What Are Stem Cells – Checkbiotech.org (press release)
By NEVAGiles23
Tissue-specific stem cells
Tissue-specific stem cells, which are sometimes referred to as adult or somatic stem cells, are already somewhat specialized and can produce some or all of the mature cell types found within the particular tissue or organ in which they reside. Because of their ability to generate multiple, organ-specific, cell types, they are described as multipotent. For example, stem cells found
Stem cells are the foundation cells for every organ and tissue in our bodies. The highly specialized cells that make up these tissues originally came from an initial pool of stem cells formed shortly after fertilization. Throughout our lives, we continue to rely on stem cells to replace injured tissues and cells that are lost every day, such as those in our skin, hair, blood and the lining of our gut. Stem cells have two key properties: 1) the ability to self-renew, dividing in a way that makes copies of themselves, and 2) the ability to differentiate, giving rise to the mature types of cells that make up our organs and tissues.
Tissue-specific stem cells Tissue-specific stem cells, which are sometimes referred to as adult or somatic stem cells, are already somewhat specialized and can produce some or all of the mature cell types found within the particular tissue or organ in which they reside. Because of their ability to generate multiple, organ-specific, cell types, they are described as multipotent. For example, stem cells found within the adult brain are capable of making neurons and two types of glial cells, astrocytes and oligodendrocytes. Tissue-specific stem cells have been found in several organs that need to continuously replenish themselves, such as the blood, skin and gut and have even been found in other, less regenerative, organs such as the brain. These types of stem cells represent a very small population and are often buried deep within a given tissue, making them difficult to identify, isolate and grow in a laboratory setting. Neuron Dr. Gerry Shaw, EnCor Biotechnology Inc. Astrocyte Abcam Inc. Oligodendrocyte Dhaunchak and Nave (2007). Proc Natl Acad Sci USA 104:17813-8 http://www.isscr.org Embryonic stem cells Embryonic stem cells have been derived from a variety of species, including humans, and are described as pluripotent, meaning that they can generate all the different types of cells in the body. Embryonic stem cells can be obtained from the blastocyst, a very early stage of development that consists of a mostly hollow ball of approximately 150-200 cells and is barely visible to the naked eye. At this stage, there are no organs, not even blood, just an inner cell mass from which embryonic stem cells can be obtained. Human embryonic stem cells are derived primarily from blastocysts that were created by in vitro fertilization (IVF) for assisted reproduction but were no longer needed. The fertilized egg and the cells that immediately arise in the first few divisions are totipotent. This means that, under the right conditions, they can generate a viable embryo (including support tissues such as the placenta). Within a matter of days, however, these cells transition to become pluripotent. None of the currently studied embryonic stem cell lines are alone capable of generating a viable embryo (i.e., they are pluripotent, not totipotent). Why are embryonic stem cells so valuable? Unlike tissue-specific (adult) stem cells, embryonic stem cells have the potential to generate every cell type found in the body. Just as importantly, these cells can, under the right conditions, be grown and expanded indefinitely in this unspecialized or undifferentiated state. These cells help researchers learn about early human developmental processes that are otherwise inaccessible, study diseases and establish strategies that could ultimately lead to therapies designed to replace or restore damaged tissues. Induced pluripotent stem cells One of the hottest topics in stem cell research today is the study of induced pluripotent stem cells (iPS cells). These are adult cells (e.g., skin cells) that are engineered, or reprogrammed, to become pluripotent, i.e., behave like an embryonic stem cell. While these iPS cells share many of the same characteristics of embryonic stem cells, including the ability to give rise to all the cell types in the body, it is important to understand that they are not identical. The original iPS cells were produced by using viruses to insert extra copies of three to four genes known to be important in embryonic stem cells into the specialized cell. It is not yet completely understood how these three to four reprogramming genes are able to induce pluripotency; this question is the focus of ongoing research. In addition, recent studies have focused on alternative ways of reprogramming cells using methods that are safer for use in clinical settings. Disease- or patient-specific pluripotent stem cells One of the