Page 182«..1020..181182183184..190200..»

Stem cells offer clues to reversing receding hairlines

By Dr. Matthew Watson

Dec. 18, 2013 Regenerative medicine may offer ways to banish baldness that don't involve toupees. The lab of USC scientist Krzysztof Kobielak, MD, PhD has published a trio of papers in the journals Stem Cells and The Proceedings of the National Academy of Sciences (PNAS) that describe some of the factors that determine when hair grows, when it stops growing and when it falls out.

Authored by Kobielak, postdoctoral fellow Eve Kandyba, PhD, and their colleagues, the three publications focus on stem cells located in hair follicles (hfSCs), which can regenerate hair follicles as well as skin. These hfSCs are governed by the signaling pathways BMP and Wnt -- which are groups of molecules that work together to control cell functions, including the cycles of hair growth.

The most recent paper, published in the journal Stem Cells in November 2013, focuses on how the gene Wnt7b activates hair growth. Without Wnt7b, hair is much shorter.

The Kobielak lab first proposed Wnt7b's role in a January 2013 PNAS publication. The paper identified a complex network of genes -- including the Wnt and BMP signaling pathways -- controlling the cycles of hair growth. Reduced BMP signaling and increased Wnt signaling activate hair growth. The inverse -- increased BMP signaling and decreased Wnt signaling -- keeps the hfSCs in a resting state.

Both papers earned the recommendation of the Faculty of 1000, which rates top articles by leading experts in biology and medicine.

A third paper published in Stem Cells in September 2013 further clarified the workings of the BMP signaling pathway by examining the function of two key proteins, called Smad1 and Smad5. These proteins transmit the signals necessary for regulating hair stem cells during new growth.

"Collectively, these new discoveries advance basic science and, more importantly, might translate into novel therapeutics for various human diseases," said Kobielak. "Since BMP signaling has a key regulatory role in maintaining the stability of different types of adult stem cell populations, the implication for future therapies might be potentially much broader than baldness -- and could include skin regeneration for burn patients and skin cancer."

Originally posted here:
Stem cells offer clues to reversing receding hairlines

To Read More: Stem cells offer clues to reversing receding hairlines
categoriaSkin Stem Cells commentoComments Off on Stem cells offer clues to reversing receding hairlines | dataDecember 19th, 2013
Read All

365 days: 2013 in review

By Dr. Matthew Watson

Shutdowns, lethal viruses, typhoons and meteorites much of this years science news seemed to come straight from the set of a Hollywood disaster movie. But there were plenty of feel-good moments, too. Space exploration hit a new high, cash poured in to investigate that most cryptic of human organs, the brain, and huge leaps were made in stem-cell therapies and the treatment of HIV. Here, captured in soundbites, statistics and summaries, is everything you need to know about the science that mattered in 2013.

LUX: Carlos H. Faham

The Large Underground Xenon dark-matter experiment, deep in a mine in South Dakota.

One of the years most important cosmological results was an experimental no-show. The Large Underground Xenon (LUX, pictured) experiment at Sanford Underground Research Facility in Lead, South Dakota 370 kilograms of liquid xenon almost 1.5kilometres down in a gold mine did not see any particles of elusive dark matter flying through Earth. But it put the tightest constraints yet on the mass of dark-matter particles, and their propensity to interact with visible matter. Theoretical physicist Matthew Strassler at Rutgers University in Piscataway, New Jersey, says a consensus is forming that hints of dark matter seen by earlier experiments in the past three years were probably just statistical fluctuations.

PlancK: ESA/Planck Collaboration

Whatever dark matter is, it makes up around 84% of the Universes total matter, according to observations, released in March, of the Universes cosmic microwave background (CMB) by the European Space Agencys Planck satellite. Plancks image (pictured) also strongly supports the hypothesis of inflation, in which the Universe is thought to have expanded rapidly after the Big Bang. A better probe of inflation might be provided through its predicted influence on how the polarization of CMB photons varies across the sky (B-mode polarization). That subtle signal has not been measured yet, but astronomers hopes were raised by news of the first sighting of a related polarization signal, by the South Pole Telescope, in July. And another Antarctic telescope the underground IceCube observatory confirmed this year that the high-energy neutrinos it has detected come from far away in the cosmos, hinting at a new world of neutrino astronomy.

Jae C. Hong/AP

US workers came out in force against the shutdown.

The slow decline of US federal support for research and development spending is already down 16.3% since 2010 reached a new nadir in October, when political brinkmanship led the government to shut down for 16 days. Grant money stopped flowing; work halted at major telescopes, US Antarctic bases and most federal laboratories; and key databases maintained by the government went offline. Many government researchers were declared non-essential and barred by law from visiting their offices and laboratories, or even checking their official e-mail accounts. Since the shutdowns end, grant backlogs and missed deadlines have scrambled agency workloads.

Away from the deadlock in the United States, the European Union negotiated a path to a 201420 research budget of almost 80billion (US$110billion), a 27% rise in real terms over the previous 200713 period. And funding in South Korea, China, Germany and Japan continued to increase (the United Kingdom and France saw little change). But Japans largesse came with the clear understanding that its science investment would bring fast commercial pay-offs. Along similar lines, US Republican politicians are calling for the National Science Foundation to justify every grant it awards as being in the national interest.

Follow this link:
365 days: 2013 in review

To Read More: 365 days: 2013 in review
categoriaIPS Cell Therapy commentoComments Off on 365 days: 2013 in review | dataDecember 18th, 2013
Read All

Regenerative medicine: Mayo Clinic and collaborators develop new tool for transplanting stem cells

By Dr. Matthew Watson

PUBLIC RELEASE DATE:

16-Dec-2013

Contact: Jennifer Schutz newsbureau@mayo.edu 507-284-5005 Mayo Clinic

ROCHESTER, Minn. -- Mayo Clinic researchers and colleagues in Belgium have developed a specialized catheter for transplanting stem cells into the beating heart. The novel device includes a curved needle and graded openings along the needle shaft, allowing for increased distribution of cells. The result is maximized retention of stem cells to repair the heart. The findings appear in the journal Circulation: Cardiovascular Interventions.

