The Heart of the Matter: Leveraging Advances in Cardiac Biology to Innovate Gene-Based Therapies for Heart Failure – Physician’s Weekly
By daniellenierenberg
Heart failure (HF) is the most frequent cardiovascular diagnosis and exacts significant health and financial costs around the globe. It is estimated that at least 26 million people worldwide are living with HF, including nearly 6 million in the United States.1, 2 One in nine U.S. deaths in 2009 included heart failure as a contributing cause and about 50 percent of people in the U.S. with HF die within five years of diagnosis.2 The annual cost of HF-related healthcare services, medication and missed days of work is estimated at $40 billion in the United States and $108 billion globally.3, 4 Quality of life in HF patients is frequently worse than many other chronic diseases and comorbidities are common.5-7 The challenges of HF are expected to grow, as it is estimated that more than 8 million people in the United States alone will have HF by 2030.2 Current therapies improve quality of life in the short-term and have improved long-term survival but a significant number of patients have Class 3 HF despite optimal medical and device therapy. These patients have limited treatment options beyond heart transplant and left ventricular assist devices (LVAD). New therapeutic approaches that address the underlying causes of HF are needed to improve patient outcomes.
Heart failure is a complex disease process and multiple pathways contribute to its development and progression. Myocardial ischemia is frequently an issue in both ischemic and non-ischemic cardiomyopathy as well as HF with preserved and/or reduced ejection fraction. Myocardial ischemia results in insufficient oxygen and nutrients and leads to hypoxia, cardiomyocyte and fibrosis, which all contribute to the progression of heart failure. More effective angiogenesis may prevent this progression. Cell homing also plays a critical role, as injured cardiac tissue secretes factors that lead to the recruitment, proliferation, migration and differentiation of progenitor cells that can help repair tissue damage. Stromal cell-derived factor (SDF)-1 has been shown to play an important role in cardiac repair by mediating cell homing.10 Mitochondrial energy generation is also impaired in HF, leading to decreased contractility and adverse changes to cardiac architecture.11 Scar tissue formed in response to cardiomyocyte injury or death can compromise the hearts mechanical strength or electrical signaling results in myocardial infarction. Inflammatory responses to cardiac tissue damage can promote inappropriate and chronic inflammation and the expression of pro-inflammatory molecules that lead to pathologic changes to cardiac architecture.12, 13
These pathways offer a variety of potential new targets for therapeutic intervention to prevent the development and progression of HF. This opens the door to the development of novel therapies that address the underlying molecular and cellular causes of disease rather than treating HF symptoms alone.
After decades of development, gene-based therapies are now validated therapeutic modalities for the treatment of inherited retinal disorders and cancer and are undergoing clinical evaluation in a variety of inherited, acute and chronic diseases. Nearly two dozen single gene-based therapies for HF have been evaluated in clinical trials.14 Genes evaluated as monogenic gene therapy for HF in clinical trials include vascular endothelial growth factor (VEGF) and fibroblast growth factor type 4 (FGF4) to promote angiogenesis; adenylyl cyclase type 6 (AC6) and sarco/endoplasmic reticulum Ca2+-ATPase type 2 (SERCA2) to improve cardiac calcium homeostasis, which plays a critical role in the contraction and relaxation of heart muscle; and stromal cell-derived factor-1 (SDF-1) to improve cell homing and promote cardiac tissue repair. Late-stage trials of single gene therapies have yielded conflicting results, raising the question as to whether positively impacting a single pathway can be sufficient to overcome detrimental activity of other pathways that contribute to the development and progression of HF. Other potential limitations to HF therapies evaluated in clinical trials to date include the method of delivery, dose and the potency of vectors and gene products.
Given the multiple molecular and cellular pathways active in HF, a multi-gene approach to HF gene therapy may be needed. Simultaneously delivering multiple genes that target diverse HF-related pathways has the potential to improve cardiac biology and function. A triple gene therapy approach (INXN-4001, Triple-Gene LLC, a majority-owned subsidiary of Intrexon Corporation) is currently in clinical development, with each of the genes targeting a specific HF-related pathway. The investigational drug candidate INXN4001 vector expresses: the S100A1 gene product, which regulates calcium-controlled networks and modulates contractility, excitability, maintenance of cellular metabolism and survival; SDF-1a which recruits stem cells, inhibits apoptosis and supports new blood vessel formation; and VEGF-165 which initiates new vessel formation, endothelial cell migration/activation, stem cell recruitment and tissue regeneration. The hypothesis is that the simultaneous delivery of multiple genes in a single vector would more effectively improve multiple aspects of cardiac function compared with single gene therapy. It is delivered by retrograde coronary sinus infusion of a triple effector plasmid designed with a self-cleaving linker to constitutively express human S100A1, SDF-1a and VEGF 165. This route is designed to allow for delivery of a dose to the ventricle which may help achieve improved therapeutic effect.
