Page 445«..1020..444445446447..450460..»

Brainstorm Cell Therapeutics (BCLI) Stock Hits One-Year High Today

By Dr. Matthew Watson

NEW YORK ( TheStreet) -- Shares of Brainstorm Cell Therapeutics (BCLI) surged more than 75% to a 52-week high of $8.47 on Fridayahead of the biotech company's data release on Monday.

Brainstorm intends to release the final results from its Phase 2a trial of its stem cell therapy NurOwn. The company describes NurOwn as an "autologous, adult stem cell therapy technology" designed to treat ALS, also known as Lou Gehrig's Disease.

The company will host a conference call on Monday to discuss the results.

Exclusive Report: Jim Cramer's Best Stocks for 2015

Jim Cramer and Stephanie Link reveal their investment tactics while giving advanced notice before every trade.

Access the tool that DOMINATES the Russell 2000 and the S&P 500.

Jim Cramer's protg, David Peltier, uncovers low dollar stocks with extraordinary upside potential that are flying under Wall Street's radar.

More:
Brainstorm Cell Therapeutics (BCLI) Stock Hits One-Year High Today

To Read More: Brainstorm Cell Therapeutics (BCLI) Stock Hits One-Year High Today
categoriaUncategorized commentoComments Off on Brainstorm Cell Therapeutics (BCLI) Stock Hits One-Year High Today | dataJanuary 2nd, 2015
Read All

Neuralstem (CUR) Stock Rises Today as Brainstorm Cell Therapeutics Soars

By JoanneRUSSELL25

NEW YORK (TheStreet) -- Shares ofNeuralstem (CUR) continue to rise, up 6.25% to $2.89, in morning trading Friday in sympathy with peer company Brainstorm Cell Therapeutics (BCLI) , which touched a one-year high on Friday.

Brainstorm intends to release the final results from its Phase 2a trial of its stem cell therapy NurOwn on Monday. The company describes NurOwn as an "autologous, adult stem cell therapy technology" designed to treat ALS, also known as Lou Gehrig's Disease.

The company will host a conference call on Monday to discuss the results.

STOCKS TO BUY: TheStreet Quant Ratings has identified a handful of stocks that can potentially TRIPLE in the next 12 months. Learn more.

Jim Cramer and Stephanie Link reveal their investment tactics while giving advanced notice before every trade.

Access the tool that DOMINATES the Russell 2000 and the S&P 500.

Jim Cramer's protg, David Peltier, uncovers low dollar stocks with extraordinary upside potential that are flying under Wall Street's radar.

Visit link:
Neuralstem (CUR) Stock Rises Today as Brainstorm Cell Therapeutics Soars

To Read More: Neuralstem (CUR) Stock Rises Today as Brainstorm Cell Therapeutics Soars
categoriaUncategorized commentoComments Off on Neuralstem (CUR) Stock Rises Today as Brainstorm Cell Therapeutics Soars | dataJanuary 2nd, 2015
Read All

Teenager celebrating New Year after being given the gift of life

By LizaAVILA

IT was a wish that most teenagers take for granted.

Under-going gruelling treatment for a rare form of leukaemia in a hospital isolation chamber, Kitty Aplin-Haynes longed for the freedom to live life to the full like most girls her age.

But the cancer, which had spread to her brain and central nervous system, was so aggressive, her only hope of that freedom was a life-saving bone marrow transplant.

However, today the 18-year-old is at home and her wish has come true.

She can now look forward to laughing with friends and starting college after being told she is in remission thanks to the ultimate gift from a stranger, the gift of life.

Kitty is recovering after the bone marrow transplant plus a second procedure to boost her immune system from the same anonymous donor and she has another reason to smile.

Campaign Her family and friends desperate campaign to raise awareness of her plight will also save other lives as more than 130 people have signed up to the bone marrow register.

Kitty said: Many young people die waiting for a donor because only half of those who need a bone marrow transplant every year in the UK are lucky enough to find a match so I feel incredibly lucky.

Im overwhelmed my donor has donated his stem cells to me, not once, but twice.

