Page 169«..1020..168169170171..180190..»

ARTAS FUE Hair Transplant with Stem Cell Therapy at 1 year post-op – Video

By Dr. Matthew Watson


ARTAS FUE Hair Transplant with Stem Cell Therapy at 1 year post-op
Amazing results after a FUE hair transplant by Dr. Yates with 2000 grafts using the newest ARTAS Robotic technology and newest therapy for hair restoration - Stromal Vascular Fraction Fat Transfer....

By: William Yates

See the rest here:
ARTAS FUE Hair Transplant with Stem Cell Therapy at 1 year post-op - Video

To Read More: ARTAS FUE Hair Transplant with Stem Cell Therapy at 1 year post-op – Video
categoriaUncategorized commentoComments Off on ARTAS FUE Hair Transplant with Stem Cell Therapy at 1 year post-op – Video | dataDecember 28th, 2014
Read All

heart disease helped with own Adult Stem Cells and Stem …

By Dr. Matthew Watson

HEART DISEASE & HEART ATTACK Helped With Your OWN STEM CELLS Watch these Heart Repair VIDEOS .. and Review All your Stem Cell Options for Heart Attacks

Heart disease can be helped and controlled with your own Stem Cells. REVIEW and Investigate All your NATURAL Adult Stem cell Options.

Just 2 Patented Stem Cell Enhancer capsules, release 3 to 4 Million New STEM CELLS into your blood stream within 60 Minutes.. Your very OWN Adult Stem Cells can Help prevent and repair Heart Attacks with NO Injections.. NO Surgery .. NO Controversy .. No Hospitals...

Stem Cells help heart disease .. Witness Stem Cell Enhancer capsules HERE !

Heart disease patients with clogged arteries and severe chest pain who were injected with stem cells from their own bone marrow had a small improvement in blood flow and the pumping ability of their hearts, along with an easing of pain, researchers found.

Doctors in the Netherlands drew bone marrow from the hips of heart disease patients in the study. After isolating the stem cells, they injected them back into the patients hearts and monitored their progress. The results were published in the Journal of the American Medical Association.(JAMA)

Go HERE and see a VIDEO of HOW your OWN Adult Stem cells repair your Body)...

FACT : To treat a range of conditions, and several thousand heart disease patients have been treated with adult stem cells, those found in mature organs. While some cardiologists originally hoped bone marrow cells might generate new heart muscle to replace damaged tissue, that hasnt been found to occur, said Warren Sherman, a cardiologist at Columbia University in New York.

The focus has shifted, said Sherman, in a telephone interview today. Cardiologists are now hoping that bone marrow stem cells can promote the growth of new blood vessels and improve the quality of life and level of chest pain patients have. The new study, in 50 heart disease patients, showed that adult stem cells can improve blood flow and ease chest pain, Sherman said. In the study, half of the heart disease patients got their own stem cells and the others got a simulated treatment. The cardiologists used a catheter, a thin wire threaded through their arteries that also carried a small camera to guide the injections. Go Review and investigate healthy heart and heart wellness stem cell options HERE

Less Discomfort

Read more:
heart disease helped with own Adult Stem Cells and Stem ...

To Read More: heart disease helped with own Adult Stem Cells and Stem …
categoriaCardiac Stem Cells commentoComments Off on heart disease helped with own Adult Stem Cells and Stem … | dataDecember 26th, 2014
Read All

Immune cells spur hair growth

By Dr. Matthew Watson

London, Dec 24 (IANS):In what could facilitate the development of novel treatment strategies for hair growth in humans, researchers have found that immune cells involved in wound healing can induce hair growth by surrounding and activating skin stem cells.

"We have discovered that macrophages -- cells whose main function is traditionally attributed to fight infections and wound repair -- are also involved in the activation of hair follicle stem cells in non-inflamed skin," said Mirna Perez-Moreno from the Spanish National Cancer Research Centre (CNIO).

Although this study was carried out in mice, the researchers believe their discovery may lead to new treatment for hair growth in humans.

The researchers found that mice started to regrow hair when they were given anti-inflammatory drugs.

They observed that when skin cells are dormant, a fraction of macrophages die naturally due to a normal process called apoptosis.

But the dying and surviving cells activated nearby stem cells and hair began to grow again.

Macrophages secrete a number of factors including a class of signalling molecules called Wnts.

Importantly, when the researchers treated macrophages with a Wnt inhibitor drug, the activation of hair growth was delayed, demonstrating a role for Wnts from macrophages in promoting hair growth.

The discovery that immune cells called macrophages activate skin stem cells could also influence technologies with potential applications in tissue regeneration, ageing, and cancer, the researchers noted.

The study appeared in the journal PLOS Biology.

Excerpt from:
Immune cells spur hair growth

To Read More: Immune cells spur hair growth
categoriaSkin Stem Cells commentoComments Off on Immune cells spur hair growth | dataDecember 25th, 2014
Read All

Rudimentary egg and sperm cells made from stem cells

By Dr. Matthew Watson

Southern Illinois University/Science photo Library

Some hope that sperm cells could one day be derived from the skin cells of a man who is otherwise sterile and that a similar process cold produce viable egg cells from a sterile woman's body.

