Page 479«..1020..478479480481..490500..»

Stem cell advance may increase efficiency of tissue regeneration

By Dr. Matthew Watson

6 hours ago Induced pluripotent stem cellsknown as iPS cells, and which act very much like embryonic stem cellsare here growing into heart cells (blue) and nerve cells (green). Credit: Gladstone Institutes/Chris Goodfellow

A new stem-cell discovery might one day lead to a more streamlined process for obtaining stem cells, which in turn could be used in the development of replacement tissue for failing body parts, according to UC San Francisco scientists who reported the findings in the current edition of Cell.

The work builds on a strategy that involves reprogramming adult cells back to an embryonic state in which they again have the potential to become any type of cell.

The efficiency of this process may soon increase thanks to the scientists' identification of biochemical pathways that can inhibit the necessary reprogramming of gene activity in adult human cells. Removing these barriers increased the efficiency of stem-cell production, the researchers found.

"Our new work has important implications for both regenerative medicine and cancer research," said Miguel Ramalho-Santos, PhD, associate professor of obstetrics, gynecology and reproductive sciences and a member of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, who led the research, funded in part by a prestigious NIH Director's New Innovator Award.

The earlier discovery that it was possible to take specialized adult cells and reverse the developmental clock to strip the mature cells of their distinctive identities and characteristics and to make them immortal, reprogrammable cells that theoretically can be used to replace any tissue type led to a share of the Nobel Prize in Physiology or Medicine being awarded to UCSF, Gladstone Institutes and Kyoto University researcher Shinya Yamanaka, MD, in 2012.

Turning Back the Clock on Cellular Maturation

These induced pluripotent stem (iPS) cells are regarded as an alternative experimental approach to ongoing efforts to develop tissue from stem cells obtained from early-stage human embryos. However, despite the promise of iPS cells and the excitement surrounding iPS research, the percentage of adult cells successfully converted to iPS cells is typically low, and the resultant cells often retain traces of their earlier lives as specialized cells.

Researchers generate stem cells by forcing the activation within adult cells of pluripotency-inducing genesstarting with the so-called "Yamanaka factors" a process that turns back the clock on cellular maturation.

Yet, as Ramalho-Santos notes, "From the time of the discovery of iPS cells, it was appreciated that the specialized cells from which they are derived are not a blank slate. They express their own genes that may resist or counter reprogramming."

Read the original post:
Stem cell advance may increase efficiency of tissue regeneration

To Read More: Stem cell advance may increase efficiency of tissue regeneration
categoriaSkin Stem Cells commentoComments Off on Stem cell advance may increase efficiency of tissue regeneration | dataJuly 29th, 2014
Read All

Cell Therapy IPS Cell Therapy IPS Cell Therapy

By NEVAGiles23

What is Okyanos Cardiac Stem Cell Therapy? Cardiac stem cell therapy is a promising new treatment option for advanced heart disease patients. This short video explores the procedure and benefits of adult stem cell therapy for severe

By: Okyanos Heart Institute

Go here to see the original: What is Okyanos Cardiac Stem Cell Therapy? Video

David's Stories from Detroit David in Detroit for Netroots Nation 2014 On the Bonus Show: A Russian man beats the bank at it's own game, stem-cell therapy gone awry, Rhode Island's accidental legal prostitution experiment

By: David Pakman Show

Visit link: Davids Stories from Detroit Video

Kellie van Meurs, pictured with her husband Mark, died while undergoing stem cell treatment in Russia. Photo: Facebook

Supporters of a Brisbane mother-of-two who died while undergoing a controversial stem cell treatment in Russia say it did not cause her death, nor have others been discouraged from seeking it.

Kellie van Meurs suffered from a rare neurological disorder called stiff person syndrome, which causes progressive rigidity of the body and chronic pain.

She travelled to Moscow in late June to undergo an autologous haematopoietic stem cell transplant (HSCT) under the care of Dr Denis Fedorenko from the National Pirogov Medical Surgical Centre.

See the original post here:
Cell Therapy IPS Cell Therapy IPS Cell Therapy

To Read More: Cell Therapy IPS Cell Therapy IPS Cell Therapy
categoriaIPS Cell Therapy commentoComments Off on Cell Therapy IPS Cell Therapy IPS Cell Therapy | dataJuly 28th, 2014
Read All

Stem Cells to Renew the Health and Lives of People – Aishwarya Rai Bachchan in Chennai – Video

By NEVAGiles23


Stem Cells to Renew the Health and Lives of People - Aishwarya Rai Bachchan in Chennai
Stem Cells to Renew the Health and Lives of People - Aishwarya Rai Bachchan in Chennai - RedPix 24x7 #AishwaryaRai #AishwaryaRaiBachchan #StemCells #LifeCell LifeCell is India #39;s first and...

By: Red Pix 24x7

View original post here:
Stem Cells to Renew the Health and Lives of People - Aishwarya Rai Bachchan in Chennai - Video

To Read More: Stem Cells to Renew the Health and Lives of People – Aishwarya Rai Bachchan in Chennai – Video
categoriaUncategorized commentoComments Off on Stem Cells to Renew the Health and Lives of People – Aishwarya Rai Bachchan in Chennai – Video | dataJuly 28th, 2014
Read All

David’s Stories from Detroit – Video

By LizaAVILA


David #39;s Stories from Detroit
David in Detroit for Netroots Nation 2014 --On the Bonus Show: A Russian man beats the bank at it #39;s own game, stem-cell therapy gone awry, Rhode Island #39;s accidental legal prostitution experiment...