major advantages of iPS cells, and one of the reasons that researchers are very interested in studying them, is that they are a very good way to make pluripotent stem cell lines that are specific to a disease or even to an individual patient. Disease-specific stem cells are powerful tools for studying the cause of a particular disease and then for testing drugs or discovering other approaches to treat or cure that disease. The development of patientspecific stem cells is also very attractive for cell therapy, as these cell lines are from the patient themselves and may minimize some of the serious complications of rejection and immunosuppression that can occur following transplants from unrelated donors. Moving stem cells into the clinic Clinical translation is the process used to turn scientific knowledge into real world medical treatments. Researchers take what they have learned about how a tissue usually works and what goes wrong in a particular disease or injury and use this information to develop new ways to diagnose, stop or fix what goes wrong. Before being marketed or adopted as standard of care, most treatments are tested through clinical trials. Sometimes, in attempting new surgical techniques or where the disease or condition is rare and does not have a large enough group of people to form a clinical trial, certain treatments might be tried on one or two people, a form of testing sometimes referred to as innovative medicine. For more information on how science becomes medicine, please visit http://www.closerlookatstemcells.org. Current therapies Blood stem cells are currently the most frequently used stem cells for therapy. For more than 50 years, doctors have been using bone marrow transplants to transfer blood stem cells to patients, and more advanced techniques for collecting blood stem cells are now being used to treat leukemia, lymphoma and several inherited blood disorders. Umbilical cord blood, like bone marrow, is often collected as a source of blood stem cells and in certain cases is being used as an alternative to bone marrow transplantation. Additionally, some bone, skin and corneal diseases or injuries can be treated by grafting tissues that are derived from or maintained by stem cells. These therapies have also been shown to be safe and effective. Potential therapies Other stem cell treatments, while promising, are still at very early experimental stages. For example, the mesenchymal stem cell, found throughout the body including in the bone marrow, can be directed to become bone, cartilage, fat and possibly even muscle. In certain experimental models, these cells also have some ability to modify immune functions. These abilities have created considerable interest in developing ways of using mesenchymal stem cells to treat a range of musculoskeletal abnormalities, cardiac disease and some immune abnormalities such as graft-versus-host disease following bone marrow transplant. Remaining challenges Despite the successes we have seen so far, there are several major challenges that must be addressed before stem cells can be used as cell therapies to treat a wider range of diseases. First, we need to identify an abundant source of stem cells. Identifying, isolating and growing the right kind of stem cell, particularly in the case of rare adult stem cells, are painstaking and difficult processes. Pluripotent stem cells, such as embryonic stem cells, can be grown indefinitely in the lab and have the advantage of having the potential to become any cell in the body, but these processes are again very complex and must be tightly controlled. iPS cells, while promising, are also limited by these concerns. In both cases, considerable work remains to be done to ensure that these cells can be isolated and used safely and routinely. Second, as with organ transplants, it is very important to have a close match between the donor tissue and the recipient; the more closely the tissue matches the recipient, the lower the risk of rejection. Being able to avoid the lifelong use of immunosuppressants would also be preferable. The discovery of iPS cells has opened the door to developing patient-specific pluripotent stem cell lines that can later be developed into a needed cell type without the problems of rejection and immunosuppression that occur from transplants from unrelated donors. Third, a system for delivering the cells to the right part of the body must be developed. Once in the right location, the new cells must then be encouraged to integrate and function together with the bodys other cells. http://www.isscr.org Glossary Blastocyst A very early embryo that has the shape of a ball and consists of approximately 150-200 cells. It contains the inner cell mass, from which embryonic stem cells are derived, and an outer layer of cells called the trophoblast that forms the placenta. Cell line Cells that can be maintained and grown in a dish outside of the body. Clinical translation The process of using