Search Results
Pfizer and BioNTech Receive Positive CHMP Opinion for Conversion of COMIRNATY® Conditional Marketing Authorization to Full Marketing Authorization in…
By Dr. Matthew Watson
NEW YORK and MAINZ, GERMANY, September 16, 2022 — Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) today announced that the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) has recommended converting the conditional Marketing Authorization (cMA) for COMIRNATY® [COVID-19 Vaccine (nucleoside modified)] to standard (also referred to as “full”) Marketing Authorization (MA) for all authorized indications and formulations. The European Commission (EC) will review the CHMP recommendation and is soon expected to make a final decision.
ORYZON to Present Preliminary Blinded Aggregate Safety Data From Vafidemstat’s Ongoing Phase IIb PORTICO Trial in Borderline Personality Disorder
By Dr. Matthew Watson
MADRID, Spain and BOSTON, Sept. 16, 2022 (GLOBE NEWSWIRE) -- Oryzon Genomics, S.A. (ISIN Code: ES0167733015, ORY), a clinical-stage biopharmaceutical company leveraging epigenetics to develop therapies in diseases with strong unmet medical need, today presents initial preliminary blinded aggregate safety data from its ongoing Phase IIb PORTICO trial, investigating vafidemstat in Borderline Personality Disorder (BDP), in a oral communication at the 10th European Conference on Mental Health (ECMH), being held in Lisbon (Portugal) on September 13-16.
Wave Life Sciences to Host Analyst and Investor Virtual Event, “Towards the Clinic: Spotlight on RNA Editing for AATD,” on September 28, 2022
By Dr. Matthew Watson
Focus on WVE-006, a first-in-class RNA editing development candidate for AATD, and feature AATD expert presentation Focus on WVE-006, a first-in-class RNA editing development candidate for AATD, and feature AATD expert presentation
Go here to read the rest:
Wave Life Sciences to Host Analyst and Investor Virtual Event, “Towards the Clinic: Spotlight on RNA Editing for AATD,” on September 28, 2022
Revolo Biotherapeutics to Participate in the Sachs Associates 22nd Annual Biotech in Europe Forum for Global Partnering and Investment
By Dr. Matthew Watson
NEW ORLEANS and LONDON, Sept. 16, 2022 (GLOBE NEWSWIRE) -- Revolo Biotherapeutics (“Revolo” or the “Company”), a company developing therapies that reset the immune system to achieve superior long-term remission for patients with autoimmune and allergic diseases, today announced that it will be participating in the Sachs Associates 22nd Annual Biotech in Europe Forum for Global Partnering and Investment taking place in Basel, Switzerland from September 21-22.
Myovant Recognizes Prostate Cancer Awareness Month with Educational Sponsorships and Online Campaign to Encourage Patients to Speak Up, Seek Support…
By Dr. Matthew Watson
Peer Video Series Campaign and Educational Sponsorships Spotlight Patient Barriers to Conversations Peer Video Series Campaign and Educational Sponsorships Spotlight Patient Barriers to Conversations
Originally posted here:
Myovant Recognizes Prostate Cancer Awareness Month with Educational Sponsorships and Online Campaign to Encourage Patients to Speak Up, Seek Support...
Beyond Air® To Participate in Three Upcoming Investor Conferences
By Dr. Matthew Watson
GARDEN CITY, N.Y., Sept. 16, 2022 (GLOBE NEWSWIRE) -- Beyond Air, Inc. (NASDAQ: XAIR), a medical device and biopharmaceutical company focused on developing inhaled nitric oxide (NO) for the treatment of patients with respiratory conditions, including serious lung infections and pulmonary hypertension, and, through its affiliate Beyond Cancer, ultra-high concentration nitric oxide (UNO) for the treatment of solid tumors, today announced that the Company is scheduled to participate in a fireside chat at the LifeSci Partners HealthTech Symposium being held virtually September 20-21, 2022. Additionally, Steve Lisi, Chairman and CEO of Beyond Air, will be presenting corporate overviews and participating in 1x1 meetings at the Ladenburg Thalmann Healthcare Conference being held Thursday, September 29, 2022 at the Sofitel Hotel New York and the Roth Inaugural Healthcare Opportunities Conference on October 6, 2022 in New York City.
Read more:
Beyond Air® To Participate in Three Upcoming Investor Conferences
AltruBio President and CEO Judy Chou to Participate at the Longwood Healthcare Leaders Fall Webconference
By Dr. Matthew Watson
SAN FRANCISCO, Sept. 16, 2022 (GLOBE NEWSWIRE) -- AltruBio Inc. (“AltruBio” or “the Company”), a clinical stage biotech company dedicated to the development of novel therapeutics for the treatment of immunological diseases with high unmet medical needs, today announced that AltruBio President and CEO Dr. Judy Chou will speak on “The Next Wave of Targeted Therapies” at the Longwood Healthcare Leaders Fall Webconference on Wednesday, September 21, 2022.
Clearmind Medicine Announces Share-Based Payment for one of the Company’s Consultants
By Dr. Matthew Watson
VANCOUVER, Sept. 16, 2022 (GLOBE NEWSWIRE) -- Clearmind Medicine Inc. (CSE: CMND), (OTC Pink: CMNDF), (FSE: CWY0) (“Clearmind” or the "Company"), a biotech company focused on discovery and development of novel psychedelic-derived therapeutics to solve major undertreated health problems, announced that it has decided to issue 122,160 common shares in the capital of the Company ("Shares") in lieu of payment of $10,000, monthly, starting May 1st 2022, to consultants of the Company.
More here:
Clearmind Medicine Announces Share-Based Payment for one of the Company's Consultants
POINT Biopharma Announces Closing of Public Offering of 13,900,000 Shares of Common Stock
By Dr. Matthew Watson
INDIANAPOLIS, Sept. 16, 2022 (GLOBE NEWSWIRE) -- POINT Biopharma Global Inc. (NASDAQ: PNT) (the “Company” or “POINT”), a company accelerating the discovery, development and global access to life-changing radiopharmaceuticals, today announced the closing of its previously announced underwritten public offering of 13,900,000 shares of Common Stock at a public offering price of $9.00 per share. The gross proceeds to the Company from the offering, before deducting underwriting discounts and commissions and other estimated offering expenses, were approximately $125 million.
Original post:
POINT Biopharma Announces Closing of Public Offering of 13,900,000 Shares of Common Stock
European Commission approves Roche’s Vabysmo, the first bispecific antibody for the eye, for two leading causes of vision loss
By Dr. Matthew Watson
Basel, 19 September 2022 - Roche (SIX: RO, ROG; OTCQX: RHHBY) today announced that the European Commission (EC) approved Vabysmo® (faricimab) for the treatment of neovascular or ‘wet’ age-related macular degeneration (nAMD) and visual impairment due to diabetic macular edema (DME). These retinal conditions are two of the leading causes of vision loss worldwide, affecting more than 40 million people 1,2,3,4
See the original post here:
European Commission approves Roche’s Vabysmo, the first bispecific antibody for the eye, for two leading causes of vision loss
Valneva and IDT Biologika Agree on Termination of their COVID-19 Collaboration
By Dr. Matthew Watson
Saint-Herblain (France) and Dessau-Roßlau (Germany), September 16, 2022 – Valneva SE (Nasdaq: VALN; Euronext Paris: VLA), a specialty vaccine company, and IDT Biologika today announced they have agreed to terminate their collaboration following the delivery of inactivated COVID-19 bulk vaccine to Valneva, and considering the current order levels and existing inventories.
See more here:
Valneva and IDT Biologika Agree on Termination of their COVID-19 Collaboration
Nicox Announces Last Patients Complete Final Visit in NCX 470 Phase 3 Mont Blanc Glaucoma Trial
By Dr. Matthew Watson
GENFIT to Acquire Clinical-stage Biopharmaceutical Company Versantis, expanding its Portfolio in Liver Diseases
By Dr. Matthew Watson
Lille, France; Cambridge, MA; September 19, 2022 - GENFIT (Nasdaq and Euronext: GNFT), a late-stage biopharmaceutical company dedicated to improving the lives of patients with severe chronic liver diseases, today announced it has entered into an exclusivity agreement with a view to acquire all the share capital and voting rights of Versantis, a private Swiss-based clinical stage biotechnology company focused on addressing the growing unmet medical needs in liver diseases.
Go here to read the rest:
GENFIT to Acquire Clinical-stage Biopharmaceutical Company Versantis, expanding its Portfolio in Liver Diseases
Sandoz announces further progress on its biosimilar pipeline, with release of positive results for denosumab integrated Phase I/III clinical trial
By Dr. Matthew Watson
Basel, September 19, 2022 – Sandoz, a global leader in off-patent (generic and biosimilar) medicines, today announces further progress on its biosimilar pipeline, with the release of positive results from the integrated ROSALIA Phase I/III clinical trial study for its proposed biosimilar denosumab.
Kite’s CAR T-cell Therapy Yescarta First in Europe to Receive Positive CHMP Opinion for Use in Second-line Diffuse Large B-cell Lymphoma and…
By daniellenierenberg
Positive Opinion Based on Landmark ZUMA-7 Study in Which 41% of Patients Demonstrated Event-Free Survival at Two Years versus 16% for Standard of Care -
SANTA MONICA, Calif.--(BUSINESS WIRE)--Kite, a Gilead Company (Nasdaq: GILD), today announces that the European Medicines Agency (EMA) Committee for Medicinal Products for Human Use (CHMP) has issued a positive opinion for Yescarta (axicabtagene ciloleucel) for adult patients with diffuse large B-cell lymphoma (DLBCL) and high-grade B-cell lymphoma (HGBL) that relapses within 12 months from completion of, or is refractory to, first-line chemoimmunotherapy. If approved, Yescarta will be the first Chimeric Antigen Receptor (CAR) T-cell therapy approved for patients in Europe who do not respond to first-line treatment. Although 60% of newly diagnosed LBCL patients will respond to their initial treatment, 40% will relapse or will not respond and need 2nd line treatment.
