Page 58«..1020..57585960..7080..»

Biofrontera Inc. to Present at the LD Micro Main Event XV Investor Conference

By Dr. Matthew Watson

WOBURN, Mass., Oct. 20, 2022 (GLOBE NEWSWIRE) -- Biofrontera Inc. (Nasdaq: BFRI), a biopharmaceutical company specializing in the commercialization of dermatological products, announced today that Erica Monaco, Chief Executive Officer, will be presenting and meeting with registered investors at the LD Micro Main Event XV that will be held October 25-27, 2022 at the Luxe Sunset Boulevard Hotel in Southern California.

Continued here:
Biofrontera Inc. to Present at the LD Micro Main Event XV Investor Conference

To Read More: Biofrontera Inc. to Present at the LD Micro Main Event XV Investor Conference
categoriaGlobal News Feed commentoComments Off on Biofrontera Inc. to Present at the LD Micro Main Event XV Investor Conference | dataOctober 21st, 2022
Read All

Guerbet: Revenue at September 30, 2022

By Dr. Matthew Watson

Revenue on September 30, 2022

Follow this link:
Guerbet: Revenue at September 30, 2022

To Read More: Guerbet: Revenue at September 30, 2022
categoriaGlobal News Feed commentoComments Off on Guerbet: Revenue at September 30, 2022 | dataOctober 21st, 2022
Read All

Invitation to Idorsia’s nine-month financial results 2022 webcast and conference call

By Dr. Matthew Watson

Idorsia will publish its financial results for the first nine months of 2022 on October 25, 2022, at 07:00 CEST.

Continue reading here:
Invitation to Idorsia's nine-month financial results 2022 webcast and conference call

To Read More: Invitation to Idorsia’s nine-month financial results 2022 webcast and conference call
categoriaGlobal News Feed commentoComments Off on Invitation to Idorsia’s nine-month financial results 2022 webcast and conference call | dataOctober 21st, 2022
Read All

DEINOVE – Adoption of the resolutions at the Shareholders’ Extraordinary General Meeting on October 17, 2022

By Dr. Matthew Watson

DEINOVE (Euronext Growth Paris: ALDEI), a French biotech company, pioneer in the exploration and exploitation of bacterial biodiversity to address the urgent, global challenge of antibiotic resistance, informs its shareholders that the Extraordinary General Meeting (AGE) held on October 17, 2022 has followed the recommendations of the Board of Directors, and adopted all the resolutions that the Board was favorable to, i.e. 10 out of the 11 resolutions.

Continue reading here:
DEINOVE - Adoption of the resolutions at the Shareholders’ Extraordinary General Meeting on October 17, 2022

To Read More: DEINOVE – Adoption of the resolutions at the Shareholders’ Extraordinary General Meeting on October 17, 2022
categoriaGlobal News Feed commentoComments Off on DEINOVE – Adoption of the resolutions at the Shareholders’ Extraordinary General Meeting on October 17, 2022 | dataOctober 21st, 2022
Read All

Plus Therapeutics Reports Third Quarter 2022 Financial Results and Business Highlights

By Dr. Matthew Watson

Awarded $17.6 million Product Development Research grant by the Cancer Prevention & Research Institute of Texas (CPRIT) to fund 186RNL development for leptomeningeal metastases (LM)

Continued here:
Plus Therapeutics Reports Third Quarter 2022 Financial Results and Business Highlights

To Read More: Plus Therapeutics Reports Third Quarter 2022 Financial Results and Business Highlights
categoriaGlobal News Feed commentoComments Off on Plus Therapeutics Reports Third Quarter 2022 Financial Results and Business Highlights | dataOctober 21st, 2022
Read All

Beyond Air® Schedules Second Fiscal Quarter 2023 Financial Results Conference Call and Webcast

By Dr. Matthew Watson

Call scheduled for Tuesday, November 8?? at 4:30 pm Eastern Time Call scheduled for Tuesday, November 8?? at 4:30 pm Eastern Time

View post:
Beyond Air® Schedules Second Fiscal Quarter 2023 Financial Results Conference Call and Webcast

To Read More: Beyond Air® Schedules Second Fiscal Quarter 2023 Financial Results Conference Call and Webcast
categoriaGlobal News Feed commentoComments Off on Beyond Air® Schedules Second Fiscal Quarter 2023 Financial Results Conference Call and Webcast | dataOctober 21st, 2022
Read All

Codexis to Report Third Quarter 2022 Financial Results on November 3

By Dr. Matthew Watson

REDWOOD CITY, Calif., Oct. 20, 2022 (GLOBE NEWSWIRE) -- Codexis, Inc. (Nasdaq: CDXS), a leading enzyme engineering company enabling the promise of synthetic biology, today announced that it will report its financial results for the third quarter of 2022 on Thursday, November 3, 2022, following the close of market. Codexis management will host a conference call and webcast at 4:30 p.m. Eastern Time to discuss the Company’s financial results and provide a business update.