By: David Pakman Show

Read the original:
David's Stories from Detroit - Video

To Read More: David’s Stories from Detroit – Video
categoriaUncategorized commentoComments Off on David’s Stories from Detroit – Video | dataJuly 28th, 2014
Read All

Skinspirations Study Supports Medical Findings: Stem Cell Treatment Triggers Tissue Regeneration

By Dr. Matthew Watson

Tampa Bay, FL (PRWEB) July 28, 2014

Nearly 53 million Americans today are suffering with arthritis, with the majority of them diagnosed with osteoarthritis. (1) Osteoarthritis is a degeneration of joint cartilage and its underlying bone, causing significant pain and stiffness. While osteoarthritis has no cure, stem cell therapy has been demonstrated to induce profound healing in many forms of arthritis, according to the Stem Cell Institute. (2) Dr. Cynthia Elliott of Skinspirations, a center for cosmetic enhancement devoted to non-surgical aesthetics and now also specializing in administering regenerative medicine by stem cell, has made use of these services in a recent case study, which resulted in improved health in one of their clients.

Stem cells are unique from other cells for the following reasons:

(a)They can renew themselves through cell division; and (b)Under certain conditions, they can become tissue or organ-specific cells.

Stem cells are revered for their ability to make replacement tissues, as it relates to regenerative therapy. (3) Medical scientists and researchers are discovering the seemingly endless possibilities of what stem cells can treat, including brain damage, bone repair, kidney disease, etc. (4) This treatment is starting to boom in the medical world as a viable procedure, but Skinspirations has already had these practices in place, establishing them as progressive practitioners in the field.

Skinspirations is specifically studying the Stromal Vascular Fraction (SVF)another term for stem cell treatmentand how it affects knees with severe arthritis. According to Dr. Elliott, Stromal Vascular Fraction can help to repair, replace and restore any damaged cells within the bodyDr. Elliott performed the stem cell procedure on her uncle after first treating other patients during her training, and he experienced the following results:

Case in Point:

Joe Elliott, a 63-year-old male, had severe arthritis in one knee. Doctors advised him to get a knee replacement, but Joe was hoping to avoid surgery for as long as possible. After talking to Dr. Elliott about the treatment, he drove to Skinspirations from Missouri to go forward with the stem cell procedure.

Dr. Elliott performed the treatment with the following steps:

(1)Numbed his abdomen with anesthesia; (2)Removed about 100 cc of fat; (3)Processed the fat to isolate the SVF; (4)Numbed the arthritic knee; and (5)Injected the pellet of SVF into the joint of his arthritic knee.

View original post here:
Skinspirations Study Supports Medical Findings: Stem Cell Treatment Triggers Tissue Regeneration

To Read More: Skinspirations Study Supports Medical Findings: Stem Cell Treatment Triggers Tissue Regeneration
categoriaUncategorized commentoComments Off on Skinspirations Study Supports Medical Findings: Stem Cell Treatment Triggers Tissue Regeneration | dataJuly 28th, 2014
Read All

What is Okyanos Cardiac Stem Cell Therapy? – Video

By Sykes24Tracey


What is Okyanos Cardiac Stem Cell Therapy?
Cardiac stem cell therapy is a promising new treatment option for advanced heart disease patients. This short video explores the procedure and benefits of ad...

By: Okyanos Heart Institute

The rest is here:
What is Okyanos Cardiac Stem Cell Therapy? - Video

To Read More: What is Okyanos Cardiac Stem Cell Therapy? – Video
categoriaUncategorized commentoComments Off on What is Okyanos Cardiac Stem Cell Therapy? – Video | dataJuly 27th, 2014
Read All

Cell therapy for multiple sclerosis patients: Closer than ever?

By JoanneRUSSELL25

Scientists at The New York Stem Cell Foundation (NYSCF) Research Institute are one step closer to creating a viable cell replacement therapy for multiple sclerosis from a patient's own cells.

For the first time, NYSCF scientists generated induced pluripotent stem (iPS) cells lines from skin samples of patients with primary progressive multiple sclerosis and further, they developed an accelerated protocol to induce these stem cells into becoming oligodendrocytes, the myelin-forming cells of the central nervous system implicated in multiple sclerosis and many other diseases.

Existing protocols for producing oligodendrocytes had taken almost half a year to produce, limiting the ability of researchers to conduct their research. This study has cut that time approximately in half, making the ability to utilize these cells in research much more feasible.

Stem cell lines and oligodendrocytes allow researchers to "turn back the clock" and observe how multiple sclerosis develops and progresses, potentially revealing the onset of the disease at a cellular level long before any symptoms are displayed. The improved protocol for deriving oligodendrocyte cells will also provide a platform for disease modeling, drug screening, and for replacing the damaged cells in the brain with healthy cells generated using this method.

"We are so close to finding new treatments and even cures for MS. The enhanced ability to derive the cells implicated in the disease will undoubtedly accelerate research for MS and many other diseases," said Susan L. Solomon, NYSCF Chief Executive Officer.