At Kite, we are committed to bringing the curative potential of cell therapy to the world, and changing the way cancer is treated, said Christi Shaw, CEO, Kite. Todays positive CHMP opinion brings us a step closer to utilizing cell therapy earlier in the treatment journey, potentially transforming the standard of care for the most common and aggressive form of non-Hodgkin lymphoma.
The European Commission will review the CHMP opinion, and a final decision on the marketing authorization is expected in the coming months.
For people with DLBCL and HGBL who do not respond to first-line treatment or have an early relapse, outcomes are often poor and there are limited curative treatment options for these patients, said Marie Jos Kersten, Professor of Hematology at Amsterdam University Medical Centers, Amsterdam. If approved, axicabtagene ciloleucel may offer a new standard of care for patients with relapsed or refractory DLBCL and HGBL. Importantly, in a randomized trial of axicabtagene ciloleucel versus the current standard of care, quality of life also showed greater improvement in the experimental arm.
The positive opinion for Yescarta is based on the primary results of the landmark Phase 3 ZUMA-7 study, the largest and longest trial of a CAR T-cell therapy versus standard of care (SOC) in second-line LBCL. Results demonstrated that at a median follow-up of two years, Yescarta-treated patients had a four-fold greater improvement in the primary endpoint of event-free survival (EFS; hazard ratio 0.40; 95% CI: 0.31-0.51, P<0.001) over the current SOC (8.3 months v 2.0 months). Additionally, Yescarta demonstrated a 2.5 fold increase in patients who were alive at two years without disease progression or need for additional cancer treatment vs SOC (41% v 16%). Improvements in EFS with Yescarta were consistent across key patient subgroups, including elderly patients (HR: 0.28 [95% CI: 0.16-0.46]), primary refractory patients (HR: 0.43 [95% CI: 0.32- 0.57]), high-grade B cell lymphoma including double-hit and triple-hit lymphoma patients (HGBL; HR: 0.28 [95% CI: 0.14-0.59]), and double expressor lymphoma patients (HR: 0.42 [95% CI: 0.27-0.67]).
In a separate, secondary analysis of Patient-Reported Outcomes (PROs) published in Blood patients receiving Yescarta and eligible for the PROs portion of the study (n=165) showed statistically significant improvements in Quality of Life (QoL) at Day 100 compared with those who received SOC (n=131), using a pre-specified analysis for three PRO-domains (EORTC QLQ-C30 Physical Functioning, EORTC QLQ-C30 Global Health Status/QOL, and EQ-5D-5L visual analog scale [VAS]). There was also a trend toward faster recovery to baseline QoL in the Yescarta arm versus SOC.
In the ZUMA-7 trial, Yescarta had a manageable safety profile that was consistent with previous studies. Among the 170 Yescarta-treated patients evaluable for safety, Grade 3 cytokine release syndrome (CRS) and neurologic events were observed in 6% and 21% of patients, respectively. No Grade 5 CRS or neurologic events occurred. In the SOC arm, 83% of patients had high-grade events, mostly cytopenias (low blood counts).
About ZUMA-7
ZUMA-7 is an ongoing, randomized, open-label, global, multicenter (US, Australia, Canada, Europe, Israel) Phase 3 study of 359 patients at 77 centers, evaluating the safety and efficacy of a single-infusion of Yescarta versus current SOC for second-line therapy (platinum-based salvage combination chemotherapy regimen followed by high-dose chemotherapy and autologous stem cell transplant in those who respond to salvage chemotherapy) in adult patients with relapsed or refractory LBCL within 12 months of first-line therapy. The primary endpoint is event free survival (EFS) as determined by blinded central review, and defined as the time from randomization to the earliest date of disease progression per Lugano Classification, commencement of new lymphoma therapy, or death from any cause. Key secondary endpoints include objective response rate (ORR) and overall survival (OS). Additional secondary endpoints include patient reported outcomes (PROs) and safety.
About Yescarta
Yescarta was first approved in Europe in 2018 and is currently indicated for three types of blood cancer: Diffuse Large B-Cell Lymphoma (DLBCL); Primary Mediastinal Large B-Cell Lymphoma (PMBCL); and Follicular Lymphoma (FL). For the full European Prescribing Information, please visit: https://www.ema.europa.eu/en/medicines/human/EPAR/yescarta
Please see full US Prescribing Information, including BOXED WARNING and Medication Guide.
YESCARTA is a CD19-directed genetically modified autologous T cell immunotherapy indicated for the treatment of:
U.S. IMPORTANT SAFETY INFORMATION
BOXED WARNING: CYTOKINE RELEASE SYNDROME AND NEUROLOGIC TOXICITIES
CYTOKINE RELEASE SYNDROME (CRS)
CRS, including fatal or life-threatening reactions, occurred. CRS occurred in 90% (379/422) of patients with non-Hodgkin lymphoma (NHL), including Grade 3 in 9%. CRS occurred in 93% (256/276) of patients with large B-cell lymphoma (LBCL), including Grade 3 in 9%. Among patients with LBCL who died after receiving YESCARTA, 4 had ongoing CRS events at the time of death. For patients with LBCL in ZUMA-1, the median time to onset of CRS was 2 days following infusion (range: 1-12 days) and the median duration was 7 days (range: 2-58 days). For patients with LBCL in ZUMA-7, the median time to onset of CRS was 3 days following infusion (range: 1-10 days) and the median duration was 7 days (range: 2-43 days). CRS occurred in 84% (123/146) of patients with indolent non-Hodgkin lymphoma (iNHL) in ZUMA-5, including Grade 3 in 8%. Among patients with iNHL who died after receiving YESCARTA, 1 patient had an ongoing CRS event at the time of death. The median time to onset of CRS was 4 days (range: 1-20 days) and the median duration was 6 days (range: 1-27 days) for patients with iNHL.
Key manifestations of CRS ( 10%) in all patients combined included fever (85%), hypotension (40%), tachycardia (32%), chills (22%), hypoxia (20%), headache (15%), and fatigue (12%). Serious events that may be associated with CRS include cardiac arrhythmias (including atrial fibrillation and ventricular tachycardia), renal insufficiency, cardiac failure, respiratory failure, cardiac arrest, capillary leak syndrome, multi-organ failure, and hemophagocytic lymphohistiocytosis/macrophage activation syndrome.
The impact of tocilizumab and/or corticosteroids on the incidence and severity of CRS was assessed in 2 subsequent cohorts of LBCL patients in ZUMA-1. Among patients who received tocilizumab and/or corticosteroids for ongoing Grade 1 events, CRS occurred in 93% (38/41), including 2% (1/41) with Grade 3 CRS; no patients experienced a Grade 4 or 5 event. The median time to onset of CRS was 2 days (range: 1-8 days) and the median duration of CRS was 7 days (range: 2-16 days). Prophylactic treatment with corticosteroids was administered to a cohort of 39 patients for 3 days beginning on the day of infusion of YESCARTA. Thirty-one of the 39 patients (79%) developed CRS and were managed with tocilizumab and/or therapeutic doses of corticosteroids with no patients developing Grade 3 CRS. The median time to onset of CRS was 5 days (range: 1-15 days) and the median duration of CRS was 4 days (range: 1-10 days). Although there is no known mechanistic explanation, consider the risk and benefits of prophylactic corticosteroids in the context of pre-existing comorbidities for the individual patient and the potential for the risk of Grade 4 and prolonged neurologic toxicities.
Ensure that 2 doses of tocilizumab are available prior to YESCARTA infusion. Monitor patients for signs and symptoms of CRS at least daily for 7 days at the certified healthcare facility, and for 4 weeks thereafter. Counsel patients to seek immediate medical attention should signs or symptoms of CRS occur at any time. At the first sign of CRS, institute treatment with supportive care, tocilizumab, or tocilizumab and corticosteroids as indicated.
NEUROLOGIC TOXICITIES
Neurologic toxicities (including immune effector cell-associated neurotoxicity syndrome) that were fatal or life-threatening occurred. Neurologic toxicities occurred in 78% (330/422) of all patients with NHL receiving YESCARTA, including Grade 3 in 25%. Neurologic toxicities occurred in 87% (94/108) of patients with LBCL in ZUMA-1, including Grade 3 in 31% and in 74% (124/168) of patients in ZUMA-7 including Grade 3 in 25%. The median time to onset was 4 days (range: 1-43 days) and the median duration was 17 days for patients with LBCL in ZUMA-1. The median time to onset for neurologic toxicity was 5 days (range:1- 133 days) and the median duration was 15 days in patients with LBCL in ZUMA-7. Neurologic toxicities occurred in 77% (112/146) of patients with iNHL, including Grade 3 in 21%. The median time to onset was 6 days (range: 1-79 days) and the median duration was 16 days. Ninety-eight percent of all neurologic toxicities in patients with LBCL and 99% of all neurologic toxicities in patients with iNHL occurred within the first 8 weeks of YESCARTA infusion. Neurologic toxicities occurred within the first 7 days of infusion for 87% of affected patients with LBCL and 74% of affected patients with iNHL.