Originally posted here:
Codexis to Report Third Quarter 2022 Financial Results on November 3

To Read More: Codexis to Report Third Quarter 2022 Financial Results on November 3
categoriaGlobal News Feed commentoComments Off on Codexis to Report Third Quarter 2022 Financial Results on November 3 | dataOctober 21st, 2022
Read All

Monthly information regarding the total number of voting rights and total number of shares of the Company as of September 30, 2022

By Dr. Matthew Watson

Monthly information regarding the total number of voting rights and

Read the rest here:
Monthly information regarding the total number of voting rights and total number of shares of the Company as of September 30, 2022

To Read More: Monthly information regarding the total number of voting rights and total number of shares of the Company as of September 30, 2022
categoriaGlobal News Feed commentoComments Off on Monthly information regarding the total number of voting rights and total number of shares of the Company as of September 30, 2022 | dataOctober 21st, 2022
Read All

Amarin Appoints Adam Berger and Geraldine Murphy to Board of Directors

By Dr. Matthew Watson

See the original post:
Amarin Appoints Adam Berger and Geraldine Murphy to Board of Directors

To Read More: Amarin Appoints Adam Berger and Geraldine Murphy to Board of Directors
categoriaGlobal News Feed commentoComments Off on Amarin Appoints Adam Berger and Geraldine Murphy to Board of Directors | dataOctober 21st, 2022
Read All

Hepion Pharmaceuticals Announces Publication of Food Effect Study with Rencofilstat

By Dr. Matthew Watson

EDISON, N.J., Oct. 20, 2022 (GLOBE NEWSWIRE) -- Hepion Pharmaceuticals, Inc. (NASDAQ:HEPA), a clinical stage biopharmaceutical company focused on Artificial Intelligence (“AI”)-driven therapeutic drug development for the treatment of non-alcoholic steatohepatitis (“NASH”), hepatocellular carcinoma (“HCC”), and other fibrotic diseases, today announced that the peer-reviewed journal, Clinical Pharmacology in Drug Development, has published the results of a clinical trial examining the effect of food on the oral bioavailability of rencofilstat, the Company’s lead drug candidate.

Read the original here:
Hepion Pharmaceuticals Announces Publication of Food Effect Study with Rencofilstat

To Read More: Hepion Pharmaceuticals Announces Publication of Food Effect Study with Rencofilstat
categoriaGlobal News Feed commentoComments Off on Hepion Pharmaceuticals Announces Publication of Food Effect Study with Rencofilstat | dataOctober 21st, 2022
Read All

Travere Therapeutics to Report Third Quarter 2022 Financial Results

By Dr. Matthew Watson

SAN DIEGO, Oct. 20, 2022 (GLOBE NEWSWIRE) -- Travere Therapeutics, Inc. (NASDAQ: TVTX) today announced it will report third quarter 2022 financial results on Thursday, October 27, 2022, after the close of the U.S. financial markets. The Company will host a conference call and webcast to discuss the financial results and provide a general business update at 4:30 p.m. ET.

View original post here:
Travere Therapeutics to Report Third Quarter 2022 Financial Results

To Read More: Travere Therapeutics to Report Third Quarter 2022 Financial Results
categoriaGlobal News Feed commentoComments Off on Travere Therapeutics to Report Third Quarter 2022 Financial Results | dataOctober 21st, 2022
Read All

Monte Rosa Therapeutics to Present at 5th Annual Targeted Protein Degradation Summit and 34th EORTC-NCI-AACR Symposium

By Dr. Matthew Watson

– New and Updated Preclinical Data Highlight Potential of GSPT1-directed Molecular Glue Degrader (MGD) MRT-2359 in the Treatment of MYC-driven Cancers –

View post:
Monte Rosa Therapeutics to Present at 5th Annual Targeted Protein Degradation Summit and 34th EORTC-NCI-AACR Symposium

To Read More: Monte Rosa Therapeutics to Present at 5th Annual Targeted Protein Degradation Summit and 34th EORTC-NCI-AACR Symposium
categoriaGlobal News Feed commentoComments Off on Monte Rosa Therapeutics to Present at 5th Annual Targeted Protein Degradation Summit and 34th EORTC-NCI-AACR Symposium | dataOctober 21st, 2022
Read All

Summit Therapeutics Presents Ri-CoDIFy Trial Results for Microbiome-Sparing Ridinilazole at IDWeek 2022

By Dr. Matthew Watson

Ridinilazole resulted in a 53% relative risk reduction in recurrence of C. difficile infection compared to treatment with vancomycin

Here is the original post:
Summit Therapeutics Presents Ri-CoDIFy Trial Results for Microbiome-Sparing Ridinilazole at IDWeek 2022

To Read More: Summit Therapeutics Presents Ri-CoDIFy Trial Results for Microbiome-Sparing Ridinilazole at IDWeek 2022
categoriaGlobal News Feed commentoComments Off on Summit Therapeutics Presents Ri-CoDIFy Trial Results for Microbiome-Sparing Ridinilazole at IDWeek 2022 | dataOctober 21st, 2022
Read All

Jounce Therapeutics to Present Multiple Posters at the Society for Immunotherapy of Cancer’s (SITC) 37th Annual Meeting and the European Society of…

By Dr. Matthew Watson

- Two preclinical posters highlighting the JTX-1484 program and LILRB family at SITC 2022 -

Read more:
Jounce Therapeutics to Present Multiple Posters at the Society for Immunotherapy of Cancer’s (SITC) 37th Annual Meeting and the European Society of...

