Page 192«..1020..191192193194..200210..»

Stem Cell Transplant Program Celebrates First Year – Newswise (press release)

By Dr. Matthew Watson

Newswise The University of New Mexico Comprehensive Cancer Center began helping New Mexicans with blood disorders a little more than one year ago. Since then, more than 30 New Mexicans have received treatment. Program Director Matthew Fero, MD, FACP, started the program after moving to New Mexico from the Fred Hutchinson Cancer Center in Seattle, Wash.

The UNM Comprehensive Cancer Center program is the states only bone marrow transplant program. It includes a nurse manager, nurse coordinator, a social worker, a pharmacist, infusion nurses, and an inpatient team. Bone marrow transplantation needs a multidisciplinary team because of the complexity in coordinating care, says Fero. The teams Nurse Manager, Maria Limanovich, says the team follows each person from the beginning of bone marrow transplant treatment through completion. According to Fero, the program is growing and is in the process of hiring two more doctors and an advanced practice provider.

The UNM Bone Marrow Transplant program offers treatment choices for people with lymphoma and myeloma and will expand to help people with other blood disorders. Almost 1,000 New Mexicans receive a blood cancer diagnosis each year, according to American Cancer Society estimates.

Fero and his team currently perform autologous transplants. Autologous bone marrow transplantation is the process of taking bone marrow stem cells out of a patient and then infusing them back in after the patient receives high dose therapy, says Fero. This allows us to use treatments that would otherwise harm the bone marrow.

Bone marrow, the soft reddish material that fills the inside of our bones, produces millions of new blood cells each second. These millions of cells come from a tiny number of bone marrow stem cells. These stem cells are special because they can mature into all of the different types of cells in the blood. These are the cells doctors collect for a transplant.

Because bone marrow is a liquid organ, Fero says, it can pass through an IV [intravenous] line. Doctors rarely need to take stem cells directly out of the bone, Fero explains. They use drugs to coax bone marrow stem cells into the bloodstream. From there, the blood travels through an IV line into an apheresis machine that sorts the stem cells out and returns the rest of the blood. The experience is like donating blood at a blood bank.

Once stem cells are safely stored out of the bloodstream, doctors use high-dose chemotherapy to eradicate the remaining cancer. When chemotherapy is out of their system, the patients stem cells are reinfused. The reinfusion process is similar to a blood transfusion. Once reinfused, stem cells find their way back to bone marrow where they begin to grow and make new blood cells.

Autologous bone marrow transplants are standard treatments for lymphoma and myeloma. This treatment works very well against aggressive lymphomas. In this case the goal is to cure the disease, says Fero. Autologous bone marrow transplants extend the lives of people with myeloma and gives them a better quality of life, too. Fero says, Were offering another option for their treatment.

Matthew Fero, MD, FACP, is a Professor in the Department of Internal Medicine, Division of Hematology/Oncology, at the UNM School of Medicine. He serves as Director of the Bone Marrow Stem Cell Program at the UNM Comprehensive Cancer Center. Dr. Fero received his medical degree from the University of California, Irvine, and completed his residency in Internal Medicine at the Mayo Graduate School of Medicine. He completed a medical fellowship in Medical Oncology at University of Washington and a research fellowship at Fred Hutchinson Cancer Research Center. He is a member of the American Society of Hematology and the American Society for Blood and Marrow Transplantation, and is a Fellow of the American College of Physicians. His research focuses on the molecular bases of cancer and translating new technologies into improved cancer diagnostics and novel therapies.

The University of New Mexico Comprehensive Cancer Center is the Official Cancer Center of New Mexico and the only National Cancer Institute-designated Cancer Center in a 500-mile radius. Its 125 board-certified oncology specialty physicians include cancer surgeons in every specialty (abdominal, thoracic, bone and soft tissue, neurosurgery, genitourinary, gynecology, and head and neck cancers), adult and pediatric hematologists/medical oncologists, gynecologic oncologists, and radiation oncologists. They, along with more than 500 other cancer healthcare professionals (nurses, pharmacists, nutritionists, navigators, psychologists and social workers), provided cancer care for nearly 60 percent of the adults and children in New Mexico affected by cancer. They treated 11,249 patients in 84,875 ambulatory clinic visits in addition to in-patient hospitalizations at UNM Hospital. These patients came from every county in the State. More than 12 percent of these patients participated in cancer clinical trials testing new cancer treatments and 35 percent of patients participated in other clinical research studies, including tests of novel cancer prevention strategies and cancer genome sequencing. The 130 cancer research scientists affiliated with the UNMCCC were awarded almost $60 million in federal and private grants and contracts for cancer research projects and published 301 high quality publications. Promoting economic development, they filed more than 30 new patents in FY16, and since 2010, have launched 11 new biotechnology start-up companies. Scientists associated with the UNMCCC Cancer Control & Disparities have conducted more than 60 statewide community-based cancer education, prevention, screening, and behavioral intervention studies involving more than 10,000 New Mexicans. Finally, the physicians, scientists and staff have provided education and training experiences to more than 230 high school, undergraduate, graduate, and postdoctoral fellowship students in cancer research and cancer health care delivery. Learn more at http://www.cancer.unm.edu.

Here is the original post:
Stem Cell Transplant Program Celebrates First Year - Newswise (press release)

To Read More: Stem Cell Transplant Program Celebrates First Year – Newswise (press release)
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cell Transplant Program Celebrates First Year – Newswise (press release) | dataAugust 15th, 2017
Read All

Scientists discovered how to rejuvenate rats by injecting stem cells into their hearts – Pulse Headlines

By Dr. Matthew Watson

On Monday, a group of scientists at Cedars-Sinai Heart Institute in Los Angeles, CA, discovered througha world-first experimenta form to rejuvenate elder rats old hearts by injecting cardiac stem cells from much younger rats with healthier hearts. They hope this process might eventually become useful to humans.

The first time an experiment like this was carried out was in 2009 by the same Los Angeles-based team. Now, they also proved the possibility of reversing aging in old hearts.

Heart failure is a typical cause of death in humans. Around 48 percent of women and 46 percent of men die a year from heart attacks and other heart-related diseases. They are the first reason of death worldwide, and a leading cause of death in the United States, killing over 375,000 Americans a year. Nearly half of all African-American population suffers from heart diseases.

Researchers took stem cells from the hearts of 4-month-old rats, shaped them into cardiosphere-derived cells and injected them into the hearts of other rats of 22 monthsold, an age that makes them be considered as old. They carried out a similar process to another group of rats but injected saline instead. Scientists later compared both groups.

After receiving the stem cells injection, researchers noted a significant change in the way old rats continued to live. They turned much more active and improved their functionalities. Not just their heart rates got better and faster, but also the way they ran and breathed. Their hair started to grow faster, their chromosomal telomeres which commonly shrink with age lengthened, plus other benefits. The rodents began to progressively improve their capacity of exercise along with their stamina overall.

The animals could exercise further than they could before by about 20%, and one of the most striking things, especially for me (because Im kind of losing my hair) the animals regrew their fur a lot better after theyd gotten cells compared with the placebo rats, said Dr Eduardo Marbn, director of the Cedars-Sinai Heart Institute and lead author, who is also extremely excited for having witnessed the unexpected fountain of youth.

In 2009, his team successfully repaired the damaged heart of a man who had suffered a heart attack, using his own heart tissue.

Stem cells are a really basic type of cells that can be molded and converted into other much-specialized cells through a process called differentiation, which is basicallyshaping them into any kind of body cell.They form in embryos like embryonic stem cells -, which help in the growth process of babies, along with the millions of other different cell types they need before their birth.

One of many cells scientists generated from stem cells is called progenitor cell, which shares some of the same properties. But unlike the original cells, progenitor cells are not able to divide and reproduce indefinitely. Dr. Marbn also said they discovered cardiosphere-derived cells, which tend to promote the healing of a condition that affects more than 50 percent of patients suffering from heart failure.

Our previous lab studies and human clinical trials have shown promise in treating heart failure using cardiac stem cell infusions, said Dr Marbn. Now we find that these specialized stem cells could turn out to reverse problems associated with aging of the heart.

According to Dr. Marbn, stem cells secrete exosomes, tiny vesicles which contain a lot of nucleic acids, things like RNA, that can change patterns of the way the tissue responds to injuries, and the way genes are expressed in the tissue. They are placed into the heart, and act to transform it into a better organ, helping it at the same time to improve exercise capacity and hair regrowth, he explained.