"We believe that this protocol will help the MS field and the larger scientific community to better understand human oligodendrocyte biology and the process of myelination. This is the first step towards very exciting studies: the ability to generate human oligodendrocytes in large amounts will serve as an unprecedented tool for developing remyelinating strategies and the study of patient-specific cells may shed light on intrinsic pathogenic mechanisms that lead to progressive MS." said Dr. Valentina Fossati, NYSCF -- Helmsley Investigator and senior author on the paper.

In multiple sclerosis, the protective covering of axons, called myelin, becomes damaged and lost. In this study, the scientists not only improved the protocol for making the myelin-forming cells but they showed that the oligodendrocytes derived from the skin of primary progressive patients are functional, and therefore able to form their own myelin when put into a mouse model. This is an initial step towards developing future autologous cell transplantation therapies in multiple sclerosis patients

This important advance opens up critical new avenues of research to study multiple sclerosis and other diseases. Oligodendrocytes are implicated in many different disorders, therefore this research not only moves multiple sclerosis research forward, it allows NYSCF and other scientists the ability to study all demyelinating and central nervous system disorders.

"Oligodendrocytes are increasingly recognized as having an absolutely essential role in the function of the normal nervous system, as well as in the setting of neurodegenerative diseases,such as multiple sclerosis. The new work from the NYSCF Research Institute will help to improve our understanding of these important cells. In addition, being able to generate large numbers of patient-specific oligodendrocytes will support both cell transplantation therapeutics for demyelinating diseases and the identification of new classes of drugs to treat such disorders," said Dr. Lee Rubin, NYSCF Scientific Advisor and Director of Translational Medicine at the Harvard Stem Cell Institute.

Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system, distinguished by recurrent episodes of demyelination and the consequent neurological symptoms. Primary progressive multiple sclerosis is the most severe form of multiple sclerosis, characterized by a steady neurological decline from the onset of the disease. Currently, there are no effective treatments or cures for primary progressive multiple sclerosis and treatments relies merely on symptom management.

Here is the original post:
Cell therapy for multiple sclerosis patients: Closer than ever?

To Read More: Cell therapy for multiple sclerosis patients: Closer than ever?
categoriaUncategorized commentoComments Off on Cell therapy for multiple sclerosis patients: Closer than ever? | dataJuly 27th, 2014
Read All

California stem cell agency head takes stand on 'personal ethics'

By raymumme

The California Institute for Regenerative Medicine has continued in damage-control mode since the state agencys former president, Alan Trounson, joined the board of directors at StemCells Inc. this month, just seven days after leaving the agency.

Newark-based StemCells has been awarded nearly $20 million in CIRM funding, as part of a long relationship that, in the wake of Trounson's departure, has raised concern about potential conflict of interest.

The agency's new president, C. Randal Mills, said he was taking a strong stand on personal ethics, signing an agreement not to accept a job with any company funded by CIRM for at least one year after leaving his position at the state agency.

"We take even the appearance of conflicts of interest very seriously," Mills said in a statement this month.

But a scientist whose grant proposal was turned down even though it received a higher rating than the StemCells proposal called the relationship between the state agency and the company interesting.

In my opinion, Mr. Trounson and the CIRM staff were clearly antagonistic to us and strongly supportive of StemCells, Lon S. Schneider, a scientist at USCs Keck School of Medicine, told the California Stem Cell Report ,a blog that follows news related to the stem cell agency.

And Times columnist Michael Hiltzik pointed out that the agency has hired its own law firm to conduct the investigation, rather than a completely independent party.

The unanswered question burning a hole through CIRM's credibility is whether StemCells Inc. got its money because its research was promising, or because it knew the right people, Hiltzik wrote.

The stem cell agency has also voted to cut $5 million from a $70-million effort to create a series of statewide stem cell clinics, according to the California Stem Cell Report. And even though the board has 29 members, only eight could vote because of conflicts of interest among the others, according to the report.

Following a thorough review it is my opinion that the $70-million price tag is not clearly justified in terms of the benefits it will deliver to the people of California, Mills wrote in a memo to the agency's board.

Read more here:
California stem cell agency head takes stand on 'personal ethics'

To Read More: California stem cell agency head takes stand on 'personal ethics'
categoriaUncategorized commentoComments Off on California stem cell agency head takes stand on 'personal ethics' | dataJuly 27th, 2014
Read All

Good Odds for Those Who Need Bone Marrow Donor, Study Finds

By NEVAGiles23

By Dennis Thompson HealthDay Reporter

WEDNESDAY, July 23, 2014 (HealthDay News) -- Most blood cancer patients in the United States who need a bone marrow transplant can find an acceptable match through the National Marrow Donor Program, a new study has determined.

Depending on a patient's race or ethnic background, the study found that 66 percent to 97 percent of patients will have a suitably matched and available live donor on the registry.

Even hard-to-match ethnic groups can find a suitable donation thanks to banked stem cells drawn from umbilical cord-blood donations, said senior author Martin Maiers, director of bioinformatics research at the National Marrow Donor Program.

All told, for patients who are candidates for either bone marrow or cord-blood transplants, the likelihood of having a suitable match is as high as 91 to 99 percent, the study found.