"Although biotherapies are increasingly more sophisticated, the tools for delivering regenerative therapies demonstrate a limited capacity in achieving high cell retention in the heart," says Atta Behfar, M.D., Ph.D., a Mayo Clinic cardiology specialist and lead author of the study. "Retention of cells is, of course, crucial to an effective, practical therapy."

Researchers from the Mayo Clinic Center for Regenerative Medicine in Rochester and Cardio3 Biosciences in Mont-Saint-Guibert, Belgium, collaborated to develop the device, beginning with computer modeling in Belgium. Once refined, the computer-based models were tested in North America for safety and retention efficiency.

What's the significance?

This new catheter is being used in the European CHART-1 clinical trials, now underway. This is the first Phase III trial to regenerate hearts of patients who have suffered heart attack damage. The studies are the outcome of years of basic science research at Mayo Clinic and earlier clinical studies with Cardio3 BioSciences and Cardiovascular Centre in Aalst, Belgium, conducted between 2009 and 2010.

###

The development of the catheter and subsequent studies were supported by Cardio3 BioSciences; Walloon Region General Directorate for Economy, Employment & Research; Meijer Lavino Foundation for Cardiac Research Aalst (Belgium); the National Institutes of Health; Grainger Foundation; Florida Heart Research Institute; Marriott Heart Disease Research Program; and the Mayo Clinic Center for Regenerative Medicine.

Read more:
Regenerative medicine: Mayo Clinic and collaborators develop new tool for transplanting stem cells

To Read More: Regenerative medicine: Mayo Clinic and collaborators develop new tool for transplanting stem cells
categoriaCardiac Stem Cells commentoComments Off on Regenerative medicine: Mayo Clinic and collaborators develop new tool for transplanting stem cells | dataDecember 17th, 2013
Read All

Cedars-Sinai Medical Tipsheet for Dec. 2013

By Dr. Matthew Watson

Contact Information

Available for logged-in reporters only

Scientists Design and Test New Approach for Corneal Stem Cell Treatments Researchers in the Cedars-Sinai Regenerative Medicine Institute have designed and tested a novel, minute-long procedure to prepare human amniotic membrane for use as a scaffold for specialized stem cells that may be used to treat some corneal diseases. This membrane serves as a foundation that supports the growth of stem cells in order to graft them onto the cornea. This new method, explained in a paper published in the journal PLOS ONE, may accelerate research and clinical applications for stem cell corneal transplantation. CONTACT: Cara Martinez, 310-423-7798; Email cara.martinez@cshs.org; Twitter @CedarsSinaiCara

Cancer Science Evolves, One Consent Form at a Time Tucked away in freezers chilled to minus 80 degrees Celsius are blood and tissue samples from Cedars-Sinai patients. The freezers that hold these samples also contain the hopes of investigators determined to uncover new treatments for cancer patients across the globe. As cancer research continues to evolve, scientists rely on specimen samples, such as tissue, blood or urine, from generous patients to advance discoveries and personalize care. Biobanks, like the state-of-the-art biobank at the Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, allow patients to make invaluable contributions to medical research and treatment advances that may ultimately be the solution to their own diagnosis or disease down the road. CONTACT: Cara Martinez, 310-423-7798; Email cara.martinez@cshs.org; Twitter @CedarsSinaiCara

Cedars-Sinai, UCLA Health System and Select Medical Announce Partnership to Open Medical Rehabilitation Hospital Cedars-Sinai, UCLA Health System and Select Medical announced today a partnership to create a 138-bed acute inpatient rehabilitation hospital located in the former Century City Hospital. With an expected opening in late 2015, the rehabilitation hospital will serve the growing needs in the community for inpatient rehabilitation, and is also expected to serve as a center for treating complex rehabilitation cases from throughout the nation. The joint venture is an LLC partnership among Cedars-Sinai, UCLA Health System and Select Medical. The vision of the partnership is to develop a world-class regional rehabilitation center providing highly specialized care, advanced treatment, and leading-edge technologies to treat individuals with spinal cord injuries, brain injuries, stroke, amputation, neurological disorders, and musculoskeletal and orthopedic conditions. CONTACT: Sally Stewart, 310-248-6566; Email sally.stewart@cshs.org

Cedars-Sinai Receives Fourth Straight Magnet Recognition for Nursing Excellence from American Nurses Credentialing Center For the fourth time in a row, the American Nurses Credentialing Center has granted Cedars-Sinai the Magnet recognition, the most prestigious designation a healthcare organization can receive for excellence in nursing and patient outcomes. Cedars-Sinai in 2000 became the first Southern California hospital to earn the Magnet honor; it is the only hospital in the state to be granted the designation four times. Cedars-Sinai joins a select list of only 12 hospitals worldwide that have earned Magnet recognition four times. CONTACT: Sally Stewart, 310-248-6566; Email sally.stewart@cshs.org

Ovarian Cancer Discovery Deepens Knowledge of Survival Outcomes Researchers in the Womens Cancer Program at Cedars-Sinais Samuel Oschin Comprehensive Cancer Institute have identified a series of 10 genes that may signify a trifecta of benefits for women diagnosed with ovarian cancer and ultimately reflect improved survival outcomes. The research found that the 10-gene biomarker panel may identify the aggressiveness of a patients disease, help predict survival outcomes and result in novel therapeutic strategies tailored to patients with the most adverse survival outcomes. CONTACT: Cara Martinez, 310-423-7798; Email cara.martinez@cshs.org; Twitter @CedarsSinaiCara

# # #

View post:
Cedars-Sinai Medical Tipsheet for Dec. 2013

To Read More: Cedars-Sinai Medical Tipsheet for Dec. 2013
categoriaSpinal Cord Stem Cells commentoComments Off on Cedars-Sinai Medical Tipsheet for Dec. 2013 | dataDecember 14th, 2013
Read All

Studies: Stem cells reverse heart damage – CNN.com

By Dr. Matthew Watson

A new study says heart damage may be reversible with stem cell therapy without dangerous side effects.