To Read More: Jounce Therapeutics to Present Multiple Posters at the Society for Immunotherapy of Cancer’s (SITC) 37th Annual Meeting and the European Society of…
categoriaGlobal News Feed commentoComments Off on Jounce Therapeutics to Present Multiple Posters at the Society for Immunotherapy of Cancer’s (SITC) 37th Annual Meeting and the European Society of… | dataOctober 21st, 2022
Read All

Bone Therapeutics provides Third Quarter 2022 Business Update

By Dr. Matthew Watson

REGULATED INFORMATION

Read more here:
Bone Therapeutics provides Third Quarter 2022 Business Update

To Read More: Bone Therapeutics provides Third Quarter 2022 Business Update
categoriaGlobal News Feed commentoComments Off on Bone Therapeutics provides Third Quarter 2022 Business Update | dataOctober 21st, 2022
Read All

BREAKTHROUGH TECHNOLOGY FOR IPS-DERIVED CELL THERAPIES TURNED INTO GMP PLATFORM BY TREEFROG THERAPEUTICS & INVETECH – Yahoo Finance

By daniellenierenberg

BORDEAUX, France, Oct. 11, 2022 /PRNewswire/ --TreeFrog Therapeutics,a biotechnology company developing stem cell-derived therapies in regenerative medicine and immuno-oncology based on the biomimetic C-Stemtechnology platform, and Invetech, a global leader in the development and production ofautomated manufacturing solutionsfor cell and advanced therapies, today announced the delivery of a GMP-grade cell encapsulation device using the C-Stemtechnology. The machine will be transferred in 2023 to a contract development and manufacturing organization (CDMO) to produce TreeFrog's cell therapy candidate for Parkinson's disease, with the aim of a first-in-human trial in 2024.Over 2023, Invetech will deliver three additional GMP encapsulation devices to support TreeFrog's in-house and partnered cell therapy programs in regenerative medicine and immuno-oncology.

TreeFrogs C-Stem technology generates alginate capsules seeded with induced pluripotent stem cells (iPSCs) at very high speed. Engineered to mimic the in vivo stem cell niche, the capsules allow iPSCs to grow exponentially in 3D, and to differentiate into ready-to-transplant functional microtissues.

Blending microfluidics and stem cell biology, TreeFrog's C-Stemtechnology generates alginate capsules seeded with induced pluripotent stem cells (iPSCs) at very high speed. Engineered to mimic the in vivo stem cell niche, the capsules allow iPSCs to grow exponentially in 3D, and to differentiate into ready-to-transplant functional microtissues. And because alginate is both porous and highly resistant, encapsulated iPSCs can be expanded and differentiated in large-scale bioreactors without suffering from impeller-induced shear stress.

"TreeFrog Therapeutics introduces a breakthrough technology for cell therapy, which impacts scale, quality, as well as the efficacy and safety potential of cellular products. Automating this disruptive technology and turning it into a robust GMP-grade instrument is a tremendous achievement for our team. This deliverable is the result of a very fruitful and demanding collaboration with TreeFrog's engineers in biophysics and bioproduction over the past four years. We're now eager to learn how the neural microtissues produced with C-Stemwill perform in the clinic." Anthony Annibale, Global VP Commercial at Invetech.

Started in 2019, the collaboration between TreeFrog and Invetech led to the delivery of a prototype in October 2020. With this research-grade machine, TreeFrog demonstrated the scalability of C-Stem, moving within six months from milliliter-scale to 10-liter bioreactors. In June 2021, the company announced the production of two single-batches of 15 billion iPSCs in 10L bioreactors with an unprecedented 275-fold amplification per week, striking reproducibility and best-in-class cell quality. The new GMP-grade device delivered by Invetech features the same technical specifications. The machine generates over 1,000 capsules per second, allowing to seed bioreactors from 200mL to 10L. However, the device was entirely redesigned to fit bioproduction standards.

"With the GMP device, our main challenge was to minimize the learning curve for operators, so as to facilitate tech transfer. Invetech and our team did an outstanding job in terms of automation and industrial design to make the device both robust and easy to use. As an inventor, I am so proud of the journey of the C-Stemtechnology. Many elements have been changed and improved on the way, and now comes the time to put the platform in the hands of real-world users to make real products." Kevin Alessandri, Ph.D., co-founder and chief technology officer, TreeFrog Therapeutics

"In October 2020, we announced that we were planning for the delivery of a GMP encapsulation device by the end of 2022. Exactly two years after, we're right on time. I guess this machine testifies to the outstanding execution capacity of TreeFrog and Invetech. But more importantly, this machine constitutes a key milestone. Our platform can now be used to manufacture clinical-grade cell therapy products. Our plan is to accelerate the translation of our in-house and partnered programs to the clinic, with a focus on immuno-oncology and regenerative medicine applications." Frederic Desdouits, Ph.D., chief executive officer, TreeFrog Therapeutics

About Invetech

Invetech helps cell and gene therapy developers to visualize, strategize and manage the future. With proven processes, expert insights and full-spectrum services, we swiftly accelerate life-changing therapies from the clinic to commercial-scale manufacturing. Through our ready-to-run, preconfigured systems, our custom and configurable technology platforms and automated production systems, we assure predictable, reproducible products of the highest quality and efficacy. Our integrated approach brings together biological scientists, engineers, designers and program managers to deliver successful, cost-effective market offerings to more people, more quickly. Working in close collaboration with early-stage and mature life sciences companies, we are committed to advancing the next generation of vital, emerging therapies to revolutionize healthcare and precision medicine.invetechgroup.com