"For almost all patients, there is some sort of product available for them," Maiers said.

The findings, said to represent the first attempt to accurately determine the successful-match rate of the bone marrow registry, are published July 24 in the New England Journal of Medicine.

Patients suffering from blood-related cancers such as leukemia or lymphoma need a stem cell transplant to help them survive their cancer treatment. The transplant is done after chemotherapy and radiation is complete.

Donation from a relative is the best option, but only about 30 percent of patients have such a donor available, researchers said in background notes. The majority must rely on the National Marrow Donor Program to match them with a live bone marrow donor or banked stem cells gathered from donated umbilical cord blood.

The National Marrow Donor Program has on hand 11 million potential bone marrow donors and 193,000 banked cord-blood donations. The number of transplants facilitated by the program has quadrupled, with nearly 6,000 transplants in 2012 compared with 1,500 a decade earlier.

Continue reading here:
Good Odds for Those Who Need Bone Marrow Donor, Study Finds

To Read More: Good Odds for Those Who Need Bone Marrow Donor, Study Finds
categoriaBone Marrow Stem Cells commentoComments Off on Good Odds for Those Who Need Bone Marrow Donor, Study Finds | dataJuly 25th, 2014
Read All

Joslin Scientists Create the First IPS Cells to Offer Human Model of Insulin Resistance

By JoanneRUSSELL25

Contact Information

Available for logged-in reporters only

Newswise BOSTON July 24, 2014 Japanese biologist Shinya Yamanaka won a Nobel Prize in 2012 for discovering how to create induced pluripotent stem cells (iPSCs), cells derived from normal adult cells that have the ability to differentiate into almost any other kind of cells. Scientists at Joslin Diabetes Center now have created the first iPSCs that offer a human model of insulin resistance, a key driver of type 2 diabetes.

This is one of the very first studies of human iPSC models for type 2 diabetes, and it points out the power of this technology to look at the nature of diabetes, which is complex and may be different in different individuals, says C. Ronald Kahn, MD, Joslins Chief Academic Officer and the Mary K. Iacocca Professor of Medicine at Harvard Medical School.

Until now, scientists examining the causes and effects of insulin resistance have struggled with a general lack of human cell lines from tissues such as muscle, fat and liver that respond significantly to insulin, Kahn says. Studying insulin resistance as it progresses through pre-clinical stages of type 2 diabetes has been particularly challenging.

There have been no good human cell models to study insulin resistance, but such cells can now be made with iPSCs, says Kahn, co-senior author on a paper about the study published in the journal Diabetes.

Generation of iPSCs typically starts with fibroblasts (connective tissue cells) from skin samples. Kahn and his colleagues used fibroblasts from three patients with severe insulin resistance brought on by mutations in the gene for the insulin receptor (IR)a molecule that crosses the cell membrane and plays a key role in insulin signaling and glucose metabolism.

The Joslin researchers reprogrammed the fibroblasts into iPSCs by using viral procedures that activated four genes that together maintain cells in the iPSC state. The scientists then looked at gene activation in insulin signaling pathways for iPSCs and fibroblasts with IR mutations, and for corresponding cells derived from people without those mutations.

Among the study findings, IR mutations alter expression of many genes both in fibroblasts and iPSCs compared to normal cells, but the impact is very much dependent on the cell type, says Kahn. You see one type of expression pattern in the fibroblasts and a different type of pattern in the iPSCs.

Insulin is a key ingredient for the growth and proliferation of normal stem cells, and the study demonstrated that insulin resistance also reduces the ability of the iPSCs to grow and proliferate. That defect may represent a previously unrecognized mechanism that aids in developing diabetes, Kahn says, as well as helping to explain the problems in wound healing, tissue repair and even beta-cell growth that are common among people with diabetes.

See the rest here:
Joslin Scientists Create the First IPS Cells to Offer Human Model of Insulin Resistance

To Read More: Joslin Scientists Create the First IPS Cells to Offer Human Model of Insulin Resistance
categoriaSkin Stem Cells commentoComments Off on Joslin Scientists Create the First IPS Cells to Offer Human Model of Insulin Resistance | dataJuly 25th, 2014
Read All

Stem cell agency tightens ethics rules

By NEVAGiles23

Stem cell agency President C. Randal Mills (left) and Chairman of the Board Jonathan Thomas.

Responding to his predecessor's ethically controversial departure, the president and chief executive of California's stem cell agency said Thursday he is taking legal steps to minimize conflicts of interests with those who have business before the agency.

C. Randal Mills said he will not take a job with any company funded by the California Institute for Regenerative Medicine for one year after he departs the agency. In addition, he also will not accept gifts or travel payments from any company, institution or person who gets agency funding.

Mills' action, announced at the agency's meeting in Millbrae, will be enforced with a legal agreement he will sign. His action comes less than a month after he replaced Alan Trounson as the agency chief. One week after his departure, CIRM-funded StemCells Inc. announced it had appointed Trounson to its board. StemCells Inc. had received an award of nearly $20 million from the agency to develop a therapy for Alzheimers disease.

While Trounson's appointment wasn't illegal, critics said it was unseemly for him to join a company that had received agency funding so soon after he left CIRM. An ethical controversy could harm the agency's chances of getting more funding from California voters, who gave the agency $3 billion with the passage of Proposition 71 in 2004.