Israeli and UK researchers have created human sperm and egg precursor cells in a dish, starting from a person's skin cells. The achievement is a small step towards a treatment for infertility, although one that could face significant controversy and regulatory hurdles.

The experiment, reported online in Cell on 24 December1, recreates in humans parts of a procedure first developed in mice, in which cells called induced pluripotent stem (iPS) cells reprogrammed cells that can differentiate into almost any cell type are used to create sperm or eggs that are subsequently manipulated to produce live births by in vitro fertilization.

In 2012, stem-cell biologist Mitinori Saitou of Kyoto University in Japan and his collaborators created the first artificial primordial germ cells (PGCs)2. These are specialized cells that emerge during embryonic development and later give rise to sperm or eggs. Saitou made them in a dish, starting with skin cells reprogrammed to an embryonic-like state through iPS-cell technology (see 'Stem cells: Egg engineers'). They also were able to achieve the same result starting with embryonic stem cells.

Although his cells could not develop beyond this precursor stage in the dish, Saito found that if he placed them in mouse testes, they would mature into sperm, and if he placed them in ovaries, they would mature into functional eggs. Both sperm and eggs could be used for in vitro fertilization.

Efforts to engineer similarly functional gametes in humans have produced PGC-like cells, but with such a low efficiency success rate of turning stem cells into gametes that it was difficult for others to expand on the work.. Previous efforts also required the introduction of genes that would render the cells unusable in the clinic.

Ewen Callaway reports on the ethical challenges of using lab-made sperm and egg cells in fertility treatments.

You may need a more recent browser or to install the latest version of the Adobe Flash Plugin.

Now a team led by Azim Surani of the University of Cambridge, UK, and Jacob Hanna of the Weizmann Institute of Science in Rehovot, Israel, has replicated the in vitro portion the first half, says Hanna of Saitous efforts in humans.

Originally posted here:
Rudimentary egg and sperm cells made from stem cells

To Read More: Rudimentary egg and sperm cells made from stem cells
categoriaSkin Stem Cells commentoComments Off on Rudimentary egg and sperm cells made from stem cells | dataDecember 25th, 2014
Read All

Lansdowne author raises awareness about sickle cell disease

By Dr. Matthew Watson

Dominique Friend doesn't look like she's sick. But the Lansdowne resident often deals with bouts of pain so severe she ends up in the hospital for weeks.

Friend, 44, was born with sickle cell disease, an inherited blood disorder that affects an estimated 90,000 to 100,000 in the U.S., according to Centers for Disease Control and Prevention information.

Her autobiography "Sickle" was released by Tate Publishing on Dec. 9 in a second edition, after she self-published the book in 2009.

In the book, she tells of her struggle with the debilitating disease. Friend said she shared her personal account to raise awareness about the disease, which predominantly affects African-Americans. It is also found in those of Hispanic and Mediterranean descent, according to CDC information.

Friend said for as long as she can recall, she has dealt with painful episodes that are characteristic of sickle cell disease.

Pain develops when sickle-shaped red blood cells, that should be round like a doughnut, block the blood flow to the chest, joints and other parts of the body, Friend explained. It can last for a few hours to a few weeks and such episodes are called "crises," she said.

"I would take the pain of childbirth over a sickle cell crisis any day," said Friend, who has three children, two stepdaughters and two granddaughters.

She has been married to Michael Friend for 18 years.

The painful disease can disrupt learning for children and make it difficult for adults to work, said Dr. Sophie Lanzkron, an assistant professor of medicine and oncology at Johns Hopkins University School of Medicine.

A bone marrow transplant or stem cell transplant is the only cure, according to the CDC website.

Go here to see the original:
Lansdowne author raises awareness about sickle cell disease

To Read More: Lansdowne author raises awareness about sickle cell disease
categoriaUncategorized commentoComments Off on Lansdowne author raises awareness about sickle cell disease | dataDecember 25th, 2014
Read All

Activating hair growth with a little help from the skin

By Dr. Matthew Watson

Restoring hair loss is a task undertaken not only by beauty practitioners. Previous studies have identified signals from the skin that help prompt new phases of hair growth. However, how different types of cells that reside in the skin communicate to activate hair growth has continued to puzzle biologists. An exciting study publishing on December 23 in the open access journal PLOS Biology reveals a new way to spur hair growth.

A group from the Spanish National Cancer Research Centre (CNIO) has discovered an unexpected connection?a link between the body?s defense system and skin regeneration. It turns out that macrophages are involved. These are cells from the immune system that are in charge of devouring invading pathogens, a process called phagocytosis. The authors report that macrophages induce hair growth by surrounding and activating cells in the skin that have regenerative capacity, called stem cells. The discovery that macrophages activate skin stem cells could influence technologies with potential applications in tissue regeneration, aging, and cancer.

The authors of the study are Mirna Perez-Moreno and Donatello Castellana, from the Epithelial Cell Biology Group of the BBVA Foundation-CNIO Cancer Cell Biology Programme, along with Ralf Paus, a hair immunobiology expert from the University of Manchester and Mnster. ?We have discovered that macrophages, cells whose main function is traditionally attributed to fight infections and wound repair, are also involved in the activation of hair follicle stem cells in non-inflamed skin,? says Perez-Moreno.