Several preclinical studies have set the foundation on which to advance a triple gene therapy for HF into the clinic.15-17 Using in vitro studies, transfecting cells derived from patients with dilated cardiomyopathy with a triple gene combination demonstrated improvement in contraction rate and duration, to the levels demonstrated by the control cells and did not result in increased cell death compared to controls.15 Studies in an Adriamycin-induced cardiomyopathy rodent model demonstrated triple gene therapy increased fractional shortening and myocardial wall thickness compared to controls.16 In addition, retrograde coronary sinus infusion of INXN-4001 in a porcine model of ischemic HF resulted in a cardiac-specific biodistribution profile.17
A Phase 1 clinical study has been initiated to evaluate the safety of a single dose of triple gene therapy in stable patients implanted with a LVAD for mechanical support of end-stage HF. An independent Data and Safety Monitoring Board agreed to proceeding to the second cohort following review of the data from the first cohort in the multi-site study.18 The study is ongoing and final results will help to inform our understanding of the potential that multi-gene therapy may play in the treatment of HF.
The recent FDA approvals of gene therapies for an inherited retinal disease and cancer are evidence that gene therapy is a valid therapeutic strategy. Realizing the potential of gene therapy in HF will require appropriately designed clinical trials, but several interesting approaches currently in development may prove to be effective. The results of the initial investigational drug INXN-4001 Phase 1 trial should provide insight into the safety of combining S100A1, SDF-1a and VEGF-165. Evaluation of additional multi-gene combinations will also be important for understanding which targeted pathways yield the greatest effects with respect to relevant clinical endpoints. Continued refinement and optimization of vector design and delivery methods will also be important for advancing further HF gene therapies from bench to bedside.
Read the original post:
The Heart of the Matter: Leveraging Advances in Cardiac Biology to Innovate Gene-Based Therapies for Heart Failure - Physician's Weekly
- 001 Cardiac Stem Cell Therapy [Last Updated On: June 24th, 2011] [Originally Added On: June 24th, 2011]
- 002 Wow! UW Research labs [Last Updated On: June 25th, 2011] [Originally Added On: June 25th, 2011]
- 003 cellalign [Last Updated On: June 28th, 2011] [Originally Added On: June 28th, 2011]
- 004 Cardiac Stem Cells in End-Stage Human Failing Hearts: Are they functional? [Last Updated On: August 25th, 2011] [Originally Added On: August 25th, 2011]
- 005 Designer Life: repair brain, heart with stem cells - Future Health keynote speaker [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 006 Cardiac Stem Cell Therapy at Rostock University [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 007 Stem Cells: Mending a broken heart? [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 008 Cardiovascular Derivatives of Embryonic Stem Cells in Cardiac Repair and Drug Discovery [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 009 Stem Cell Therapy in Cardiac Disease [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 010 Cardiac Recovery Points to Adult Stem Cells [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 011 Oral Surgeon utilizes StemSave to preserve stem cells in wisdom teeth to combat cardiac disease [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 012 Stem Cells and Cardiac Regeneration [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 013 Dr Victor Dzau on Stem Cells for Cardiac Repair. [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 014 Cardiomyogenic differentiation of Mesenchymal Stem cells (KUM2/9-15c) [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 015 Heart Failure Patient After Adult Stem Cell Therapy [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- 016 Stem Cell operation in Cardiac Surgery-Al-Jazeerah [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- 017 Heart Disease Patient Describes His Stem Cell Treatment [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- 018 Cardiovascular Therapies: Spotlight on Stem Cell Research - Douglas Boyd [Last Updated On: September 16th, 2011] [Originally Added On: September 16th, 2011]
- 019 Adult Stem Cell [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 020 Heart repair using own stem cells after heart attack: Future Health keynote speaker [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 021 Stem Cell #8 Vas Cath Removal 04/28/11 [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 022 Adult Stem Cells Used To Rebuild Heart Tissue Video. More at http://www.stemcellfusion.com [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 023 Davos Question: Stem Cell Answer [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- 024 Did you have a Heart Attack and Need to Recover your Cardiac Muscle? [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- 025 Cardiac Tissue Can Regenerate [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- 026 William F. Testimonial of Treatment Stem Cell [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- 027 Stem Cell Heart Surgery must see [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 028 Valentine's Day Stem Cell Wish: Mending Broken Hearts [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 029 Advanced Cell Technology OneMedForum 2011 [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 030 Human 2.0: The Helix of Our Future [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 031 heart cell generation