Mills said the new rules apply only to himself, because of his central role at CIRM.

"This specifically addresses an issue where an individual in an organization has a disproportionate amount of power, and I want to make sure it's known that power will not be abused," Mills said.

Mills made the right decision, said Jeanne Loring, a CIRM-funded stem cell researcher at The Scripps Research Institute.

"There's a difference between what is legal and what is ethical," said Loring, who attended the meeting. "And he's going to be pushing the needle a lot more toward the ethical side without worrying whether he can get away with stuff."

John Simpson of Santa Monica-based Consumer Watchdog, who has often criticized CIRM for conflicts of interest, also praised the decision.

Original post:
Stem cell agency tightens ethics rules

To Read More: Stem cell agency tightens ethics rules
categoriaUncategorized commentoComments Off on Stem cell agency tightens ethics rules | dataJuly 25th, 2014
Read All

STEM CELL THERAPY SUPERNOVA – Video

By NEVAGiles23


STEM CELL THERAPY SUPERNOVA
We implant EMBRYONIC STEM CELLS from our STEM CELL BANK This is state-of-the-art ADVANTAGE for it eliminates the suffering and pain from liposuction(fat removal) or bone marrow extraction,...

By: Leong Lau

Read the original post:
STEM CELL THERAPY SUPERNOVA - Video

To Read More: STEM CELL THERAPY SUPERNOVA – Video
categoriaUncategorized commentoComments Off on STEM CELL THERAPY SUPERNOVA – Video | dataJuly 25th, 2014
Read All

11-year-olds critical need for a stem cell transplant

By daniellenierenberg

WATCH:An 11-year-old girl with a rare blood disease is in need of a stem cell transplant ideally from a match within the South Asian Community. Angie Seth reports.

Stem cell and bone marrow donations are critical for hundreds of people in Canada suffering from certain types of cancers or blood diseases.

Right now there are approximately 800 people on the transplant list. Among them is 11-year-old Cierra Singh.

Cierra has a rare blood disease calledMyelodysplastic Syndrome.

Mybone marrow and my bones are not producing enough healthy cells. So there are platelets and the white blood cells and the red blood cells. My mom tells me they are not working as well as they should work, Cierra tells Global News.

We had the opportunity to meet this incredible little girl who strives to give back to others in every which way.

Everyone says its a big deal, but I dont see it as a big deal. I just try to stay positive all the time, she says.

Cierra was diagnosed with the rare blood disease in April. A trip to Sick Kids hospital because of a swollen leg led doctors to discover Cierras immune system was not functioning properly.

Her Mothers fears paint a bleak picture.

If she were to get a fever of 38.5 and up we need to rush her into emergency within the hour . The risk of infectious diseases is very high so they need to pump her body with antibiotics because she wont be able to fight it. The only cure for Myelodysplastic Syndrome is a stem cell transplant, there is no other option, KiranBenet, Cierras Mom says.

View post:
11-year-olds critical need for a stem cell transplant

To Read More: 11-year-olds critical need for a stem cell transplant
categoriaBone Marrow Stem Cells commentoComments Off on 11-year-olds critical need for a stem cell transplant | dataJuly 24th, 2014
Read All

Experiments prove 'stemness' of individual immune memory cells

By NEVAGiles23

PUBLIC RELEASE DATE:

24-Jul-2014

Contact: Vera Siegler vera.siegler@tum.de 49-892-892-2731 Technische Universitaet Muenchen

This news release is available in German.

The immune system has evolved to recognize and respond to threats to health, and to provide life-long memory that prevents recurrent disease. A detailed understanding of the mechanism underlying immunologic memory, however, has remained elusive. Since 2001, various lines of research have converged to support the hypothesis that the persistence of immune memory arises from a reservoir of immune cells with stem-cell-like potential. Until now, there was no conclusive evidence, largely because experiments could only be carried out on populations of cells. This first strict test of the stem cell hypothesis of immune memory was based on mapping the fates of individual T cells and their descendants over several generations.

That experimental capability was developed through a long-term collaboration, focused on clinical cell processing and purification, between researchers based in Munich and Seattle. Since 2009, the groups of Prof. Dirk Busch at the Technische Universitt Mnchen (TUM) and Prof. Stanley Riddell at the Fred Hutchinson Cancer Research Center have combined their technological and clinical expertise under the auspices of the TUM Institute for Advanced Study. The University of Heidelberg, the University of Dsseldorf, the Helmholtz Center Munich, the German Cancer Research Center (DKFZ), and the National Center for Infection Research (DZIF) also contributed to the present study.

Homing In On The "Stemness" of T Cells

After generating an immune response in laboratory animals, TUM researchers Patricia Graef and Veit Buchholz separated complex "killer" T cell populations enlisted to fight the immediate or recurring infection. Within these cell populations, they then identified subgroups and proceeded with a series of single-cell adoptive transfer experiments, in which the aftermath of immune responses could be analyzed in detail. Here the ability to identify and characterize the descendants of individual T cells through several generations was crucial.