About TreeFrog Therapeutics

TreeFrog Therapeutics is a French-based biotech company aiming to unlock access to cell therapies for millions of patients. Bringing together over 100 biophysicists, cell biologists and bioproduction engineers, TreeFrog Therapeutics raised $82M over the past 3 years to advance a pipeline of stem cell-based therapies in immuno-oncology and regenerative medicine. In 2022, the company opened technological hubs in Boston, USA, and Kobe, Japan, with the aim of driving the adoption of the C-Stemplatform and establish strategic alliances with leading academic, biotech and industry players in the field of cell therapy.www.treefrog.fr

Media ContactsPierre-Emmanuel GaultierTreeFrog Therapeutics+ 33 6 45 77 42 58pierre@treefrog.fr

Marisa ReinosoInvetech+1 858 437 1061marisa.reinoso@invetechgroup.com

TreeFrog Therapeutics is a French-based biotech company aiming to unlock access to cell therapies for millions of patients. Bringing together over 100 biophysicists, cell biologists and bioproduction engineers, TreeFrog Therapeutics raised $82M over the past 3 years to advance a pipeline of stem cell-based therapies in immuno-oncology and regenerative medicine.

Invetech logo (PRNewsFoto/Invetech)

Cision

View original content to download multimedia:https://www.prnewswire.com/news-releases/breakthrough-technology-for-ips-derived-cell-therapies-turned-into-gmp-platform-by-treefrog-therapeutics--invetech-301645370.html

SOURCE Invetech; Treefrog Therapeutics

View original post here:
BREAKTHROUGH TECHNOLOGY FOR IPS-DERIVED CELL THERAPIES TURNED INTO GMP PLATFORM BY TREEFROG THERAPEUTICS & INVETECH - Yahoo Finance

To Read More: BREAKTHROUGH TECHNOLOGY FOR IPS-DERIVED CELL THERAPIES TURNED INTO GMP PLATFORM BY TREEFROG THERAPEUTICS & INVETECH – Yahoo Finance
categoriaIPS Cell Therapy commentoComments Off on BREAKTHROUGH TECHNOLOGY FOR IPS-DERIVED CELL THERAPIES TURNED INTO GMP PLATFORM BY TREEFROG THERAPEUTICS & INVETECH – Yahoo Finance | dataOctober 13th, 2022
Read All

A CRISPR Alternative for Correcting Mutations That Sensitize Cells to DNA Damage – The Scientist

By daniellenierenberg

Fanconi anemia is a rare genetic disease in which essential DNA repair pathway genes are mutated, disrupting the DNA damage response. Patients with Fanconi anemia experience hematological complications, including bone marrow failure, and are predisposed to cancer. The only curative therapy for the hematological symptoms of Fanconi anemia is an allogeneic hematopoietic stem cell transplant, in which a patient receives healthy stem cells from a donor. While this may cure or prevent some of the diseases complications, stem cell transplantation can cause additional difficulties, including graft-versus-host disease (GvHD) and exacerbated cancer risk.1

There is growing interest in applying genome editing technologies like CRISPR-Cas9 to correct Fanconi anemia mutations in patient-derived cells for autologous transplants, in which corrected stem cells are given back to the patient. However, this disease poses a unique challenge: How do you apply a genome editing technique in cells that are particularly sensitive to DNA damage? Fanconi anemia cells cannot resolve the double-strand breaks that conventional CRISPR-Cas9 gene editing creates in the target DNA, which prevents researchers from effectively correcting disease-causing mutations with this method.

In a study published in International Journal of Molecular Science, a research team at the University of Minnesota led by Branden Moriarity and Beau Webber used Cas9-based tools called base editors (BEs) to edit genes in Fanconi anemia patient-derived cells without inducing double-strand DNA damage.2 BEs are fusion proteins made of a Cas9 enzyme that cleaves target DNA (nCas9) and a deaminase that converts cytidine to uridine (cytosine base editor, CBE) or adenosine to inosine (adenosine base editor, ABE). During DNA replication or repair, sites targeted by a BE are rewritten as thymine in the case of CBEs, or guanine with ABEs.

Although base editors do not induce double-strand breaks, they still nick the DNA and trigger a DNA repair response. Because of this, the researchers first examined if CBEs and ABEs would work on non-Fanconi anemia genes in patient-derived cells. There was that mystery, you know, because [Fanconi anemia patient cells are] DNA repair deficient. So we weren't surewe thought maybe it would work, but not as well as a normal cell. But indeed, it works on the same level, basically. So that was pretty exciting, Moriarity explained.

The research team then demonstrated that CBEs and ABEs can correct Fanconi anemia-causing mutations in the FANCA gene in primary patient fibroblast and lymphoblastoid cell lines. Base editing restored FANCA protein expression and improved the ability of the patient-derived cells to grow in the presence of a DNA damaging chemical. Additionally, in culture, fibroblasts with corrected FANCA mutations outgrew cells in which the base editing failed. Finally, the researchers assessed if BEs could correct mutations in different Fanconi anemia genes. Using an algorithm, they predicted that most Fanconi anemia mutations were correctable either by BEs or by another nCas9-fusion technology called prime editing (PE), which is capable of large genetic insertions and deletions.