These findings emerged from an observation by Perez-Moreno while she was working on another research project. Intriguingly, the mice she was working with at that time started to regrow hair when they were given anti-inflammatory drugs. Curious as to whether close communication between stem cells and immune cells could explain this observation, the Perez-Moreno lab began to test different types of cells involved in the bodys defense system for a role in hair growth. They observed that when skin cells are dormant, a fraction of macrophages die naturally due to a normal process called apoptosis. Surprisingly, the dying and surviving cells activated nearby stem cells and hair began to grow again.

Macrophages secrete a number of factors including a class of signaling molecules called Wnts. Importantly, when the researchers treated macrophages with a Wnt inhibitor drug, the activation of hair growth was delayed?demonstrating a role for Wnt from macrophages in promoting hair growth. Although this study was carried out in mice, the researchers believe their discovery ?may facilitate the development of novel treatment strategies? for hair growth in humans.

The researchers used tiny droplets, or liposomes, to carry the drug used in the study. The future use of liposomes as a way to deliver a drug to specific cells is promising and may have additional implications for the study of several pathologies, says Donatello Castellana.

From a more fundamental perspective, this research is an effort to understand how modifying the environment that surrounds adult skin stem cells can regulate their regenerative capabilities. ?One of the current challenges in the stem cell field is to regulate the activation of endogenous stem cell pools in adult tissues?to promote regeneration without the need of transplantation,? says Perez-Moreno.

Because of this study, it is now known that macrophages play a key role in the environment surrounding stem cells. ?Our study underlines the importance of macrophages as modulators in skin regenerative processes, going beyond their primary function as phagocytic immune cells,? say the authors in PLOS Biology.

###

Please mention PLOS Biology as the source for this article and include the links below in your coverage to take readers to the online, open access articles

Link:
Activating hair growth with a little help from the skin

To Read More: Activating hair growth with a little help from the skin
categoriaSkin Stem Cells commentoComments Off on Activating hair growth with a little help from the skin | dataDecember 24th, 2014
Read All

Doctors think stem cell injections could provide hope for Huntington disease patients

By Dr. Matthew Watson

SOUTH BEND, Ind.--- Mike and Katie have been a couple since college, but they've known each other much longer.

"We've been together forever," said Mike.

"I've actually known Mike since I was 5-years-old," said Katie.

A marriage and three kids later they've been through good times, and bad. The worst came nine-years-ago when Mike found out he had Huntington's disease.

Huntington's is a deadly, inherited disease that affects about 30,000 Americans; 150,000 more are at risk.

Until now there has been no hope for these patients, who typically die of the disease within 15 years of diagnosis.

"My father had it, said Mike. He died from it."

Huntington's causes uncontrollable movements and mental decline, there is no cure.

"Unfortunately, it ends in death, said Dr. Vicki Wheelock, a neurologist at UC Davis Health System. It's a fatal disease."

Now researchers are gearing up for a new trial in humans.

Go here to read the rest:
Doctors think stem cell injections could provide hope for Huntington disease patients

To Read More: Doctors think stem cell injections could provide hope for Huntington disease patients
categoriaBone Marrow Stem Cells commentoComments Off on Doctors think stem cell injections could provide hope for Huntington disease patients | dataDecember 20th, 2014
Read All

365 days: 2014 in science

By Dr. Matthew Watson

Keith Vanderlinde/NSF

The BICEP2 telescope at the South Pole may have spied gravitational waves or dust.

This year may be best remembered for how quickly scientific triumph morphed into disappointment, and even tragedy: breakthroughs in stem-cell research and cosmology were quickly discredited; commercial spaceflight faced major setbacks. Yet landing a probe on a comet, tracing humanitys origins and a concerted push to understand the brain provided reasons to celebrate.

Asian nations soared into space this year. The Indian Space Research Organisation put a mission into orbit around Mars the first agency to do so on its first try. Japan launched the Hayabusa-2 probe, its second robotic voyage to bring back samples from an asteroid. And even as Chinas lunar rover Yutu (or Jade Rabbit) stopped gathering data on the Moons surface, mission controllers took the next step in the countrys lunar exploration programme by sending a test probe around the Moon and back to Earth.

But for commercial spaceflight, it was a bad year. Virgin Galactics proposed tourism vehicle SpaceShipTwo disintegrated during a test flight in California and killed one of its pilots. That came just three days after a launch-pad explosion in Virginia destroyed an uncrewed private rocket intended to take supplies to the International Space Station. The accident wiped out a number of research experiments destined for the station, whose managers are trying to step up its scientific output. Problems on the station also delayed the deployment of a flock of tiny Earth-watching satellites, nicknamed Doves, which are part of the general trend of using miniature CubeSats to collect space data.

On a bigger scale, the European Space Agency successfully launched the first in its long-awaited series of Sentinel Earth-observing satellites.