The researchers first established that a high potential for expansion and differentiation in a defined subpopulation, called "central memory T cells," does not depend exclusively on any special source such as bone marrow, lymph nodes, or spleen. This supported but did not yet prove the idea that certain central memory T cells are, effectively, adult stem cells. Further experiments, using and comparing both memory T cells and so-called naive T cells that is, mature immune cells that have not yet encountered their antigen enabled the scientists to home in on stem-cell-like characteristics and eliminate other possible explanations.

Step by step, the results strengthened the case that the persistence of immune memory depends on the "stemness" of the subpopulation of T cells termed central memory T cells: Individual central memory T cells proved to be "multipotent," meaning that they can generate diverse types of offspring to fight an infection and to remember the antagonist. Further, these individual T cells self-renew into secondary memory T cells that are, again, multipotent at the single-cell level. And finally, individual descendants of secondary memory T cells are capable of fully restoring the capacity for a normal immune response.

Continue reading here:
Experiments prove 'stemness' of individual immune memory cells

To Read More: Experiments prove 'stemness' of individual immune memory cells
categoriaUncategorized commentoComments Off on Experiments prove 'stemness' of individual immune memory cells | dataJuly 24th, 2014
Read All

Stem Cell Therapy for Autism || Treatment Information …

By raymumme

Autism Protocol

Current investigative therapies for autism attempt to reverse these abnormalities through administration of antibiotics, antiinflammatory agents, and hyperbaric oxygen. Unfortunately, none of these approaches address the root causes of oxygen deprivation and intestinal inflammation.

Mesenchymal stem cells can regulate the immune system. It is thought that they may help to reverse inflammatory conditions and is currently in the final stages of clinical trials in the US for Crohns disease, a condition resembling the gut inflammation in autistic children.

Through administration of mesenchymal stem cells, we have observed improvement in subjects to whom weve administered stem cells at our facilities. The biological basis for our scientists appears in a peer-reviewed publication Journal of Translational Medicine: Stem Cell Therapy for Autism.

The adult stem cells used in the autism clinical investigation at the Stem Cell Institute come from human umbilical cord tissue (allogeneic mesenchymal). These stem cells are recovered from donated umbilical cords. Before they are approved for use, all umbilical cord-derived stem cells are screened for viruses and bacteria to International Blood Bank Standards. In some cases, we also utilize stem cells harvested from the subjects own bone marrow. Umbilical cord-derived stem cells are ideal for the autism protocol because they allow our physicians to administer uniform doses and they do not require any stem cell collection from the subject, which for autistic children and their parents, can be an arduous process. Because they are collected right after (normal) birth, umbilical cord-derived cells are much more potent than their older counterparts like bone marrow-derived cells for instance. Cord tissue-derived mesenchymal stem cells pose no rejection risk because the body does not recognize them as foreign.

Because HUCT stem cells are less mature than other cells, the bodys immune system is unable to recognize them as foreign and therefore they are not rejected. Weve performed thousands of procedures with umbilical cord stem cells and there has never been a single instance of rejection. HUCT stem cells also proliferate/differentiate more efficiently than older cells, such as those found in the bone marrow and therefore, they are considered to be more potent.

The umbilical cord-derived stem cells are administered intravenously by a licensed physician.

Below is an example of a typical autism schedule. Our investigational clinical protocol for autism (www.clinicaltrials.gov NCT02192749) has been approved by the National Institutional Review Board for Clinical Protocols.

Proper follow-up is an essential part of the autism clinical investigation process. Our primary goal is to ensure that your child is progressing safely. Regular follow-up also enables us to evaluate efficacy and improve our autism clinical protocols based on observed outcomes.

Continue reading here:
Stem Cell Therapy for Autism || Treatment Information ...

To Read More: Stem Cell Therapy for Autism || Treatment Information …
categoriaUncategorized commentoComments Off on Stem Cell Therapy for Autism || Treatment Information … | dataJuly 24th, 2014
Read All

NYSCF scientists one step closer to cell therapy for multiple sclerosis patients

By Dr. Matthew Watson

PUBLIC RELEASE DATE:

24-Jul-2014

Contact: David McKeon dmckeon@nyscf.org 212-365-7440 New York Stem Cell Foundation

NEW YORK, NY (July 24, 2014) Scientists at The New York Stem Cell Foundation (NYSCF) Research Institute are one step closer to creating a viable cell replacement therapy for multiple sclerosis from a patient's own cells.

For the first time, NYSCF scientists generated induced pluripotent stem (iPS) cells lines from skin samples of patients with primary progressive multiple sclerosis and further, they developed an accelerated protocol to induce these stem cells into becoming oligodendrocytes, the myelin-forming cells of the central nervous system implicated in multiple sclerosis and many other diseases.

Existing protocols for producing oligodendrocytes had taken almost half a year to produce, limiting the ability of researchers to conduct their research. This study has cut that time approximately in half, making the ability to utilize these cells in research much more feasible.

Stem cell lines and oligodendrocytes allow researchers to "turn back the clock" and observe how multiple sclerosis develops and progresses, potentially revealing the onset of the disease at a cellular level long before any symptoms are displayed. The improved protocol for deriving oligodendrocyte cells will also provide a platform for disease modeling, drug screening, and for replacing the damaged cells in the brain with healthy cells generated using this method.

"We are so close to finding new treatments and even cures for MS. The enhanced ability to derive the cells implicated in the disease will undoubtedly accelerate research for MS and many other diseases," said Susan L. Solomon, NYSCF Chief Executive Officer.

