The Progress & Ongoing Challenge of 3D Bioprinting Cardiac Tissue – 3DPrint.com
By daniellenierenberg
In the recently published 3D bioprinting and its potential impact on cardiac failure treatment: An industry perspective, authors Ravi K. Birla and Stuart K. Williams explore the potential for tissue engineering in cardiac medicine, and the eventual assembly of a bioprinted heart.
While heart failure usually requires a transplant, it can be challenging to find a suitable donor. Once a transplant is completed, there is a long road ahead too via a permanent need for immune suppression therapytreatment that is hard on patients. The usual survival rate for patients is typically under 13 years.
There are currently more than 6.2 million patients in the US with heart failure, and heart failure accounted for 78,356 mortalities in 2016, stated the authors.
In this study, the researchers review the challenges of bioprinting for the creation of heart tissue, as well as the logical and systematic process to bioprint human heart.
While medical science is full of progressive tools, treatments, and devicesespecially for heart patientsno technology has been more promising for the eventual fabrication of organs than tissue engineering. With the potential to yield a biofabricated heart, made up of both biologic and artificial construct, a total heart could feasibly emerge with modular parts for easy replacing.
Definition of tissue engineeringthe building blocks of tissue engineering are cells, biomaterials, and bioreactors. Cells are the functional elements of all tissue and organs, while biomaterials are designed to simulate the mammalian extracellular matrix and provide structural support. Bioreactors are custom devices to deliver physiological cues for 3D tissue/organ development and maturation. Electrical stimulation is delivered by parallel electrodes, while uniaxial stretch, illustrated by the single arrow, is designed to apply cyclic movement of the bioengineered tissue.
Cardiac tissue engineering encompasses:
The ability to bioengineer components of the heart or the entire bioartificial heart, both have applications in changing the standard of care for patients with heart disorders, explained the authors. Depending on the severity of the patient, a cardiac patch may be sufficient to augment lost contractile function, while in cases of chronic heart failure, a total bioartificial heart may be required.
In addition to spatial regulation of the cells, bioprinting also allows accurate placement of the biomaterials. This is where 3D bioprinting provides a powerful tool that allows us to accurately position different cell types in a very specific pattern, thereby allowing tight control over the heart bioengineering process.
Overview of cardiac tissue engineeringthe field of cardiac tissue engineering includes methods to bioengineer contractile 3D heart muscle, biological pulsating pumps, bioengineered left ventricles, bioartificial valves and vascular grafts, and biofabricated hearts. Contractile 3D heart muscle is designed to replicate the properties of mammalian heart muscle tissue and can be used as a patch to augment left ventricle pressure after myocardial infarction. Pulsating pumps are designed to generate intra-luminal pressure and can be used as biological pumps. Left ventricles can be used as a component of the heart or to replace under-performing ventricles in pediatric cases of hypoplastic left heart syndrome. Valves and vascular grafts can be used to replaced mammalian valves and blood vessels or as components of the bioengineered heart.
Major components of the human heartthe human heart consists of four chambers, four valves, the cardiac conduction system, contractile cardiomyocytes, and a complex vasculature. The four chambers are the left and right ventricle and aorta, while the four valves are the aortic and mitral valves and pulmonary and tricuspid valves. The cardiac conduction system consists of the SAN, AVN, bundle of His, and the Purkinje fibers. Cardiac vasculature consists of the greater vessels as well as the smaller micro-circulation. Cardiomyocytes are the cells responsible for heart muscle contraction.
So far, most research involving bioprinting of cardiac tissue has shown the initial feasibility of bioprinting hearts. With the amount of research and tools available today, such progress is inevitable.
Based on the current state of the art in whole heart bioengineering, we can safely say that human hearts will be available for clinical transplantation though we cannot assign a specific timeframe for this fate to be accomplished, state the authors.
Bioprinting of the human heart has its beginnings in the initial history of tissue engineering in 2003, and then further in research a few years later.
The 3D bioprinting processisolated cells are suspended in a custom formulated bioink and loaded into a syringe. Examples of cells required to bioprint hearts include contractile cardiomyocytes, conducting pacemaker and Purkinje cells, structural fibroblast cells and vascular smooth muscle cells, and endothelial cells. Pneumatic pressure is used to extrude the cell-loaded bioink through the printing tip, and a layer by layer approach is used to build tissue and/or organ
Scientific breakthroughs for 3D bioprinting human hearts.