scientific knowledge to design, develop and apply new ways to diagnose, stop or fix what goes wrong in a particular disease or injury. Differentiation The process of development with an increase in the level of organization or complexity of a cell or tissue, accompanied by a more specialized function. Embryo The early developing organism; this term denotes the period of development between the fertilized egg and the fetal stage. Embryonic stem cell Cells derived from very early in development, usually the inner cell mass of a developing blastocyst. These cells are self-renewing (can replicate themselves) and pluripotent (can form all cell types found in the body). Induced pluripotent stem (iPS) cell Induced pluripotent cells (iPS cells) are stem cells that were engineered (induced) from non-pluripotent cells to become pluripotent. In other words, a cell with a specialized function (for example, a skin cell) that has been reprogrammed to an unspecialized state similar to that of an embryonic stem cell. Innovative medicine Treatments that are performed on a small number of people and are designed to test a novel technique or treat a rare disease. These are done outside of a typical clinical trial framework. In vitro fertilization A procedure in which an egg cell and sperm cells are brought together in a dish to fertilize the egg. The fertilized egg will start dividing and, after several divisions, forms the embryo that can be implanted into the womb of a woman and give rise to pregnancy. Mesenchymal stem cells Mesenchymal stem cells were originally discovered in the bone marrow, but have since been found throughout the body and can give rise to a large number of connective tissue types such as bone, cartilage and fat. Multipotent stem cells Stem cells that can give rise to several different types of specialized cells, but in contrast to a pluripotent stem cell, are restricted to a certain organ or tissue types. For example, blood stem cells are multipotent cells that can produce all the different cell types that make up the blood but not the cells of other organs such as the liver or brain. Pluripotent stem cells Stem cells that can become all the cell types that are found in an implanted embryo, fetus or developed organism. Embryonic stem cells are pluripotent stem cells. Self-renewal The process by which a cell divides to generate another cell that has the same potential. Stem cells Cells that have both the capacity to self-renew (make more stem cells by cell division) and to differentiate into mature, specialized cells. Tissue-specific stem cells (also known as adult or somatic stem cells) Stem cells found in different tissues of the body that can give rise to some or all of the mature cell types found within the particular tissue or organ from which they came, i.e., blood stem cells can give rise to all the cells that make up the blood, but not the cells of organs such as the liver or brain. Totipotent stem cells Stem cells that, under the right conditions, are wholly capable of generating a viable embryo (including the placenta) and, for humans, exist until about four days after fertilization, prior to the blastocyst stage from which embryonic stem cells are derived.
Here is the original post:
What Are Stem Cells - Checkbiotech.org (press release)
- 001 Ying Liu discusses IPS cell therapy for ALS [Last Updated On: August 6th, 2011] [Originally Added On: August 6th, 2011]
- 002 Jeanne Loring talks about stem cells, part 2 [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- 003 Embryonic Stem Cells From Skin: Making Old Cells Young [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- 004 IPs cells Part3 [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- 005 IPs cells Part 2 [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- 006 A Century of Stem Cells - Johns Hopkins Medicine [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- 007 Stem Cell Implications for ALS (Amyotrophic Lateral Sclerosis) [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- 008 Myelin Repair Foundation on Stem Cell Research [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- 009 IPs Cells Part 4 [Last Updated On: September 11th, 2011] [Originally Added On: September 11th, 2011]
- 010 National Medical Report [Last Updated On: September 13th, 2011] [Originally Added On: September 13th, 2011]
- 011 IPs cells Part 1 [Last Updated On: September 15th, 2011] [Originally Added On: September 15th, 2011]
- 012 iPS Stem Cell-Based Treatment of Epidermolysis Bullosa [Last Updated On: September 16th, 2011] [Originally Added On: September 16th, 2011]
- 013 Jeanne Loring talks about stem cells, part 1 [Last Updated On: September 16th, 2011] [Originally Added On: September 16th, 2011]
- 014 Kristopher Nazor 2 [Last Updated On: September 16th, 2011] [Originally Added On: September 16th, 2011]
- 015 Andalusian Stem Cell Bank [Last Updated On: September 19th, 2011] [Originally Added On: September 19th, 2011]
