineered trachea in all cases produced similar results, and the different approaches worked in comparable ways.
The results show that mortality and morbidity were very high. Several patients died within a three-month period, and the patients who survived longer functioned with an airway stent that preserved the airway lumen, they observe.
They also question whether the trachea can really be considered to be the first bioengineered organ. From the 14 reports reviewed, they concluded that the bioengineered tracheal replacements were in fact airway replacements that functioned only as scaffolds, behaving in a similar way to synthetic tracheal prostheses.
Originally posted here:
Leading Surgeons Warn Against Media Hype About Tracheal Regeneration
Finger-prick technique opens door for DIY stem cell donors
By Dr. Matthew Watson
Harvesting samples for producing stem cells can be rather painful. Techniques can involve collecting large amounts of blood, bone marrow or skin scrapes. The reality is intrusive measures such as these can be very off-putting. But what if it was as simple as a finger-prick? Such a DIY approach, which is so easy it can be done at home or in the field without medical staff, has been developed by researchers at Singapore's A*STAR Institute of Molecular and Cell Biology (IMCB).
Unlike previous techniques that require comparatively large cell samples, the ICMB team has managed to successfully reprogram mature human cells into hiPSCs with high efficiency using less than a single drop of blood. Pluripotent stem cells are important in many forms of medical research and treatment as they have the potential to become any other cell type in the body.
"It all began when we wondered if we could reduce the volume of blood used for reprogramming," says Dr Loh Yuin Han Jonathan, Principal Investigator at IMCB. "We then tested if donors could collect their own blood sample in a normal room environment and store it. Our finger-prick technique, in fact, utilized less than a drop of finger-pricked blood."
It is hoped that this much less invasive method of sample collection will help attract more donors to increase the samples available to researchers. Blood samples have been found to remain viable for 48 hours after collection and in culture this can be extended to 12 days, opening up remote areas for potential cell harvesting. This could benefit research and treatment with the recruitment of donors with varied ethnicities, genotypes and diseases now possible. It is hoped the technique will also lead to the establishment of large-scale hiPSC banks.
"We were able to differentiate the hiPSCs reprogrammed from Jonathans finger-prick technique, into functional heart cells," says Dr Stuart Alexander Cook, Senior Consultant at the National Heart Centre Singapore and co-author of the paper. "This is a well-designed, applicable technique that can unlock unrealized potential of biobanks around the world for hiPSC studies at a scale that was previously not possible."
The team has filed a patent for their innovation and their paper has been published online at Stem Cell Translational Medicine.
Source: A*STAR
The rest is here:
Finger-prick technique opens door for DIY stem cell donors
Should stem cell therapy be used in DLCBL? – Video
By Dr. Matthew Watson
Should stem cell therapy be used in DLCBL?
Response based on the findings of the case study presented by Prof. Marek Trnn Transcript: The question to consider is whether a stem cell transplant is su...
By: Emmet Dunne
Read the original:
Should stem cell therapy be used in DLCBL? - Video
Embryonic Stem Cell Therapy – Video
By Dr. Matthew Watson
Embryonic Stem Cell Therapy
Short fun video about Stemaid #39;s Embryonic Stem Cells Visit http://www.stemaid.com.
By: stemaid
More here:
Embryonic Stem Cell Therapy - Video