There has continued to be rapidly growing success in bioprinting and the subsequent fabrication of heart tissue, allowing scientists to realize less of fantasy in such exercisesand more of a reality.
Process for bioprinting human heartspatient MRI images are used to model the heart. Dermal fibroblasts are isolated from patient skin biopsies and converted to iPS cells and then to cardiomyocytes. Cardiomyocytes are combined with bioinks and used to bioprint patient-specific human hearts. Bioprinted hearts are conditioned in bioreactors and used for transplantation.
The roadmap for bioprinting a heart includes:
The single most important challenge that needs to be overcome in the field, and one that in general staggers the field of cardiac stem cell therapy, is the immaturity of reprogrammed cardiomyocytes, conclude the researchers. Conversion of iPS cells to cardiomyocytes is now standard and reproducible, the differentiated cells resemble an embryonic phenotype, and driving these cells to an adult phenotype remains a critical challenge in the field of cardiac stem cell therapy.
Once reproduced by independent research labs, coupled with the availability of commercial bioreactors for electromechanical stimulation, the availability of mature cardiomyocytes will provide a clear pathway to 3D bioprint human hearts for clinical transplantation.
Bioprinting is used in a wide variety of applications today, from cardiac patches and cellularized hearts to the creation of heart valves, and more, ultimately shaping an overall transformation of cell culture. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
Continued here:
The Progress & Ongoing Challenge of 3D Bioprinting Cardiac Tissue - 3DPrint.com
- 001 Ying Liu discusses IPS cell therapy for ALS [Last Updated On: August 6th, 2011] [Originally Added On: August 6th, 2011]
- 002 Jeanne Loring talks about stem cells, part 2 [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- 003 Embryonic Stem Cells From Skin: Making Old Cells Young [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- 004 IPs cells Part3 [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- 005 IPs cells Part 2 [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- 006 A Century of Stem Cells - Johns Hopkins Medicine [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- 007 Stem Cell Implications for ALS (Amyotrophic Lateral Sclerosis) [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- 008 Myelin Repair Foundation on Stem Cell Research [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- 009 IPs Cells Part 4 [Last Updated On: September 11th, 2011] [Originally Added On: September 11th, 2011]
- 010 National Medical Report [Last Updated On: September 13th, 2011] [Originally Added On: September 13th, 2011]
- 011 IPs cells Part 1 [Last Updated On: September 15th, 2011] [Originally Added On: September 15th, 2011]
- 012 iPS Stem Cell-Based Treatment of Epidermolysis Bullosa [Last Updated On: September 16th, 2011] [Originally Added On: September 16th, 2011]
- 013 Jeanne Loring talks about stem cells, part 1 [Last Updated On: September 16th, 2011] [Originally Added On: September 16th, 2011]
- 014 Kristopher Nazor 2 [Last Updated On: September 16th, 2011] [Originally Added On: September 16th, 2011]
- 015 Andalusian Stem Cell Bank [Last Updated On: September 19th, 2011] [Originally Added On: September 19th, 2011]
- 016 Cellular Reprogramming Stem Cell Domain Name For Sale! - CellularReprogramming.com [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 017 Dr. Oz to Oprah and Michael J Fox: "The stem cell debate is dead." [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- 018 Manning, Owens Try Stem Cell Therapy [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 019 Jeanne Loring talks about stem cells, part 3 [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 020 Epidermolysis Bullosa: Corrected iPS Stem Cell-Based Therapy - Video [Last Updated On: October 13th, 2011] [Originally Added On: October 13th, 2011]
- 021 Introduction to Stem Cells - Video [Last Updated On: October 14th, 2011] [Originally Added On: October 14th, 2011]
- 022 Parkinson's Disease: Progress and Promise in Stem Cell Research - Video [Last Updated On: October 14th, 2011] [Originally Added On: October 14th, 2011]
- 023 stem cell research - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 024 Ian Wilmut discusses stem cell and direct cellular transformation therapy - Video [Last Updated On: December 8th, 2011] [Originally Added On: December 8th, 2011]