The most common neurologic toxicities ( 10%) in all patients combined included encephalopathy (50%), headache (43%), tremor (29%), dizziness (21%), aphasia (17%), delirium (15%), and insomnia (10%). Prolonged encephalopathy lasting up to 173 days was noted. Serious events, including aphasia, leukoencephalopathy, dysarthria, lethargy, and seizures occurred. Fatal and serious cases of cerebral edema and encephalopathy, including late-onset encephalopathy, have occurred.
The impact of tocilizumab and/or corticosteroids on the incidence and severity of neurologic toxicities was assessed in 2 subsequent cohorts of LBCL patients in ZUMA-1. Among patients who received corticosteroids at the onset of Grade 1 toxicities, neurologic toxicities occurred in 78% (32/41), and 20% (8/41) had Grade 3 neurologic toxicities; no patients experienced a Grade 4 or 5 event. The median time to onset of neurologic toxicities was 6 days (range: 1-93 days) with a median duration of 8 days (range: 1-144 days). Prophylactic treatment with corticosteroids was administered to a cohort of 39 patients for 3 days beginning on the day of infusion of YESCARTA. Of those patients, 85% (33/39) developed neurologic toxicities, 8% (3/39) developed Grade 3, and 5% (2/39) developed Grade 4 neurologic toxicities. The median time to onset of neurologic toxicities was 6 days (range: 1-274 days) with a median duration of 12 days (range: 1-107 days). Prophylactic corticosteroids for management of CRS and neurologic toxicities may result in a higher grade of neurologic toxicities or prolongation of neurologic toxicities, delay the onset of and decrease the duration of CRS.
Monitor patients for signs and symptoms of neurologic toxicities at least daily for 7 days at the certified healthcare facility, and for 4 weeks thereafter, and treat promptly.
REMS
Because of the risk of CRS and neurologic toxicities, YESCARTA is available only through a restricted program called the YESCARTA and TECARTUS REMS Program which requires that: Healthcare facilities that dispense and administer YESCARTA must be enrolled and comply with the REMS requirements and must have on-site, immediate access to a minimum of 2 doses of tocilizumab for each patient for infusion within 2 hours after YESCARTA infusion, if needed for treatment of CRS. Certified healthcare facilities must ensure that healthcare providers who prescribe, dispense, or administer YESCARTA are trained in the management of CRS and neurologic toxicities. Further information is available at http://www.YescartaTecartusREMS.com or 1-844-454-KITE (5483).
HYPERSENSITIVITY REACTIONS
Allergic reactions, including serious hypersensitivity reactions or anaphylaxis, may occur with the infusion of YESCARTA.
SERIOUS INFECTIONS
Severe or life-threatening infections occurred. Infections (all grades) occurred in 45% of patients with NHL; Grade 3 infections occurred in 17% of patients, including Grade 3 infections with an unspecified pathogen in 12%, bacterial infections in 5%, viral infections in 3%, and fungal infections in 1%. YESCARTA should not be administered to patients with clinically significant active systemic infections. Monitor patients for signs and symptoms of infection before and after infusion and treat appropriately. Administer prophylactic antimicrobials according to local guidelines.
Febrile neutropenia was observed in 36% of all patients with NHL and may be concurrent with CRS. In the event of febrile neutropenia, evaluate for infection and manage with broad-spectrum antibiotics, fluids, and other supportive care as medically indicated.
In immunosuppressed patients, including those who have received YESCARTA, life-threatening and fatal opportunistic infections including disseminated fungal infections (e.g., candida sepsis and aspergillus infections) and viral reactivation (e.g., human herpes virus-6 [HHV-6] encephalitis and JC virus progressive multifocal leukoencephalopathy [PML]) have been reported. The possibility of HHV-6 encephalitis and PML should be considered in immunosuppressed patients with neurologic events and appropriate diagnostic evaluations should be performed.
Hepatitis B virus (HBV) reactivation, in some cases resulting in fulminant hepatitis, hepatic failure, and death, can occur in patients treated with drugs directed against B cells, including YESCARTA. Perform screening for HBV, HCV, and HIV in accordance with clinical guidelines before collection of cells for manufacturing.
PROLONGED CYTOPENIAS
Patients may exhibit cytopenias for several weeks following lymphodepleting chemotherapy and YESCARTA infusion. Grade 3 cytopenias not resolved by Day 30 following YESCARTA infusion occurred in 39% of all patients with NHL and included neutropenia (33%), thrombocytopenia (13%), and anemia (8%). Monitor blood counts after infusion.
HYPOGAMMAGLOBULINEMIA
B-cell aplasia and hypogammaglobulinemia can occur. Hypogammaglobulinemia was reported as an adverse reaction in 14% of all patients with NHL. Monitor immunoglobulin levels after treatment and manage using infection precautions, antibiotic prophylaxis, and immunoglobulin replacement. The safety of immunization with live viral vaccines during or following YESCARTA treatment has not been studied. Vaccination with live virus vaccines is not recommended for at least 6 weeks prior to the start of lymphodepleting chemotherapy, during YESCARTA treatment, and until immune recovery following treatment.
SECONDARY MALIGNANCIES
Secondary malignancies may develop. Monitor life-long for secondary malignancies. In the event that one occurs, contact Kite at 1-844-454-KITE (5483) to obtain instructions on patient samples to collect for testing.
EFFECTS ON ABILITY TO DRIVE AND USE MACHINES
Due to the potential for neurologic events, including altered mental status or seizures, patients are at risk for altered or decreased consciousness or coordination in the 8 weeks following YESCARTA infusion. Advise patients to refrain from driving and engaging in hazardous occupations or activities, such as operating heavy or potentially dangerous machinery, during this initial period.
ADVERSE REACTIONS
The most common non-laboratory adverse reactions (incidence 20%) in patients with LBCL in ZUMA-7 included fever, CRS, fatigue, hypotension, encephalopathy, tachycardia, diarrhea, headache, musculoskeletal pain, nausea, febrile neutropenia, chills, cough, infection with an unspecified pathogen, dizziness, tremor, decreased appetite, edema, hypoxia, abdominal pain, aphasia, constipation, and vomiting.
The most common adverse reactions (incidence 20%) in patients with LBCL in ZUMA-1 included CRS, fever, hypotension, encephalopathy, tachycardia, fatigue, headache, decreased appetite, chills, diarrhea, febrile neutropenia, infections with an unspecified, nausea, hypoxia, tremor, cough, vomiting, dizziness, constipation, and cardiac arrhythmias.
The most common non-laboratory adverse reactions (incidence 20%) in patients with iNHL in ZUMA-5 included fever, CRS, hypotension, encephalopathy, fatigue, headache, infections with an unspecified, tachycardia, febrile neutropenia, musculoskeletal pain, nausea, tremor, chills, diarrhea, constipation, decreased appetite, cough, vomiting, hypoxia, arrhythmia, and dizziness.
About Kite
Kite, a Gilead Company, is a global biopharmaceutical company based in Santa Monica, California, with manufacturing operations in North America and Europe. Kites singular focus is cell therapy to treat and potentially cure cancer. As the cell therapy leader, Kite has more approved CAR T indications to help more patients than any other company. For more information on Kite, please visit http://www.kitepharma.com. Follow Kite on social media on Twitter (@KitePharma) and LinkedIn.
About Gilead Sciences
Gilead Sciences, Inc. is a biopharmaceutical company that has pursued and achieved breakthroughs in medicine for more than three decades, with the goal of creating a healthier world for all people. The company is committed to advancing innovative medicines to prevent and treat life-threatening diseases, including HIV, viral hepatitis and cancer. Gilead operates in more than 35 countries worldwide, with headquarters in Foster City, California.
Forward-Looking Statements
This press release includes forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 that are subject to risks, uncertainties and other factors, including the ability of Gilead and Kite to initiate, progress or complete clinical trials within currently anticipated timelines or at all, and the possibility of unfavorable results from ongoing and additional clinical trials, including those involving Yescarta; uncertainties relating to regulatory applications and related filing and approval timelines, including the risk that the European Commission may not grant marketing authorization for Yescarta for use in second-line DLBCL and HGBL in a timely manner or at all; the risk that any regulatory approvals, if granted, may be subject to significant limitations on use; the risk that physicians may not see the benefits of prescribing Yescarta for the treatment of LBCL; and any assumptions underlying any of the foregoing. These and other risks, uncertainties and other factors are described in detail in Gileads Quarterly Report on Form 10-Q for the quarter ended June 30, 2022 as filed with the U.S. Securities and Exchange Commission. These risks, uncertainties and other factors could cause actual results to differ materially from those referred to in the forward-looking statements. All statements other than statements of historical fact are statements that could be deemed forward-looking statements. The reader is cautioned that any such forward-looking statements are not guarantees of future performance and involve risks and uncertainties and is cautioned not to place undue reliance on these forward-looking statements. All forward-looking statements are based on information currently available to Gilead and Kite, and Gilead and Kite assume no obligation and disclaim any intent to update any such forward-looking statements.
U.S. Prescribing Information for Yescarta including BOXED WARNING, is available at http://www.kitepharma.com and http://www.gilead.com .
Kite, the Kite logo, Yescarta and GILEAD are trademarks of Gilead Sciences, Inc. or its related companies .
View source version on businesswire.com: https://www.businesswire.com/news/home/20220916005209/en/
Jacquie Ross, Investorsinvestor_relations@gilead.com
Anna Padula, Mediaapadula@kitepharma.com
Source: Gilead Sciences, Inc.
CCL7 as a novel inflammatory mediator in cardiovascular disease, diabetes mellitus, and kidney disease – Cardiovascular Diabetology – Cardiovascular…
By daniellenierenberg
Kufareva I, Salanga CL, Handel TM. Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunol Cell Biol. 2015;93(4):37283.