After a decade-long trip, the European Space Agencys Rosetta spacecraft arrived at comet 67P/ChuryumovGerasimenko in August and settled into orbit. Three months later, Rosetta dropped the Philae probe to 67Ps surface, in the first-ever landing on a comet. Philae relayed science data for 64hours before losing power in its shadowy, rocky landing site.

Meanwhile, a flotilla of Mars spacecraft probes from India, the United States and Europe had an unplanned close brush with comet Siding Spring, which zipped past the red planet in October at a distance of 139,500kilometres about one-third of the distance from Earth to the Moon. NASA rovers continued to trundle along on the Martian surface: Curiosity finally reached the mountain that it has been heading towards since landing in 2012, and Opportunity passed 40kilometres on its odometer, breaking a Soviet lunar rovers distance record for off-Earth driving.

The search for planets beyond the Solar System also got a huge boost. In February, the team behind the now mostly defunct Kepler spacecraft announced that it had confirmed the existence of 715extrasolar planets, the largest-ever single haul. Kepler data also revealed the first known Earth-sized exoplanet in the habitable zone of its star, a step closer to the long-sought Earth twin.

Considering that they have been dead for around 30,000 years, Neanderthals had a hell of a year. Their DNA survives in non-African human genomes, thanks to ancient interbreeding, and two teams this year catalogued humans Neanderthal heritage. Scientists learnt more about the sexual encounters between Homo neanderthalensis and early humans after analysing the two oldest Homo sapiens genomes on record from men who lived in southwest Siberia 45,000years ago and in western Russia more than 36,000years ago, respectively. The DNA revealed hitherto-unknown human groups and more precise dates for when H.sapiens coupled with Neanderthals, which probably occurred in the Middle East between 50,000 and 60,000 years ago. Radiocarbon dating of dozens of archaeological sites in Europe, meanwhile, showed that humans and Neanderthals coexisted there for much longer than was once thought up to several thousand years in some places.

Read more from the original source:
365 days: 2014 in science

To Read More: 365 days: 2014 in science
categoriaSpinal Cord Stem Cells commentoComments Off on 365 days: 2014 in science | dataDecember 18th, 2014
Read All

365 days: Nature's 10

By Dr. Matthew Watson

CGI Illustration by Peter Crowther Associates c/o Dbut Art

Andrea Accomazzo: Comet chaser | Suzanne Topalian: Cancer combatant | Radhika Nagpal: Robot-maker | Sheik Humarr Khan: Ebola doctor | David Spergel: Cosmic sceptic | Maryam Mirzakhani: Surface explorer | Pete Frates: Ice-bucket challenger | Koppillil Radhakrishnan: Rocket launcher | Masayo Takahashi: Stem-cell tester | Sjors Scheres: Structure solver | Ones to watch

A former test pilot steered the Rosetta mission to an icy world in deep space. By Elizabeth Gibney

Andreas Reeg/Agentur Focus/Eyevine

Nearly two decades ago, Andrea Accomazzo got into trouble with his girlfriend when she found a scrap of paper on his desk. In his handwriting was scrawled a phone number next to a female name: Rosetta.

She thought it was a girl, says Accomazzo. I had to explain to my jealous Italian girlfriend that Rosetta is an interplanetary mission that is flying to a comet in almost 20 years.

Ever since, Accomazzo has divided his attention. He eventually married his girlfriend and has also spent the past 18 years pursuing the comet 67P/ChuryumovGerasimenko. As flight director for the mission, Accomazzo led the team that steered Rosetta to its August rendezvous with the comet, following a 6.4-billion-kilometre journey from Earth. The pinnacle of the project came in November, when Rosetta successfully set down a lander named Philae, providing scientists with the first data from the surface of a comet and making it one of the most successful missions in the history of the European Space Agency (ESA).

Accomazzo did not act alone: it took a large operations team at ESA to manoeuvre Rosetta with enough precision to drop Philae down just 120 metres from the centre of the landing zone. Given that we'd had a 500-metre error circle, that was not a bad shot, says Fred Jansen, who led the mission. When Philae's anchoring systems failed, the craft bounced into a shady site where it could not charge its solar panels, so the lander lost power after 64 hours. But in that time, it gathered a trove of data that will add to the information collected by Rosetta about the comet's structure and composition. Armed with those insights, scientists hope to better understand the origin and evolution of the Solar System, including whether comets could have brought water and organic molecules to Earth during its infancy.

Accomazzo started off his career focused on a different type of flight. He first trained as a test pilot in the Italian Air Force. But although he loved flying, he found the culture too constraining and after two years he quit to study aerospace engineering. With his quiet, hard-working, sometimes no-nonsense nature, colleagues say that Accomazzo brings a bit of the military with him into mission control.

For Accomazzo, the biggest parallel between flying a fighter jet and Rosetta is the need for split-second judgements. You have to prepare and train a lot to be able to make the right decision, very quickly, he says. Between launch and landing, his team ran 87 full-day simulations.