STORY HIGHLIGHTS

(CNN) -- On a June day in 2009, a 39-year-old man named Ken Milles lay on an exam table at Cedars-Sinai Medical Center in Los Angeles. A month earlier, he'd suffered a massive heart attack that destroyed nearly a third of his heart.

"The most difficult part was the uncertainty," he recalls. "Your heart is 30% damaged, and they tell you this could affect you the rest of your life." He was about to receive an infusion of stem cells, grown from cells taken from his own heart a few weeks earlier. No one had ever tried this before.

About three weeks later, in Kentucky, a patient named Mike Jones underwent a similar procedure at the University of Louisville's Jewish Hospital. Jones suffered from advanced heart failure, the result of a heart attack years earlier. Like Milles, he received an infusion of stem cells, grown from his own heart tissue.

"Once you reach this stage of heart disease, you don't get better," says Dr. Robert Bolli, who oversaw Jones' procedure, explaining what doctors have always believed and taught. "You can go down slowly, or go down quickly, but you're going to go down."

Conventional wisdom took a hit Monday, as Bolli's group and a team from Cedars-Sinai each reported that stem cell therapies were able to reverse heart damage, without dangerous side effects, at least in a small group of patients.

In Bolli's study, published in The Lancet, 16 patients with severe heart failure received a purified batch of cardiac stem cells. Within a year, their heart function markedly improved. The heart's pumping ability can be quantified through the "Left Ventricle Ejection Fraction," a measure of how much blood the heart pumps with each contraction. A patient with an LVEF of less than 40% is considered to suffer severe heart failure. When the study began, Bolli's patients had an average LVEF of 30.3%. Four months after receiving stem cells, it was 38.5%. Among seven patients who were followed for a full year, it improved to an astounding 42.5%. A control group of seven patients, given nothing but standard maintenance medications, showed no improvement at all.

"We were surprised by the magnitude of improvement," says Bolli, who says traditional therapies, such as placing a stent to physically widen the patient's artery, typically make a smaller difference. Prior to treatment, Mike Jones couldn't walk to the restroom without stopping for breath, says Bolli. "Now he can drive a tractor on his farm, even play basketball with his grandchildren. His life was transformed."

At Cedars-Sinai, 17 patients, including Milles, were given stem cells approximately six weeks after suffering a moderate to major heart attack. All had lost enough tissue to put them "at big risk" of future heart failure, according to Dr. Eduardo Marban, the director of the Cedars-Sinai Heart Institute, who developed the stem cell procedure used there.

Originally posted here:
Studies: Stem cells reverse heart damage - CNN.com

To Read More: Studies: Stem cells reverse heart damage – CNN.com
categoriaCardiac Stem Cells commentoComments Off on Studies: Stem cells reverse heart damage – CNN.com | dataDecember 14th, 2013
Read All

Stem cell science: Can two girls help change the face of medicine?

By Dr. Matthew Watson

Dec. 8, 2013 at 2:49 PM ET

Jeff Swensen / for NBC News

The Mogul family at The Children's Institute in Pittsburgh, Pennsylvania where parents Stephen and Robyn have taken their daughter, Bari, 9 and Hayley, 15, to undergoing extensive therapy to help with their rare genetic disorders.

At 15, Hayley Mogul lacks the fine motor skills needed to write. Her sister Bari is 9 and still eating baby food.

There's no cure for their rare disorders, caused by unique genetic mutations. But for once, there's an advantage to having conditions so rare that drug companies cannot even think of looking for a cure. The sisters are taking part in a whole new kind of experiment in which scientists are literally turning back the clock on their cells.

Theyre using an experimental technique to transform the cells into embryonic form, and then growing these baby cells in lab dishes.

The goal is the get the cells to misfire in the lab in just the same way they are in Hayleys and Baris bodies. Its a new marriage of genetics and stem cell research, and represents one of the most promising applications of so-called pluripotent stem cells.

One day these two girls will probably change the face of medicine as we know it, said their father, Steven Mogul.

Steven and Robyn Mogul dont understand why both their daughters ended up with the rare mutations, which cause a range of neurological and metabolic problems.

We have been tested, said Mogul, a 45-year-old wealth manager living in Chicago. We dont have any mutations, and there are no developmental issues. We have no idea how it happened.

Link:
Stem cell science: Can two girls help change the face of medicine?

To Read More: Stem cell science: Can two girls help change the face of medicine?
categoriaIPS Cell Therapy commentoComments Off on Stem cell science: Can two girls help change the face of medicine? | dataDecember 13th, 2013
Read All

What are the potential uses of human stem cells and the …

By Dr. Matthew Watson

Introduction: What are stem cells, and why are they important? What are the unique properties of all stem cells? What are embryonic stem cells? What are adult stem cells? What are the similarities and differences between embryonic and adult stem cells? What are induced pluripotent stem cells? What are the potential uses of human stem cells and the obstacles that must be overcome before these potential uses will be realized? Where can I get more information? VII. What are the potential uses of human stem cells and the obstacles that must be overcome before these potential uses will be realized?

There are many ways in which human stem cells can be used in research and the clinic. Studies of human embryonic stem cells will yield information about the complex events that occur during human development. A primary goal of this work is to identify how undifferentiated stem cells become the differentiated cells that form the tissues and organs. Scientists know that turning genes on and off is central to this process. Some of the most serious medical conditions, such as cancer and birth defects, are due to abnormal cell division and differentiation. A more complete understanding of the genetic and molecular controls of these processes may yield information about how such diseases arise and suggest new strategies for therapy. Predictably controlling cell proliferation and differentiation requires additional basic research on the molecular and genetic signals that regulate cell division and specialization. While recent developments with iPS cells suggest some of the specific factors that may be involved, techniques must be devised to introduce these factors safely into the cells and control the processes that are induced by these factors.

Human stem cells could also be used to test new drugs. For example, new medications could be tested for safety on differentiated cells generated from human pluripotent cell lines. Other kinds of cell lines are already used in this way. Cancer cell lines, for example, are used to screen potential anti-tumor drugs. The availability of pluripotent stem cells would allow drug testing in a wider range of cell types. However, to screen drugs effectively, the conditions must be identical when comparing different drugs. Therefore, scientists will have to be able to precisely control the differentiation of stem cells into the specific cell type on which drugs will be tested. Current knowledge of the signals controlling differentiation falls short of being able to mimic these conditions precisely to generate pure populations of differentiated cells for each drug being tested.