Now, Dr. Marbn is exploring a much easier way to deliver the stem cells intravenously, instead of injecting them directly into the heart. Thus avoiding surgeries, which tend to be more complicated and expensive for the patient.

Striking benefits are demonstrated not only from a cardiac perspective but across multiple organ systems, said Dr. Gary Gerstenblith, a professor of medicine in the cardiology division of Johns Hopkins Medicine, who did not contribute to the new research. The results suggest that stem cell therapies should be studied as an additional therapeutic option in the treatment of cardiac and other diseases common in the elderly.

Now, scientistsneed to make more extensive studies before using the technique in humans.

Source: CNN

Read more here:
Scientists discovered how to rejuvenate rats by injecting stem cells into their hearts - Pulse Headlines

To Read More: Scientists discovered how to rejuvenate rats by injecting stem cells into their hearts – Pulse Headlines
categoriaCardiac Stem Cells commentoComments Off on Scientists discovered how to rejuvenate rats by injecting stem cells into their hearts – Pulse Headlines | dataAugust 15th, 2017
Read All

Stem cell therapy may yield positive results for worn-out knees – Waterloo Cedar Falls Courier

By Dr. Matthew Watson

Dear Doctor: I read you can use your own stem cells to rejuvenate worn-out knees. Does this really work?

Dear Reader: Worn out is a good way to term what happens to the knee joint with prolonged use. Lets look at how this happens, starting with cartilage.

The lower portion of the knee joint (at the tibia) contains shock absorbers called menisci made of cartilage. You have one on the inner portion and another on the outer portion of each knee. The upper portion of the knee joint (at the femur) is lined with cartilage as well. All of this cartilage helps protect the bones at the joint but it doesnt heal or regenerate well due to limited blood supply. When severe, worn cartilage leads to arthritis of the knee. In knee X-rays of people older than 60, 37 percent have shown evidence of arthritis of the knees.

The intriguing thing about stem cells is they have the ability to become any type of cell the body needs. The cells used for stem cell injections in the knees are called mesenchymal stem cells, and they can differentiate into bone, fat or cartilage cells. These stem cells can come from the fat cells of your body, from your bone marrow or from the inner lining of your knee joint; theyre then replicated in the laboratory and injected into the knee joint.

In a 2014 study, 55 patients who had surgery for meniscal tears of the knees were separated into three groups, with two of the groups receiving stem cell injections. Researchers found, after six weeks, pain had decreased substantially in the two groups that received stem cell injections and the decrease was even greater at one and two years after the injection.

In a 2017 study in the British Journal of Sports Medicine, researchers analyzed six studies that used stem cells for osteoarthritis of the knees. In five of the studies, stem cells were given after surgery to the knee; in the other study, stem cells from a donor were administered without surgery. All the studies showed reduced pain and improved knee function. Further, in three of the four trials, MRIs corroborated the cartilage improvements. However, the authors noted, five of the six studies were of such poor methodology that an overall conclusion about the stem cells effectiveness could not be made.

In all these studies, the most common side effect was knee swelling and stiffness, which improved over time.

There may be benefit to stem cell injections for cartilage loss of the knees, but more data is needed, especially in those who arent having surgery of the knee. Id also like to see more data on this type of therapy as a preventive measure for younger patients before their knees are worn out.

Send questions to askthedoctors@mednet.ucla.edu, or write: Ask the Doctors, c/o Media Relations, UCLA Health, 924 Westwood Blvd., Suite 350, Los Angeles, CA, 90095.

Read the rest here:
Stem cell therapy may yield positive results for worn-out knees - Waterloo Cedar Falls Courier

To Read More: Stem cell therapy may yield positive results for worn-out knees – Waterloo Cedar Falls Courier
categoriaBone Marrow Stem Cells commentoComments Off on Stem cell therapy may yield positive results for worn-out knees – Waterloo Cedar Falls Courier | dataAugust 14th, 2017
Read All

Nanochip Could Heal Injuries or Regrow Organs with One Touch – NewsFactor Network

By Dr. Matthew Watson

A novel device that reprograms skin cells could represent a breakthrough in repairing injured or aging tissue, researchers say. The new technique, called tissue nanotransfection, is based on a tiny device that sits on the surface of the skin of a living body. An intense, focused electric field is then applied across the device, allowing it to deliver genes to the skin cells beneath it -- turning them into different types of cells.

That, according to the researchers, offers an exciting development when it comes to repairing damaged tissue, offering the possibility of turning a patient's own tissue into a "bioreactor" to produce cells to either repair nearby tissues, or for use at another site.

"By using our novel nanochip technology, injured or compromised organs can be replaced," said Chandan Sen [pictured above], from the Ohio State University, who co-led the study. "We have shown that skin is a fertile land where we can grow the elements of any organ that is declining."

The ability for scientists to reprogram cells into other cell types is not new: the discovery scooped John Gurdon and Shinya Yamanaka the Nobel Prize in 2012 and is currently under research in myriad fields, including Parkinson's disease.

"You can change the fate of cells by incorporating into them some new genes," said Dr Axel Behren, an expert in stem cell research from the Francis Crick Institute in London, who was not involved in the Ohio research. "Basically you can take a skin cell and put some genes into them, and they become another cell, for example a neuron, or a vascular cell, or a stem cell."

But the new approach, says Sen, avoids an intermediary step where cells are turned into what are known as pluripotent stem cells, instead turning skin cells directly into functional cells of different types. "It is a single step process in the body," he said.

Furthermore, the new approach does not rely on applying an electric field across a large area of the cell, or the use of viruses to deliver the genes. "We are the first to be able to reprogram [cells] in the body without the use of any viral vector," said Sen.

The new research, published in the journal Nature Nanotechnology, describes how the team developed both the new technique and novel genes, allowing them to reprogramme skin cells on the surface of an animal in situ.

"They can put this little device on one piece of skin or onto the other piece of skin and the genes will go there, wherever they put [the device]," said Behrens.

The team reveal that they used the technique on mice with legs that had had their arteries cut, preventing blood flow through the limb. The device was then put on the skin of the mice, and an electric field applied to trigger changes in the cells' membrane, allowing the genes to enter the cells below. As a result, the team found that they were able to convert skin cells directly into vascular cells -with the effect extending deeper into the limb, in effect building a new network of blood vessels.

"Seven days later we saw new vessels and 14 days later we saw [blood flow] through the whole leg," said Sen.

The team were also able to use the device to convert skin cells on mice, into nerve cells which were then injected into the brains of mice who had experienced a stroke, helping them to recover.

"With this technology, we can convert skin cells into elements of any organ with just one touch. This process only takes less than a second and is non-invasive, and then you're off," said Sen.

The new technology, said Behrens is an interesting step, not least since it "avoids all issues with rejection".

"This is a clever use of an existing technique that has potential applications -- but massive further refinement is needed," he said, pointing out that there are standard surgical techniques to deal with blockages of blood flow in limbs.

What's more, he said, the new technique is unlikely to be used on areas other than skin, since the need for an electric current and the device near to the tissue means using it on internal organs would require an invasive procedure.

"Massive development [would be] needed for this to be used for anything else than skin," he said.

But Sen and colleagues say they are hoping to develop the technique further, with plans to start clinical trials in humans next year.

2017 Guardian Web under contract with NewsEdge/Acquire Media. All rights reserved.

Image credit: The Ohio State University Wexner Medical Center.

See the article here:
Nanochip Could Heal Injuries or Regrow Organs with One Touch - NewsFactor Network

To Read More: Nanochip Could Heal Injuries or Regrow Organs with One Touch – NewsFactor Network
categoriaSkin Stem Cells commentoComments Off on Nanochip Could Heal Injuries or Regrow Organs with One Touch – NewsFactor Network | dataAugust 13th, 2017
Read All

Stem Cells: The Future of Injectable Fillers – Palm Beach Post

By Dr. Matthew Watson

Question: I know stem cells are being used in medicine for regrowing tissue and helping certain diseases, but how do stems cells work for facial rejuvenation?

Answer: The use of stem cells in the cosmetic industry for facial rejuvenation is a relatively recent development. Stem cells for regenerative purposes are being used in traditional medicine for longer. We know that certain types of stem cells can differentiate into tissue-specific cells when provided with the proper stimulus and placed in the right environment.