Link:
365 days: Nature's 10

To Read More: 365 days: Nature's 10
categoriaIPS Cell Therapy commentoComments Off on 365 days: Nature's 10 | dataDecember 18th, 2014
Read All

ABRING Announces Debut of Stem Cell Based Skin Care Products

By Dr. Matthew Watson

Manhattan NY (PRWEB) December 13, 2014

ABRING, one of the pioneers in the new era of the most advanced skin care trend, announced the debut of their two new skin care products: ABRING lemon stem cell acne serum and ABRING apple stem cell serum/eyes serum, These two new cutting-edge skin care products contain concentrated essence which is derived from Californias organic plants and has no artificial or chemical components. This condensed essence has been widely recognized for its obvious effect on anti-aging and stimulation of skin cells regeneration. As a result, ABRINGs new stem cell products not only have such distinctive functions as anti-aging, supplementing moisture, alleviating scars appearance and whitening skin, but also can be safely used by pregnant women since it only contains pure natural plant ingredients.

It is well-known that the skin is exposed to all kinds of radiations everyday which can damage our skin in various ways. Most people think that there is nothing to worry because they have already used segregation frost. However, what they dont realize is the fact that segregation frost only plays a trivial role in isolation and doesnt help repair or stimulate skin cells renewal or regeneration activities.

Stem cells are capable of self-reproducing and have lots of potentials. Under different conditions, they can evolve into various functional cells. Therefore, the activity of skin stem cells directly affects the external appearance of the skin. ABRING uses the newest stem cell research achievement and is a known brand for natural beauty products. Because it contains condensed essences concentrated from organic plants and is free of any chemicals, ABRING can stimulate activity in skin cells, slow down the aging process, increase elasticity, improve tone, and reduce the appearance of scars. In addition, because ABRING also contains a lot of mineral water and vitamin C, it can effectively improve skin brightening and help cure and prevent acne.

ABRING products founder, Albert, born in California, United, is a cell biologist and a biochemist. Unlike many, he didnt have a carefree and happy childhood as the result of a natural disaster. However, Albert wasnt defeated by the unpredicted distress. Instead, he was dedicated to study and graduated from Columbia University. In 1971, invited by the U.S. government, Doctor Albert became one of first post-war medical doctors. In same year, Doctor Albert established ABRING laboratory which stands for: Doctor Albert brings hope. Based on years of research at Columbia University focusing on stem cell biology, Doctor Albert found that certain raw materials can effectively remove skin scars without using any chemical additives. After over 7000 experiments, he finally extracted pure activating factors from natural plants that can help alleviate the appearance of scars. Dr. Albert named the condensed essence of concentration of plant stem cells as ABRING. Since then, with its innovative and effective way of enhancing the tone of skin, ABRING started to be recognized more and more by the world. Doctor Albert's efforts eventually got paid off and ABRING became one of the favored skin care products from the users of all classes. Nowadays, ABRING has been used by more than 500 famous beauty salons over the world. Moreover, the product has been widely recommended by doctors as daily lotion for skin disease treatment or post-surgery care.

See original here:
ABRING Announces Debut of Stem Cell Based Skin Care Products

To Read More: ABRING Announces Debut of Stem Cell Based Skin Care Products
categoriaSkin Stem Cells commentoComments Off on ABRING Announces Debut of Stem Cell Based Skin Care Products | dataDecember 14th, 2014
Read All

Dallas, Tx | SVF Stem Cell Therapy Testimonial (Knee Replacement Alternative) – Video

By Dr. Matthew Watson


Dallas, Tx | SVF Stem Cell Therapy Testimonial (Knee Replacement Alternative)
http://www.innovationsStemCellCenter.com Call: 214.420.7970 Facebook: https://www.facebook.com/innovationsmedical Twitter: https://twitter.com/dallasdrj Instagram: http://instagram.com/drbilljo...

By: dallasdrj

See the article here:
Dallas, Tx | SVF Stem Cell Therapy Testimonial (Knee Replacement Alternative) - Video

To Read More: Dallas, Tx | SVF Stem Cell Therapy Testimonial (Knee Replacement Alternative) – Video
categoriaUncategorized commentoComments Off on Dallas, Tx | SVF Stem Cell Therapy Testimonial (Knee Replacement Alternative) – Video | dataDecember 14th, 2014
Read All

Canadian-led team unlocks process to 'reprogram' stem cells

By Dr. Matthew Watson

Sheryl Ubelacker, The Canadian Press Published Wednesday, December 10, 2014 1:39PM EST Last Updated Thursday, December 11, 2014 7:42AM EST

TORONTO -- A Canadian-led international team of researchers has begun solving the mystery of just how a specialized cell taken from a person's skin is reprogrammed into an embryonic-like stem cell, from which virtually any other cell type in the body can be generated.

The research is being touted as a breakthrough in regenerative medicine that will allow scientists to one day harness stem cells to treat or even cure a host of conditions, from blindness and Parkinson's disease to diabetes and spinal cord injuries.

Besides creating the reprogramming roadmap, the scientists also identified a new type of stem cell, called an F-class stem cell due to its fuzzy appearance. Their work is detailed in five papers published Wednesday in the prestigious journals Nature and Nature Communications.

Dr. Andras Nagy, a senior scientist at Mount Sinai Hospital in Toronto, led the team of 50 researchers from Canada, the Netherlands, South Korea and Australia, which spent four years analyzing and cataloguing the day-by-day process that occurs in stem cell reprogramming.

