UCLA scientists measure communication between stem cell-derived motor neurons and muscle cells

By raymumme

Public release date: 4-May-2012 [ | E-mail | Share ]

Contact: Kim Irwin kirwin@mednet.ucla.edu 310-206-2805 University of California - Los Angeles Health Sciences

In an effort to identify the underlying causes of neurological disorders that impair motor functions such as walking and breathing, UCLA researchers have developed a novel system to measure the communication between stem cell-derived motor neurons and muscle cells in a Petri dish.

The study provides an important proof of principle that functional motor circuits can be created outside of the body using stem cell-derived neurons and muscle cells, and that the level of communication, or synaptic activity, between the cells could be accurately measured by stimulating motor neurons with an electrode and then measuring the transfer of electrical activity into the muscle cells to which the motor neurons are connected.

When motor neurons are stimulated, they release neurotransmitters that depolarize the membranes of muscle cells, allowing the entry of calcium and other ions that cause them to contract. By measuring the strength of this activity, one can get a good estimation of the overall health of motor neurons. That estimation could shed light on a variety of neurodegenerative diseases such as spinal muscular atrophy and amyotrophic lateral sclerosis, or Lou Gehrig's disease, in which the communication between motor neurons and muscle cells is thought to unravel, said study senior author Bennett G. Novitch, an assistant professor of neurobiology and a scientist with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

The findings of the study appear May 4, 2012 in PLoS ONE, a peer-reviewed journal of the Public Library of Science.

"Now that we have this method to measure the strength of the communications between motor neurons and muscle cells, we may be able to begin exploring what happens in the earliest stages of motor neuron disease, before neuronal death becomes prevalent," Novitch said. "This can help us to pinpoint where things begin to go wrong and provide us with new clues into therapeutic interventions that could improve synaptic communication and promote neuronal survival."

Novitch said the synaptic communication activity his team was able to create and measure using mouse embryonic stem cell-derived motor neurons and muscle cells looks very similar what is seen in a mouse, validating that their model is a realistic representation of what is happening in a living organism.

"That gives us a good starting point to try to model what happens in cells that harbor genetic mutations that are associated with neurodegenerative diseases,. To do that, we had to first define an activity profile of normal synaptic communication," he said. "Some research suggests that a breakdown in this communication can be an early indication of disease progression or possibly an initiating event. Neurons that cannot effectively transmit information to muscle cells will eventually withdraw their contacts, causing both the neurons and muscle cells to degenerate over time. Hopefully, we can now create disease models that will allow us to study what is happening."

In this study, Novitch and his team, led by Joy Umbach, an associate professor of molecular and medical pharmacology, used mouse embryonic stem cells to create the motor neurons and previously established lines of muscle precursors to produce muscle fibers. They put both cells together in a Petri dish, and the cells were cultured in such a way to encourage communication. Novitch said the team wanted to see if they would naturally form synaptic contacts and whether or not there was neural transmission between them.

Read more:
UCLA scientists measure communication between stem cell-derived motor neurons and muscle cells



categoriaUncategorized commentoComments Off on UCLA scientists measure communication between stem cell-derived motor neurons and muscle cells | dataMay 6th, 2012

About...

This author published 822 posts in this site.
Teacher, Educator, Speaker, Adult Stem Cell Advocate

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2024