- 025 Jeff Bluestone: Immune rejection of stem cell transplants - Video [Last Updated On: December 8th, 2011] [Originally Added On: December 8th, 2011]
- 026 Advances in Stem Cell Research: Shinya Yamanaka - Video [Last Updated On: December 11th, 2011] [Originally Added On: December 11th, 2011]
- 027 2011 Summit: Stem Cells, Reprogramming and Personalized Medicine, Rudolf Jaenisch, MD - Video [Last Updated On: December 14th, 2011] [Originally Added On: December 14th, 2011]
- 028 Parkinson's Disease: Advancing Stem Cell Therapies - 2011 CIRM Grantee Meeting - Video [Last Updated On: January 20th, 2012] [Originally Added On: January 20th, 2012]
- 029 Professor Alan Trounson - World focus on stem cell research - Video [Last Updated On: January 27th, 2012] [Originally Added On: January 27th, 2012]
- 030 Stanford scientists turn skin cells into neural precusors, bypassing stem-cell stage [Last Updated On: January 31st, 2012] [Originally Added On: January 31st, 2012]
- 031 Researchers turn skin cells into neural precusors, bypassing stem-cell stage [Last Updated On: January 31st, 2012] [Originally Added On: January 31st, 2012]
- 032 “Wide-ranging applications for pluripotent stem cells” [Last Updated On: February 2nd, 2012] [Originally Added On: February 2nd, 2012]
- 033 Radiation treatment transforms breast cancer cells into cancer stem cells [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- 034 Radiation Treatment Generates Cancer Stem Cells from Less Aggressive Breast Cancer Cells [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- 035 Radiation treatment generates cancer stem cells from less aggressive breast cancer cells, study suggests [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- 036 Life Technologies Scientist Uma Lakshmipathy presents, "Solving Challenges in the Generation of Induced Pluripotent ... [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- 037 Radiation therapy transforms breast cancer cells into cancer stem cells [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- 038 Research and Markets: Primary and Stem Cells: Gene Transfer Technologies and Applications [Last Updated On: February 15th, 2012] [Originally Added On: February 15th, 2012]
- 039 Horizon in new super-cell elite [Last Updated On: February 16th, 2012] [Originally Added On: February 16th, 2012]
- 040 Presentations at the Society of Toxicology Annual Meeting Demonstrate Superior Predictivity of Cellular Dynamics ... [Last Updated On: March 8th, 2012] [Originally Added On: March 8th, 2012]
- 041 New approach to treating type 1 diabetes? Transforming gut cells into insulin factories [Last Updated On: March 12th, 2012] [Originally Added On: March 12th, 2012]
- 042 Gut cells transformed into insulin factories 'could help to treat type I diabetes' [Last Updated On: March 12th, 2012] [Originally Added On: March 12th, 2012]
- 043 A new approach to treating type I diabetes? Gut cells transformed into insulin factories [Last Updated On: March 12th, 2012] [Originally Added On: March 12th, 2012]
- 044 Columbia Researchers Find Potential Role for Gut Cells in Treating Type I Diabetes [Last Updated On: March 12th, 2012] [Originally Added On: March 12th, 2012]
- 045 Study demonstrates cells can acquire new functions through transcriptional regulatory network [Last Updated On: March 14th, 2012] [Originally Added On: March 14th, 2012]
- 046 Gut Cells Turned To Insulin Factories - New Type l Diabetes Treatment [Last Updated On: March 14th, 2012] [Originally Added On: March 14th, 2012]
- 047 Cellular Dynamics Expands Distribution Agreement with iPS Academia Japan, Inc. to Include Distribution of iCell ... [Last Updated On: March 28th, 2012] [Originally Added On: March 28th, 2012]
- 048 :: 20, Apr 2012 :: IBN DISCOVERS HUMAN NEURAL STEM CELLS WITH TUMOR TARGETING ABILITY – A PROMISING DISCOVERY FOR ... [Last Updated On: April 22nd, 2012] [Originally Added On: April 22nd, 2012]
- 049 Human neural stem cells with tumor targeting ability discovered [Last Updated On: April 22nd, 2012] [Originally Added On: April 22nd, 2012]
- 050 IBN Discovers Human Neural Stem Cells, Promising Discovery For Breast Cancer Therapy [Last Updated On: April 22nd, 2012] [Originally Added On: April 22nd, 2012]
- 051 IBN Discovers Human Neural Stem Cells with Tumor Targeting Ability - A Promising Discovery for Breast Cancer Therapy [Last Updated On: April 22nd, 2012] [Originally Added On: April 22nd, 2012]