Perhaps the most important potential application of human stem cells is the generation of cells and tissues that could be used for cell-based therapies. Today, donated organs and tissues are often used to replace ailing or destroyed tissue, but the need for transplantable tissues and organs far outweighs the available supply. Stem cells, directed to differentiate into specific cell types, offer the possibility of a renewable source of replacement cells and tissues to treat diseases including Alzheimer's diseases, spinal cord injury, stroke, burns, heart disease, diabetes, osteoarthritis, and rheumatoid arthritis.

Figure 3. Strategies to repair heart muscle with adult stem cells. Click here for larger image.

2001 Terese Winslow

For example, it may become possible to generate healthy heart muscle cells in the laboratory and then transplant those cells into patients with chronic heart disease. Preliminary research in mice and other animals indicates that bone marrow stromal cells, transplanted into a damaged heart, can have beneficial effects. Whether these cells can generate heart muscle cells or stimulate the growth of new blood vessels that repopulate the heart tissue, or help via some other mechanism is actively under investigation. For example, injected cells may accomplish repair by secreting growth factors, rather than actually incorporating into the heart. Promising results from animal studies have served as the basis for a small number of exploratory studies in humans (for discussion, see call-out box, "Can Stem Cells Mend a Broken Heart?"). Other recent studies in cell culture systems indicate that it may be possible to direct the differentiation of embryonic stem cells or adult bone marrow cells into heart muscle cells (Figure 3).

Cardiovascular disease (CVD), which includes hypertension, coronary heart disease, stroke, and congestive heart failure, has ranked as the number one cause of death in the United States every year since 1900 except 1918, when the nation struggled with an influenza epidemic. Nearly 2600 Americans die of CVD each day, roughly one person every 34 seconds. Given the aging of the population and the relatively dramatic recent increases in the prevalence of cardiovascular risk factors such as obesity and type 2 diabetes, CVD will be a significant health concern well into the 21st century.

Cardiovascular disease can deprive heart tissue of oxygen, thereby killing cardiac muscle cells (cardiomyocytes). This loss triggers a cascade of detrimental events, including formation of scar tissue, an overload of blood flow and pressure capacity, the overstretching of viable cardiac cells attempting to sustain cardiac output, leading to heart failure, and eventual death. Restoring damaged heart muscle tissue, through repair or regeneration, is therefore a potentially new strategy to treat heart failure.

More here:
What are the potential uses of human stem cells and the ...

To Read More: What are the potential uses of human stem cells and the …
categoriaCardiac Stem Cells commentoComments Off on What are the potential uses of human stem cells and the … | dataDecember 11th, 2013
Read All

Activate Self-Renewing Skin Stem Cells – Life Extension

By Dr. Matthew Watson

Maintaining more luminous skin is dependent upon your bodys unique ability to replace dead skin cells. This vital process of continuous self-renewal depends on the activity of epidermal stem cells.

The epidermis (upper skin layer) has been shown to replace itself in just 20 days in young adults, compared to 30 days in middle-aged adults.1 Unfortunately, this rate of renewal dramatically declines after age 50.

The exciting news is that the decline in the skins capacity to renew itself may be safely slowed or even reversed.

Researchers have found that when applied to the skin, a novel, patent-pending preparation of cultured stem cells derived from the Alpine rose may stimulate epidermal stem cell activity.2

In this article, epidermal stem cells role in skin beauty is detailed, along with supportive data on Alpine rose stem cells ability to activate the skins innate power of self-renewal.

The Alpine rose (Rhododendron ferrugineum) thrives in the Swiss Alps and the Pyrenees where it endures high altitudes, extreme cold, dry air, and high levels of ultra violet radiation.

This plants ability to withstand harsh environmental stress factors such as freezing temperatures, drought, and scorching UV rays prompted researchers to investigate the Alpine rose as a source of protection for human skin cells. Like the Alpine rose, human skin cells must resist a host of environmental stressors and lock in essential fluids. Skin that performs this barrier function well is more resilient and less likely to develop fine lines and wrinkles or show other signs of aging.

The skin functions as an essential barrier to protect the body from microbial invaders, toxins, the ravages of weather, dehydration, and mechanical trauma. This protective function is governed by stem cells. There are two broad classes of stem cells: pluripotent embryonic stem cells, which have the capacity to develop into any cell type, and adult stem cells, which can differentiate to become some or all of the specialized cell types present in a specific tissue or organ. The adult stem cells in the skin reside in the deepest layer of the epidermis, close to hair follicles.

Epidermal stem cells help to facilitate the turnover of all skin cells, replenishing their supply and maintaining a continuous equilibrium of skin cells in all stages of their life cycles. Epidermal stem cells have relatively slow turnover compared to other skin cell types, but it is their tremendous reproducing potential that gives the skin the remarkable capacity to renew itself completely.3 These types of stem cells also are vitally important for repairing the skin after injury and enabling wound healing.4

The researchers found that applying selected plant stem cell extracts to the skin, specifically those cultured from the Alpine rose, offers protection to the epidermal stem cells, prolonging their lives, increasing their colony-forming efficiency and enhancing their function. These potent plant stem cells from the Alpine rose appear to stimulate the skins own epidermal stem cell activity, revitalizing it and boosting its capacity for repair and self-renewal.

Go here to see the original:
Activate Self-Renewing Skin Stem Cells - Life Extension

To Read More: Activate Self-Renewing Skin Stem Cells – Life Extension
categoriaSkin Stem Cells commentoComments Off on Activate Self-Renewing Skin Stem Cells – Life Extension | dataDecember 6th, 2013
Read All

stem cell therapy makes senile spot disappear. – Video

By Dr. Matthew Watson


stem cell therapy makes senile spot disappear.
"ReLife" was founded by Professor Zhang, a well respected doctor with decades of experience in the medical field. Over the decades, "ReLife" pioneering, country leading experts have been dedicated...