Protein rich plasma (PRP) is known to contain certain growth factors which can signal stem cells to differentiate. When stem cells are mixed with PRP and injected into skin tissues, these stem cells can differentiate into collagen-producing skin cells. Since much of facial aging is a result of increased collagen breakdown with loss of overall collagen and elastin, collagen-stimulating substances to help restore the collagen balance in our face can give a more refreshed, youthful and rejuvenated appearance.

I use a cutting-edge technology to harvest stem cells from your own body and re-inject them into the facial tissues to restore a more youthful facial appearance. Various tissues in the body are an important source of stem cells, including bone marrow as well as fat or adipose tissue. In my practice, stem cells are harvested from fatty tissue in the stomach or hips in about 10 minutes, using a small syringe and lidocaine solution for numbing.

The stem cells are then mixed with PRP prepared from drawing just one tube of your blood and spinning in the centrifuge for 10 minutes. Its important to realize that these are not fat injections. Its the stem cells that are being harvested from your fatty tissue. The goal is to extract and use the stem cells rather than your actual fat. This entire process takes just 30 to 40 minutes before the stem cells are ready for injection into the face.

Stem cell filler is then injected into the face just like any standard filler. The difference is that 15 to 20 ml or more of stem cell material can be prepared and injected into your face in just one 30 minute session. Another benefit of stem cell fillers, compared to the commercially available fillers, is that stem cells can be injected at various levels within the facial tissues, ranging from very superficial lines of the upper lips and crows feet, to deeper nasolabial folds and marionette lines as well as hollow cheeks and temples. Patients often notice a healthy, youthful glow to their facial skin immediately following treatment.

Unlike commercial fillers which typically contain some foreign component, which is not part of our own bodies, these stem cell filler preparations come from your own body without the risk of allergic reaction. As long as you have some adipose tissue in you flanks or abdomen, a fairy large volume of stem cells for filler injections can be harvested and prepared for use in a single facial rejuvenation injection session.

A one-on-one detailed consultation with a Board Certified Facial Plastic Surgeon is the first step in determining whether you are a good candidate for a stem cell filler versus other commercial fillers.

Dr. Anita Mandal is a double Board Certified Facial Plastic Surgeon practicing since 1998. She exclusively specializes in facial rejuvenation and non-invasive body contouring. In addition to being on the medical staff at Jupiter Medical Center, her offices house both surgical and laser suites. Dr. Mandal is committed to giving her patients the most natural looking results.

______________________________

Mandal Plastic Surgery Center

2401 PGA Blvd., Suite 146

See the original post:
Stem Cells: The Future of Injectable Fillers - Palm Beach Post

To Read More: Stem Cells: The Future of Injectable Fillers – Palm Beach Post
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cells: The Future of Injectable Fillers – Palm Beach Post | dataAugust 13th, 2017
Read All

Targeted Stem Cells Might Hold the Key to Eradicating Leukemia – The Jewish Press – JewishPress.com

By Dr. Matthew Watson

Photo Credit: Pixabay.com

Israel has the fourth-highest per capita rate of leukemia fatalities worldwide. In the United States, the blood cancer kills more than 24,000 Americans annually.

According to the Israel Cancer Research Fund, a majority of leukemia treatments today focus on chemotherapy, steroid drugs and stem-cell transplants. Ben-Gurion University of the Negev (BGU) scientist Dr. Roi Gazit has been conducting intensive research in the hunt for more effective, targeted leukemia treatments.

Gazit explains, Immune therapies and stem-cell treatments offer great advantages, but there are too many options to choose from. At Ben-Gurion University, our research models will help to better specify which treatment may suit a specific type, and even sub-type, of the disease.

Unfortunately, there is no one-size-fits-all treatment for leukemia. Thats why we need tailor-made models to fit the treatment to the disease.

Gazit is usinghematopoieticstem cells (stem cells derived from bone marrow). These unique stem cells are used in cancer treatment because of their ability to divide and form new and different kinds of blood cells.

Stem cell therapy is considered to be the next frontier within medicine. Different types of stem cells are being used in research for all kinds of dreaded maladies from cancer to ALS (Lou Gehrigs disease).

Dr. Gazits lab at Ben-Gurion University utilizes primary stem cells, which have been cultured directly from a subject, and turns them into a malignant leukemia growth inside of mice. By examining how the leukemia spreads, Gazit is exploring different ways in which hematopoietic stem cells can be deployed in order to halt the leukemia altogether.

The end goal of this research is not only to formulate a cure, but also to help other scientists develop more types of immunotherapy and other ways to use stem cells to combat leukemia.

With any new information we can gain better understanding, which at the end of the day translates into better treatment, he says.

Would you like more articles like this from Ben-Gurion University?

Read more:
Targeted Stem Cells Might Hold the Key to Eradicating Leukemia - The Jewish Press - JewishPress.com

To Read More: Targeted Stem Cells Might Hold the Key to Eradicating Leukemia – The Jewish Press – JewishPress.com
categoriaBone Marrow Stem Cells commentoComments Off on Targeted Stem Cells Might Hold the Key to Eradicating Leukemia – The Jewish Press – JewishPress.com | dataAugust 12th, 2017
Read All

Stem Cell Registry Will Facilitate Finding Donors – Financial Tribune

By Dr. Matthew Watson

One of the obstacles on the way of successful stem cell transplant is problems in finding a good match for the recipient.There is only 25% chance that siblings offer one another a human leukocyte antigen match (or simply a tissue type match) while in 75% of cases patients need to find a match from unrelated donors, Dr. Azim Mehrvar, head of MAHAK Specialized Pediatric Cancer Hospital, was quoted by ISNA as saying.Last month, MAHAK opened a stem cell registry to facilitate the search for donors who are a match to blood disorder patients the first of its kind in Iran.The best transplant outcome happens when a patients HLA and the donors HLA closely match. HLA is a protein or marker found on most cells in a body and is used to match with a donor for bone marrow or cord blood transplant.All people between the ages of 18 and 50 can come to the center and register to help children suffering from cancer.The process is easy: Once an applicant is registered, his/her cheek cell sample (buccal swab) is sent for HLA typing, the result of which is stored in the registry. The process takes only a few minutes.In the future if the persons HLA type matches with any patient looking for a match, the donor will be contacted to donate their blood stem cells to potentially save a life, the physician said.After finding a good match, the donor receives a health check-up to make sure he/she is fit and healthy to donate. Then they will be given an injection called GCSF (Granulocyte Colony Stimulating Factor) every day for 5 days. This is to release stem cells from the bone marrow into the peripheral blood flow.On the fifth day, blood stem cells are collected in a 3-4 hours outpatient procedure called apheresis. The stem cells are then transferred to the hospital to be grafted.Stem cells can be used to treat a variety of disorders including hematopoietic and genetic disorders and even cerebral palsy. Cerebral palsy is an umbrella term for the effects of damage to a developing brain by various causes. It is connected with a range of symptoms, including muscle weakness and movement problems.According to the charitys website (Mahak-charity.org), currently donors can be registered only in Tehran. The budget to maintain the registry has been provided by Bahman Group, an Iran-based auto company under license of Japan carmaker Mazda.Mahak, a non-governmental organization dedicated to helping children, was established in 1991 by Saideh Ghods.The society is funded entirely by donations and has supported 11,505 children suffering from cancer in the past 17 years. The 18,000-square-meter rehab center and hospital in the north of Tehran was completed in 2003 and can house 120 children, each with a family member. The rehab center has diagnostic and treatment wards on par with global standards.

See the rest here:
Stem Cell Registry Will Facilitate Finding Donors - Financial Tribune

To Read More: Stem Cell Registry Will Facilitate Finding Donors – Financial Tribune
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cell Registry Will Facilitate Finding Donors – Financial Tribune | dataAugust 12th, 2017
Read All

Stem Cells in the Treatment of Heart Failure MyHeart

By Dr. Matthew Watson

The use of stem cells in the treatment of heart failure cases is currently being investigated. Cardiovascular disease is the #1 killer in the United States accounting forone third ofall deaths.Heart disease kills more people than cancer, HIV, diabetesor trauma. Many advances in medical and surgical treatment of heart disease have contributed to a growing number of patients in their 70s and 80s with congestive heart failure. An estimated 1% of the Western world has congestive heart failure, including over 5 million Americans with an additional 550,000 new cases each year. Patients with advanced heart failure who require hospitalization, have a 50% mortality within the first fiveyears.