This work comes on the heels of a preprint from another research group at The Centre for Energy, Environmental and Technological Research and ETH Zurich, who investigated ABEs in patient blood cell lines. This group also effectively targeted Fanconi anemia genes with BE technology, and their investigation went one step further: they corrected mutations in patient-derived hematopoietic stem cells.3This was something that Moriarity and Webber were unable to dobecause the disease is a bone marrow failure syndrome, these cells are scarce. Basically, these patients do not have stem cells, explains Annarita Miccio, a senior researcher and lab director at Institute Imagine of Paris Cit University, who was not involved in either study. These are very challenging experiments, and more than the experiments, the challenge of [treating] Fanconi anemia is exactly thatthe number of cells.

Despite this challenge, the researchers have laid the groundwork for genome editing as a treatment approach in Fanconi anemia, without the need for double-strand DNA breaks. I think the study we did is a good, solid proof of concept, and sets the stage for the next steps, but certainly, it's not the end of the story, said Webber.

References

Follow this link:
A CRISPR Alternative for Correcting Mutations That Sensitize Cells to DNA Damage - The Scientist

To Read More: A CRISPR Alternative for Correcting Mutations That Sensitize Cells to DNA Damage – The Scientist
categoriaBone Marrow Stem Cells commentoComments Off on A CRISPR Alternative for Correcting Mutations That Sensitize Cells to DNA Damage – The Scientist | dataOctober 13th, 2022
Read All

Stem Cell Manufacturing Global Market Report 2022: Widespread Product Utilization in Effective Disease Management, Personalized Medicine, and Genome…

By daniellenierenberg

Company Logo

Global Stem Cell Manufacturing Market

Global Stem Cell Manufacturing Market

Dublin, Oct. 11, 2022 (GLOBE NEWSWIRE) -- The "Stem Cell Manufacturing Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2022-2027" report has been added to ResearchAndMarkets.com's offering.

The global stem cell manufacturing market size reached US$ 11.2 Billion in 2021. Looking forward, the publisher expects the market to reach US$ 18.59 Billion by 2027, exhibiting a CAGR of 8.81% during 2021-2027.

Stem cells are undifferentiated or partially differentiated cells that make up the tissues and organs of animals and plants. They are commonly sourced from blood, bone marrow, umbilical cord, embryo, and placenta. Under the right body and laboratory conditions, stem cells can divide to form more cells, such as red blood cells (RBCs), platelets, and white blood cells, which generate specialized functions.

They are widely used for human disease modeling, drug discovery, development of cell therapies for untreatable diseases, gene therapy, and tissue engineering. Stem cells are cryopreserved to maintain their viability and minimize genetic change and are consequently used later to replace damaged organs and tissues and treat various diseases.

Stem Cell Manufacturing Market Trends:

The global market is primarily driven by the increasing venture capital (VC) investments in stem cell research due to the rising awareness about the therapeutic potency of stem cells. Apart from this, the widespread product utilization in effective disease management, personalized medicine, and genome testing applications are favoring the market growth. Additionally, the incorporation of three-dimensional (3D) printing and microfluidic technologies to reduce production time and lower cost by integrating multiple production steps into one device is providing an impetus to the market growth.

Furthermore, the increasing product utilization in the pharmaceutical industry for manufacturing hematopoietic stem cells (HSC)- and mesenchymal stem cells (MSC)-based drugs for treating tumors, leukemia, and lymphoma is acting as another growth-inducing factor.

Story continues

Moreover, the increasing product application in research applications to produce new drugs that assist in improving functions and altering the progress of diseases is providing a considerable boost to the market. Other factors, including the increasing usage of the technique in tissue and organ replacement therapies, significant improvements in medical infrastructure, and the implementation of various government initiatives promoting public health, are anticipated to drive the market.

Key Players

Anterogen Co. Ltd.

Becton Dickinson and Company

Bio-Rad Laboratories Inc.

Bio-Techne Corporation

Corning Incorporated

FUJIFILM Holdings Corporation

Lonza Group AG

Merck KGaA

Sartorius AG

Takara Bio Inc.

Thermo Fisher Scientific Inc.

Key Questions Answered in This Report:

How has the global stem cell manufacturing market performed so far and how will it perform in the coming years?

What has been the impact of COVID-19 on the global stem cell manufacturing market?

What are the key regional markets?

What is the breakup of the market based on the product?

What is the breakup of the market based on the application?

What is the breakup of the market based on the end user?

What are the various stages in the value chain of the industry?

What are the key driving factors and challenges in the industry?

What is the structure of the global stem cell manufacturing market and who are the key players?

What is the degree of competition in the industry?

Key Market Segmentation

Breakup by Product:

Consumables

Culture Media

Others

Instruments

Bioreactors and Incubators

Cell Sorters

Others

Stem Cell Lines

Hematopoietic Stem Cells (HSC)

Mesenchymal Stem Cells (MSC)

Induced Pluripotent Stem Cells (iPSC)

Embryonic Stem Cells (ESC)

Neural Stem Cells (NSC)

Multipotent Adult Progenitor Stem Cells

Breakup by Application:

Research Applications

Life Science Research

Drug Discovery and Development

Clinical Application

Allogenic Stem Cell Therapy

Autologous Stem Cell Therapy

Cell and Tissue Banking Applications

Breakup by End User:

Pharmaceutical & Biotechnology Companies

Academic Institutes, Research Laboratories and Contract Research Organizations

Hospitals and Surgical Centers

Cell and Tissue banks

Others

Breakup by Region:

North America

United States

Canada

Asia-Pacific

China

Japan

India

South Korea

Australia

Indonesia

Others

Europe

Germany

France

United Kingdom

Italy

Spain

Russia

Others

Latin America

Brazil

Mexico

Others

Middle East and Africa

Key Topics Covered:

1 Preface

2 Scope and Methodology

3 Executive Summary

4 Introduction

5 Global Stem Cell Manufacturing Market

6 Market Breakup by Product

7 Market Breakup by Application

8 Market Breakup by End User

9 Market Breakup by Region

Here is the original post:
Stem Cell Manufacturing Global Market Report 2022: Widespread Product Utilization in Effective Disease Management, Personalized Medicine, and Genome...