By: IMC ReLife

See the original post here:
stem cell therapy makes senile spot disappear. - Video

To Read More: stem cell therapy makes senile spot disappear. – Video
categoriaUncategorized commentoComments Off on stem cell therapy makes senile spot disappear. – Video | dataDecember 5th, 2013
Read All

Aegean Process (Stem Cell Therapy with PRP) – Video

By Dr. Matthew Watson


Aegean Process (Stem Cell Therapy with PRP)

By: sapardue

Original post:
Aegean Process (Stem Cell Therapy with PRP) - Video

To Read More: Aegean Process (Stem Cell Therapy with PRP) – Video
categoriaUncategorized commentoComments Off on Aegean Process (Stem Cell Therapy with PRP) – Video | dataDecember 4th, 2013
Read All

Human stem cells used to create lung tissue | Fox News

By Dr. Matthew Watson

Human stem cells have been converted into functioning lung cells for the first time, paving the way for better models of lung diseases, ways to test potential drugs and, ultimately, creation of tissue for lung transplants.

Scientists had previously converted stem cells into cells of the heart, intestine, liver, nerves and pancreas.

"Now, we are finally able to make lung and airway cells," study leader Dr. Hans-Willem Snoeck, a professor of microbiology and immunology at Columbia University in New York, said in a statement.

Patients who receive lung transplants today have a poor prognosis. But future approaches involving transplants that use the patient's own stem cells to generate lung tissue could reduce the chances that a patient's immune system would reject the transplant, the researchers said. [Inside Life Science: Once Upon a Stem Cell]

In 2011, Snoeck and his colleagues found a set of chemical signals capable of transforming two types of stem cells human embryonic stem cells, which are taken from human embryos, and induced pluripotent stem (iPS) cells, which are adult skin cells that have been reprogrammed into stem cells into precursors of lung and airway cells.

In the new study, Snoeck's team discovered new chemicals that complete the conversion of stem cells into the epithelial cells that coat the surface of the lungs.

In fact, the researchers found evidence suggesting the cells could develop into six types of lung and airway epithelial cells, according to the study published Dec. 1 in the journal Nature Biotechnology. These included the cells that produce surfactant, a liquid that covers the alveoli, the structures where gas exchange occurs, and also repairs the lung after injury or damage.

The technology could enable researchers to model certain lung diseases. For example, the cause of a condition called idiopathic pulmonary fibrosis remains a mystery, but cells called type 2 alveolar epithelial cells are thought to play a role. Using the new method of converting stem cells into lung cells, scientists could study the disease, and screen drugs that could possibly treat it, the researchers said.

Ultimately, the technique could be used to produce tissue for an autologous lung graft. The lung cells would be removed from an organ donor's lung, leaving only a scaffold behind, which could be seeded with freshly made lung cells from the patient, the researchers said

Copyright 2013 LiveScience, a TechMediaNetwork company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

More here:
Human stem cells used to create lung tissue | Fox News

To Read More: Human stem cells used to create lung tissue | Fox News
categoriaSkin Stem Cells commentoComments Off on Human stem cells used to create lung tissue | Fox News | dataDecember 3rd, 2013
Read All

Skin Doctors YouthCell Range Sophie Falkiner TVC – Video

By Dr. Matthew Watson


Skin Doctors YouthCell Range Sophie Falkiner TVC
YouthCell contains the latest plant stem cell technology (PhytoCellTec) to help delay the appearance of chronological ageing of the skin. These plant stem ...

By: Skin Doctors UK

Original post:
Skin Doctors YouthCell Range Sophie Falkiner TVC - Video

To Read More: Skin Doctors YouthCell Range Sophie Falkiner TVC – Video
categoriaSkin Stem Cells commentoComments Off on Skin Doctors YouthCell Range Sophie Falkiner TVC – Video | dataDecember 1st, 2013
Read All

Stem Cell Treatment and Stem Cell Therapy | Vista Stem Cell

By Dr. Matthew Watson

Stem Cell Treatment at Your Fingertips Stem cell therapy has come a long way over the last ten years, despite repeated interventions by some western governments to restrict its research. One place which has not suffered from these setbacks is China.

At our facilities in Beijing, we have been administering treatments using fetal stem cells for nearly ten years with ever improving results. Our sophisticated stem cell treatment techniques and experience ensure patients receive the highest quality therapy in the world and an alternative to existing treatments that they cannot find in their own country.

We use the strictest protocols to ensure that all our stem cells are disease-free and healthy. Most of our doctors were educated in the West and have a strong understanding of the demands of western patients.

We believe people should not have to put up with their illness when an alternative already exists. Our mission is to improve the quality of life of all our patients and enable you to gain control over your life.

View our Current Treatments section to find out more about the stem cell treatment and therapy we can provide you with.

Continue reading here:
Stem Cell Treatment and Stem Cell Therapy | Vista Stem Cell

To Read More: Stem Cell Treatment and Stem Cell Therapy | Vista Stem Cell
categoriaUncategorized commentoComments Off on Stem Cell Treatment and Stem Cell Therapy | Vista Stem Cell | dataNovember 29th, 2013
Read All

Gov’t to keep ban on paying bone marrow donors | Minnesota …

By Dr. Matthew Watson

November 28, 2013

By LAURAN NEERGAARD AP Medical Writer

WASHINGTON (AP) -- Could paying for bone marrow cells really boost the number of donors? The Obama administration is taking steps to block a federal court ruling that had opened a way to find out.

Buying or selling organs has long been illegal, punishable by five years in jail. The 1984 National Organ Transplantation Act that set the payment ban didn't just refer to solid organs -- it included bone marrow transplants, too.

Thousands of people with leukemia and other blood diseases are saved each year by bone marrow transplants. Thousands more, particularly minorities, still have trouble finding a genetically compatible match even though millions of volunteers have registered as potential donors under the current altruistic system.

A few years ago, the libertarian Institute for Justice sued the government to challenge that system. It argued that more people with rare marrow types might register to donate -- and not back out later if they're found to be a match -- if they had a financial incentive such as a scholarship paid by a nonprofit group.