The patients with significant coronary artery disease can sometimes undergo coronary artery bypass surgery or percutaneous coronary intervention to open up blocked arteries. In addition, current medical treatment of patients with congestive heart failure include proven beneficial medicine such as beta-blockers, ACE inhibitors, angiotensinIIreceptor blockers, angiotensin IIreceptor blocker Neprilysin inhibitors and diuretics. When appropriate, resynchronization of the right and left ventricles can be accomplished with special types of pacemaker. However, even after following all of these guideline proven therapies, some patients still run out of options and continue to have severe and debilitating congestive heart failure. Heart transplant is a last resort for end stage heart disease.There is a very low number of donor hearts and transplant programs have very restricted eligibility criteria leaving a large number patients with very few options.

An example of a normal LV-gram.

An example of a normal echocardiogram.

There are reasons to believe that regenerative therapy could really help patients with congestive heart failure. Multi-potent cardiac stem cells exist in the heart and participate in the normal turnover of heart muscle cells and small blood vessels.A heart attack kills heart muscle which is made of millions of heart cells. The question is: Would regenerative therapy be able to replace those heart cells or cardiac myocytes?

Thousands of patients have been enrolled in clinical trials to address this question. Regenerative or stem cell therapy has been shown to be safe. Modest benefits have been demonstrated but the mechanism has not been completely elucidated. So far, there is no evidence that cells regenerate from the transplanted stem cells. Animal studies have shown that only 1% of the stem cells injected into the heart tissue are detectable after 1 month. The clinical benefits observed appeared to be due to arelease of growth factors which triggers endogenous repair of the heart cells and inhibits cell death and fibrosis resulting in increased performance of the heart muscle.

An example of an abnormal LV-gram.

An example of an abnormal echocardiogram.

Adult stem cells derived from the bone marrow of healthyyoung donors have been used in clinical trials of heart failure. In the Dream-HF clinical trial, we are using immuno-selected mesenchymalstem cells from healthy adult allogeneic donors. The cells are obtained from their bone marrow, expandedin a manufacturing facility and arecryopreserved until use. These cells are shipped to clinical sites and used for the study.

Allogeneic mesenchymal stem cells have been evaluated in multiple nonclinical and clinical studies, several of which were initiated by Mesoblast, the phase 3 study sponsor. Therapeutic indications under evaluation included heart failure, myocardial infarction, rheumatoid arthritis and graft versus host disease. Currently, results from clinical studies suggest that allogeneic stem cells are generally well tolerated. Moreover,in a phase 2 study ofpatients with heart failure, mesenchymal precursor cell therapy was associated withimprovement inreduction in heart failure hospitalization events and improvementsin functional exercise capacity.

Stem cells from healthy normal volunteers are administered as a 1 time dose of 150 million cells. Myocardial locations are defined within the left ventricle byLeft Ventriculogram (LV-gram)imaging and electromechanical mapping as viable for cell delivery. The cells are administered via a trans-endocardial injection at 15-20 sites inside the heart cavity using a Myostar injection catheter and a NOGA cardiac mapping system. Dr Mendelsohn is the interventional cardiologist performing the injections at BBH Princeton hospital. Only he knows which patients received the stem cells, and he doesnt follow them. The other heart failure specialists follow the patients in the research clinic.

The patients that are injected with stem cells are compared to a group of patient who undergo a Sham or placebo treatment. The treatment arm is not known to the patient or to the heart failure specialist such as myself. This is the only way to find out whether the treatment with stem cells really works. All the patients will be followed by their study team and will be monitored for the clinical effects of stem-cell treatment in patients with congestive heart failure.

No matter how many cases of congestive heart failure we treat, I am still captivated by each and every persons story. One such patient, is a young lady that was treated for heart failure and had a defibrillator placed in 2009. She sought our help and was inquiring about stem cell treatment for her heart. She was only in her early 40s and was desperate to try something new. She was on maximal medical therapy and did not qualify at that time because she was stable. In 2015 however, a clinical deterioration lead to several cardiac procedures including ablation of ventricular arrhythmias and an upgrade of her pacemaker/defibrillator. I thought we were going to lose her. At some point, she was going into incessant ventriculartachycardias and required several prolonged hospitalizations. We referred her to a transplant center and she was evaluated by the transplant team. At the same time, she enrolled in our stem cell research Dream-HF program at the end of 2015.Because she is still part of the research study, I am not sure whether she received stem cells or not. She is amongst one of the many patients that are participating ina stem cell research program that is evaluating cutting edge technology in heart failure. The Dream-HF study is still enrolling patients with chronic systolic heart failure of either ischemic or nonischemic etiology.

See the article here:
Stem Cells in the Treatment of Heart Failure MyHeart

To Read More: Stem Cells in the Treatment of Heart Failure MyHeart
categoriaCardiac Stem Cells commentoComments Off on Stem Cells in the Treatment of Heart Failure MyHeart | dataAugust 12th, 2017
Read All

Scientists Develop Nanochip That Turns Skin Into Brain Cells – The Merkle

By Dr. Matthew Watson

The wonders of modern science know no bounds. Scientists in the U.S. have managedto grow brain cells from skin cells. They are now using tissue nanotransfection also known as TNT to grow brain cells on human skin. As a result, the skin can perform different functions, including boosting onescognitive abilities.

The human skin is not something most people think about too often, despite it being thebodys largest organ. We know it keeps our other organs inside of our body and protects us from cold, heat, and other weather conditions. It can also grow hair all over and even more in certain places to give us better protection against external threats. However, what it does under the hood is a major mystery to most people walking around on the surface of this planet. That may change pretty quickly thanks to a procedurecalledtissue nanotransfection.

Scientists have been enamored with this conceptfor some time now. Being able to make the human skin perform varioustasks based on evolvingneeds would unlock seemingly limitless possibility. The concept of using a microchip to grow brain cells on ones skin may not sound all thatappealing, but it should not be dismissed out of hand either. It is this chip which could make your skin perform all sorts of different functions, including improving your cognitive capabilities for a brief period of time.

Implanting chips within the human body is still a controversial idea. That stigma will remain present for quite some time, but developments such as tissue nanotransfection may help change things for the better. Harnessing this power through embedded microchips will allow humans to grow whatever type of cells they need at any given time. It can be used to speed up recovery from injury, fight off diseases, or even improve your brain capacity. That lastone sounds a bit scary, but it couldcertainly have its benefits.

The nanochip in question wasdeveloped by researchers at the Ohio State University Wexner Medical Center. This chip uses a small electric current to deliver DNA toliving skin cells, and effectively reprogramming them. Touch the chip to a wounded area, for example, and remove it immediately afterwards: the affected cells will start to heal faster and ensure the patient can recover more quickly. It will be interesting to see how human hosts respond to such treatment.

According to Nature Nanotechnology, this technique has been tested successfully onboth pigs and mice. Introducing new blood vessels to badly injured limbs savedthem fromlosing said limbs dueto lackluster blood flow. Additionally, the same technology has been used to create nerve cells from skin which canthen be harvested and injected into animals with brain injuries to help them recover. It shows a lot of potential for the future.

This new method ensures that immune suppression is no longer a necessity for the cells in question. It also bypassesthe conversion from skin to stem cell by transformingdirectly into whichever cell is needed at any given time. This is a very big leapand may ultimatelyalter the way we think abouthealth care altogether. The goal now is to successfully test the system usinghuman hosts and see how things play out in the long run.

View post:
Scientists Develop Nanochip That Turns Skin Into Brain Cells - The Merkle

To Read More: Scientists Develop Nanochip That Turns Skin Into Brain Cells – The Merkle
categoriaSkin Stem Cells commentoComments Off on Scientists Develop Nanochip That Turns Skin Into Brain Cells – The Merkle | dataAugust 11th, 2017
Read All

What’s Propelling Vistagen Therapeutics Incorporated (NASDAQ:VTGN) After Higher Shorts Reported? – BZ Weekly

By Dr. Matthew Watson

August 8, 2017 - By Peter Erickson

The stock of Vistagen Therapeutics Incorporated (NASDAQ:VTGN) registered an increase of 11.81% in short interest. VTGNs total short interest was 90,900 shares in August as published by FINRA. Its up 11.81% from 81,300 shares, reported previously. With 28,700 shares average volume, it will take short sellers 3 days to cover their VTGNs short positions. The short interest to Vistagen Therapeutics Incorporateds float is 1.75%.