Read the original post:
Teenager celebrating New Year after being given the gift of life

To Read More: Teenager celebrating New Year after being given the gift of life
categoriaBone Marrow Stem Cells commentoComments Off on Teenager celebrating New Year after being given the gift of life | dataJanuary 2nd, 2015
Read All

Fat isn't all bad: Skin adipocytes help protect against infections

By LizaAVILA

When it comes to skin infections, a healthy and robust immune response may depend greatly upon what lies beneath. In a new paper published in the January 2, 2015 issue of Science, researchers at the University of California, San Diego School of Medicine report the surprising discovery that fat cells below the skin help protect us from bacteria.

Richard Gallo, MD, PhD, professor and chief of dermatology at UC San Diego School of Medicine, and colleagues have uncovered a previously unknown role for dermal fat cells, known as adipocytes: They produce antimicrobial peptides that help fend off invading bacteria and other pathogens.

"It was thought that once the skin barrier was broken, it was entirely the responsibility of circulating (white) blood cells like neutrophils and macrophages to protect us from getting sepsis," said Gallo, the study's principal investigator.

"But it takes time to recruit these cells (to the wound site). We now show that the fat stem cells are responsible for protecting us. That was totally unexpected. It was not known that adipocytes could produce antimicrobials, let alone that they make almost as much as a neutrophil."

The human body's defense against microbial infection is complex, multi-tiered and involves numerous cell types, culminating in the arrival of neutrophils and monocytes - specialized cells that literally devour targeted pathogens.

But before these circulating white blood cells arrive at the scene, the body requires a more immediate response to counter the ability of many microbes to rapidly increase in number. That work is typically done by epithelial cells, mast cells and leukocytes residing in the area of infection.

Staphylococcus aureus is a common bacterium and major cause of skin and soft tissue infections in humans. The emergence of antibiotic-resistant forms of S. aureus is a significant problem worldwide in clinical medicine.

Prior published work out of the Gallo lab had observed S. aureus in the fat layer of the skin, so researchers looked to see if the subcutaneous fat played a role in preventing skin infections.

Ling Zhang, PhD, the first author of the paper, exposed mice to S. aureus and within hours detected a major increase in both the number and size of fat cells at the site of infection. More importantly, these fat cells produced high levels of an antimicrobial peptide (AMP) called cathelicidin antimicrobial peptide or CAMP. AMPs are molecules used by the innate immune response to directly kill invasive bacteria, viruses, fungi and other pathogens.

"AMPs are our natural first line defense against infection. They are evolutionarily ancient and used by all living organisms to protect themselves," said Gallo.

Follow this link:
Fat isn't all bad: Skin adipocytes help protect against infections

To Read More: Fat isn't all bad: Skin adipocytes help protect against infections
categoriaSkin Stem Cells commentoComments Off on Fat isn't all bad: Skin adipocytes help protect against infections | dataJanuary 2nd, 2015
Read All

Most cancer is bad luck, study finds

By JoanneRUSSELL25

Cancers due to bad luck, left, and cancers due to a combination of bad luck, environmental factors, and inherited factors. Elizabeth Cook]

Cancers due to bad luck, left, and cancers due to a combination of bad luck, environmental factors, and inherited factors. / Elizabeth Cook]

Nearly two-thirds of all cancers are caused by random mutations of the body's stem cells, not by hereditary or environmental effects, according to a study released Jan. 1 by Johns Hopkins scientists.

Tissues with the most divisions of regenerative cells and hence the most chances for mutations tend to have the greatest rates of cancer, the study found.

This explains why skin cancers, for example, are far more common than bone cancers. Skin cells die constantly, so they must be replenished far more often than those that make bone, introducing more chances for errors that lead to cancer.

In effect, most cancers come down to "bad luck", the researchers say in the study.

The findings introduce new dimensions to the struggle against cancer, said two researchers who did not take part in the study.

The study was published Thursday in the journal Science. Cristian Tomasetti of the Johns Hopkins Kimmel Cancer Center at Johns Hopkins Medicine in Baltimore is first author. The study's senior author is Bert Vogelstein, also of the center, part of Johns Hopkins University.

Healthy diet and protection against carcinogens are still important, said Tomasetti, because the one-third variability is still substantial. And the proportion of randomness in each type of cancer varies. Some cancers tend to be greatly increased by environmental factors, such as lung cancer in smokers. The two-third average is a summary of the risk of cancer from all tissue types.