Ultimately, a panel of the 9th U.S. Circuit Court of Appeals ruled that some, not all, marrow donors could be compensated -- citing a technological reason. Years ago, the only way to get marrow cells was to extract them from inside bone. Today, a majority of donors give marrow-producing cells through a blood-filtering process that's similar to donating blood plasma. Because it's legal to pay plasma donors, the December 2011 court ruling said marrow donors could be paid, too, as long as they give in that newer way.

"They're not even transplanting your bone marrow. They're transplanting these baby blood cells," said Jeff Rowes, an attorney with the Institute for Justice. It represented some families who'd had trouble finding donors, and was pushing for a study of compensation as a next step.

Not so fast, says the Obama administration. The government now has proposed a regulation to keep the ban intact by rewriting some legal definitions to clarify that it covers marrow-producing stem cells no matter how they're derived.

"It is not a matter of how you obtain it," said Shelley Grant of the Health Resources and Services Administration's transplant division. "Whether we obtain them through the marrow or the circulatory system, it is those stem cells that provide a potential cure."

Read the rest here:
Gov't to keep ban on paying bone marrow donors | Minnesota ...

To Read More: Gov’t to keep ban on paying bone marrow donors | Minnesota …
categoriaBone Marrow Stem Cells commentoComments Off on Gov’t to keep ban on paying bone marrow donors | Minnesota … | dataNovember 28th, 2013
Read All

Endogenous cardiac stem cell – Wikipedia, the free encyclopedia

By Dr. Matthew Watson

Endogenous cardiac stem cells (eCSCs) are tissue-specific stem progenitor cells harboured within the adult mammalian heart.

They were first discovered in 2003 by Bernardo Nadal-Ginard, Piero Anversa and colleagues [1][2] in the adult rat heart and since then have been identified and isolated from mouse, dog, porcine and human hearts.[3][4]

The adult heart was previously thought to be a post mitotic organ without any regenerative capability. The identification of eCSCs has provided an explanation for the hitherto unexplained existence of a subpopulation of immature cycling myocytes in the adult myocardium. Indeed, recent evidence from a genetic fate-mapping study established that stem cells replenish adult mammalian cardiomyocytes lost by cardiac wear and tear and injury throughout the adult life.[5] Moreover, it is now accepted that myocyte death and myocyte renewal are the two sides of the proverbial coin of cardiac homeostasis in which the eCSCs play a central role.[6] These findings produced a paradigm shift in cardiac biology and opened new opportunities and approaches for future treatment of cardiac diseases by placing the heart squarely amongst other organs with regenerative potential such as the liver, skin, muscle, CNS. However, they have not changed the well-established fact that the working myocardium is mainly constituted of terminally differentiated contractile myocytes. This fact does not exclude, but is it fully compatible with the heart being endowed with a robust intrinsic regenerative capacity which resides in the presence of the eCSCs throughout the individual lifespan.

Briefly, eCSCs have been first identified through the expression of c-kit, the receptor of the stem cell factor and the absence of common hematopoietic markers, like CD45. Afterwards, different membrane markers (Sca-1, Abcg-2, Flk-1) and transcription factors (Isl-1, Nkx2.5, GATA4) have been employed to identify and characterize these cells in the embryonic and adult life.[7] eCSCs are clonogenic, self renewing and multipotent in vitro and in vivo,[8] capable of generating the 3 major cell types of the myocardium: myocytes, smooth muscle and endothelial vascular cells.[9] They express several markers of stemness (i.e. Oct3/4, Bmi-1, Nanog) and have significant regenerative potential in vivo.[10] When cloned in suspension they form cardiospheres,[11] which when cultured in a myogenic differentiation medium, attach and differentiate into beating cardiomyocytes.

In 2012, it was proposed that Isl-1 is not a marker for endogenous cardiac stem cells.[12] That same year, a different group demonstrated that Isl-1 is not restricted to second heart field progenitors in the developing heart, but also labels cardiac neural crest.[13] It has also been reported that Flk-1 is not a specific marker for endogenous and mouse ESC-derived Isl1+ CPCs. While some eCSC discoveries have been brought into question, there has been success with other membrane markers. For instance, it was demonstrated that the combination of Flt1+/Flt4+ membrane markers identifies an Isl1+/Nkx2.5+ cell population in the developing heart. It was also shown that endogenous Flt1+/Flt4+ cells could be expanded in vitro and displayed trilineage differentiation potential. Flt1+/Flt4+ CPCs derived from iPSCs were shown to engraft into the adult myocardium and robustly differentiate into cardiomyocytes with phenotypic and electrophysiologic characteristics of adult cardiomyocytes.[14]

With the myocardium now recognized as a tissue with limited regenerating potential,[15] harbouring eCSCs that can be isolated and amplified in vitro [16] for regenerative protocols of cell transplantation or stimulated to replicate and differentiate in situ in response to growth factors,[17] it has become reasonable to exploit this endogenous regenerative potential to replace lost/damaged cardiac muscle with autologous functional myocardium.

Continued here:
Endogenous cardiac stem cell - Wikipedia, the free encyclopedia

To Read More: Endogenous cardiac stem cell – Wikipedia, the free encyclopedia
categoriaCardiac Stem Cells commentoComments Off on Endogenous cardiac stem cell – Wikipedia, the free encyclopedia | dataNovember 27th, 2013
Read All

Human neural stem cells could meet the clinical problem of …

By Dr. Matthew Watson

New research has shown human neural stem cells could improve blood flow in critical limb ischemia through the growth of new vessels. Critical limb ischemia (CLI) is a disease that severely obstructs arteries and reduces the blood flow to legs and feet. CLI remains an unmet clinical problem and with an ageing population and the rise in type II diabetes, the incidence of CLI is expected to increase.

The study, led by academics in the University of Bristol's School of Clinical Sciences, is published online in the American Heart Association journal Arteriosclerosis, Thrombosis, and Vascular Biology.

Current stem cell therapy trials for the treatment of CLI have revitalised new hope for improving symptoms and prolonging life expectancy. However, there are limitations on the use of autologous cell therapy. The patient's own stem cells are generally invasively harvested from bone marrow or require purification from peripheral blood after cytokine stimulation. Other sources contain so few stem cells that ex vivo expansion through lengthy bespoke Good Manufacturing Practice processes is required. Ultimately, these approaches lead to cells of variable quality and potency that are affected by the patient's age and disease status and lead to inconsistent therapeutic outcomes.