To Read More: Stem Cell Manufacturing Global Market Report 2022: Widespread Product Utilization in Effective Disease Management, Personalized Medicine, and Genome…
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cell Manufacturing Global Market Report 2022: Widespread Product Utilization in Effective Disease Management, Personalized Medicine, and Genome… | dataOctober 13th, 2022
Read All

Stem Cell Manufacturing Global Market Report 2022: Widespread Product Utilization in Effective Disease Ma – Benzinga

By daniellenierenberg

Dublin, Oct. 11, 2022 (GLOBE NEWSWIRE) -- The "Stem Cell Manufacturing Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2022-2027" report has been added to ResearchAndMarkets.com's offering.

The global stem cell manufacturing market size reached US$ 11.2 Billion in 2021. Looking forward, the publisher expects the market to reach US$ 18.59 Billion by 2027, exhibiting a CAGR of 8.81% during 2021-2027.

Stem cells are undifferentiated or partially differentiated cells that make up the tissues and organs of animals and plants. They are commonly sourced from blood, bone marrow, umbilical cord, embryo, and placenta. Under the right body and laboratory conditions, stem cells can divide to form more cells, such as red blood cells (RBCs), platelets, and white blood cells, which generate specialized functions.

They are widely used for human disease modeling, drug discovery, development of cell therapies for untreatable diseases, gene therapy, and tissue engineering. Stem cells are cryopreserved to maintain their viability and minimize genetic change and are consequently used later to replace damaged organs and tissues and treat various diseases.

Stem Cell Manufacturing Market Trends:

The global market is primarily driven by the increasing venture capital (VC) investments in stem cell research due to the rising awareness about the therapeutic potency of stem cells. Apart from this, the widespread product utilization in effective disease management, personalized medicine, and genome testing applications are favoring the market growth. Additionally, the incorporation of three-dimensional (3D) printing and microfluidic technologies to reduce production time and lower cost by integrating multiple production steps into one device is providing an impetus to the market growth.

Furthermore, the increasing product utilization in the pharmaceutical industry for manufacturing hematopoietic stem cells (HSC)- and mesenchymal stem cells (MSC)-based drugs for treating tumors, leukemia, and lymphoma is acting as another growth-inducing factor.

Moreover, the increasing product application in research applications to produce new drugs that assist in improving functions and altering the progress of diseases is providing a considerable boost to the market. Other factors, including the increasing usage of the technique in tissue and organ replacement therapies, significant improvements in medical infrastructure, and the implementation of various government initiatives promoting public health, are anticipated to drive the market.

Key Players

Key Questions Answered in This Report:

Key Market Segmentation

Breakup by Product:

Breakup by Application:

Breakup by End User:

Breakup by Region:

Key Topics Covered:

1 Preface

2 Scope and Methodology

3 Executive Summary

4 Introduction

5 Global Stem Cell Manufacturing Market

6 Market Breakup by Product

7 Market Breakup by Application

8 Market Breakup by End User

9 Market Breakup by Region

10 SWOT Analysis

11 Value Chain Analysis

12 Porters Five Forces Analysis

13 Price Analysis

14 Competitive Landscape

For more information about this report visit https://www.researchandmarkets.com/r/5iujo7

Original post:
Stem Cell Manufacturing Global Market Report 2022: Widespread Product Utilization in Effective Disease Ma - Benzinga

To Read More: Stem Cell Manufacturing Global Market Report 2022: Widespread Product Utilization in Effective Disease Ma – Benzinga
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cell Manufacturing Global Market Report 2022: Widespread Product Utilization in Effective Disease Ma – Benzinga | dataOctober 13th, 2022
Read All

Rocket Pharmaceuticals Announces Presentations Highlighting Lentiviral Gene Therapies at the 29th Annual Congress of the European Society of Gene…

By daniellenierenberg

CRANBURY, N.J.--(BUSINESS WIRE)--Rocket Pharmaceuticals, Inc. (NASDAQ: RCKT), a leading late-stage biotechnology company advancing an integrated and sustainable pipeline of genetic therapies for rare childhood disorders with high unmet need, today announces data presentations at the 29th Annual Congress of the European Society of Gene & Cell Therapy (ESGCT) in Edinburgh, United Kingdom, taking place October 11-14, 2022. Presentations will include clinical data from Rockets lentiviral vector (LV)-based gene therapy programs for Leukocyte Adhesion Deficiency-I (LAD-I), Fanconi Anemia (FA) and Pyruvate Kinase Deficiency (PKD). Donald B. Kohn, MD, Distinguished Professor of Microbiology, Immunology & Molecular Genetics, Pediatrics, and Molecular & Medical Pharmacology at University of California, Los Angeles (UCLA) and Director of the UCLA Human Gene and Cell Therapy Program, will also give an Invited Talk incorporating previously disclosed data from the RP-L201 trial for LAD-I.