Strong relationship

View post:
Most cancer is bad luck, study finds

To Read More: Most cancer is bad luck, study finds
categoriaSkin Stem Cells commentoComments Off on Most cancer is bad luck, study finds | dataJanuary 2nd, 2015
Read All

'Bad Luck' of Random Mutations Plays Predominant Role in Cancer, Study Shows

By daniellenierenberg

Released: 30-Dec-2014 1:50 PM EST Embargo expired: 1-Jan-2015 2:00 PM EST Source Newsroom: Johns Hopkins Medicine Contact Information

Available for logged-in reporters only

Newswise Scientists from the Johns Hopkins Kimmel Cancer Center have created a statistical model that measures the proportion of cancer incidence, across many tissue types, caused mainly by random mutations that occur when stem cells divide. By their measure, two-thirds of adult cancer incidence across tissues can be explained primarily by bad luck, when these random mutations occur in genes that can drive cancer growth, while the remaining third are due to environmental factors and inherited genes.

All cancers are caused by a combination of bad luck, the environment and heredity, and weve created a model that may help quantify how much of these three factors contribute to cancer development, says Bert Vogelstein, M.D., the Clayton Professor of Oncology at the Johns Hopkins University School of Medicine, co-director of the Ludwig Center at Johns Hopkins and an investigator at the Howard Hughes Medical Institute.

Cancer-free longevity in people exposed to cancer-causing agents, such as tobacco, is often attributed to their good genes, but the truth is that most of them simply had good luck, adds Vogelstein, who cautions that poor lifestyles can add to the bad luck factor in the development of cancer.

The implications of their model range from altering public perception about cancer risk factors to the funding of cancer research, they say. If two-thirds of cancer incidence across tissues is explained by random DNA mutations that occur when stem cells divide, then changing our lifestyle and habits will be a huge help in preventing certain cancers, but this may not be as effective for a variety of others, says biomathematician Cristian Tomasetti, Ph.D., an assistant professor of oncology at the Johns Hopkins University School of Medicine and Bloomberg School of Public Health. We should focus more resources on finding ways to detect such cancers at early, curable stages, he adds.

In a report on the statistical findings, published Jan. 2 in Science, Tomasetti and Vogelstein say they came to their conclusions by searching the scientific literature for information on the cumulative total number of divisions of stem cells among 31 tissue types during an average individuals lifetime. Stem cells self-renew, thus repopulating cells that die off in a specific organ.

It was well-known, Vogelstein notes, that cancer arises when tissue-specific stem cells make random mistakes, or mutations, when one chemical letter in DNA is incorrectly swapped for another during the replication process in cell division. The more these mutations accumulate, the higher the risk that cells will grow unchecked, a hallmark of cancer. The actual contribution of these random mistakes to cancer incidence, in comparison to the contribution of hereditary or environmental factors, was not previously known, says Vogelstein.

To sort out the role of such random mutations in cancer risk, the Johns Hopkins scientists charted the number of stem cell divisions in 31 tissues and compared these rates with the lifetime risks of cancer in the same tissues among Americans. From this so-called data scatterplot, Tomasetti and Vogelstein determined the correlation between the total number of stem cell divisions and cancer risk to be 0.804. Mathematically, the closer this value is to one, the more stem cell divisions and cancer risk are correlated.

Our study shows, in general, that a change in the number of stem cell divisions in a tissue type is highly correlated with a change in the incidence of cancer in that same tissue, says Vogelstein. One example, he says, is in colon tissue, which undergoes four times more stem cell divisions than small intestine tissue in humans. Likewise, colon cancer is much more prevalent than small intestinal cancer.

Read more from the original source:
'Bad Luck' of Random Mutations Plays Predominant Role in Cancer, Study Shows

To Read More: 'Bad Luck' of Random Mutations Plays Predominant Role in Cancer, Study Shows
categoriaUncategorized commentoComments Off on 'Bad Luck' of Random Mutations Plays Predominant Role in Cancer, Study Shows | dataJanuary 2nd, 2015
Read All

Two-thirds of cancer cases are "bad luck," study says

By LizaAVILA

Chuck Bednar for redOrbit.com Your Universe Online

Two-thirds of all adult cancer cases are primarily the result of bad luck, according to the authors of a new study appearing in Fridays edition of the journal Science.