"We believe that this protocol will help the MS field and the larger scientific community to better understand human oligodendrocyte biology and the process of myelination. This is the first step towards very exciting studies: the ability to generate human oligodendrocytes in large amounts will serve as an unprecedented tool for developing remyelinating strategies and the study of patient-specific cells may shed light on intrinsic pathogenic mechanisms that lead to progressive MS". said Dr. Valentina Fossati, NYSCF Helmsley Investigator and senior author on the paper.

In multiple sclerosis, the protective covering of axons, called myelin, becomes damaged and lost. In this study, the scientists not only improved the protocol for making the myelin-forming cells but they showed that the oligodendrocytes derived from the skin of primary progressive patients are functional, and therefore able to form their own myelin when put into a mouse model. This is an initial step towards developing future autologous cell transplantation therapies in multiple sclerosis patients

Read the original here:
NYSCF scientists one step closer to cell therapy for multiple sclerosis patients

To Read More: NYSCF scientists one step closer to cell therapy for multiple sclerosis patients
categoriaUncategorized commentoComments Off on NYSCF scientists one step closer to cell therapy for multiple sclerosis patients | dataJuly 24th, 2014
Read All

MS stem cell therapy treatment hope for mum

By Sykes24Tracey

July 24, 2014, 10:29 p.m.

A 60 MINUTES report on new multiple sclerosis stem cell therapy has thrown Wendouree mum Kathryn Johnston a potential lifeline.

A 60 MINUTES report on new multiple sclerosis stem cell therapy has thrown Wendouree mum Kathryn Johnston a potential lifeline.

Hopeful: Wendouree mum Kathryn Johnston is hoping new stem cell therapy treatment will help her be a more active mother to her daughter Dellah, 7. PICTURE: KATE HEALY

Ms Johnston, who has had MS for 15 years, is hoping the treatment will help her be a more active mother to daughter Dellah, 7.

I cant do a great deal with my daughter now but its also the unknown not knowing if Ill wake up one day and not be able to walk, Ms Johnston said.

The 35-year-old emergency nurse hopes to travel to Russia in August next year for the treatment, which involves extracting her stem cells, freezing them while she undergoes a strong course of chemotherapy and then replacing them.

It gets rid of any underlying MS and rebuilds the immune system from scratch. As a general rule, its been about 80 per cent effective.

Ms Johnston first noticed her MS symptoms as an active Ararat 20-year-old doing her nursing degree and about to marry her childhood sweetheart Andrew.

I developed numbness in both hands but thought Id just slept on them until my tummy went numb too.

Continue reading here:
MS stem cell therapy treatment hope for mum

To Read More: MS stem cell therapy treatment hope for mum
categoriaUncategorized commentoComments Off on MS stem cell therapy treatment hope for mum | dataJuly 24th, 2014
Read All

3-D-printed tissues advance stem cell research

By Sykes24Tracey

Tissue engineering and vascular biology expert Guohao Dai, assistant professor in the Department of Biomedical Engineering at Rensselaer Polytechnic Institute, recently won a Faculty Early Career Development Award (CAREER) from the National Science Foundation (NSF).

Dai will use the five-year, $440,000 grant to advance his research into bio-fabricating human tissues with 3-D cell printing technology. Adult neural stem cells are known to hold a great potential for treating disease and damage to the nervous system. However, these cells are both rare and difficult to use in a laboratory setting. The cells lose their potency quickly upon being removed from their native environment, making it difficult to study them.

With his CAREER Award, Dai seeks to design and develop a new way of using 3-D cell printing technology to create a "vascular niche" that replicates the native environment of adult neural stem cells. With the ability to prolong the potency of the cells and precisely control the parameters and components of its vascular niche, researchers would be better positioned to study the cells and their role in treating treat spinal cord injury and neurodegenerative diseases.

"Adult neural stem cells hold so much promise for treating injury and disease, but they are extremely difficult to work with," Dai said. "We believe that we can apply 3-D tissue printing technology to create a vascular niche that will prolong the life of the cells and, in turn, enable new opportunities for studying how they may be used to treat injury and fight disease."

The CAREER Award is given to faculty members at the beginning of their academic careers and is one of NSF's most competitive awards, placing emphasis on high-quality research and novel education initiatives. Dai will collaborate on his CAREER project with two stem cells experts, Rensselaer Associate Professor of Biomedical Engineering Deanna Thompson and Neural Stem Cell Initiative Scientific Director Sally Temple.

Most laboratory cell cultures are 2-D. This is significantly different from the human body, where most cells are in a 3-D environment. A major challenge in creating and studying 3-D tissues is the diffusion limit in the tissues, which quickly lose potency or die without a flow of blood to provide oxygen and nutrients.

To help overcome this challenge, Dai and his collaborators have spent years developing a 3-D tissue printer -- both the hardware and the software. The unique device prints biological tissue by carefully depositing cells, hydrogels, and other materials one layer at a time. Using this platform, Dai developed the technology to create perfused vascular channels, which provide nutrients and oxygen to the printed tissues.

"Blood vessels run throughout almost every part of our bodies, bringing the oxygen and nutrients that allow our cells to survive. The same is true of 3-D cell cultures. They need a vascular system in order to survive," Dai said. "Our device can print 3-D tissues with small channels that function as blood vessels. This enables us to print cells with extracellular matrices that closely replicate those found within the body."