The work builds on the 2006-2007 papers by Shinya Yamanaka, who showed that adult skin cells could be turned into embryonic-like, or pluripotent, stem cells through genetic manipulation, a discovery that garnered the Japanese scientist the Nobel Prize in 2012.

Nagy likened the roughly 21-day process to complete that transformation to a "black box," so called because scientists did not know what went on within the cells as they morphed from one cell type into the other.

"It was just like a black box," Nagy said Wednesday, following a briefing at the hospital. "You start with a skin cell, you arrive at a stem cell -- but we had no idea what was happening inside the cell."

Nagy's team set about cataloguing the changes as they occurred by removing cells from culture dishes at set points during the three-week period, then analyzing such cellular material as DNA and proteins present at that moment.

The result is a database that will be available to scientists around the world, which the team hopes will spur new research to advance the field of stem cell-based regenerative medicine.

Read more:
Canadian-led team unlocks process to 'reprogram' stem cells

To Read More: Canadian-led team unlocks process to 'reprogram' stem cells
categoriaSpinal Cord Stem Cells commentoComments Off on Canadian-led team unlocks process to 'reprogram' stem cells | dataDecember 11th, 2014
Read All

Breakthrough research may speed up stem cell treatments

By Dr. Matthew Watson

TORONTO A Canadian-led international team of researchers has created the first high-resolution characterization of the process in which stem cells are formulated from other specialized cells.

The research is being touted as a breakthrough in utilizing stem cells to treat or even cure a host of diseases in the future. Certain stem cells have the potential to become any cell type in the body.

Dr. Andras Nagy of Mount Sinai Hospital in Toronto, who led the international research team, says stem cells hold enormous promise for treating or reversing such conditions as blindness, Parkinsons, Alzheimers, spinal cord injury and stroke-related brain damage.

The researchers also identified a new type of stem cells, called F-class stem cells due to their fuzzy appearance.

Nagy says these F-class stem cells have unique properties that could open up new avenues for generating designer cells that may be safer and more efficient when used in future therapies.

Ontario Health Minister Dr. Eric Hoskins hails the research as a game-changer that will open up new frontiers in scientific and medical knowledge worldwide.

The research is detailed in five papers published Wednesday in the prestigious journals Nature and Nature Communications.

See the article here:
Breakthrough research may speed up stem cell treatments

To Read More: Breakthrough research may speed up stem cell treatments
categoriaSpinal Cord Stem Cells commentoComments Off on Breakthrough research may speed up stem cell treatments | dataDecember 11th, 2014
Read All

The Latest in Stem Cell Therapy – Video

By Dr. Matthew Watson


The Latest in Stem Cell Therapy
Dr. MIchael Belich of integrative Medical Clinics talks about the latest therapies using Stem Cells.

By: Integrative Medical Clinics

Read more:
The Latest in Stem Cell Therapy - Video

To Read More: The Latest in Stem Cell Therapy – Video
categoriaUncategorized commentoComments Off on The Latest in Stem Cell Therapy – Video | dataDecember 11th, 2014
Read All

Future of Care: The Future of Stem Cell Therapy Highlights – Video

By Dr. Matthew Watson


Future of Care: The Future of Stem Cell Therapy Highlights
A few highlights from our October 29, 2014 Future of Care: Future of Stem Cell Therapy event featuring UC San Diego Health System CEO Paul Viviano, Director of Sanford Stem Cell Clinical Center...

By: UCSDHSDEV

Read this article:
Future of Care: The Future of Stem Cell Therapy Highlights - Video

To Read More: Future of Care: The Future of Stem Cell Therapy Highlights – Video
categoriaUncategorized commentoComments Off on Future of Care: The Future of Stem Cell Therapy Highlights – Video | dataDecember 9th, 2014
Read All

New single-cell analysis reveals complex variations in stem cells

By Dr. Matthew Watson

Stem cells offer great potential in biomedical engineering due to their pluripotency, which is the ability to multiply indefinitely and also to differentiate and develop into any kind of the hundreds of different cells and bodily tissues. But the precise complexity of how stem cell development is regulated throughout states of cellular change has been difficult to pinpoint until now.

By using powerful new single-cell genetic profiling techniques, scientists at the Wyss Institute for Biologically Inspired Engineering and Boston Children's Hospital have uncovered far more variation in pluripotent stem cells than was previously appreciated. The findings, reported today in Nature, bring researchers closer to a day when many different kinds of stem cells could be leveraged for disease therapy and regenerative treatments.

"Stem cell colonies contain much variability between individual cells. This has been considered somewhat problematic for developing predictive approaches in stem cell engineering," said the study's co-senior author James Collins, Ph.D., who is a Wyss Institute Core Faculty member, the Henri Termeer Professor of Medical Engineering & Science at MIT, and a Professor of Biological Engineering at MIT. "Now, we have discovered that what was previously considered problematic variability could actually be beneficial to our ability to precisely control stem cells."

The research team has learned that there are many small fluctuations in the state of a stem cell's pluripotency that can influence which developmental path it will follow.