Dr. Bert Vogelstein, the Clayton Professor of Oncology at the Johns Hopkins University School of Medicine, and Dr. Cristian Tomasetti, an assistant professor of oncology at the Johns Hopkins University School of Medicine and Bloomberg School of Public Health, developed a statistical model that measured the proportion of cancer incidence across many different tissue types.

They found that two-thirds of adult cancer incidence across tissues occur when the random mutations that take place during stem cell division drive cancer through, while the remaining one-third of cases are the result of environmental factors and inherited genes.

All cancers are caused by a combination of bad luck, the environment and heredity, and weve created a model that may help quantify how much of these three factors contribute to cancer development, explained Dr. Vogelstein, who is also co-director of the Ludwig Center at Johns Hopkins and an investigator at the Howard Hughes Medical Institute.

Cancer-free longevity in people exposed to cancer-causing agents, such as tobacco, is often attributed to their good genes, but the truth is that most of them simply had good luck, he said, adding that that poor lifestyle choices can also contribute to this so-called bad luck factor.

The authors said that the implications of their model could alter the public perception about cancer risk factors, as well as impact the funding of research related to the disease.

If most cancer cases can be explained by random DNA mutations that occur as stem cells divide, explained Dr. Tomasetti, it means that lifestyle changes will be a tremendous help when it comes to preventing some forms of the disease, but will be less effective against other types.

As a result, the medical community should should focus more resources on finding ways to detect such cancers at early, curable stages, he added. He and Vogelstein said that they reached their conclusion by searching scientific literature for data on the cumulative number of total stem cell divisions among 31 tissue types that take place during a persons lifetime.

Stem cells renew themselves, repopulating cells that die off in specific organs, the researchers said. Cancer arises when tissue-specific stem cells experience mutations in which one chemical letter in DNA is erroneously swapped for another during the replication process.

Here is the original post:
Two-thirds of cancer cases are "bad luck," study says

To Read More: Two-thirds of cancer cases are "bad luck," study says
categoriaUncategorized commentoComments Off on Two-thirds of cancer cases are "bad luck," study says | dataJanuary 2nd, 2015
Read All

Stem cell study leads to potential new dementia treatment

By raymumme

The research involved creating human cells in a laboratory dish instead of relying on tests on mice. Photograph: corfield / Alamy/Alamy

Cells used to study dementia in a dish have led scientists to a potential new treatment strategy for an inherited form of the brain disease.

Defective stem cells grown in the lab revealed a signalling pathway linked to frontotemporal dementia (FTD), which accounts for about half of dementia cases before the age of 60.

Treatment with a drug that suppressed the pathway, known as Wnt, restored the ability of neurons affected by the disease to develop normally.

Prof Philip Van Damme, from the Leuven Research Institute for Neuroscience and Disease in Belgium, said: Our findings suggest that signalling events required for neurodevelopment may also play major roles in neurodegeneration.

Targeting such pathways, as for instance the Wnt pathway presented in this study, may result in the creation of novel therapeutic approaches for frontotemporal dementia.

Mutations in the progranulin (GRN) gene are commonly associated with FTD, which results in damage to the frontal and temporal lobes of the brain.

The fact that GRN mutations produced in mice do not display all the features of the human disorder has limited progress towards effective treatments for FTD.

Instead of relying on animal tests, the new research involved creating human cells in a laboratory dish.

The scientists reprogrammed skin cells from three dementia patients into induced pluripotent stem cells (iPSCs), immature cells that mimic stem cells taken from early-stage embryos.