CAS PubMed PubMed Central Article Google Scholar
Rollins BJ. Chemokines. Blood. 1997;90(3):90928.
CAS PubMed Article Google Scholar
Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol. 2001;2(2):1238.
CAS PubMed Article Google Scholar
Ardigo D, Assimes TL, Fortmann SP, Go AS, Hlatky M, Hytopoulos E, Iribarren C, Tsao PS, Tabibiazar R, Quertermous T. Circulating chemokines accurately identify individuals with clinically significant atherosclerotic heart disease. Physiol Genomics. 2007;31(3):4029.
CAS PubMed Article Google Scholar
Ridiandries A, Tan JT, Bursill CA. The role of CC-chemokines in the regulation of angiogenesis. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17111856.
Article PubMed PubMed Central Google Scholar
Chang TT, Chen JW. The Role of Chemokines and Chemokine Receptors in Diabetic Nephropathy. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21093172.
Article PubMed PubMed Central Google Scholar
Salanga CL, Dyer DP, Kiselar JG, Gupta S, Chance MR, Handel TM. Multiple glycosaminoglycan-binding epitopes of monocyte chemoattractant protein-3/CCL7 enable it to function as a non-oligomerizing chemokine. J Biol Chem. 2014;289(21):14896912.
CAS PubMed PubMed Central Article Google Scholar
Grassia G, Maddaluno M, Guglielmotti A, Mangano G, Biondi G, Maffia P, Ialenti A. The anti-inflammatory agent bindarit inhibits neointima formation in both rats and hyperlipidaemic mice. Cardiovasc Res. 2009;84(3):48593.
CAS PubMed PubMed Central Article Google Scholar
Van Coillie E, Van Damme J, Opdenakker G. The MCP/eotaxin subfamily of CC chemokines. Cytokine Growth Factor Rev. 1999;10(1):6186.
PubMed Article Google Scholar
Ali S, Robertson H, Wain JH, Isaacs JD, Malik G, Kirby JA. A non-glycosaminoglycan-binding variant of CC chemokine ligand 7 (monocyte chemoattractant protein-3) antagonizes chemokine-mediated inflammation. J immunol. 2005;175(2):125766.
CAS PubMed Article Google Scholar
Kim KS, Rajarathnam K, Clark-Lewis I, Sykes BD. Structural characterization of a monomeric chemokine: monocyte chemoattractant protein-3. FEBS Lett. 1996;395(23):27782.
CAS PubMed Article Google Scholar
Van Damme J, Proost P, Lenaerts JP, Opdenakker G. Structural and functional identification of two human, tumor-derived monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family. J Exp Med. 1992;176(1):5965.
PubMed Article Google Scholar
Liu Y, Cai Y, Liu L, Wu Y, Xiong X. Crucial biological functions of CCL7 in cancer. PeerJ. 2018;6: e4928.
PubMed PubMed Central Article CAS Google Scholar
Kondo A, Isaji S, Nishimura Y, Tanaka T. Transcriptional and post-transcriptional regulation of monocyte chemoattractant protein-3 gene expression in human endothelial cells by phorbol ester and cAMP signalling. Immunology. 2000;99(4):5618.
CAS PubMed PubMed Central Article Google Scholar
Zhao Y, Fu Y, Hu J, Liu Y, Yin X. The effect of tissue factor pathway inhibitor on the expression of monocyte chemotactic protein-3 and IkappaB-alpha stimulated by tumour necrosis factor-alpha in cultured vascular smooth muscle cells. Arch Cardiovasc Dis. 2013;106(1):411.
PubMed Article Google Scholar
Murakami K, Nomiyama H, Miura R, Follens A, Fiten P, Van Coillie E, Van Damme J, Opdenakker G. Structural and functional analysis of the promoter region of the human MCP-3 gene: transactivation of expression by novel recognition sequences adjacent to the transcription initiation site. DNA Cell Biol. 1997;16(2):17383.
CAS PubMed Article Google Scholar
Pang Y, Kartsonaki C, Lv J, Fairhurst-Hunter Z, Millwood IY, Yu C, Guo Y, Chen Y, Bian Z, Yang L, et al. Associations of adiposity, circulating protein biomarkers, and risk of major vascular diseases. JAMA cardiol. 2021;6(3):27686.
PubMed Article Google Scholar
Ignacio RM, Gibbs CR, Lee ES, Son DS. Differential chemokine signature between human preadipocytes and adipocytes. Immune network. 2016;16(3):18994.
PubMed PubMed Central Article Google Scholar
Melton DW, McManus LM, Gelfond JA, Shireman PK. Temporal phenotypic features distinguish polarized macrophages in vitro. Autoimmunity. 2015;48(3):16176.
CAS PubMed PubMed Central Article Google Scholar
Au P, Tam J, Duda DG, Lin PC, Munn LL, Fukumura D, Jain RK. Paradoxical effects of PDGF-BB overexpression in endothelial cells on engineered blood vessels in vivo. Am J Pathol. 2009;175(1):294302.
CAS PubMed PubMed Central Article Google Scholar
Polentarutti N, Introna M, Sozzani S, Mancinelli R, Mantovani G, Mantovani A. Expression of monocyte chemotactic protein-3 in human monocytes and endothelial cells. Eur Cytokine Netw. 1997;8(3):2714.
CAS PubMed Google Scholar
Palomino DC, Marti LC. Chemokines and immunity. Einstein (Sao Paulo, Brazil). 2015;13(3):46973.
Article Google Scholar
Cheng JW, Sadeghi Z, Levine AD, Penn MS, von Recum HA, Caplan AI, Hijaz A. The role of CXCL12 and CCL7 chemokines in immune regulation, embryonic development, and tissue regeneration. Cytokine. 2014;69(2):27783.
CAS PubMed Article Google Scholar
Colin S, Chinetti-Gbaguidi G, Staels B. Macrophage phenotypes in atherosclerosis. Immunol Rev. 2014;262(1):15366.
CAS PubMed Article Google Scholar
Bai Y, Sun Q. Macrophage recruitment in obese adipose tissue. Obes Rev. 2015;16(2):12736.
CAS PubMed PubMed Central Article Google Scholar
Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP, Mack M, Charo IF. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Investig. 2007;117(4):9029.
CAS PubMed PubMed Central Article Google Scholar
Xie C, Ye F, Zhang N, Huang Y, Pan Y, Xie X. CCL7 contributes to angiotensin II-induced abdominal aortic aneurysm by promoting macrophage infiltration and pro-inflammatory phenotype. J Cell Mol Med. 2021;25(15):728093.
CAS PubMed PubMed Central Article Google Scholar
Noels H, Weber C, Koenen RR. Chemokines as Therapeutic Targets in Cardiovascular Disease. Arterioscler Thromb Vasc Biol. 2019;39(4):58392.
CAS PubMed Article Google Scholar
Zouggari Y, Ait-Oufella H, Bonnin P, Simon T, Sage AP, Gurin C, Vilar J, Caligiuri G, Tsiantoulas D, Laurans L, et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med. 2013;19(10):127380.
CAS PubMed PubMed Central Article Google Scholar
Loyer X, Zlatanova I, Devue C, Yin M, Howangyin KY, Klaihmon P, Guerin CL, Kheloufi M, Vilar J, Zannis K, et al. Intra-cardiac release of extracellular vesicles shapes inflammation following myocardial infarction. Circ Res. 2018;123(1):1006.
CAS PubMed PubMed Central Article Google Scholar
Bonaros N, Sondermeijer H, Schuster M, Rauf R, Wang SF, Seki T, Skerrett D, Itescu S, Kocher AA. CCR3- and CXCR4-mediated interactions regulate migration of CD34+ human bone marrow progenitors to ischemic myocardium and subsequent tissue repair. J Thorac Cardiovasc Surg. 2008;136(4):104453.
CAS PubMed Article Google Scholar
Schenk S, Mal N, Finan A, Zhang M, Kiedrowski M, Popovic Z, McCarthy PM, Penn MS. Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor. Stem cells (Dayton, Ohio). 2007;25(1):24551.
CAS Article Google Scholar
Liu J, Li W, Wang Y, Fan W, Li P, Lin W, Yang D, Fang R, Feng M, Hu C, et al. Islet-1 overexpression in human mesenchymal stem cells promotes vascularization through monocyte chemoattractant protein-3. Stem cells (Dayton, Ohio). 2014;32(7):184354.
CAS Article Google Scholar
Miteva K, Pappritz K, El-Shafeey M, Dong F, Ringe J, Tschope C, Van Linthout S. Mesenchymal stromal cells modulate monocytes trafficking in coxsackievirus B3-induced myocarditis. Stem Cells Transl Med. 2017;6(4):124961.
CAS PubMed PubMed Central Article Google Scholar
Nemska S, Monassier L, Gassmann M, Frossard N, Tavakoli R. Kinetic mRNA profiling in a rat model of left-ventricular hypertrophy reveals early expression of chemokines and their receptors. PLoS ONE. 2016;11(8): e0161273.
PubMed PubMed Central Article CAS Google Scholar
Nemska S, Gassmann M, Bang ML, Frossard N, Tavakoli R. Antagonizing the CX3CR1 receptor markedly reduces development of cardiac hypertrophy after transverse aortic constriction in mice. J Cardiovasc Pharmacol. 2021;78(6):792801.