The stock decreased 2.22% or $0.04 on August 7, reaching $1.76. About shares traded. Vistagen Therapeutics Inc (NASDAQ:VTGN) has declined 50.00% since August 8, 2016 and is downtrending. It has underperformed by 66.70% the S&P500.

VistaGen Therapeutics, Inc. is a clinical-stage biopharmaceutical company. The company has market cap of $16.74 million. The Firm is engaged in developing and commercializing product candidates for patients with diseases and disorders involving the central nervous system . It currently has negative earnings. The Companys lead product candidate, AV-101, is an orally available prodrug candidate in Phase II development, initially for the adjunctive treatment of major depressive disorder (MDD) in patients with an inadequate response to standard antidepressants approved by the United States Food and Drug Administration (FDA).

More notable recent Vistagen Therapeutics Inc (NASDAQ:VTGN) news were published by: Prnewswire.com which released: VistaGen Therapeutics Reports Second Quarter 2017 Financial Results and on November 14, 2016, also Finance.Yahoo.com with their article: VistaGen Therapeutics Receives European Patent Office Notice of Intention to published on March 29, 2017, Prnewswire.com published: VistaGen Therapeutics Grants Exclusive Sublicense of Cardiac Stem Cell on December 14, 2016. More interesting news about Vistagen Therapeutics Inc (NASDAQ:VTGN) were released by: Prnewswire.com and their article: VistaGen Therapeutics to Present at Biotech Showcase 2017 published on January 05, 2017 as well as Prnewswire.coms news article titled: VistaGen Therapeutics Provides Business Outlook and Sets Corporate Milestones with publication date: September 22, 2016.

Receive News & Ratings Via Email - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings with our FREE daily email newsletter.

More:
What's Propelling Vistagen Therapeutics Incorporated (NASDAQ:VTGN) After Higher Shorts Reported? - BZ Weekly

To Read More: What’s Propelling Vistagen Therapeutics Incorporated (NASDAQ:VTGN) After Higher Shorts Reported? – BZ Weekly
categoriaCardiac Stem Cells commentoComments Off on What’s Propelling Vistagen Therapeutics Incorporated (NASDAQ:VTGN) After Higher Shorts Reported? – BZ Weekly | dataAugust 11th, 2017
Read All

Kerala: He bunked class to save her life – Times of India

By Dr. Matthew Watson

KOCHI: Shabas T S, a 23-year-old electrical engineer from Kochi, did not know that a stem cell donor registration camp he attended two years ago just to bunk class would become a turning point in his life. A year after registering with DATRI, India's largest adult unrelated blood stem cell donor's registry, Shabas was informed by the organization that his stem cells are perfect match to 9-year-old Manasvi Karamchedu from Hyderabad who was diagnosed with Thalassemia Major when she was five months old.

On Thursday, when Shabas met a fully-recovered Manasvi at Cochin Palace Hotel here at a meet arranged by DATRI, he was an elated lot. "I have no words to express my feeling. I feel so proud that a simple gesture from my part saved a life," said Shabas.

Manasvi's father Kiran could not control his tears when he hugged the youth who gave his daughter a new lease of life. "My wife and I were shattered when Manasvi was diagnosed with Thalassemia Major. She needed blood transfusions every week and the permanent solution was a blood stem cell transplant," he said.

"We came to know about DATRI when we lost all the hopes. Last year, we got the transplant done at Apollo Hospital, Chennai. Shabas and DATRI have gifted Manasvi a new life. Now, she has two birthdays and two birthplaces," said Kiran. "Ever since the transplant last year, we were looking forward to meeting Shabas. I am happy that DATRI has arranged it now," he added.

Blood stem cell transplant is the solution to those diagnosed with blood cancer and other blood-related disorders. But many are reluctant to come forward to donate blood stem cells. Donation can be done through two methods peripheral blood stem cell (PBSC) donation and bone marrow donation.

Shabas, who went for PBSC, said, "My family was very supportive and I was able to get back to my daily activities immediately after the procedure".

Read this article:
Kerala: He bunked class to save her life - Times of India

To Read More: Kerala: He bunked class to save her life – Times of India
categoriaBone Marrow Stem Cells commentoComments Off on Kerala: He bunked class to save her life – Times of India | dataAugust 11th, 2017
Read All

Bone Marrow Drive To Benefit Paula Fitzgerald Silvia On Sunday, September 17th – Newport Buzz

By Dr. Matthew Watson

Bone Marrow Donors Needed

Paula (Fitzgerald) Silvia of Middletown has been diagnosed with myeloid dysplasia syndrome (MDS), a form of blood cancer where the bone marrow cells do not mature into healthy blood cells. Paula received this devastating news at the end of June. Nothing seemed particularly out of sorts; she was travelling with her family, working, going to the beach and doing all her volunteer activities. Only indications were catching more colds and a little tired but Paulas life was always busy and she does so much for everyone, she should be tired.

Paula has started her first round of chemotherapy. Every four weeks, she has five consecutive days of chemotherapy infusion. However, it is only a temporary treatment. A bone marrow transplant is needed to cure the disease.

A bone marrow registration drive is being held on Sunday, September 17 from 4:00pm to 7:00pm at Fenner Hall, 15 Fenner Ave, Newport, for this purpose. It is being organized by her family and friends and is in conjunction with Dana-Farber Cancer Institute and http://www.BeTheMatch.org, a national bone marrow donor registry.

The first source for bone marrow matches is a sibling or child, if they fall in the age range, but Paulas family members were not a match. More than 35,000 people in the United States are diagnosed each year with leukemia, anemias, myelodysplastic disorders and other life-threatening diseases requiring treatment with a blood stem cell or bone marrow transplant. About 70 percent of bone marrow transplant recipients must rely on an unrelated donor. Finding a compatible donor is a challenge. The opportunity to register and/or donate will help many patients in need..

Donors must be 18 to 44, and be willing to donate to any patient in need.To join the registry, potential donors must complete paperwork at the drive and have a cheek swab taken. If unable to attend, donors are asked to go towww.bethematch.orgto sign up, or visit any RI Blood Center.

Paula (Fitzgerald) grew up in Newport in the Fifth Ward, attending Newport schools, graduating from Rogers in 1968. Her father, Jim Fitzgerald, was the Dean of Boys at Thompson and football coach and her mother Meg also worked in the school system. She has an older sister, Maureen, and younger siblings, Nancy and Bill. Paula is an outstanding athlete, tennis and golf being her games of recent years. After graduating from college, Paula continued working at Salas until it closed and now works for private catering companies. TR McGrath and Kitchen Companion.

Paula is married to Manny P Silvia, a retired lieutenant in Middletown police department and retired supervisor in DCYF Protective Services. They have two children, Corrine and Greg.

Paula does an amazing amount of volunteering although never wanting any recognition for her efforts. She volunteers for many organizations such as the MLK Community Center, Relay for Life, the Ladies Ancient Order of Hibernians, Mosaic Club, AARP school programs, and Vasco deGama Society. Shes a communicant of St. Augustins Church.

The news of her diagnosis is a shock, but Paula continues with her active, involved life, giving it her best. She wants to send the message that everyone should be proactive about their health and always follow up on lab work. Paula is now awaiting a bone marrow transplant!

Any questions, please contact Nancy Fitzgerald, nancyfitz53@gmail.com, 401-855-1985. To learn more please contact Dana-Farbers Bone Marrow Donor Program at866-875-3324, email nmdpdonor@dfci.harvard.edu or visit online http://www.bethematch.org

Read more here:
Bone Marrow Drive To Benefit Paula Fitzgerald Silvia On Sunday, September 17th - Newport Buzz

To Read More: Bone Marrow Drive To Benefit Paula Fitzgerald Silvia On Sunday, September 17th – Newport Buzz
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Drive To Benefit Paula Fitzgerald Silvia On Sunday, September 17th – Newport Buzz | dataAugust 10th, 2017
Read All

Bone marrow drive to help and honor Bond Clinic physician – The Ledger

By Dr. Matthew Watson

Bone marrow transplants are used in serious blood disorders, especially cancers, when the needed doses of chemotherapy or radiation would be so high it would damage or destroy the stem cells in the marrow.