Original post:
Stem cell study leads to potential new dementia treatment

To Read More: Stem cell study leads to potential new dementia treatment
categoriaSkin Stem Cells commentoComments Off on Stem cell study leads to potential new dementia treatment | dataDecember 31st, 2014
Read All

Patient stem cells used to make dementia-in-a-dish; help identify new treatment strategy

By JoanneRUSSELL25

IMAGE:Induced pluripotent stem cells (iPSCs) derived from patients with frontotemporal dementia were genetically corrected and converted to cortical neurons. The green staining indicates the cortical marker CTIP2, the red stain... view more

Credit: Susanna Raitano/Stem Cell Reports 2014

Belgian researchers have identified a new strategy for treating an inherited form of dementia after attempting to turn stem cells derived from patients into the neurons most affected by the disease. In patient-derived stem cells carrying a mutation predisposing them to frontotemporal dementia, which accounts for about half of dementia cases before the age of 60, the scientists found a targetable defect that prevents normal neurodevelopment. These stem cells partially return to normal when the defect is corrected.

The study appears in the December 31st issue of Stem Cell Reports, the official journal of the International Society of Stem Cell Research published by Cell Press.

"Use of induced pluripotent stem cell (iPSC) technology"--which involves taking skin cells from patients and reprogramming them into embryonic-like stem cells capable of turning into other specific cell types relevant for studying a particular disease--"makes it possible to model dementias that affect people later in life," says senior study author Catherine Verfaillie of KU Leuven.

Frontotemporal disorders are the result of damage to neurons in parts of the brain called the frontal and temporal lobes, gradually leading to behavioral symptoms or language and emotional disorders. Mutations in a gene called progranulin (GRN) are commonly associated with frontotemporal dementia, but GRN mutations in mice do not mimic all the features of the human disorder, which has limited progress in the development of effective treatments.

"iPSC models can now be used to better understand dementia, and in particular frontotemporal dementia, and might lead to the development of drugs that can curtail or slow down the degeneration of cortical neurons," Verfaillie says.

Verfaillie and Philip Van Damme of the Leuven Research Institute for Neuroscience and Disease explore this approach in the Stem Cell Reports study by creating iPSCs from three patients carrying a GRN mutation. These immature cells were impaired at turning into mature, specialized cells called cortical neurons--the most affected cell type in frontotemporal dementia.

One of the top defective pathways in the iPSCs was the Wnt signaling pathway, which plays an important role in neuronal development. However, genetic correction or treatment with a compound that inhibits the Wnt signaling pathway restored the ability of the iPSCs to turn into cortical neurons. Taken together, the findings demonstrate that the GRN mutation causes the defect in cortical neuron formation by altering the Wnt signaling pathway.

"Our findings suggest that signaling events required for neurodevelopment may also play major roles in neurodegeneration," Van Damme says. "Targeting such pathways, as for instance the Wnt pathway presented in this study, may result in the creation of novel therapeutic approaches for frontotemporal dementia."

Continued here:
Patient stem cells used to make dementia-in-a-dish; help identify new treatment strategy

To Read More: Patient stem cells used to make dementia-in-a-dish; help identify new treatment strategy
categoriaSkin Stem Cells commentoComments Off on Patient stem cells used to make dementia-in-a-dish; help identify new treatment strategy | dataDecember 31st, 2014
Read All

One Reason Neuralstem (CUR) Stock is Rising Today

By Sykes24Tracey

NEW YORK (TheStreet) -- Shares of stem cell therapy developerNeuralstem (CUR) rose 4.62% to $2.72 on higher-than-average volume in afternoon trading Wednesday in sympathy with peer companyBrainstorm Cell Therapeutics (BCLI) .

Brainstorm intends to release the final results from its Phase 2a trial of its stem cell therapy NurOwn on Monday. The company describes NurOwn as an "autologous, adult stem cell therapy technology" designed to treat ALS, also known as Lou Gehrig's Disease.

The company will host a conference call on Monday to discuss the results.

Exclusive Report: Jim Cramers Best Stocks for 2015

Jim Cramer and Stephanie Link reveal their investment tactics while giving advanced notice before every trade.

Access the tool that DOMINATES the Russell 2000 and the S&P 500.

Jim Cramer's protg, David Peltier, uncovers low dollar stocks with extraordinary upside potential that are flying under Wall Street's radar.