CAS PubMed Article Google Scholar
Bousquenaud M, Schwartz C, Leonard F, Rolland-Turner M, Wagner D, Devaux Y. Monocyte chemotactic protein 3 is a homing factor for circulating angiogenic cells. Cardiovasc Res. 2012;94(3):51925.
CAS PubMed Article Google Scholar
Dinh QN, Chrissobolis S, Diep H, Chan CT, Ferens D, Drummond GR, Sobey CG. Advanced atherosclerosis is associated with inflammation, vascular dysfunction and oxidative stress, but not hypertension. Pharmacol Res. 2017;116:706.
CAS PubMed Article Google Scholar
Wang X, Li X, Yue TL, Ohlstein EH. Expression of monocyte chemotactic protein-3 mRNA in rat vascular smooth muscle cells and in carotid artery after balloon angioplasty. Biochem Biophys Acta. 2000;1500(1):418.
CAS PubMed Google Scholar
Kiouptsi K, Jackel S, Pontarollo G, Grill A, Kuijpers MJE, Wilms E, Weber C, Sommer F, Nagy M, Neideck C, et al. The microbiota promotes arterial thrombosis in low-density lipoprotein receptor-deficient mice. mbio. 2019. https://doi.org/10.1128/mBio.02298-19.
Article PubMed PubMed Central Google Scholar
Fu Y, Ma D, Liu Y, Li H, Chi J, Liu W, Lin F, Hu J, Zhang X, Zhu M, et al. Tissue factor pathway inhibitor gene transfer prevents vascular smooth muscle cell proliferation by interfering with the MCP-3/CCR2 pathway. Lab Invest. 2015;95(11):124657.
CAS PubMed Article Google Scholar
Maddaluno M, Di Lauro M, Di Pascale A, Santamaria R, Guglielmotti A, Grassia G, Ialenti A. Monocyte chemotactic protein-3 induces human coronary smooth muscle cell proliferation. Atherosclerosis. 2011;217(1):1139.
CAS PubMed Article Google Scholar
An SJ, Jung UJ, Choi MS, Chae CK, Oh GT, Park YB. Functions of monocyte chemotactic protein-3 in transgenic mice fed a high-fat, high-cholesterol diet. J Microbiol Biotechnol. 2013;23(3):40513.
CAS PubMed Article Google Scholar
Jang MK, Kim JY, Jeoung NH, Kang MA, Choi MS, Oh GT, Nam KT, Lee WH, Park YB. Oxidized low-density lipoproteins may induce expression of monocyte chemotactic protein-3 in atherosclerotic plaques. Biochem Biophys Res Commun. 2004;323(3):898905.
CAS PubMed Article Google Scholar
Sun H, Krauss RM, Chang JT, Teng BB. PCSK9 deficiency reduces atherosclerosis, apolipoprotein B secretion, and endothelial dysfunction. J Lipid Res. 2018;59(2):20723.
CAS PubMed Article Google Scholar
Qi D, Wei M, Jiao S, Song Y, Wang X, Xie G, Taranto J, Liu Y, Duan Y, Yu B, et al. Hypoxia inducible factor 1alpha in vascular smooth muscle cells promotes angiotensin II-induced vascular remodeling via activation of CCL7-mediated macrophage recruitment. Cell Death Dis. 2019;10(8):544.
PubMed PubMed Central Article CAS Google Scholar
Chan CT, Moore JP, Budzyn K, Guida E, Diep H, Vinh A, Jones ES, Widdop RE, Armitage JA, Sakkal S, et al. Reversal of vascular macrophage accumulation and hypertension by a CCR2 antagonist in deoxycorticosterone/salt-treated mice. Hypertension (Dallas, Tex: 1979). 2012;60(5):120712.
CAS Article Google Scholar
Sweatt AJ, Hedlin HK, Balasubramanian V, Hsi A, Blum LK, Robinson WH, Haddad F, Hickey PM, Condliffe R, Lawrie A, et al. Discovery of distinct immune phenotypes using machine learning in pulmonary arterial hypertension. Circ Res. 2019;124(6):90419.
CAS PubMed PubMed Central Article Google Scholar
Kashyap S, Osman M, Ferguson CM, Nath MC, Roy B, Lien KR, Nath KA, Garovic VD, Lerman LO, Grande JP. Ccl2 deficiency protects against chronic renal injury in murine renovascular hypertension. Sci Rep. 2018;8(1):8598.
PubMed PubMed Central Article CAS Google Scholar
Ren J, Wang Q, Morgan S, Si Y, Ravichander A, Dou C, Kent KC, Liu B. Protein kinase C- (PKC) regulates proinflammatory chemokine expression through cytosolic interaction with the NF-B subunit p65 in vascular smooth muscle cells. J Biol Chem. 2014;289(13):901326.
CAS PubMed PubMed Central Article Google Scholar
Follow this link:
CCL7 as a novel inflammatory mediator in cardiovascular disease, diabetes mellitus, and kidney disease - Cardiovascular Diabetology - Cardiovascular...
Chalice Brands Ltd. Announces Termination of Totem Farms & Miracle Greens Transactions
By Dr. Matthew Watson
PORTLAND, Ore., Sept. 09, 2022 (GLOBE NEWSWIRE) -- Chalice Brands Ltd. (CSE: CHAL) (OTCQB: CHALF) (the “Company” or “Chalice Brands”), a premier consumer-driven cannabis company specializing in retail, production, processing, wholesale, and distribution, announced today that it has terminated its previously announced definitive agreements and services agreements (the “Agreements”) dated April 20, 2022, with Miracle Greens, Inc (“Miracle Greens”) and Totem Farms, LLC (“Totem Farms”).
More here:
Chalice Brands Ltd. Announces Termination of Totem Farms & Miracle Greens Transactions
Clinical translation of stem cell therapy for spinal cord injury still premature: results from a single-arm meta-analysis based on 62 clinical trials…
By daniellenierenberg
James SL, Theadom A, Ellenbogen RG, Bannick MS, Montjoy-Venning W, Lucchesi LR, et al. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 19902016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(1):5687.
Article Google Scholar
Flack JA, Sharma KD, Xie JY. Delving into the recent advancements of spinal cord injury treatment: a review of recent progress. Neural Regen Res. 2022;17(2):283.
PubMed Article Google Scholar
Mansoori N, Bansil R, Sinha S. Current status of spinal cord regenerative therapies: a review. Indian J Neurosurg. 2016;5(01):0039.
Article Google Scholar
Ashammakhi N, Kim H-J, Ehsanipour A, Bierman RD, Kaarela O, Xue C, et al. Regenerative therapies for spinal cord injury. Tissue Eng Part B Rev. 2019;25(6):47191.
PubMed PubMed Central Article Google Scholar
Ramer LM, Ramer MS, Bradbury EJ. Restoring function after spinal cord injury: towards clinical translation of experimental strategies. Lancet Neurol. 2014;13(12):124156.
PubMed Article Google Scholar
Courtine G, Sofroniew MV. Spinal cord repair: advances in biology and technology. Nat Med. 2019;25(6):898908.
CAS PubMed Article Google Scholar
Assinck P, Duncan GJ, Hilton BJ, Plemel JR, Tetzlaff W. Cell transplantation therapy for spinal cord injury. Nat Neurosci. 2017;20(5):63747.
CAS PubMed Article Google Scholar
De Luca M, Aiuti A, Cossu G, Parmar M, Pellegrini G, Robey PG. Advances in stem cell research and therapeutic development. Nat Cell Biol. 2019;21(7):80111.
PubMed Article CAS Google Scholar
Chhabra HS, Sarda K, Jotwani G, Gourie-Devi M, Kaptanoglu E, Charlifue S, et al. Stem cell/cellular interventions in human spinal cord injury: is it time to move from guidelines to regulations and legislations? Literature review and Spinal Cord Society position statement. Eur Spine J. 2019;28(8):183745.
PubMed Article Google Scholar
Shang Z, Wang R, Li D, Chen J, Zhang B, Wang M, et al. Spinal cord injury: a systematic review and network meta-analysis of therapeutic strategies based on 15 types of stem cells in animal models. Front Pharmacol. 2022;13:819861.
PubMed PubMed Central Article Google Scholar
Gabel BC, Curtis EI, Marsala M, Ciacci JD. A review of stem cell therapy for spinal cord injury: large animal models and the frontier in humans. World Neurosurg. 2017;98:43843.
PubMed Article Google Scholar
Tator CH. Review of treatment trials in human spinal cord injury: issues, difficulties, and recommendations. Neurosurgery. 2006;59(5):95787.
PubMed Article Google Scholar
Cote DJ, Bredenoord AL, Smith TR, Ammirati M, Brennum J, Mendez I, et al. Ethical clinical translation of stem cell interventions for neurologic disease. Neurology. 2017;88(3):3228.
PubMed Article Google Scholar
Matsuda R, Yoshikawa M, Kimura H, Ouji Y, Nakase H, Nishimura F, et al. Cotransplantation of mouse embryonic stem cells and bone marrow stromal cells following spinal cord injury suppresses tumor development. Cell Transplant. 2009;18(1):3954.
PubMed Article Google Scholar
Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinsons disease. Proc Natl Acad Sci USA. 2008;105(15):585661.
CAS PubMed PubMed Central Article Google Scholar
Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, et al. Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell. 2011;144(3):43952.
CAS PubMed PubMed Central Article Google Scholar
Aly RM. Current state of stem cell-based therapies: an overview. Stem Cell Investig. 2020;7:1-10.
Cyranoski D. Japan to offer fast-track approval path for stem cell therapies. Nat Med. 2013;19(5):510.