In order to circumvent the problem a team, led by Professor Paolo Madeddu in the Bristol Heart Institute at the University of Bristol, has used a conditionally immortalised clonal human neural stem cell (hNSC) line to treat animal models with limb ischaemia and superimposed diabetes. The CTX cell line, established by stem cell company ReNeuron, is genetically modified to produce genetically and phenotypically stable cell banks.

Results of the new study have shown that CTX treatment effectively improves the recovery from ischaemia through the promotion of the growth of new vessels. The safety of CTX cell treatment is currently being assessed in disabled patients with stroke [PISCES trial, NCT01151124]. As a result, the same cell product is immediately available for starting dose ranging safety and efficacy studies in CLI patients.

Professor Paolo Madeddu, Chair of Experimental Cardiovascular Medicine and Head of Regenerative Medicine Section in the Bristol Heart Institute at the University of Bristol, said: "Currently, there are no effective drug interventions to treat CLI. The consequences are a very poor quality of life, possible major amputation and a life expectancy of less than one year from diagnosis in 50 per cent of all CLI patients.

"Our findings have shown a remarkable advancement towards more effective treatments for CLI and we have also demonstrated the importance of collaborations between universities and industry that can have a social and medical impact."

Dr John Sinden, Chief Scientific Officer of ReNeuron, added: "The novel idea of using neural stem cells to treat vascular disease arose from a chance discussion with Professor Madeddu. The discussion led to a short pilot study with our cells producing very clear data, which then developed into a further eight experiments exploring different variants of the disease model, the product formulation and dose variation.

"The study also explored the cascade of molecular events that produced vascular and muscle recovery. It is a great example of industry and academia working successfully towards the key goal, clinical translation."

Explore further: UH Case Medical Center launches novel clinical trial using stem cells to prevent amputation

The rest is here:
Human neural stem cells could meet the clinical problem of ...

To Read More: Human neural stem cells could meet the clinical problem of …
categoriaCardiac Stem Cells commentoComments Off on Human neural stem cells could meet the clinical problem of … | dataNovember 27th, 2013
Read All

Spinal Cord Injury – Stem Cell Network

By Dr. Matthew Watson

Last updated: 03/2012

The brain and spinal cord together form the central nervous system (CNS) which is responsible for processing all the information coming from our senses, keeping our organs and reflexes functioning, and directing our movements, thoughts and feelings.

The spinal cord is the critical organ that connects the brain to the rest of the body by conveying electrical impulses along the long nerve fibres that are bundled within it.

The nerves that branch out from the spinal cord to the rest of the body comprise the peripheral nervous system (PNS). These peripheral nerves both receive and convey messages creating a feedback loop that allows us to feel sensation and enable movement.

A nerve cell, or neuron, has a long slender projection, called the axon that acts like a transmission line coming from the control centre of the cell. Even though axons are microscopic in diameter, they may be many feet long. Wrapped around the nerve fibres is a fatty substance called myelin that is similar to insulation on a telephone wire. Myelin is a critical component of the nervous system in that it speeds up the electrical signals and protects the nerves. In addition to neurons, the brain is also home to glial cells which play a critical role in stabilizing the environment, making myelin and supporting and protecting the neurons.

Spinal cord injury (SCI) may occur anywhere from the neck to the lower back. During an initial trauma in which the spinal vertebrae fracture or dislocate, the delicate spinal cord is violently struck. While the cord itself typically remains in one piece, many of the tiny nerve fiber bundles within it are severed. After this initial mechanical injury, inflammation, swelling, and other metabolic processes are triggered, causing further damage and disruption of the nerve fibers. The severity of paralysis experienced by the patient is dependent upon the degree of damage done to the spinal cord. However, even in cases of complete paralysis where the patient has no feeling or movement below the injury, the spinal cord itself is not severed completely, and in fact, there are some axons that remain intact across the injury site. Some of these are thought to have lost their myelin sheaths (their insulation) and therefore do not conduct electrical signals well.

Spinal cord injury affects mostly young adults, about 80% of whom are males. Car accidents are responsible for about 50% of cases. Sporting accidents, serious falls, wounds, and diseases of the spine, such as spina bifida, can also cause permanent injury to the spinal cord. In North America, it is estimated that more than a million individuals live with a disability resulting from some type of spinal cord injury.

Because spinal cord injuries are often the result of terrible accidents which paralyze otherwise fit and mostly healthy young people, they can cause significant and prolonged suffering. Depending on the severity of the injury, rehabilitation may help many people to regain some degree of function.

Unlike the skin, blood, muscle and other organs, for many reasons the CNS does not routinely regenerate after damage hence, the disability caused by spinal cord injury may be permanent and profound. In contrast, the nerves in the PNS tend to regenerate after injury, both because they are intrinsically better programmed to regenerate, and because the cells that myelinate axons in the PNS (called Schwann cells) tend to encourage regeneration.

After spinal cord injuries occur, there is only a small window of opportunity hours, maybe weeks in which therapies may reduce the disability. Restoring the electrical transmission between the brain and spinal cord requires repairing the myelin sheath around the damaged neurons and, in severe cases, the regrowth of severed nerve fibres across the site of injury and into the neural network below the lesion. Scarring and other cellular damage that occurs when the body responds to injury often compounds the difficulties in bridging the lesion site in the aftermath of the injury, and in many cases rehabilitation is the only recourse.

View post:
Spinal Cord Injury - Stem Cell Network

To Read More: Spinal Cord Injury – Stem Cell Network
categoriaSpinal Cord Stem Cells commentoComments Off on Spinal Cord Injury – Stem Cell Network | dataNovember 13th, 2013
Read All

Autologous Stem Cell and Non-Stem Cell Based Therapies Market …

By Dr. Matthew Watson

Research and Markets Logo

DUBLIN, November 7, 2013 /PRNewswire/ --

Research and Markets ( http://www.researchandmarkets.com/research/l9klxc/autologous_stem) has announced the addition of the "Autologous Stem Cell and Non-Stem Cell Based Therapies Market (2012-2017) (Neurodegenerative, cardiovascular, cancer & autoimmune, skin and infectious diseases)" report to their offering.