It's a very fundamental study but it highlights the wide range of states of pluripotency," said George Daley, study co-senior author, Director of Stem Cell Transplantation at Boston Children's Hospital and a Professor of Biological Chemistry and Molecular Pharmacology at Harvard Medical School. "We've captured a detailed molecular profile of the different states of stem cells."

Taking this into account, researchers are now better equipped to manipulate and precisely control which cell and tissue types will develop from an individual pluripotent stem cell or stem cell colony.

"The study was made possible through the use of novel technologies for studying individual cells, which were developed in part by collaborating groups at the Broad Institute, giving our team an unprecedented view of stem cell heterogeneity at the individual cell level," said Patrick Cahan, co-lead author on the study and Postdoctoral Fellow at Boston Children's Hospital and Harvard Medical School.

Researchers explored the developmental landscape of pluripotent stem cells by perturbing them with variants such as different chemicals, culture environments, and genetic knockouts. Then, they analyzed the individual genetic makeup of each cell to observe micro-fluctuations in each stem cell's state of pluripotency. They discovered many small nuances in the way stem cells are influenced by internal, chemical and environmental cues, revealing a complex "decision making" circuit of developmental regulators.

"These emerging single-cell analytics allow us to classify cells very precisely and identify regulatory circuits that control cell states," said the study's co-lead author Roshan Kumar, a former Wyss Institute Postdoctoral Fellow who is now a Senior Scientist at HiFiBiO Inc. and a Visiting Scholar at the Wyss Institute. "The real motivating force behind this study was to understand the causes and consequences of differences between individual stem cells and how the balance of key regulators within a cell can affect that cell's developmental outcome."

Looking at the findings, the researchers now believe there is a "code" that relates patterns of dynamic behavior in stem cell regulatory circuits to the developmental path a cell ends up taking. By leveraging that code, they hope to dial in precisely to specific individual cell states and to use them for a variety of purposes, such as creating certain cell types that a patient's body may be unable to produce on its own.

View post:
New single-cell analysis reveals complex variations in stem cells

To Read More: New single-cell analysis reveals complex variations in stem cells
categoriaUncategorized commentoComments Off on New single-cell analysis reveals complex variations in stem cells | dataDecember 6th, 2014
Read All

Cord blood educator meets neuroscientist

By Dr. Matthew Watson

Marion Welch and Dr. Paul Sanberg

Ridgefielder and cord blood advocate Marion Welch recently met Dr. Paul Sanberg, aneuroscientist and cord blood stem cell researcher and currently distinguished professor at the College of Medicine and Molecular Pharmacology and Physiology at the University of Southern Florida.

Ms. Welch has been educating parents in Connecticut and New York for the past 15 years on preserving cord blood stem cells at the time of birth. She serves as a senior member of Cryo-Cell Internationals field cord blood educator team.

Dr. Sanberg is the author of more than 600 scientific articles and has published 13 books, including Neural Stem Cells: Methods and Protocols and Neural Stem Cells for Brain and Spinal Cord Repair, and is an inventor with more than 100 United States patents. His work is pioneering the clinical use of using cord blood stem cells to treat neurological disorders, Ms. Welch said.

Connecticut has mandated cord blood education for all expectant parents for the last five years.

For more information on cord blood banking, contact Marion Welch at mwelch@cryo-cell.com

For more information on Dr. Sanberg and his research, contact USF Research & Innovation, 3702 Spectrum Blvd., Suite 165, Tampa FL 33612.

Original post:
Cord blood educator meets neuroscientist

To Read More: Cord blood educator meets neuroscientist
categoriaSpinal Cord Stem Cells commentoComments Off on Cord blood educator meets neuroscientist | dataDecember 5th, 2014
Read All

The Adult Stem Cell Technology Center, LLCs New Report on Asymmetric Character of Stem Cell Chromosomes Advances …

By Dr. Matthew Watson

Boston, MA (PRWEB) December 04, 2014

In a new report published in the online journal Cell Death and Disease, the Adult Stem Cell Technology Center, LLC (ASCTC) continues to demonstrate its special expertise in uncovering unknown properties that are unique to adult tissue stem cells. In particular, the new study continues to build the companys portfolio of technologies that make previously invisible adult stem cells not only identifiable, but also countable.

The studies were performed with mouse hair follicle stem cells. Because of the universal nature of adult tissue stem cell properties, the new findings are predicted to apply to stem cells in a wide range of human tissues as well.

For the past half century since the experimental demonstration of their existence, it has not been possible to identify adult tissue stem cells exclusive of other related cell types. Consequently, counting them has been impossible, too. Established stem cell therapies like bone marrow transplantation are suboptimal because of this limitation; and the current worldwide flood of thousands of clinical trials of tissue stem cell transplantation therapies has the same problem. Without being able to count potentially curative adult tissue stem cells, there is no way to optimize and standardize successful treatments.