CAS PubMed Article Google Scholar
Rosemann A, Vasen F, Bortz G. Global diversification in medicine regulation: insights from regenerative stem cell medicine. Sci Cult (Lond). 2019;28(2):22349.
Article Google Scholar
Tang QR, Xue H, Zhang Q, Guo Y, Xu H, Liu Y, et al. Evaluation of the clinical efficacy of stem cell transplantation in the treatment of spinal cord injury: a systematic review and meta-analysis. Cell Transplant. 2021;30:9636897211067804.
PubMed Article Google Scholar
Liu S, Zhang H, Wang H, Huang J, Yang Y, Li G, et al. A comparative study of different stem cell transplantation for spinal cord injury: a systematic review and network meta-analysis. World Neurosurg. 2022;159:e232e43.
PubMed Article Google Scholar
Moher D, Liberati A, Tetzlaff J, Altman DG, Group* P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):2649.
PubMed Article Google Scholar
Abdelaziz OS, Marie A, Abbas M, Ibrahim M, Gabr H. Feasibility, safety, and efficacy of directly transplanting autologous adult bone marrow stem cells in patients with chronic traumatic dorsal cord injury: a pilot clinical study. Neurosurg Q. 2010;20(3):21626.
Article Google Scholar
Adel N, Gabr H, Hamdy S, Afifi L, Mahmoud H. Stem cell therapy in chronic spinal cord injuries. Egypt J Neurol Psychiat Neurosurg. 2009;46(2):46778.
Google Scholar
Albu S, Kumru H, Coll R, Vives J, Valls M, Benito-Penalva J, et al. Clinical effects of intrathecal administration of expanded Wharton jelly mesenchymal stromal cells in patients with chronic complete spinal cord injury: a randomized controlled study. Cytotherapy. 2021;23(2):14656.
CAS PubMed Article Google Scholar
Al-Zoubi A, Jafar E, Jamous M, Al-Twal F, Al-Bakheet S, Zalloum M, et al. Transplantation of purified autologous leukapheresis-derived CD34+ and CD133+ stem cells for patients with chronic spinal cord injuries: long-term evaluation of safety and efficacy. Cell Transplant. 2014;23(1_suppl):2534.
Article Google Scholar
Amr SM, Gouda A, Koptan WT, Galal AA, Abdel-Fattah DS, Rashed LA, et al. Bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells: case series of 14 patients. J Spinal Cord Med. 2014;37(1):5471.
PubMed PubMed Central Article Google Scholar
Bhanot Y, Rao S, Ghosh D, Balaraju S, Radhika CR, Kumar KVS. Autologous mesenchymal stem cells in chronic spinal cord injury. Br J Neurosurg. 2011;25(4):51622.
PubMed Article Google Scholar
Bryukhovetskiy AS, Bryukhovetskiy IS. Effectiveness of repeated transplantations of hematopoietic stem cells in spinal cord injury. World J Transplant. 2015;5(3):110.
PubMed PubMed Central Article Google Scholar
Chen W, Zhang Y, Yang S, Sun J, Qiu H, Hu X, et al. NeuroRegen scaffolds combined with autologous bone marrow mononuclear cells for the repair of acute complete spinal cord injury: a 3-year clinical study. Cell Transplant. 2020;29:0963689720950637.
PubMed Central Google Scholar
Cheng H, Liu X, Hua R, Dai G, Wang X, Gao J, et al. Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury. J Transl Med. 2014;12(1):18.
CAS Article Google Scholar
Chernykh E, Stupak V, Muradov G, Sizikov MY, Shevela EY, Leplina OY, et al. Application of autologous bone marrow stem cells in the therapy of spinal cord injury patients. Bull Exp Biol Med. 2007;143(4):5437.
CAS PubMed Article Google Scholar
Chhabra H, Sarda K, Arora M, Sharawat R, Singh V, Nanda A, et al. Autologous bone marrow cell transplantation in acute spinal cord injuryan Indian pilot study. Spinal cord. 2016;54(1):5764.
CAS PubMed Article Google Scholar
Curtis E, Martin JR, Gabel B, Sidhu N, Rzesiewicz TK, Mandeville R, et al. A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord injury. Cell stem cell. 2018;22(6):94150 e6.
CAS PubMed Article Google Scholar
Dai G, Liu X, Zhang Z, Wang X, Li M, Cheng H, et al. Comparative analysis of curative effect of CT-guided stem cell transplantation and open surgical transplantation for sequelae of spinal cord injury. J Transl Med. 2013;11(1):110.
Article Google Scholar
Dai G, Liu X, Zhang Z, Yang Z, Dai Y, Xu R. Transplantation of autologous bone marrow mesenchymal stem cells in the treatment of complete and chronic cervical spinal cord injury. Brain Res. 2013;1533:739.
CAS PubMed Article Google Scholar
Deda H, Inci M, Kreki A, Kayhan K, zgn E, stnsoy G, et al. Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up. Cytotherapy. 2008;10(6):56574.
CAS PubMed Article Google Scholar
Deng W-S, Ma K, Liang B, Liu X-Y, Xu H-Y, Zhang J, et al. Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. Neural Regen Res. 2020;15(9):1686.
PubMed PubMed Central Article Google Scholar
El-Kheir WA, Gabr H, Awad MR, Ghannam O, Barakat Y, Farghali HA, et al. Autologous bone marrow-derived cell therapy combined with physical therapy induces functional improvement in chronic spinal cord injury patients. Cell Transplant. 2014;23(6):72945.
PubMed Article Google Scholar
Geffner L, Santacruz P, Izurieta M, Flor L, Maldonado B, Auad A, et al. Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. Cell Transplant. 2008;17(12):127793.
CAS PubMed Article Google Scholar
Ghobrial GM, Anderson KD, Dididze M, Martinez-Barrizonte J, Sunn GH, Gant KL, et al. Human neural stem cell transplantation in chronic cervical spinal cord injury: functional outcomes at 12 months in a phase II clinical trial. Neurosurgery. 2017;64(CN_suppl_1):8791.
PubMed Article Google Scholar
Goni VG, Chhabra R, Gupta A, Marwaha N, Dhillon MS, Pebam S, et al. Safety profile, feasibility and early clinical outcome of cotransplantation of olfactory mucosa and bone marrow stem cells in chronic spinal cord injury patients. Asian Spine J. 2014;8(4):484.
PubMed PubMed Central Article Google Scholar
Hammadi AA, Andolina Marino SF. Clinical response of 277 patients with spinal cord injury to stem cell therapy in Iraq. Int J Stem Cells. 2012;5(1):76.
PubMed PubMed Central Article Google Scholar
Hur JW, Cho T-H, Park D-H, Lee J-B, Park J-Y, Chung Y-G. Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: a human trial. J Spinal Cord Med. 2016;39(6):65564.
PubMed PubMed Central Article Google Scholar
Jeon SR, Park JH, Lee JH, Kim DY, Kim HS, Sung IY, et al. Treatment of spinal cord injury with bone marrow-derived, cultured autologous mesenchymal stem cells. Tissue Eng Regen Med. 2010;7(3):31622.
Google Scholar
Jiang P-C, Xiong W-P, Wang G, Ma C, Yao W-Q, Kendell SF, et al. A clinical trial report of autologous bone marrow-derived mesenchymal stem cell transplantation in patients with spinal cord injury. Exp Ther Med. 2013;6(1):1406.
PubMed PubMed Central Article Google Scholar
Kakabadze Z, Kipshidze N, Mardaleishvili K, Chutkerashvili G, Chelishvili I, Harders A, et al. Phase 1 trial of autologous bone marrow stem cell transplantation in patients with spinal cord injury. Stem Cells Int. 2016;2016:6768274.
PubMed PubMed Central Article CAS Google Scholar
Karamouzian S, Nematollahi-Mahani SN, Nakhaee N, Eskandary H. Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients. Clin Neurol Neurosurg. 2012;114(7):9359.
PubMed Article Google Scholar
Kumar AA, Kumar SR, Narayanan R, Arul K, Baskaran M. Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: a phase I/II clinical safety and primary efficacy data. Exp Clin Transplant. 2009;7(4):2418.
PubMed Google Scholar
Larocca TF, Macdo CT, de Freitas Souza BS, Andrade-Souza YM, Villarreal CF, Matos AC, et al. Image-guided percutaneous intralesional administration of mesenchymal stromal cells in subjects with chronic complete spinal cord injury: a pilot study. Cytotherapy. 2017;19(10):118996.
PubMed Article Google Scholar
Levi AD, Anderson KD, Okonkwo DO, Park P, Bryce TN, Kurpad SN, et al. Clinical outcomes from a multi-center study of human neural stem cell transplantation in chronic cervical spinal cord injury. J Neurotrauma. 2019;36(6):891902.
See the original post here:
Clinical translation of stem cell therapy for spinal cord injury still premature: results from a single-arm meta-analysis based on 62 clinical trials...
Epidemiology of early infections and predictors of mortality after autologous hematopoietic stem-cell transplantation among multiple myeloma, Hodgkin,…
By daniellenierenberg
Hamadani M. Autologous hematopoietic cell transplantation: an update for clinicians. Ann Med. 2014;46(8):61932.
CAS Article Google Scholar
Singh N, Loren AW. Overview of hematopoietic cell transplantation for the treatment of hematologic malignancies. Clin Chest Med. 2017;38(4):57593.
Article Google Scholar
Hubel K, de la Rubia J, Azar N, Corradini P. Current status of haematopoietic autologous stem cell transplantation in lymphoid malignancies: a European perspective. Eur J Haematol. 2015;94(1):1222.