(Logo: http://photos.prnewswire.com/prnh/20130307/600769 )

This research report titled Autologous Cell Therapy (2012-2017) provides details about various ACT based treatments and their application areas. Every health regulatory body will be expecting companies and universities to develop therapy treatments, which are safer, affordable, robust, rapid, easy to use, effective and deliverable to the end user. ACT treatments for particular application areas it is safe, experiencing robust growth, minimal steps of procedure to follow and rapid in deriving the results. As for now the treatments prices are not affordable, but by the intrusion of government bodies, it will definitely experience a immense market growth.

The report gives a detailed analysis about state of the art of autologous cell therapies. It includes the current advances and applications of the technology and trends in terms of market size and growth of autologous cellular therapies in medical treatments globally. It also consists of funding details of the innovative therapy and recent activities in terms of mergers & acquisitions of the company, revenue forecasting. It includes latest therapy details and products which are available for licensing and approvals from various regulatory bodies. Using drivers, restraints and challenges it is forecasted for a period of five years i.e. 2012-2017. Opportunity strategy evaluation has been included which gives information for investors.

Autologous Cell Therapy technology is changing the medicinal treatments by introducing various new therapies. Its scope is vast and promising for the future despite challenges.

Key Topics Covered:

1 Introduction 2 Executive Summary 3 Autologous Cell Therapy (Act)-Technology Landscape Analysis 4 Technology Investment Potential 5 Market Landscape Analysis 6 Act - Technology Adoption Potential And Development By Geography 7 Competitive Landscape 8 Patent Analysis 9 Technology Analysis And Road Mapping 10 Analyst Insights And Recommendations 11 Company Profiles 12 Appendix 13 Glossary

Companies Mentioned

Original post:
Autologous Stem Cell and Non-Stem Cell Based Therapies Market ...

To Read More: Autologous Stem Cell and Non-Stem Cell Based Therapies Market …
categoriaSkin Stem Cells commentoComments Off on Autologous Stem Cell and Non-Stem Cell Based Therapies Market … | dataNovember 8th, 2013
Read All

iPSCTherapy.com: Induced Pluripotent Stem Cell therapy Information …

By Dr. Matthew Watson

There have been hundreds of science fiction stories and books written about growing organs in scientific laboratories as replacements for those that no longer function properly, or about injecting scientifically transmuted cells into ailing patients that can repair the broken cells within their bodies, bringing them back to robust health. In todays language what they were talking about was Induced Pluripotent Stem Cell (iPSC) Therapy.

Here, in the early 21st century, the gap between science fiction and science truth is closing at a record rate due to the rapid progress made in iPSC Therapy research, especially over the last three years.

After the virtual stop order placed on embryonic cell stem research in 2001, the race to find an alternative type of stem cell began in earnest, and in 2006 Shinya Yamanaka of Kyoto University in Japan announced his teams successful reprogramming of mouse cells into iPSCs. This was the breakthrough that made it possible for stem cell research to continue without the use of controversial embryonic stem cells.

The next major announcement came in 2007, again from Yamanaka in Japan, followed by one only a few weeks later by James A. Thompson from the University of Wisconsin, detailing the making of iPSC from adult human cells. Again, neither used embryos in their experiments.

From that time on the goal has been developing stem cell science that will eventually be safe iPS Cell Therapy modalities to be used in Regenerative or Reparative Medicine. What kinds of illnesses or diseases will iPSC Therapies be used to treat in the future? Only a partial list would include:

The world of iPSC Therapy research is wide open today and its on the move! This website is dedicated to bringing you first, the story of stem cell research, both embryonic and iPStem Cell, and the controversy surrounding them, as well as the most up to date information in the easiest to understand language about major milestone accomplishments in the field.

If you were to go back 100 years you would be amazed by how primitive medicine was. Even 60 years ago there were no organ transplants, no cystoscopic surgeries, and there was a massive polio outbreak in the United States that closed public swimming pools and beaches and other public gathering places across the country for the summer. Who can tell where medicine will be in 10 or 15 years? There is no predicting, but with the rapid advancement of the last few years and the bright promise shown so far, iPSC Therapy is sure to play a major role.

Continued here:
iPSCTherapy.com: Induced Pluripotent Stem Cell therapy Information ...

To Read More: iPSCTherapy.com: Induced Pluripotent Stem Cell therapy Information …
categoriaIPS Cell Therapy commentoComments Off on iPSCTherapy.com: Induced Pluripotent Stem Cell therapy Information … | dataNovember 8th, 2013
Read All

LUMINESCE Stem Cell Skin Care

By Dr. Matthew Watson

Do Years Of Experience Show On Your Face?

Get FACELIFT results with an anti-aging cream!

You want to look your best, and looking your best means doing what you can do to reduce the signs of aging. Many of the women I know would have a face lift in a second if they didn't have to have surgery to get it. When you consider the drawbacks to face lift surgery the expense, recovery time, threat of infection or scarring, and stories of botched operations just to name a few, it is hard for many people to justify the procedure for themselves.

Up until now your options were limited. You could have botox, but botox actually paralyzes the muscles, and comes with its own set of risk factors. Then you have to have it done over and over again, exposing yourself to more expense and risk each time. The only other viable option was to try one of the many many skin creams on the market that often promise fantastic results but fail to deliver.

Stem cells are cells that have the ability to grow into any kind of cell in the body, and they rely on special signals to tell them what cells they will ultimately become. If you know the stem cell language, then you could communicate to the cells.

In this way, you could have stem cells that become new young skin cells, rebuild collagen, and deliver a new younger looking skin.

Go here to see the original:
LUMINESCE Stem Cell Skin Care

To Read More: LUMINESCE Stem Cell Skin Care
categoriaSkin Stem Cells commentoComments Off on LUMINESCE Stem Cell Skin Care | dataNovember 7th, 2013
Read All

Page 182«..1020..181182183184..190200..»


Copyright :: 2024