WINTER HAVEN For 14 years, Dr. Christopher Miller has been treating patients at Bond Clinic where he specializes in endocrinology, diabetes and metabolism. Many local people have met him at Bonds diabetes clinic or in nearby Eloise where he volunteers at Angel Cares free clinic.

Organizers of a Be The Match drive are hoping that those who have benefited from his care, including families and friends of patients, will turn out to honor him Saturday by volunteering to be a bone marrow donor.

He received a shocking, out-of-the-blue diagnosis and is in need of a bone marrow match, said Ashley Scanlan, marketing director for Bond Clinic.

Bone marrow is the soft tissue inside bones where blood cells are produced. Transplants are used in serious blood disorders, especially cancers, when the needed doses of chemotherapy or radiation would be so high it would damage or destroy the stem cells in the marrow.

Be The Match, a national nonprofit organization that is part of the National Marrow Donor Program, is the largest registry matching donors with those in need of a marrow transplant, said Marc Silver, community engagement representative for Be The Match. It also provides support for patients and donors, information for health care professionals and conducts research.

Nearly 70 percent of people needing a marrow transplant do not have a match within their families so the registry was set up to provide a resource for matches.

The event is from 8to 11 a.m. Saturday at the Bond Clinic Main Campus, 500 E. Central Ave., Winter Haven.

Registering to be a donor is a simple process, filling out some paperwork and taking a mouth swab, Scanlan said.

Volunteers should be between 18 and 44 years old, generally in good health and be willing to donate to any patient in the future, Scanlan said.

People are asking why the cutoff is 44, but they have found that age group has the best success in transplants, Scanlan said.

People of other ages are invited to come Saturday and write a note toMiller or make a financial donation, which would go either to the American Cancer Society or to the local Angel Care clinic, she said.

Bobbie Skukowski, an advanced registered nurse practitioner who leads Bonds diabetes clinic, said, Dr. Miller is an excellent physician and an excellent teacher. He was a fellow at Emory University and has taught us all so much; he has brought up the level of diabetes care at Bond Clinic and in the Winter Haven area in general.

"He is very good with his patients and right-on in his care, she said.

If a person is later selected as a potential match, there is no cost to the donor, Scanlan said. And the potential donor can later decide to withdraw from the registry.

The paperwork will ask several questions, including whether the potential donor is willing to donate to any patient in need, willing to donate to a stranger, and willing to donate 20 to 30 hours if found to be a perfect match.

If the potential donor meets the criteria, a mouth swab is taken and later analyzed for a match.

While years ago, being a bone marrow donor was a complicated procedure, now it typically is simple, handled much like a blood donation, Scanlan said.

Over 80 percent of the donations are non-invasive, said Be The Matchs spokesman Silver.

Be The Match literature explains that the donor is given injections of a drug, filgrastim, for five days leading up to the donation to increase the number of stem cells in the blood.

Then, on the day of the donation, the donor goes through a procedure similar to donating blood platelets at a blood center. Blood is taken out of one arm, passed through a machine that collects the blood-forming stem cells, and then the red and white blood cells are returned to the donors other arm through a needle. Typically it takes eight hours.

Donors often have a headache or muscle aches for a few days 22 percent recover within two days, 53 percent within a week, 93 percent within a month, 99 percent within three months and a very few people can take as long as a year to recover, according to Be The Match.

Less than 20 percent of the time, we do a hip aspiration, which is a more complicated procedure and involves having anesthesia in an operating room, Silver said.

Be The Match literature explains that, in those cases, needles are used to withdraw liquid marrow from both sides of the back of the pelvic bone. Typically, the donor stays at the hospital from early morning to late afternoon, or occasionally overnight for observation.

Be The Match helped match 6,200 patients for marrow and cord blood transplants last year and added 472,000 new potential donors to the registry, according to the organization.

Marilyn Meyer can be reached at marilyn.meyer@theledger.com or 863-802-7558. Follow her on Twitter @marilyn_ledger.

Follow this link:
Bone marrow drive to help and honor Bond Clinic physician - The Ledger

To Read More: Bone marrow drive to help and honor Bond Clinic physician – The Ledger
categoriaBone Marrow Stem Cells commentoComments Off on Bone marrow drive to help and honor Bond Clinic physician – The Ledger | dataAugust 10th, 2017
Read All

Gene therapy via skin could treat diseases such as obesity – UChicago News

By Dr. Matthew Watson

A University of Chicago-based research team has overcome challenges that have limited gene therapy and demonstrated how their novel approach with skin transplantation could enable a wide range of gene-based therapies to treat many human diseases.

In a study inthe journal Cell Stem Cell, the researchers provide proof-of-concept. They describe gene-therapy administered through skin transplants to treat two related and extremely common human ailments: Type 2 diabetes and obesity.

We resolved some technical hurdles and designed a mouse-to-mouse skin transplantation model in animals with intact immune systems, said study author Xiaoyang Wu, assistant professor in the Ben May Department for Cancer Research at the University of Chicago. We think this platform has the potential to lead to safe and durable gene therapy in mice and, we hope, in humans, using selected and modified cells from skin.

Beginning in the 1970s, physicians learned how to harvest skin stem cells from a patient with extensive burn wounds, grow them in the laboratory, then apply the lab-grown tissue to close and protect a patients wounds. This approach is now standard. However, the application of skin transplants is better developed in humans than in mice.

The mouse system is less mature, Wu said. It took us a few years to optimize our 3-D skin organoid culture system.

This study is the first to show that an engineered skin graft can survive long term in wild-type mice with intact immune systems. We have a better than 80 percent success rate with skin transplantation, Wu said. This is exciting for us.

The researchers focused on diabetes because it is a common non-skin disease that can be treated by the strategic delivery of specific proteins.

They inserted the gene for glucagon-like peptide 1 (GLP1), a hormone that stimulates the pancreas to secrete insulin. This extra insulin removes excessive glucose from the bloodstream, preventing the complications of diabetes. GLP1 can also delay gastric emptying and reduce appetite.

Using CRISPR, a tool for precise genetic engineering, they modified the GLP1 gene. They inserted one mutation, designed to extend the hormones half-life in the blood stream, and fused the modified gene to an antibody fragment so that it would circulate in the blood stream longer. They also attached an inducible promoter, which enabled them to turn on the gene to make more GLP1, as needed, by exposing it to the antibiotic doxycycline. Then they inserted the gene into skin cells and grew those cells in culture.

When these cultured cells were exposed to an air/liquid interface in the laboratory, they stratified, generating what the authors referred to as a multi-layered, skin-like organoid. Next, they grafted this lab-grown gene-altered skin onto mice with intact immune systems. There was no significant rejection of the transplanted skin grafts.

When the mice ate food containing minute amounts of doxycycline, they released dose-dependent levels of GLP1 into the blood. This promptly increased blood-insulin levels and reduced blood-glucose levels.

When the researchers fed normal or gene-altered mice a high-fat diet, both groups rapidly gained weight. They became obese. When normal and gene-altered mice got the high-fat diet along with varying levels of doxycycline, to induce GLP1 release, the normal mice grew fat and mice expressing GLP1 showed less weight gain.

Expression of GLP1 also lowered glucose levels and reduced insulin resistance.

Together, our data strongly suggest that cutaneous gene therapy with inducible expression of GLP1 can be used for the treatment and prevention of diet-induced obesity and pathologies, the authors wrote.

When they transplanted gene-altered human cells to mice with a limited immune system, they saw the same effect. These results, the authors wrote, suggest that cutaneous gene therapy for GLP1 secretion could be practical and clinically relevant.

This approach, combining precise genome editing in vitro with effective application of engineered cells in vivo, could provide significant benefits for the treatment of many human diseases, the authors note.

We think this can provide a long-term safe option for the treatment of many diseases, Wu said. It could be used to deliver therapeutic proteins, replacing missing proteins for people with a genetic defect, such as hemophilia. Or it could function as a metabolic sink, removing various toxins.