Positive Updated Safety and Efficacy Data from Phase 2 Pivotal Trial for Fanconi Anemia (FA)

The poster and presentation include updated safety and efficacy data from the Phase 2 pivotal trial of RP-L102, Rockets ex-vivo lentiviral gene therapy candidate for the treatment of FA.

Positive Top-line Clinical Data from Phase 2 Pivotal Trial for Severe Leukocyte Adhesion Deficiency-I (LAD-I)

The oral presentation includes previously disclosed efficacy and safety data at three to 24 months of follow-up after RP-L201 infusion for all patients and overall survival data for seven patients at 12 months or longer after infusion. RP-L201 is Rockets ex-vivo lentiviral gene therapy candidate for the treatment of severe LAD-I.

Interim Data from Ongoing Phase 1 Trial for Pyruvate Kinase Deficiency (PKD)

The poster and presentation include previously disclosed safety and efficacy data from the Phase 1 trial of RP-L301, Rockets ex-vivo lentiviral gene therapy candidate for the treatment of PKD.

Details for Rockets Invited Talk and poster presentations are as follows:

Title: Interim Results from an ongoing Phase 1/2 Study of Lentiviral-Mediated Ex-Vivo Gene Therapy for Pediatric Patients with Severe Leukocyte Adhesion Deficiency-I (LAD-I)Session: Clinical Trials (Plenary 2)Presenter: Donald B. Kohn, MD - University of California, Los Angeles, Distinguished Professor of Microbiology, Immunology & Molecular Genetics (MIMG), Pediatrics, and Molecular & Medical Pharmacology; Director of the UCLA Human Gene and Cell Therapy ProgramSession date and time: Wednesday, 12 October at 11:10-13:15 BSTLocation: Edinburgh International Conference Centre (EICC)Presentation Number: INV20

Title: Lentiviral-Mediated Gene Therapy for Patients with Fanconi Anemia [Group A]: Results from Global RP-L102 Clinical TrialsSession: Poster Session 1Presenter: Julin Sevilla MD, PhD - Fundacin para la Investigacin Biomdica, Hospital Infantil Universitario Nio JessSession date and time: Wednesday, 12 October at 19:30-21:00 BSTLocation: Edinburgh International Conference Centre (EICC)Poster Number: P139

Title: Preliminary Conclusions of the Phase I/II Gene therapy Trial in Patients with Fanconi Anemia-ASession: Blood Diseases: Haematopoietic Cell DisordersPresenter: Juan Bueren, PhD - Unidad de Innovacin Biomdica, Centro de Investigaciones Energticas, Medioambientales y Tecnolgicas (CIEMAT)Session date and time: Thursday, 13 October at 15:30-17:30 BSTLocation: Edinburgh International Conference Centre (EICC)Presentation Number: INV41

Title: Interim Results from an Ongoing Global Phase 1 Study of Lentiviral-Mediated Gene Therapy for Pyruvate Kinase DeficiencySession: Poster Session 2Presenter: Jos Luis Lpez Lorenzo, MD, Hospital Universitario Fundacin Jimnez DazSession date and time: Thursday, 13 October at 17:30-19:15 BSTLocation: Edinburgh International Conference Centre (EICC)Poster Number: P128

Abstracts for the presentations can be found online at: https://www.esgct.eu/.

About Fanconi Anemia

Fanconi Anemia (FA) is a rare pediatric disease characterized by bone marrow failure, malformations and cancer predisposition. The primary cause of death among patients with FA is bone marrow failure, which typically occurs during the first decade of life. Allogeneic hematopoietic stem cell transplantation (HSCT), when available, corrects the hematologic component of FA, but requires myeloablative conditioning. Graft-versus-host disease, a known complication of allogeneic HSCT, is associated with an increased risk of solid tumors, mainly squamous cell carcinomas of the head and neck region. Approximately 60-70% of patients with FA have a Fanconi Anemia complementation group A (FANCA) gene mutation, which encodes for a protein essential for DNA repair. Mutations in the FANCA gene leads to chromosomal breakage and increased sensitivity to oxidative and environmental stress. Increased sensitivity to DNA-alkylating agents such as mitomycin-C (MMC) or diepoxybutane (DEB) is a gold standard test for FA diagnosis. Somatic mosaicism occurs when there is a spontaneous correction of the mutated gene that can lead to stabilization or correction of a FA patients blood counts in the absence of any administered therapy. Somatic mosaicism, often referred to as natural gene therapy provides a strong rationale for the development of FA gene therapy because of the selective growth advantage of gene-corrected hematopoietic stem cells over FA cells.

About Leukocyte Adhesion Deficiency-I

Severe Leukocyte Adhesion Deficiency-I (LAD-I) is a rare, autosomal recessive pediatric disease caused by mutations in the ITGB2 gene encoding for the beta-2 integrin component CD18. CD18 is a key protein that facilitates leukocyte adhesion and extravasation from blood vessels to combat infections. As a result, children with severe LAD-I are often affected immediately after birth. During infancy, they suffer from recurrent life-threatening bacterial and fungal infections that respond poorly to antibiotics and require frequent hospitalizations. Children who survive infancy experience recurrent severe infections including pneumonia, gingival ulcers, necrotic skin ulcers, and septicemia. Without a successful bone marrow transplant, mortality in patients with severe LAD-I is 60-75% prior to the age of 2 and survival beyond the age of 5 is uncommon. There is a high unmet medical need for patients with severe LAD-I.