More:
One Reason Neuralstem (CUR) Stock is Rising Today

To Read More: One Reason Neuralstem (CUR) Stock is Rising Today
categoriaUncategorized commentoComments Off on One Reason Neuralstem (CUR) Stock is Rising Today | dataDecember 31st, 2014
Read All

Brainstorm Cell Therapeutics (BCLI) Stock Rises Ahead of ALS Treatment Trial Data Release

By NEVAGiles23

NEW YORK (TheStreet) -- Shares ofBrainstorm Cell Therapeutics (BCLI) soared 20.88% to $4.69 on higher-than-average volume in morning trading Wednesday ahead of the biotech company's data release on Monday.

Brainstorm intends to release the final results from its Phase 2a trial of its stem cell therapy NurOwn on Monday. The company describes NurOwn as an "autologous, adult stem cell therapy technology" designed to treat ALS, also known as Lou Gehrig's Disease.

The company will host a conference call on Monday to discuss the results.

Exclusive Report: Jim Cramers Best Stocks for 2015

Jim Cramer and Stephanie Link reveal their investment tactics while giving advanced notice before every trade.

Access the tool that DOMINATES the Russell 2000 and the S&P 500.

Jim Cramer's protg, David Peltier, uncovers low dollar stocks with extraordinary upside potential that are flying under Wall Street's radar.

Read more here:
Brainstorm Cell Therapeutics (BCLI) Stock Rises Ahead of ALS Treatment Trial Data Release

To Read More: Brainstorm Cell Therapeutics (BCLI) Stock Rises Ahead of ALS Treatment Trial Data Release
categoriaUncategorized commentoComments Off on Brainstorm Cell Therapeutics (BCLI) Stock Rises Ahead of ALS Treatment Trial Data Release | dataDecember 31st, 2014
Read All

Stopping Multiple Sclerosis with Stem Cell Transplants

By LizaAVILA

Washington, DC - infoZine - Three-year outcomes from an ongoing clinical trial suggest that high-dose immunosuppressive therapy followed by transplantation of a person's own blood-forming stem cells may induce sustained remission in some people with relapsing-remitting multiple sclerosis (RRMS). RRMS is the most common form of MS, a progressive autoimmune disease in which the immune system attacks the brain and spinal cord.

Three years after the treatment, called high-dose immunosuppressive therapy and autologous hematopoietic cell transplant or HDIT/HCT, nearly 80 percent of trial participants had survived without experiencing an increase in disability, a relapse of MS symptoms or new brain lesions. Investigators observed few serious early complications or unexpected side effects, although many participants experienced expected side effects of high-dose immunosuppression, including infections and gastrointestinal problems.

Scientists estimate that MS affects more than 2.3 million people worldwide. Symptoms can vary widely and may include disturbances in speech, vision and movement. Most people with MS are diagnosed with RRMS, which is characterized by periods of relapse or flare up of symptoms followed by periods of recovery or remission. Over years, the disease can worsen and shift to a more progressive form.

In the study, researchers tested the effectiveness of HDIT/HCT in 25 volunteers with RRMS who had relapsed and experienced worsened neurological disability while taking standard medications. Doctors collected blood-forming stem cells from participants and then gave them high-dose chemotherapy to destroy their immune systems. The doctors returned the stem cells to the participants to rebuild and reset their immune systems.

"Notably, participants did not receive any MS drugs after transplant, yet most remained in remission after three years," said Daniel Rotrosen, M.D., director of NIAID's Division of Allergy, Immunology and Transplantation. "In contrast, other studies have shown that the best alternative MS treatments induce much shorter remissions and require long-term use of immunosuppressive drugs that can cause serious side effects."

The study researchers plan to follow participants for a total of five years, recording all side effects associated with the treatment. Final results from this and similar studies promise to help inform the design of larger trials to further evaluate HDIT/HCT in people with MS.

The trial is funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, and conducted by the NIAID-funded Immune Tolerance Network (ITN).

The three-year findings are published in the Dec. 29, 2014, online issue of JAMA Neurology.