Skin progenitor cells have several unique advantages that are a perfect fit for gene therapy. Human skin is the largest and most accessible organ in the body. It is easy to monitor. Transplanted skin can be quickly removed if necessary. Skins cells rapidly proliferate in culture and can be easily transplanted. The procedure is safe, minimally invasive and inexpensive.

There is also a need. More than 100 million U.S. adults have either diabetes (30.3 million) or prediabetes (84.1 million), according the Centers for Disease Control and Prevention. More than two out of three adults are overweight. More than one out of three are considered obese.

Additional authors of the study were Japing Yue, Queen Gou, and Cynthia Li from the University of Chicago and Barton Wicksteed from the University of Illinois at Chicago. The National Institutes of Health, the American Cancer Society and the V Foundation funded the study.

Article originally appeared on Science Life.

The rest is here:
Gene therapy via skin could treat diseases such as obesity - UChicago News

To Read More: Gene therapy via skin could treat diseases such as obesity – UChicago News
categoriaSkin Stem Cells commentoComments Off on Gene therapy via skin could treat diseases such as obesity – UChicago News | dataAugust 10th, 2017
Read All

Compensating Bone Marrow Donors Will Close the Supply Gap and Save Lives. – Niskanen Center (press release) (blog)

By Dr. Matthew Watson

August 8, 2017 by Samuel Hammond

The Wall Street Journal editorial board reported yesterday that the Health Resources and Service Administration (HRSA) regulation which sought to ban compensation for blood-forming stem cell donors has been defeated. This represents a small but significant victory for advocates of compensating organ donors a practice that remains outlawed by the National Organ Transplant Act (NOTA).

The crux of HRSAs rulemaking was a move to redefine blood-forming stem cells drawn from the bloodstream as an organ, no different from the bone marrow found within the bone, and thus under NOTAs purview. Our friends at the Institute for Justice (IJ) rightly argued for years that such a move was nonsensical and illegal. Blood and plasma are explicitly exempt from NOTAs ban on donor compensation, and as such donations of some subpart of the blood, including stem cells, should also be exempt.

The battle to kill the then-pending regulation heated up late last year, as HRSA neared its deadline to finalize the rule. The Niskanen Center formally joined IJs efforts in November, when we released a report called Bone Marrow Mismatch: How compensating bone marrow donors can end the transplant shortage and save lives. The report highlighted the enormous gap between bone marrow demand and supply under the current regime of voluntary donation, and argued against the applicability of the core ethical concerns advanced by HRSA. Our research and Hill event on the issue culminated in a listening session with HRSA officials, in which we argued that the social cost of enacting the rule was well in excess of $100 million, and thus worthy of delay for a deeper cost-benefit appraisal.

Its unclear what happened next. HRSAs hard December 18 deadline came and went, with a final rule that appeared to have been written but not formally submitted to the Federal Register. Perhaps it was the incoming administration, or the threat of litigation should the rule go through, or our research which provided a clear rationale for postponement. Regardless, the rule entered a strange purgatory, which is where it stayed until HHS formally withdrew the rule last week.

The Niskanen Center has received communications from a federal employee who believes our research was to some degree responsible for the rules ultimate repeal. That said, my research was simply part of a multi-pronged and multi-year effort to oppose the rule, led early on byIJ, the entrepreneur Doug Grant, the economist Mario Macis, and Peter Jaworski, the business ethicist and creator of DonationEthics.com.

The view of the Niskanen Center is that economic rights include the right to receive compensation for organ donations. NOTA therefore deserves a much deeper legal challenge. But in the meantime, lets celebrate the defeat of this regulation as a clear example of what it means to make small steps toward a better world.

Link:
Compensating Bone Marrow Donors Will Close the Supply Gap and Save Lives. - Niskanen Center (press release) (blog)

To Read More: Compensating Bone Marrow Donors Will Close the Supply Gap and Save Lives. – Niskanen Center (press release) (blog)
categoriaBone Marrow Stem Cells commentoComments Off on Compensating Bone Marrow Donors Will Close the Supply Gap and Save Lives. – Niskanen Center (press release) (blog) | dataAugust 9th, 2017
Read All

Stem cells: science prepares to take the first sip from the real fountain of youth – Catholic Online

By Dr. Matthew Watson

Theoretically, eternal youth is now within our grasp.

Doctors are close to discovering a real life fountain of youth that could theoretically enable patients to live forever. Advances in stem cell treatments and now, tissue nanotransfection (TNT), which is a new technique, can theoretically provide patients with the benefits of youth for life.

The fountain of youth is within the grasp of science, but so far, only for mice. Human trials come next year.

LOS ANGELES, CA (California Network) -- The quest for eternal life is ancient. It is mentioned in the first and oldest story we have, the Epic of Gilgamesh. In that ancient Sumerian tale, only Utnapishtim, a man who built and ark and survived a great flood in a story that is almost identical to the story of Noah's ark, knows the secret to eternal life, which ultimately proves elusive. In the centuries that followed, people have tried every remedy imaginable to prolong life. They searched for the fabled fountain of youth, and according to some legends, bathed in the blood of virgins and children.

Today, we know none of these endeavors would work because ageing is carried on in the genes. The only way to reverse ageing is to manipulate the genes. And this is precisely what doctors are looking to do in order to produce new cells, and even whole organs.

Researchers now know the primary difference between a young person and an old person is the number of stem cells in their body. Young people have many times more stem cells. This is the basic, underlying reason why young people are so youthful. A young body can repair itself more rapidly and thoroughly than an older one because of the number of stem cells. But if stem cells could be injected into an older body, in quantities similar to those enjoyed by a young person, what would happen then?

Nobody knows for certain because the experiment hasn't been conducted, but the hypothesis is that the older person would become more youthful, healthier, and longer lived.

As stem cells enter the medical mainstream, and may become a standard part of medical treatment in the near future, there is another development that could make stem cells irrelevant. Nanotransfection, abbreviated as TNT, is a new method whereby skin cells can be turned into any other cell in the body using a special microchip and electricity.

The device, called a nanochip, is loaded with genetic material essential to turning cells into other kinds of cells. The electrical current enables the device to inject the genetic material into the skin where it ends up inside the cells. These cells can then travel though the body and take on the properties of healthy cells around damaged tissue, facilitating repair. On other words, a damaged liver or heart can be repaired with this tiny device. The advantage of this method is that stem cells are not required. Your skin cells simply become whether other kind of cells they are told to become by the injected genetic material.

A study affirming the effectiveness of this approach was published in the journal, Nature Nanotechnology. It has been tested on mice and was successful in restoring function to non-functioning limbs. It will be tested on humans within the next year.

Scientists have known they can reprogram cells into other kinds of cells for a long time now, but only recently have they developed the method to do so cheaply and efficiently. The actual procedure requires a chip that is as small as a penny, and takes only a second to work.

If the procedure works on humans, then doctors may have a cheap and efficient way to repair and even replace organs. The discovery is so dramatic is it difficult to believe. More testing is required, but it shows just how far we have come in our ability to edit genes and reprogram cells to grow specific forms of tissue within the body.

In a generation or less, it is reasonable that we will have unlocked the secret to reversing ageing. Of course, this discovery opens a whole host of ethical and philosophical questions, but that's for the ethicists and politicians to work out. For now, science is about to take the first sip from the fountain of youth, and we await the result.

---

Pope Francis Prayer Intentions for JULY 2017Lapsed Christians. That our brothers and sisters who have strayed from the faith, through our prayer and witness to the Gospel, may rediscover the merciful closeness of the Lord and the beauty of the Christian life.

Excerpt from:
Stem cells: science prepares to take the first sip from the real fountain of youth - Catholic Online

To Read More: Stem cells: science prepares to take the first sip from the real fountain of youth – Catholic Online
categoriaSkin Stem Cells commentoComments Off on Stem cells: science prepares to take the first sip from the real fountain of youth – Catholic Online | dataAugust 9th, 2017
Read All

Wild new microchip tech could grow brain cells on your skin – CNET

By Dr. Matthew Watson

Researchers demonstrate a process known as tissue nanotransfection (TNT). When it comes to healing, this TNT is the bomb.

It's usually bad news to have something growing on your skin, but new technology uses that all important layer as a sort of garden to "grow" whatever types of cells your body might need to treat an injury or disease, be it in a limb or even the brain.

Researchers atthe Ohio State University Wexner Medical Centerhave developed a nanochip that uses a small electrical current to deliver new DNA or RNA into living skin cells, "reprogramming" them and giving them a new function.