Article Google Scholar
Passweg JR, Baldomero H, Bader P, Bonini C, Cesaro S, Dreger P, Duarte RF, Dufour C, Kuball J, Farge-Bancel D, et al. Hematopoietic stem cell transplantation in Europe 2014: more than 40 000 transplants annually. Bone Marrow Transplant. 2016;51(6):78692.
CAS Article Google Scholar
Rao K, Darrington DL, Schumacher JJ, Devetten M, Vose JM, Loberiza FR Jr. Disparity in survival outcome after hematopoietic stem cell transplantation for hematologic malignancies according to area of primary residence. Biol Blood Marrow Transplant. 2007;13(12):150814.
Article Google Scholar
Sheets WSAF: The Global Cancer Observatory. International Agency for Research on Cancer 2021.
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394424.
Article Google Scholar
Hierlmeier S, Eyrich M, Wolfl M, Schlegel PG, Wiegering V. Early and late complications following hematopoietic stem cell transplantation in pediatric patientsa retrospective analysis over 11 years. PLoS ONE. 2018;13(10): e0204914.
Article Google Scholar
Rahman S, Rybicki L, Ky Hamilton B, Pohlman B, Jagadeesh D, Cober E, Kalaycio M, Dean R, Sobecks R, Mossad SB, et al. Early infectious complications after autologous hematopoietic cell transplantation for multiple myeloma. Transplant Infect Dis. 2019;21(4): e13114.
Article Google Scholar
Linke C, Tragiannidis A, Ahlmann M, Frohlich B, Waltermann M, Burkhardt B, Rossig C, Groll AH. Epidemiology and management burden of invasive fungal infections after autologous hematopoietic stem cell transplantation: 10-year experience at a European Pediatric Cancer Center. Mycoses. 2019;62(10):95460.
Article Google Scholar
Alonso CD, Dufresne SF, Hanna DB, Labbe AC, Treadway SB, Neofytos D, Belanger S, Huff CA, Laverdiere M, Marr KA. Clostridium difficile infection after adult autologous stem cell transplantation: a multicenter study of epidemiology and risk factors. Biol Blood Marrow Transplant. 2013;19(10):15028.
Article Google Scholar
Signorelli J, Zimmer A, Liewer S, Shostrom VK, Freifeld A. Incidence of febrile neutropenia in autologous hematopoietic stem cell transplant (HSCT) recipients on levofloxacin prophylaxis. Transplant Infect Dis. 2020;22(2): e13225.
Article Google Scholar
Youssef A, Hafez H, Madney Y, Elanany M, Hassanain O, Lehmann LE, El Haddad A. Incidence, risk factors, and outcome of blood stream infections during the first 100 days post-pediatric allogeneic and autologous hematopoietic stem cell transplantations. Pediatr Transplant. 2020;24(1): e13610.
Article Google Scholar
Styczynski J, Tridello G, Koster L, Iacobelli S, van Biezen A, van der Werf S, Mikulska M, Gil L, Cordonnier C, Ljungman P, et al. Death after hematopoietic stem cell transplantation: changes over calendar year time, infections and associated factors. Bone Marrow Transplant. 2020;55(1):12636.
Article Google Scholar
Esquirol A, Pascual MJ, Kwon M, Perez A, Parody R, Ferra C, Garcia Cadenas I, Herruzo B, Dorado N, Hernani R, et al. Severe infections and infection-related mortality in a large series of haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide. Bone Marrow Transplant. 2021;56(10):243244.
CAS Article Google Scholar
Christopeit M, Schmidt-Hieber M, Sprute R, Buchheidt D, Hentrich M, Karthaus M, Penack O, Ruhnke M, Weissinger F, Cornely OA, et al. Prophylaxis, diagnosis and therapy of infections in patients undergoing high-dose chemotherapy and autologous haematopoietic stem cell transplantation. 2020 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO). Ann Hematol. 2021;100(2):32136.
CAS Article Google Scholar
Gassas RS, Absi AN, Alghamdi AA, Alsaeed AS, Alamoudi SM, Hemaidi IY, Alahmadi MD, Rajkhan WA, Khalil MM, Dadah SK, et al. Early infection in post-autologous hematopoietic stem cell transplant patients: Princess Noorah Oncology Center experience. Saudi Med J. 2021;42(8):84752.
Article Google Scholar
Danylesko I, Sareli R, Varda-Bloom N, Yerushalmi R, Shem-Tov N, Magen H, Shimoni A, Nagler A. Long-acting granulocyte colony-stimulating factor pegfilgrastim (lipegfilgrastim) for stem cell mobilization in multiple myeloma patients undergoing autologous stem cell transplantation. Int J Hematol. 2021;114(3):36372.
CAS Article Google Scholar
Autore F, Piccirillo N, Nozza A, Innocenti I, Putzulu R, Chiusolo P, Sora F, Zini G, Bacigalupo A, Castagna L, et al. Which is the best mobilizing regimen in POEMS syndrome? A retrospective Italian study of two haematological centres. Blood. 2018;132:5692.
Article Google Scholar
Kumar L, Ramavath D, Kataria B, Tiwari A, Raj A, Chellapuram SK, Mookerjee A, Sahoo RK, Malik PS, Sharma A, et al. High-dose chemotherapy followed by autologous stem cell transplant for multiple myeloma: predictors of long-term outcome. Indian J Med Res. 2019;149(6):7309.
Article Google Scholar
Colita A, Colita A, Bumbea H, Croitoru A, Orban C, Lipan LE, Craciun OG, Soare D, Ghimici C, Manolache R, et al. LEAM vs. BEAM vs. CLV conditioning regimen for autologous stem cell transplantation in malignant lymphomas. Retrospective comparison of toxicity and efficacy on 222 patients in the first 100 days after transplant, on behalf of the Romanian society for bone marrow transplantation. Front Oncol. 2019;9:892.
Article Google Scholar
Wolff SN. Second hematopoietic stem cell transplantation for the treatment of graft failure, graft rejection or relapse after allogeneic transplantation. Bone Marrow Transplant. 2002;29(7):54552.
CAS Article Google Scholar
Teltschik HM, Heinzelmann F, Gruhn B, Feuchtinger T, Schlegel P, Schumm M, Kremens B, Mller I, Ebinger M, Schwarze CP, et al. Treatment of graft failure with TNI-based reconditioning and haploidentical stem cells in paediatric patients. Br J Haematol. 2016;175(1):11522.
CAS Article Google Scholar
Hof H. IFI = invasive fungal infections. What is that? A misnomer, because a non-invasive fungal infection does not exist! Int J Infecti Dis. 2010;14(6):e458-459.
Article Google Scholar
Styczyski J, Tridello G, Koster L, Iacobelli S, van Biezen A, van der Werf S, Mikulska M, Gil L, Cordonnier C, Ljungman P, et al. Death after hematopoietic stem cell transplantation: changes over calendar year time, infections and associated factors. Bone Marrow Transplant. 2020;55(1):12636.
Article Google Scholar
Moghnieh R, Abdallah D, Awad L, Jisr T, Mugharbil A, Youssef A, Tamim H, Khaldieh S, Massri O, Rashini N, et al. Bacteraemia post-autologous haematopoietic stem cell transplantation in the absence of antibacterial prophylaxis: a decades experience from Lebanon. Infection. 2018;46(6):82335.
CAS Article Google Scholar
Srinivasan A, McLaughlin L, Wang C, Srivastava DK, Shook DR, Leung W, Hayden RT. Early infections after autologous hematopoietic stem cell transplantation in children and adolescents: the St. Jude experience. Transpl infectious Dis. 2014;16(1):907.
CAS Article Google Scholar
Jantunen E, Salonen J, Juvonen E, Koivunen E, Siitonen T, Lehtinen T, Kuittinen O, Leppa S, Anttila VJ, Itala M, et al. Invasive fungal infections in autologous stem cell transplant recipients: a nation-wide study of 1188 transplanted patients. Eur J Haematol. 2004;73(3):1748.
CAS Article Google Scholar
McCarthy PL Jr, Hahn T, Hassebroek A, Bredeson C, Gajewski J, Hale G, Isola L, Lazarus HM, Lee SJ, Lemaistre CF, et al. Trends in use of and survival after autologous hematopoietic cell transplantation in North America, 19952005: significant improvement in survival for lymphoma and myeloma during a period of increasing recipient age. Biol Blood Marrow Transplant. 2013;19(7):111623.
Article Google Scholar
Porrata LF, Inwards DJ, Ansell SM, Micallef IN, Johnston PB, Gastineau DA, Litzow MR, Winters JL, Markovic SN. Early lymphocyte recovery predicts superior survival after autologous stem cell transplantation in non-Hodgkin lymphoma: a prospective study. Biol Blood Marrow Transplant. 2008;14(7):80716.
Article Google Scholar
Porrata LF, Gertz MA, Inwards DJ, Litzow MR, Lacy MQ, Tefferi A, Gastineau DA, Dispenzieri A, Ansell SM, Micallef IN, et al. Early lymphocyte recovery predicts superior survival after autologous hematopoietic stem cell transplantation in multiple myeloma or non-Hodgkin lymphoma. Blood. 2001;98(3):57985.
CAS Article Google Scholar
Read the original here:
Epidemiology of early infections and predictors of mortality after autologous hematopoietic stem-cell transplantation among multiple myeloma, Hodgkin,...
6 Ingredients to Avoid Putting on Your Skin – Healthline
By daniellenierenberg
What we put in our bodiesfoodis regulated by the Food and Drug Administration and the U.S. Department of Agriculture.
What we put on itskin care and beauty productsis not.
That could be an issue.