Rockets LAD-I research is made possible by a grant from the California Institute for Regenerative Medicine (Grant Number CLIN2-11480). The contents of this press release are solely the responsibility of Rocket and do not necessarily represent the official views of CIRM or any other agency of the State of California.

About Pyruvate Kinase Deficiency

Pyruvate kinase deficiency (PKD) is a rare, monogenic red blood cell disorder resulting from a mutation in the PKLR gene encoding for the pyruvate kinase enzyme, a key component of the red blood cell glycolytic pathway. Mutations in the PKLR gene result in increased red cell destruction and the disorder ranges from mild to life-threatening anemia. PKD has an estimated prevalence of 4,000 to 8,000 patients in the United States and the European Union. Children are the most commonly and severely affected subgroup of patients. Currently available treatments include splenectomy and red blood cell transfusions, which are associated with immune defects and chronic iron overload.

RP-L301 was in-licensed from the Centro de Investigaciones Energticas, Medioambientales y Tecnolgicas (CIEMAT), Centro de Investigacin Biomdica en Red de Enfermedades Raras (CIBERER) and Instituto de Investigacin Sanitaria de la Fundacin Jimnez Daz (IIS-FJD).

About Rocket Pharmaceuticals, Inc.

Rocket Pharmaceuticals, Inc. (NASDAQ: RCKT) is advancing an integrated and sustainable pipeline of investigational genetic therapies designed to correct the root cause of complex and rare childhood disorders. The Companys platform-agnostic approach enables it to design the best therapy for each indication, creating potentially transformative options for patients afflicted with rare genetic diseases. Rocket's clinical programs using lentiviral vector (LVV)-based gene therapy are for the treatment of Fanconi Anemia (FA), a difficult to treat genetic disease that leads to bone marrow failure and potentially cancer, Leukocyte Adhesion Deficiency-I (LAD-I), a severe pediatric genetic disorder that causes recurrent and life-threatening infections which are frequently fatal, and Pyruvate Kinase Deficiency (PKD), a rare, monogenic red blood cell disorder resulting in increased red cell destruction and mild to life-threatening anemia. Rockets first clinical program using adeno-associated virus (AAV)-based gene therapy is for Danon Disease, a devastating, pediatric heart failure condition. For more information about Rocket, please visit http://www.rocketpharma.com

Rocket Cautionary Statement Regarding Forward-Looking Statements

Various statements in this release concerning Rockets future expectations, plans and prospects, including without limitation, Rockets expectations regarding its guidance for 2022 in light of COVID-19, the safety and effectiveness of product candidates that Rocket is developing to treat Fanconi Anemia (FA), Leukocyte Adhesion Deficiency-I (LAD-I), Pyruvate Kinase Deficiency (PKD), and Danon Disease, the expected timing and data readouts of Rockets ongoing and planned clinical trials, the expected timing and outcome of Rockets regulatory interactions and planned submissions, Rockets plans for the advancement of its Danon Disease program and the safety, effectiveness and timing of related pre-clinical studies and clinical trials, may constitute forward-looking statements for the purposes of the safe harbor provisions under the Private Securities Litigation Reform Act of 1995 and other federal securities laws and are subject to substantial risks, uncertainties and assumptions. You should not place reliance on these forward-looking statements, which often include words such as "believe," "expect," "anticipate," "intend," "plan," "will give," "estimate," "seek," "will," "may," "suggest" or similar terms, variations of such terms or the negative of those terms. Although Rocket believes that the expectations reflected in the forward-looking statements are reasonable, Rocket cannot guarantee such outcomes. Actual results may differ materially from those indicated by these forward-looking statements as a result of various important factors, including, without limitation, Rockets ability to monitor the impact of COVID-19 on its business operations and take steps to ensure the safety of patients, families and employees, the interest from patients and families for participation in each of Rockets ongoing trials, our expectations regarding the delays and impact of COVID-19 on clinical sites, patient enrollment, trial timelines and data readouts, our expectations regarding our drug supply for our ongoing and anticipated trials, actions of regulatory agencies, which may affect the initiation, timing and progress of pre-clinical studies and clinical trials of its product candidates, Rockets dependence on third parties for development, manufacture, marketing, sales and distribution of product candidates, the outcome of litigation, and unexpected expenditures, as well as those risks more fully discussed in the section entitled "Risk Factors" in Rockets Annual Report on Form 10-K for the year ended December 31, 2021, filed February 28, 2022 with the SEC and subsequent filings with the SEC including our Quarterly Reports on Form 10-Q. Accordingly, you should not place undue reliance on these forward-looking statements. All such statements speak only as of the date made, and Rocket undertakes no obligation to update or revise publicly any forward-looking statements, whether as a result of new information, future events or otherwise.

View original post here:
Rocket Pharmaceuticals Announces Presentations Highlighting Lentiviral Gene Therapies at the 29th Annual Congress of the European Society of Gene...

To Read More: Rocket Pharmaceuticals Announces Presentations Highlighting Lentiviral Gene Therapies at the 29th Annual Congress of the European Society of Gene…
categoriaBone Marrow Stem Cells commentoComments Off on Rocket Pharmaceuticals Announces Presentations Highlighting Lentiviral Gene Therapies at the 29th Annual Congress of the European Society of Gene… | dataOctober 13th, 2022
Read All

Page 58«..1020..57585960..7080..»


Copyright :: 2024