- 016 Cellular Reprogramming Stem Cell Domain Name For Sale! - CellularReprogramming.com [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 017 Dr. Oz to Oprah and Michael J Fox: "The stem cell debate is dead." [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- 018 Manning, Owens Try Stem Cell Therapy [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 019 Jeanne Loring talks about stem cells, part 3 [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 020 Epidermolysis Bullosa: Corrected iPS Stem Cell-Based Therapy - Video [Last Updated On: October 13th, 2011] [Originally Added On: October 13th, 2011]
- 021 Introduction to Stem Cells - Video [Last Updated On: October 14th, 2011] [Originally Added On: October 14th, 2011]
- 022 Parkinson's Disease: Progress and Promise in Stem Cell Research - Video [Last Updated On: October 14th, 2011] [Originally Added On: October 14th, 2011]
- 023 stem cell research - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 024 Ian Wilmut discusses stem cell and direct cellular transformation therapy - Video [Last Updated On: December 8th, 2011] [Originally Added On: December 8th, 2011]
- 025 Jeff Bluestone: Immune rejection of stem cell transplants - Video [Last Updated On: December 8th, 2011] [Originally Added On: December 8th, 2011]
- 026 Advances in Stem Cell Research: Shinya Yamanaka - Video [Last Updated On: December 11th, 2011] [Originally Added On: December 11th, 2011]
- 027 2011 Summit: Stem Cells, Reprogramming and Personalized Medicine, Rudolf Jaenisch, MD - Video [Last Updated On: December 14th, 2011] [Originally Added On: December 14th, 2011]
- 028 Parkinson's Disease: Advancing Stem Cell Therapies - 2011 CIRM Grantee Meeting - Video [Last Updated On: January 20th, 2012] [Originally Added On: January 20th, 2012]
- 029 Professor Alan Trounson - World focus on stem cell research - Video [Last Updated On: January 27th, 2012] [Originally Added On: January 27th, 2012]
- 030 Stanford scientists turn skin cells into neural precusors, bypassing stem-cell stage [Last Updated On: January 31st, 2012] [Originally Added On: January 31st, 2012]
- 031 Researchers turn skin cells into neural precusors, bypassing stem-cell stage [Last Updated On: January 31st, 2012] [Originally Added On: January 31st, 2012]
- 032 “Wide-ranging applications for pluripotent stem cells” [Last Updated On: February 2nd, 2012] [Originally Added On: February 2nd, 2012]
- 033 Radiation treatment transforms breast cancer cells into cancer stem cells [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- 034 Radiation Treatment Generates Cancer Stem Cells from Less Aggressive Breast Cancer Cells [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- 035 Radiation treatment generates cancer stem cells from less aggressive breast cancer cells, study suggests [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- 036 Life Technologies Scientist Uma Lakshmipathy presents, "Solving Challenges in the Generation of Induced Pluripotent ... [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- 037 Radiation therapy transforms breast cancer cells into cancer stem cells [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- 038 Research and Markets: Primary and Stem Cells: Gene Transfer Technologies and Applications [Last Updated On: February 15th, 2012] [Originally Added On: February 15th, 2012]
- 039 Horizon in new super-cell elite [Last Updated On: February 16th, 2012] [Originally Added On: February 16th, 2012]
- 040 Presentations at the Society of Toxicology Annual Meeting Demonstrate Superior Predictivity of Cellular Dynamics ... [Last Updated On: March 8th, 2012] [Originally Added On: March 8th, 2012]
- 041 New approach to treating type 1 diabetes? Transforming gut cells into insulin factories [Last Updated On: March 12th, 2012] [Originally Added On: March 12th, 2012]
- 042 Gut cells transformed into insulin factories 'could help to treat type I diabetes' [Last Updated On: March 12th, 2012] [Originally Added On: March 12th, 2012]
- 043 A new approach to treating type I diabetes? Gut cells transformed into insulin factories [Last Updated On: March 12th, 2012] [Originally Added On: March 12th, 2012]
- 044 Columbia Researchers Find Potential Role for Gut Cells in Treating Type I Diabetes [Last Updated On: March 12th, 2012] [Originally Added On: March 12th, 2012]
- 045 Study demonstrates cells can acquire new functions through transcriptional regulatory network [Last Updated On: March 14th, 2012] [Originally Added On: March 14th, 2012]
- 046 Gut Cells Turned To Insulin Factories - New Type l Diabetes Treatment [Last Updated On: March 14th, 2012] [Originally Added On: March 14th, 2012]
- 047 Cellular Dynamics Expands Distribution Agreement with iPS Academia Japan, Inc. to Include Distribution of iCell ... [Last Updated On: March 28th, 2012] [Originally Added On: March 28th, 2012]
- 048 :: 20, Apr 2012 :: IBN DISCOVERS HUMAN NEURAL STEM CELLS WITH TUMOR TARGETING ABILITY – A PROMISING DISCOVERY FOR ... [Last Updated On: April 22nd, 2012] [Originally Added On: April 22nd, 2012]