- 052 VistaGen Secures Key U.S. Patent Covering Stem Cell Technology Methods Used to Test Drug Candidates for Liver Toxicity [Last Updated On: April 25th, 2012] [Originally Added On: April 25th, 2012]
- 053 Improved adult-derived human stem cells have fewer genetic changes than expected [Last Updated On: May 2nd, 2012] [Originally Added On: May 2nd, 2012]
- 054 Researchers restore neuron function to brains damaged by Huntington's disease [Last Updated On: May 31st, 2012] [Originally Added On: May 31st, 2012]
- 055 Cellular Dynamics Launches MyCell™ Services [Last Updated On: June 7th, 2012] [Originally Added On: June 7th, 2012]
- 056 Fate Therapeutics And BD Biosciences Launch BD™ SMC4 To Improve Cellular Reprogramming And IPS Cell Culture Applications [Last Updated On: June 12th, 2012] [Originally Added On: June 12th, 2012]
- 057 Life Technologies and Cellular Dynamics International Partner for Global Commercialization of Novel Stem Cell ... [Last Updated On: June 13th, 2012] [Originally Added On: June 13th, 2012]
- 058 LIFE Focuses on Stem Cell Research - Analyst Blog [Last Updated On: June 20th, 2012] [Originally Added On: June 20th, 2012]
- 059 International Stem Cell Corp Granted Key Patent for Liver Disease Program [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- 060 NeuroGeneration Recruits Top Scientist To Direct New Division of Biotherapeutics and Drug Discovery In La Jolla, CA [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- 061 FRC Supports Alliance Defending Freedom, Jubilee Campaign Cert Petition to Supreme Court on Stem Cell Funding [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- 062 10/11/2012 10:05 JAPAN Nobel Prize for Yamanaka, scientific research and ethics must go hand in hand [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- 063 Read in [Last Updated On: October 12th, 2012] [Originally Added On: October 12th, 2012]
- 064 Induced pluripotent stem cell - Wikipedia, the free encyclopedia [Last Updated On: November 3rd, 2013] [Originally Added On: November 3rd, 2013]
- 065 What are induced pluripotent stem cells or iPS cells? - Stem Cells ... [Last Updated On: November 3rd, 2013] [Originally Added On: November 3rd, 2013]
- 066 Stem Cell Definitions | California's Stem Cell Agency [Last Updated On: November 3rd, 2013] [Originally Added On: November 3rd, 2013]
- 067 iPSCTherapy.com: Induced Pluripotent Stem Cell therapy Information ... [Last Updated On: November 8th, 2013] [Originally Added On: November 8th, 2013]
- 068 Human muscle stem cell therapy gets help from zebrafish [Last Updated On: November 8th, 2013] [Originally Added On: November 8th, 2013]
- 069 Induced pluripotent stem cell therapy - Wikipedia, the free ... [Last Updated On: November 8th, 2013] [Originally Added On: November 8th, 2013]
- 070 IPS Cell Therapy - Genetherapy [Last Updated On: November 8th, 2013] [Originally Added On: November 8th, 2013]
- 071 MD Supervised Stem Cell Therapy [Last Updated On: November 9th, 2013] [Originally Added On: November 9th, 2013]
- 072 Stem Cell Therapy for Neuromuscular Diseases | InTechOpen [Last Updated On: November 23rd, 2013] [Originally Added On: November 23rd, 2013]
- 073 Combining Stem Cell Therapy with Gene Therapy | Boston ... [Last Updated On: November 25th, 2013] [Originally Added On: November 25th, 2013]
- 074 Biomanufacturing center takes central role in developing stem ... [Last Updated On: December 4th, 2013] [Originally Added On: December 4th, 2013]
- 075 Stem Cell Quick Reference - Learn Genetics [Last Updated On: December 6th, 2013] [Originally Added On: December 6th, 2013]
- 076 Induced Pluripotent Stem Cells (iPS) from Human Skin: Probable ... [Last Updated On: December 6th, 2013] [Originally Added On: December 6th, 2013]
- 077 'Something positive for humankind': Girls lend cells to genetic study [Last Updated On: December 13th, 2013] [Originally Added On: December 13th, 2013]
- 078 Stem cell science: Can two girls help change the face of medicine? [Last Updated On: December 13th, 2013] [Originally Added On: December 13th, 2013]
- 079 Okyanos Heart Institute CEO Matt Feshbach Congratulates Japan’s Legislators On Stem Cell Bill And Global Regulatory ... [Last Updated On: December 13th, 2013] [Originally Added On: December 13th, 2013]
- 080 Stem cells for Parkinson's getting ready for clinic [Last Updated On: December 13th, 2013] [Originally Added On: December 13th, 2013]