"It takes just a fraction of a second. You simply touch the chip to the wounded area, then remove it,"Chandan Sen, director of the Center for Regenerative Medicine and Cell-Based Therapies at Ohio State, said in a statement. "At that point, the cell reprogramming begins."

In a study published in the journal Nature Nanotechnology, Sen's team used a technology called Tissue Nanotransfection (TNT) to create new blood vessels in pigs and mice with badly injured limbs that lacked blood flow.

They zapped the animals' skin with the device, and within about a week, active blood vessels appeared, essentially saving the creatures' legs. The tech was also used to create nerve cells from skin that were then harvested and injected into mice with brain injuries to help them recover.

"By using our novel nanochip technology, injured or compromised organs can be replaced," Sen said. "We have shown that skin is a fertile land where we can grow the elements of any organ that is declining."

While it sounds futuristic, reprogramming skin cells is not a new idea. The ability to change skin into pluripotent stem cells, sometimes called "master" cells, earned a few scientists a Nobel Prize half a decade ago. But the new nanochip approach improves upon that discovery by skipping the conversion from skin to stem cell and instead converting a skin cell into whatever type of cell is desired in a single step.

"Our technology keeps the cells in the body under immune surveillance, so immune suppression is not necessary," Sen says.

By now I think we've all learned that beauty is only skin deep, but it might take a while to learn that the same could go for cures, at least if the system works just as well on people.

Next up, the scientists hope to find out by continuing to test their technology in human trials. The aim is that it could eventually be used to treat all sorts of organ and tissue failure, including diseases like Parkinson's and Alzheimers.

Crowd Control: A crowdsourced science fiction novel written by CNET readers.

Solving for XX:The tech industry seeks to overcome outdated ideas about "women in tech."

Excerpt from:
Wild new microchip tech could grow brain cells on your skin - CNET

To Read More: Wild new microchip tech could grow brain cells on your skin – CNET
categoriaSkin Stem Cells commentoComments Off on Wild new microchip tech could grow brain cells on your skin – CNET | dataAugust 9th, 2017
Read All

Daiichi Sankyo invests in Osaka University spin-off – The Pharma Letter (registration)

By Dr. Matthew Watson

Japanese pharma major Daiichi Sankyo (TYO: 4568) revealed this morning that it has signed an investment contract with Cuorips Inc, an Osaka University spin-off venture to receive an option right concerning the worldwide commercialization of iPS-derived cardiomyocyte (iPS-CM) sheet developed by Cuorips.

The iPS-CM sheet is an allogeneic cell therapy product consisting of cardiomyocyte derived from human iPS cells. Its transplantation is expected to provide improvement of cardiac function and amelioration of heart failure and become a new treatment option for patients with severe heart failure, who have no remedies other than heart transplantation or artificial heart implantation.

Based on the cutting-edge cell therapy research targeting heart diseases, the team at the Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, led by Professor Yoshiki Sawa, has been working on the iPS-CM research and development by participating in the Research Center Network for Realization of Regenerative Medicine, which is run by the Japan Agency for Medical Research and Development (AMED). They are currently preparing for clinical research as well as investigator initiated clinical study.

Cuorips was founded to develop and commercialize iPS-CM sheets based on the research data and technologies developed by the university.

Daiichi Sankyo has been conducting research on iPS cell-derived cardiomyocyte and their production, and is currently working on the efficient production process capable for commercial supply. Daiichi Sankyo and Cuorips are aiming to commercialize iPS-CM sheets as a pioneering treatment for severe heart failure.

Read more from the original source:
Daiichi Sankyo invests in Osaka University spin-off - The Pharma Letter (registration)

To Read More: Daiichi Sankyo invests in Osaka University spin-off – The Pharma Letter (registration)
categoriaIPS Cell Therapy commentoComments Off on Daiichi Sankyo invests in Osaka University spin-off – The Pharma Letter (registration) | dataAugust 7th, 2017
Read All

Syrinx of the Spinal Cord or Brain Stem – Neurologic …

By Dr. Matthew Watson

A syrinx is a fluid-filled cavity within the spinal cord (syringomyelia) or brain stem (syringobulbia). Predisposing factors include craniocervical junction abnormalities, previous spinal cord trauma, and spinal cord tumors. Symptoms include flaccid weakness of the hands and arms and deficits in pain and temperature sensation in a capelike distribution over the back and neck; light touch and position and vibration sensation are not affected. Diagnosis is by MRI. Treatment includes correction of the cause and surgical procedures to drain the syrinx or otherwise open CSF flow.

Syrinxes usually result from lesions that partially obstruct CSF flow. At least half of syrinxes occur in patients with congenital abnormalities of the craniocervical junction (eg, herniation of cerebellar tissue into the spinal canal, called Chiari malformation), brain (eg, encephalocele), or spinal cord (eg, myelomeningocele). For unknown reasons, these congenital abnormalities often expand during the teen or young adult years. A syrinx can also develop in patients who have a spinal cord tumor, scarring due to previous spinal trauma, or no known predisposing factors. About 30% of people with a spinal cord tumor eventually develop a syrinx.

Syringomyelia is a paramedian, usually irregular, longitudinal cavity. It commonly begins in the cervical area but may extend downward along the entire length of the spinal cord.

Syringobulbia, which is rare, usually occurs as a slitlike gap within the lower brain stem and may disrupt or compress the lower cranial nerve nuclei or ascending sensory or descending motor pathways.

See the original post:
Syrinx of the Spinal Cord or Brain Stem - Neurologic ...

To Read More: Syrinx of the Spinal Cord or Brain Stem – Neurologic …
categoriaSpinal Cord Stem Cells commentoComments Off on Syrinx of the Spinal Cord or Brain Stem – Neurologic … | dataAugust 7th, 2017
Read All

Gene therapy skin grafts for obesity and diabetes – BioNews

By Dr. Matthew Watson

A proof-of-concept study in mice has demonstrated how skin grafts could deliver gene therapy for obesity and diabetes.

'We think this platform has the potential to lead to safe and durable gene therapy, in mice and we hope, someday, in humans, using selected and modified cells from skin,' said senior author Dr Xiaoyang Wu of the University of Chicago, Illinois.

The technique explores the potential of glucagon-like peptide 1 (GLP1), a hormone which could help to treat conditions like diabetes and obesity. GLP1 reduces appetite and stimulates the release of insulin to lowerblood sugar, butdoes not last long in the blood and is challenging to deliver orally.

The researchers used CRISPR to edit skin stem cellstaken from newborn mice. They inserted a modified version of the GLP1 gene, designed to increase the duration of the hormone, and a genetic'switch' to turn the gene on in the presence of an antibiotic.

They grew the skin stem cells into a skin organoids, and grafted them onto mice. When the mice were fed small amounts of antibiotic, theysuccessfully produced modified GLP1, which lasted for three months, and showed higher levels of insulin and lower levels of glucose.

The researchers also tested feeding the mice a high-fat diet. Compared to controls, the mice with modified GLP1 skin grafts put on less weight.

Dr Wu said the skin graft method could be safer than using engineered viral vectorsto edit genes in patient's own tyissues, as viruses 'may cause a very strong immune reaction and inflammation in vivo.' He added that lab-grown skin grafts have been used clinically for some time to treat burns, and have been proven safe.

Being able to control the gene expression using a drug would also allow doctors to calibrate how much of the enzyme enters a patients bloodstream.

'We think this can provide a long-term safe option for the treatment of many diseases,' Dr Wu said. 'It could be used to deliver therapeutic proteins, replacing missing proteins for people with a genetic defect, such as haemophilia. Or it could function as a metabolic sink, removing various toxins.'

Dr Jeffrey Millman of Washington University, St Louis, who was not involved in the study, told The Scientist that more research would be needed to ensure that neither the CRISPR editing nor the stem cell culturing method inadvertently introduce dangerous mutations.

Read more here:
Gene therapy skin grafts for obesity and diabetes - BioNews

To Read More: Gene therapy skin grafts for obesity and diabetes – BioNews
categoriaSkin Stem Cells commentoComments Off on Gene therapy skin grafts for obesity and diabetes – BioNews | dataAugust 7th, 2017
Read All

Page 192«..1020..191192193194..200210..»


Copyright :: 2025