The new report presents a discovery made during studies employing one of the ASCTCs recently defined biomarkers for detecting tissue stem cells. The new biomarker is a member of a family of cell factors called histones that package the cellular DNA into chromosomes. One of the less abundant members of this family is called H2A.Z. In 2011, the ASCTC discovered that H2A.Z is only accessible on the set of chromosomes that segregates to the stem cell sister when a stem divides to produce a non-stem sister cell. The non-stem sister differentiates to replenish lost mature tissue cells. Before a stem cell divides in this manner, the stem cell chromosomes and the non-stem cell chromosomes are distinct because of this difference in their H2A.Z access. This unique feature, called H2A.Z asymmetry, is a highly specific biomarker for identifying adult tissue stem cells.

Because detection of H2A.Z asymmetry does not disrupt other features of stem and non-stem chromosomes, it can be used as a specific landmark to discover other molecular differences between chromosomes destined for the stem cell sister and chromosomes destined for the non-stem sister. The new report describes how two well-known gene regulation modifications of an abundant histone family member, H3, also display asymmetry between stem cell chromosomes and differentiating cell chromosomes.

The newly discovered asymmetric chromosomal patterning of gene regulation modifications in adult tissue stem cells may reveal a long sought mechanism to explain how stem cell fate is maintained in mammalian tissues. This new insight into the function of tissue stem cells addresses a fundamental question in the field of stem cell biology research. ASCTC Director James L. Sherley anticipates that the new report will give stem cell scientists and bioengineers a new lead idea and new research tools for extending knowledge on the molecular workings of adult tissue stem cells. Such advances in knowledge are greatly needed currently to improve the scientific foundation for the increasing number of regenerative medicine clinical trials.

******************************************************************************************** The Adult Stem Cell Technology Center, LLC is a Massachusetts life sciences company. ASCTC Director and founder, James L. Sherley, M.D., Ph.D. is the foremost authority on the unique properties of adult tissue stem cells. The companys patent portfolio contains biotechnologies that solve the three main technical problems production, quantification, and monitoring that have stood in the way of successful commercialization of human adult tissue stem cells for regenerative medicine and drug development. In addition, the portfolio includes novel technologies for isolating cancer stem cells and producing induced pluripotent stem cells. Currently, ASCTC is employing its technological advantages to pursue commercialization of facile methods for monitoring adult tissue stem cell number and function.

Excerpt from:
The Adult Stem Cell Technology Center, LLCs New Report on Asymmetric Character of Stem Cell Chromosomes Advances ...

To Read More: The Adult Stem Cell Technology Center, LLCs New Report on Asymmetric Character of Stem Cell Chromosomes Advances …
categoriaBone Marrow Stem Cells commentoComments Off on The Adult Stem Cell Technology Center, LLCs New Report on Asymmetric Character of Stem Cell Chromosomes Advances … | dataDecember 5th, 2014
Read All

World Stem Cell Summit kicks off in SA with Public Education Day

By Dr. Matthew Watson

NEWS

1200+ scientists, patient advocates from 40 countries in town for summit

Posted December 02, 2014, 6:04 PM Updated December 02, 2014, 6:33 PM

SAN ANTONIO - More than a thousand scientists, industry leaders and patient advocates from 40 countries are headed to San Antonio for the World Stem Cell Summit.

Organizers are calling it the center of the universe when it comes to stem cells and regenerative medicine.

On Tuesday the summit kicked off with Public Education Day, where some of the smartest scientists in the field broke the topic down into bite-sized pieces.

"To be able to replenish our cells that die within a tissue on a daily basis, in order for us to be able to heal wounds, we have to have stem cells," said Elaine Fuchs, an investigator for the Howard Hughes Medical Institute.

She started her research in the field in the 1970s with work on skin stem cells, and said she was fascinated with creating skin in a petri dish that could then be used for burn therapy.

Fuchs spoke at Public Education Day about the most basic biology of stem cells and said that knowledge is leading to a new world in medicine.

"The biology of stem cells is gong to be and is being extremely valuable in terms of developing new therapies and coming up with new drugs to treat various different devastating diseases," Fuchs said.

Read this article:
World Stem Cell Summit kicks off in SA with Public Education Day

To Read More: World Stem Cell Summit kicks off in SA with Public Education Day
categoriaSkin Stem Cells commentoComments Off on World Stem Cell Summit kicks off in SA with Public Education Day | dataDecember 4th, 2014
Read All

Stem Cell Therapy Skin Repair, Anti Aging and Anti Wrinkle Cream – As Seen On Tv – Look Younger – Video

By Dr. Matthew Watson


Stem Cell Therapy Skin Repair, Anti Aging and Anti Wrinkle Cream - As Seen On Tv - Look Younger
http://www.ReadTheReviewsFirst.com Truvisage Anti-Aging Skin Care System Free Trial.

By: Greg Smith

View post:
Stem Cell Therapy Skin Repair, Anti Aging and Anti Wrinkle Cream - As Seen On Tv - Look Younger - Video

To Read More: Stem Cell Therapy Skin Repair, Anti Aging and Anti Wrinkle Cream – As Seen On Tv – Look Younger – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy Skin Repair, Anti Aging and Anti Wrinkle Cream – As Seen On Tv – Look Younger – Video | dataDecember 2nd, 2014
Read All

Page 169«..1020..168169170171..180190..»


Copyright :: 2024