In one 2021 report, scientists tested 231 popular makeup products from the U.S. and Canada and found that more than 100 had Per-and poly-fluoroalkyl substances (PFAS). These are chemicals that dont break down and build up in the body over time.
They include perfluorooctanoic acid, which may cause cancer, according to the American Cancer Society.
Clean skin goes beyond washing your face.
Your skin is a living, dynamic organ, says Nava Greenfield, M.D. of Schweiger Dermatology Group in New York City. Just like you consider carefully what you put into your mouth, you should take care in what you place on your skin.
Understanding whats in your products can help you achieve long-term health thats more than skin-deep.
Heres what the science says you should avoidand what to use instead.
The skin is our largest organ, notes Marianna Blyumin-Karasik, board-certified dermatologist, co-founder of Precision Skin Institute, and founder of Stamina Cosmetics.
The skin has high absorption, so skin care products that can be absorbed and enter our bloodstream can have detrimental effects on our overall health, Blyumin-Karasik says.
Some ingredients like synthetic or highly concentrated fragrances or chemicals in personal care products can trigger skin sensitivity, irritation, or a more intense allergy.
Symptoms can include:
Other ingredients have been linked to more serious problems, like:
For example, a 2018 review suggested that phthalates found in certain personal care products could adversely affect male fertility.
A 2021 study indicated that exposure to formaldehyde, sometimes used in keratin hair treatments, could lead to heart malformations in a developing fetus.
In 2020, California became the first state to issue a statewide ban on 24 chemicals, including methylene glycol and formaldehyde.
Other states dont have these bans, leaving consumers to analyze and interpret labels themselves.
Complicating things, some recommendations to avoid specific ingredients arent one-size-fits-all. Different people may have different (or no) reactions to certain ingredients, even if theyre common allergens.
Aside from real toxins and dangerous chemicals, a list like this will be different for each person, Greenfield says. Unfortunately, its not all black and white.
Having an idea of whats potentially toxic and whats more likely to cause skin irritation can help you make informed decisions about the products you choose.
From common allergens to potential carcinogens, here are the ingredients Blyumin-Karasik and Greenfield suggest avoiding:
Blyumin-Karasik and Greenfield warn that PEGs are a potential skin irritant.
Theyre most often found in lotions, creams, and hair products because they can act as skin conditioners and humectants, a common moisturizing agent.
A small 2021 case study examined six cases of acute sensitivity to PEGs. However, researchers also noted the allergy was rare.
Blyumin-Karasik notes that methyl and propyl parabens are preservatives with reputations for being hormone disruptors. However, research is mixed.
A 2017 study on gerbil prostates indicated that methylparaben could disrupt estrogenic and androgenic receptors that might affect the prostate.
Another 2017 study suggested parabens, including methyl and propyl parabens, posed little health risk. However, researchers noted that parabens could inhibit compounds with anti-estrogenic properties.
The FDA wrote in 2022 that it didnt have enough evidence to warn that parabens affect human health. The American Academy of Dermatology (AAD) reported similarly in 2019, noting that allergic reaction risks were low.
Found in some eye make-up products, lipsticks, and deodorants, aluminum can cause skin irritation, according to Greenfield.
Theres also been discussion as to whether aluminum is a carcinogen, or cancer-causing agent.
A 2015 study suggested aluminum can increase the migration of breast cancer cells and called for more research.
In 2013, the Cosmetic Ingredient Review said alumina and aluminum hydroxide was safe to put in cosmetics, noting that it doesnt get absorbed into the skin and less than 1 percent is absorbed orally.
This ingredient is a preservative commonly found in soaps and shampoos and may cause skin irritation or allergies, Blyumin-Karasik explains. Greenfield agrees with avoiding formaldehyde, saying its a common irritant.
A 13-year retrospective study of patch tests published in 2020 indicated that a polymer known as toluene-sulfonamide-formaldehyde resin (R-TSF or TSFR), often used in nail polish, was one of the most common allergens. Its also known as a carcinogen, but data shows its only hazardous if a person inhales a significant amount.
The American Cancer Society says formaldehyde in personal care products like shampoos typically contains formaldehyde levels that are far below hazardous to health. The organization says keratin hair smoothing treatments can raise indoor air concentration to hazardous levels.
Phthalates are typically used to make sure plastic doesnt break. They can also be used in fragrances in skin products. Blyumin-Karasik warns they may disrupt hormones.
A 2020 literature review indicated that phthalates could lead to:
A 2018 study suggested phthalates could lead to pregnancy loss and fertility issues.
However, its important to note that neither piece of research above was specific to phthalates in beauty products.
Key West and Hawaii recently banned oxybenozone, which is commonly found in sunscreen. Blyumin-Karasik says it can disrupt hormones and cause allergic reactions.
A 2020 review of 29 studies indicated no a link between fertility issues and oxybenzone and called for more research.
However, an older 2016 study indicated that men with higher levels of benzophenone-type ultraviolet (UV) filter concentrations had lower sperm concentrations.
Avoiding fragranced products and using a mineral-based sunscreen can help avoid harmful chemicals, Blyumin-Karasik says. Looking for preservative-free items can also cut down on risks of irritants and health hazards.
The main purpose of preservatives is to maintain the integrity of the personal care products, Blyumin-Karasik says. The natural alternatives may not attain as long of the shelf-life as the chemical ones, but theyre better for our well-being.
To clean up your beauty regimen, Blyumin-Karasik suggests looking for products that contain these safer ingredients instead.
Blyumin-Karasik suggests using tea tree oil, an essential oil found in shampoos, skin care items, hand sanitizers, and first aid products.
A 2021 study suggested tea tree oil could help disinfect hands when used in sanitizer.
Research from 2015 indicated it could aid wound healing, and a 12-week pilot study published in 2017 suggested it could reduce acne.
Instead of PEGs, opt for a humectant with fewer potential side effects. Blyumin-Karasik recommends glycerin.
One small 2017 study of women indicated that products with a mix of hyaluronic acid, glycerin, and Centella asiatica (gotu kola) could boost skin hydration for 24 hours.
A 2019 safety assessment suggested glycerin was safe to use in cosmetic practices.
Coconut oil, or Cocus nucifera, is extracted from the meaty part of a coconut fruit.
Blyumin-Karasik recommends it because its moisturizing and can reduce mold growth in skin care products.
A 2022 study indicated that a coconut oil-based serum combined with deer antler stem cell extract for two weeks could:
A 2019 study indicated virgin coconut oil had anti-inflammatory properties and supported its use in skin care products.
Blyumin-Karasik says elderberry, or Sambucus nigra extract, often found in serums, has versatile benefits for our skin.
She notes these benefits include antimicrobial effects and high levels of vitamin C.
Research on elderberry is limited, particularly in topical products. However, a 2019 study suggested it had anti-aging benefits when ingested as a supplement.
Blyumin-Karasik says willow bark, or Salix nigra extract, is an excellent source of skin preservation. She recommends it for its anti-inflammatory and antimicrobial properties.
Besides that, willow bark contains a potent salicin ingredient which has gentle exfoliating properties to cleanse pores and reduce skin surface oil, she says.
A 2019 study suggested willow bark total extract may have antioxidant and anti-inflammatory benefits.
An older 2010 study suggested that salicin, which is extracted from white willow bark, may have benefits when applied to the skin topically.
When shopping for personal care products, there are a few things youll want to keep in mind, depending on your age and any conditions you have.
Leave the layering for sweater weather, not skin care. Blyumin-Karasik says the biggest issues she sees in her clinic happen when people try to cake on too many products or ingredients.
Trying to be innovative or frugal, young individuals play with potentially hazardous ingredients such as baking soda or lemon juice which can lead to significant skin irritation, Blyumin-Karasik says. Older individuals try to layer too many products onto their skin such alpha hydroxy acids and potent retinoids and as a result, create skin allergy or irritation.
Blyumin-Karasik recommends working with a dermatologist to find the correct ingredients for your skin type and beauty goals.
A long ingredients list doesnt necessarily mean there are a ton of items working to boost your skins health. Sometimes, simple ingredient lists are most effective.
In general, if a skin care product has too many chemicals or fragrances, it can irritate the skin and cause skin rashes, and its best to avoid, Blyumin-Karasik says.
Individuals with sensitive skin, eczema, dermatitis, or rosacea will want to pay particular attention to product labels and the less is more mantra, Blyumin-Karasik says, as people with these conditions are more prone to irritation.
Theyre best served by using fragrance-free, sensitive skincare lines such as Avene and Bioderma, and definitely avoiding any of the above skin allergens, Blyumin-Karasik says.
Blyumin-Karasik advises acne-prone individuals to opt for products that wont clog pores. She suggests looking for words like oil-free and noncomedogenic and minimizing the use of occlusive moisturizers or make-up.
These can cause more breakouts and blemishes, Blyumin-Karasik warns.
When purchasing skin care products, youre making an investment in your bodys largest organ.
But some ingredients may not serve your skin or overall health.
Though research in some cases is minimal and others are mixed, Phthalates and some parabens are linked to hormonal disruption. Other ingredients are carcinogens or may cause irritation.
Speaking with a dermatologist can help you figure out the best and safest products and ingredients for your skin and overall health.
Beth Ann Mayer is a New York-based freelance writer and content strategist who specializes in health and parenting writing. Her work has been published in Parents, Shape, and Inside Lacrosse. She is a co-founder of digital content agency Lemonseed Creative and is a graduate of Syracuse University. You can connect with her on LinkedIn.
Continued here:
6 Ingredients to Avoid Putting on Your Skin - Healthline