Dai's research team used the 3-D tissue printing technology to help study how the functions of the vascular endothelium -- a thin layer of cells that line entire circulatory system -- are affected by environmental factors such as interactions with blood and smooth muscle cells. A dysfunctional endothelium is known to be a contributor to many vascular diseases including inflammation, thrombosis, and atherosclerosis.

With his CAREER Award, Dai is applying his expertise and unique 3-D tissue printing technology to replicate the native environment of adult neural stem cells. If successful, the project could significantly expand the potency and life span of the cells in laboratory settings, and lead to a better understanding of how this extracellular environment influences the behavior of the cells.

See the original post here:
3-D-printed tissues advance stem cell research

To Read More: 3-D-printed tissues advance stem cell research
categoriaSpinal Cord Stem Cells commentoComments Off on 3-D-printed tissues advance stem cell research | dataJuly 23rd, 2014
Read All

Stem Cells: Promises and Reality

By Sykes24Tracey

Renowned Israeli stem-cell researcher in Fairfield Aug. 6

By Cindy Mindell

Dr. Yaqub Hanna

A leading Israeli scientist who has pioneered groundbreaking stem-cell reprogamming research will discuss his work on Wednesday, Aug. 6 at Jewish Senior Services in Fairfield.

Together with a team of researchers at the Weizmann Institute of Science Department of Molecular Genetics in Rehovot, Israel, Dr. Jacob (Yaqub) Hanna has overcome a major roadblock in the use of human stem cells for medical purposes. Funded by a grant from the Israel Cancer Research Fund, their pioneering breakthrough was recently published in the peer-reviewed international science journal, Nature.

Its not only Hannas work that is note-worthy: the award-winning research scientist is a Palestinian living in Israel, a native of Kafr Rama in the Galilee and the son of two medical doctors.

Hanna earned a BS in medical sciences summa cum laude in 2001, an MS in microbiology and immunology in 2003, and a PhD-MD in immunology summa cum laude in 2007, all from the Hebrew University of Jerusalem, where he was among the top five percent of all Israeli medical-school graduates. After completing his PhD, Hanna decided to abandon clinical medicine and focus on research, and spent four years conducting postdoctoral research in the lab, part of the Whitehead Institute for Biomedical Research at MIT.

During his postdoctoral work, Hanna was the first non-American to receive a prestigious Novartis Fellowship from the Helen Hay Whitney Foundation. He joined the Weizmann Institute Department of Molecular Genetics upon his return to Israel in 2011. That year, he received the Clore Prize for distinguished new faculty at the Weizmann Institute and was accepted as a Yigal Alon Program Scholar for junior faculty in Israel. He is also the recipient of the Wolf Foundations Krill Prize for Excellence in Scientific Research and the 2013 Rappaport Prize in Biomedical Research.

Hanna has had to find a way to navigate between his personal and professional identities.

More:
Stem Cells: Promises and Reality

To Read More: Stem Cells: Promises and Reality
categoriaSpinal Cord Stem Cells commentoComments Off on Stem Cells: Promises and Reality | dataJuly 23rd, 2014
Read All

High hopes for new knee operation

By Sykes24Tracey

Surgeons have pioneered a new knee operation that could prevent the development of arthritis and extend sporting careers.

The procedure, which is currently being trialled at Southampton General Hospital, involves coating damaged cartilage with stem cells, taken from a patient's own hip, and surgical glue.

Known as Abicus (Autologous Bone Marrow Implantation of Cells University Hospital Southampton), the technique, if successful, will regenerate the remaining tissue and create a permanent "like-for-like" replacement for the first time.

Cartilage is a tough, flexible tissue that covers the surface of joints and enables bones to slide over one another while reducing friction and acting as a shock absorber.

Damage to the tissue in the knee is common and occurs mainly following sudden twists or direct blows, such as falls or heavy tackles playing sports such as football and rugby, but can also develop over time through gradual wear and tear.

Around 10,000 people a year in the UK suffer cartilage damage serious enough to require treatment due to pain, "locking" and reduced flexibility. If left untreated, it can progress to arthritis and severely impair leg movement.

Currently, the most commonly used procedure to repair the injury - microfracture - involves trimming any remaining damaged tissue and drilling holes in the bone beneath the defect via keyhole surgery to promote bleeding and scar tissue to work as a substitute.

However, the technique has variable results, with studies in the US suggesting the procedure offers only a short term benefit (the first 24 months after surgery), and does not lead to the formation of new cartilage.

Patients who undergo the Abicus operation have the cartilage cut and tidied and undergo microfracture, but their cartilage tissue is then coated with a substance made up of bone marrow cells, platelet gel and hyaluronic acid.

During the 30-minute procedure, the bone marrow sample is spun in a centrifuge in the operating theatre to give a concentrated amount of the patient's own stem cells.

Go here to read the rest:
High hopes for new knee operation

To Read More: High hopes for new knee operation
categoriaBone Marrow Stem Cells commentoComments Off on High hopes for new knee operation | dataJuly 23rd, 2014
Read All

Page 479«..1020..478479480481..490500..»


Copyright :: 2024