- 049 Human neural stem cells with tumor targeting ability discovered [Last Updated On: April 22nd, 2012] [Originally Added On: April 22nd, 2012]
- 050 IBN Discovers Human Neural Stem Cells, Promising Discovery For Breast Cancer Therapy [Last Updated On: April 22nd, 2012] [Originally Added On: April 22nd, 2012]
- 051 IBN Discovers Human Neural Stem Cells with Tumor Targeting Ability - A Promising Discovery for Breast Cancer Therapy [Last Updated On: April 22nd, 2012] [Originally Added On: April 22nd, 2012]
- 052 VistaGen Secures Key U.S. Patent Covering Stem Cell Technology Methods Used to Test Drug Candidates for Liver Toxicity [Last Updated On: April 25th, 2012] [Originally Added On: April 25th, 2012]
- 053 Improved adult-derived human stem cells have fewer genetic changes than expected [Last Updated On: May 2nd, 2012] [Originally Added On: May 2nd, 2012]
- 054 Researchers restore neuron function to brains damaged by Huntington's disease [Last Updated On: May 31st, 2012] [Originally Added On: May 31st, 2012]
- 055 Cellular Dynamics Launches MyCell™ Services [Last Updated On: June 7th, 2012] [Originally Added On: June 7th, 2012]
- 056 Fate Therapeutics And BD Biosciences Launch BD™ SMC4 To Improve Cellular Reprogramming And IPS Cell Culture Applications [Last Updated On: June 12th, 2012] [Originally Added On: June 12th, 2012]
- 057 Life Technologies and Cellular Dynamics International Partner for Global Commercialization of Novel Stem Cell ... [Last Updated On: June 13th, 2012] [Originally Added On: June 13th, 2012]
- 058 LIFE Focuses on Stem Cell Research - Analyst Blog [Last Updated On: June 20th, 2012] [Originally Added On: June 20th, 2012]
- 059 International Stem Cell Corp Granted Key Patent for Liver Disease Program [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- 060 NeuroGeneration Recruits Top Scientist To Direct New Division of Biotherapeutics and Drug Discovery In La Jolla, CA [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- 061 FRC Supports Alliance Defending Freedom, Jubilee Campaign Cert Petition to Supreme Court on Stem Cell Funding [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- 062 10/11/2012 10:05 JAPAN Nobel Prize for Yamanaka, scientific research and ethics must go hand in hand [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- 063 Read in [Last Updated On: October 12th, 2012] [Originally Added On: October 12th, 2012]
- 064 Induced pluripotent stem cell - Wikipedia, the free encyclopedia [Last Updated On: November 3rd, 2013] [Originally Added On: November 3rd, 2013]
- 065 What are induced pluripotent stem cells or iPS cells? - Stem Cells ... [Last Updated On: November 3rd, 2013] [Originally Added On: November 3rd, 2013]
- 066 Stem Cell Definitions | California's Stem Cell Agency [Last Updated On: November 3rd, 2013] [Originally Added On: November 3rd, 2013]
- 067 iPSCTherapy.com: Induced Pluripotent Stem Cell therapy Information ... [Last Updated On: November 8th, 2013] [Originally Added On: November 8th, 2013]
- 068 Human muscle stem cell therapy gets help from zebrafish [Last Updated On: November 8th, 2013] [Originally Added On: November 8th, 2013]
- 069 Induced pluripotent stem cell therapy - Wikipedia, the free ... [Last Updated On: November 8th, 2013] [Originally Added On: November 8th, 2013]
- 070 IPS Cell Therapy - Genetherapy [Last Updated On: November 8th, 2013] [Originally Added On: November 8th, 2013]
- 071 MD Supervised Stem Cell Therapy [Last Updated On: November 9th, 2013] [Originally Added On: November 9th, 2013]
- 072 Stem Cell Therapy for Neuromuscular Diseases | InTechOpen [Last Updated On: November 23rd, 2013] [Originally Added On: November 23rd, 2013]
- 073 Combining Stem Cell Therapy with Gene Therapy | Boston ... [Last Updated On: November 25th, 2013] [Originally Added On: November 25th, 2013]
- 074 Biomanufacturing center takes central role in developing stem ... [Last Updated On: December 4th, 2013] [Originally Added On: December 4th, 2013]
- 075 Stem Cell Quick Reference - Learn Genetics [Last Updated On: December 6th, 2013] [Originally Added On: December 6th, 2013]
- 076 Induced Pluripotent Stem Cells (iPS) from Human Skin: Probable ... [Last Updated On: December 6th, 2013] [Originally Added On: December 6th, 2013]
- 077 'Something positive for humankind': Girls lend cells to genetic study [Last Updated On: December 13th, 2013] [Originally Added On: December 13th, 2013]
- 078 Stem cell science: Can two girls help change the face of medicine? [Last Updated On: December 13th, 2013] [Originally Added On: December 13th, 2013]
- 079 Okyanos Heart Institute CEO Matt Feshbach Congratulates Japan’s Legislators On Stem Cell Bill And Global Regulatory ... [Last Updated On: December 13th, 2013] [Originally Added On: December 13th, 2013]
- 080 Stem cells for Parkinson's getting ready for clinic [Last Updated On: December 13th, 2013] [Originally Added On: December 13th, 2013]