from human ES and iPS cells (embryonic and induced pluripotent stem cells).flv [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 032 Stem Cell Therapy and Stem Cell Treatment with Dell [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 033 UCD Med Student Receives Fulbright Award [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 034 Cardiomyocytes derived from mouse Embryonic stem cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 035 Immune Control of Stem Cell Mobilization [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 036 Better Drugs Through Stem Cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 037 stem cell derived cardiomyocytes [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 038 Stem Cells: Heart cells grown from mouse stem cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 039 Patel Stem Cell Heart Failure [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 040 Turning Adult Stem Cells into Medicine - Zannos Grekos, MD [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 041 Kevin's 2 Heart Transplants and Stem Cell Transplant [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 042 Breakthrough in Stem cell technology [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 043 Affordable Stem Cell Therapy in Guatemala (2hrs from Miami) [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 044 Cadiomyogenesis of human mesenchymal stem cells [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 045 Mark Mercola: Differentiating embryonic stem cells into adult tissues [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 046 Cardiomyocytic differentiation of endometrial stem cells. [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 047 Adult Stem Cell vs Embryonic Stem Cell Research Ethics Video [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 048 Pt. 1--Dr. Ali Denktas--Stem Cells as Markers after Myocardial Infarctions [Last Updated On: September 27th, 2011] [Originally Added On: September 27th, 2011]
- 049 Repairing Damaged Hearts with Stem Cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 050 Mouse GEN cells overexpressing Csx/Nkx2.5 and GATA4 behave like transient amplifying cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 051 20100804_axiogenesis.wmv [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 052 Beating Cardiomyocytes from E14 Cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 053 Heart cells grown from human embryonic stem cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 054 First US Patient In Stem Cell Transplant [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 055 Be still my beating stem cell heart [Last Updated On: October 1st, 2011] [Originally Added On: October 1st, 2011]
- 056 Beating Human Heart Cells from Embryonic Stem Cells [Last Updated On: October 1st, 2011] [Originally Added On: October 1st, 2011]
- 057 Spontaneously and rhythmically beating engineered human heart tissue from pluripotent stem cells [Last Updated On: October 3rd, 2011] [Originally Added On: October 3rd, 2011]
- 058 Cardiac Stem Cell Therapy - How it works [Last Updated On: October 3rd, 2011] [Originally Added On: October 3rd, 2011]
- 059 Doctors To Use 'Trained' Stem Cells To Heal Heart [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 060 Beating Heart Stem Cells [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 061 AM RADIO, DR. AMIT PATEL AND STEM CELLS SAVED MY LIFE - Video [Last Updated On: October 14th, 2011] [Originally Added On: October 14th, 2011]
- 062 New heart built with stem cells - Video [Last Updated On: October 15th, 2011] [Originally Added On: October 15th, 2011]
- 063 Adult Stem Cells For Heart Disease: Today's Reality - Video [Last Updated On: October 15th, 2011] [Originally Added On: October 15th, 2011]
- 064 H9 beating stem cells - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- 065 Double Blind Trial of Stem Cells for Heart Failure - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- 066 Repairing Damaged Hearts with Stem Cells - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- 067 Cardiac differentiation of hES cells at 20x - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- 068 SPRAY-ON STEM CELLS - Video [Last Updated On: October 28th, 2011] [Originally Added On: October 28th, 2011]
- 069 Stem Cells: A smart use for wisdom teeth - Video [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- 070 VistaGen's Stem Cell Derived Cardiomyocytes - Video [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- 071 Stem Cell Research [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- 072 The Power of Stem Cells - Video [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- 073 Beating iCellĀ® Cardiomyocytes - Video [Last Updated On: November 13th, 2011] [Originally Added On: November 13th, 2011]
- 074 SCIPIO: Cardiac stem cells and postinfarction heart failure - Video [Last Updated On: November 15th, 2011] [Originally Added On: November 15th, 2011]
- 075 Beating Cardiomyocytes in Cell Culture - Video [Last Updated On: November 15th, 2011] [Originally Added On: November 15th, 2011]
- 076 Stem Cells Heal Heart Attack Damage. - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 077 C2CAM - 2011.11.15 - Dulce Base - Regenerative Medicine - Info - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 078 Latest Update on Stem Cell Research at UW - Dr. Timothy Kamp - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 079 Coast To Coast AM: Regenerative Medicine / Dulce Base 11-15-2011 Download Link - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 080 C2CAM - 2011.11.15 - Dulce Base - Regenerative Medicine - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