Related Link Immune Tolerance Network (ITN)

The rest is here:
Stopping Multiple Sclerosis with Stem Cell Transplants

To Read More: Stopping Multiple Sclerosis with Stem Cell Transplants
categoriaSpinal Cord Stem Cells commentoComments Off on Stopping Multiple Sclerosis with Stem Cell Transplants | dataDecember 31st, 2014
Read All

Down to the Bone: The Need for API Bone Marrow Donors

By raymumme

Anyone can be a bone marrow donor, but when it comes to finding a match, race can be everything. There are certain genetic markers that doctors will look for when searching for a match -- and if a match is made, a transplant can then be scheduled. If someone is in need of a transplant, the process can be daunting, especially if there is only a small pool of donors that share a similar ethnicity.

There are many bone marrow donor services throughout the country, but the Asian American Donor Program (AADP) is a champion nonprofit dedicated to increasing the availability of potential stem cells donors for patients with life threatening diseases curable by a stem cell transplant. Based in Alameda, CA, AADP holds donor registration drives and outreach events to Asian, Pacific Islander, and mixed race communities in the Bay Area.

Stem cells are found inside bone marrow, and those cells can turn into red blood cells, white blood cells and platelets. AADP explains that red blood cells carry oxygen throughout the body; white blood cells help fight infections; and platelets help control bleeding. Diseases like leukemia, sickle cell anemia, blood cancers, and many other immune diseases can be treated with a bone marrow or stem cell transplant. This soft tissue is incredibly important to our health.

To learn more about why bone marrow donation is important, and why it is particularly important in Asian Pacific American and mixed race communities, I reached out to Ruby Law, AADP's Recruitment Director.

Hyphen: When does one need a bone marrow donation, and what does it do?

Ruby Law: Disease can affect the marrows ability to function. When this happens, a bone marrow or cord blood transplant could be the best treatment option. For some diseases, transplant offers the only potential cure. A bone marrow or cord blood transplant replaces unhealthy blood-forming cells with healthy ones. Blood-forming cells are also called blood stem cells. Blood stem cells are immature cells that can grow into red blood cells, white blood cells and platelets. Every year, 12,000 patients with blood diseases such as leukemia and lymphoma, sickle cell and other life-threatening diseases need a bone marrow or umbilical cord blood transplant.

Hyphen: Why is bone marrow donation important for Asian Pacific American and mixed-Asian Pacific Americans communities to address in discussions about health?

RL: A patient needs a matching donor for a successful transplant. The closer the match, the better for the patient. Patients are more likely to match someone from their own race or ethnicity. For example a Chinese patient will most likely need a Chinese donor, while a Japanese patient will most likely need a Japanese donor. Out of 10 million registrants in the United States, only 7% of the registrants are Asian and only 4% are of mixed race. Most Asian or Mixed Asian patients cannot find any matching donor in the registry because there are not enough Asian, mixed Asian and minority donors.

Ruby Law, Asian American Donor Program (AADP) Recruitment Director

More:
Down to the Bone: The Need for API Bone Marrow Donors

To Read More: Down to the Bone: The Need for API Bone Marrow Donors
categoriaBone Marrow Stem Cells commentoComments Off on Down to the Bone: The Need for API Bone Marrow Donors | dataDecember 31st, 2014
Read All

Andrew donates bone marrow after hearing about brave boy

By raymumme

KINDHEARTED Andrew Gibson is giving somebody the gift of life, after being inspired by a workmates little boy.

Andrew, 29, from Southend, signed up to the bone marrow transplant register after hearing about 21-month-old Jack Kleinberg.

Jack, of St James Gardens, Westcliff, is facing the second bone marrow transplant in his short life to help him beat two life-threatening conditions.

His parents are hoping the op will fight the effects of Wiskott Aldrich syndrome and familial Mediterranean fever.

After hearing Jacks story, from Jacks mum, Vicki Parrott, a workmate at the Hood Groups Southend insurance office, Andrew donated stem cells for use by an un-named patient in need.

Andrew was disappointed to learn he wouldnt be a match for Jack, but decided to go ahead all the same and Ms Parrott is delighted her son's example is helping others in need.

She said: At the office Christmas party, I found out Andrew, who had joined the Anthony Nolan bone marrow register when Jack first got ill, was recently called up as a match. He donated his stem cells a month ago to a stranger.

I couldn't believe it. I was so emotional and hugged him loads. I dont know if well ever meet Jacks donor, so this is the closest thing weve had.

Its overwhelming to think theres someone out there whos had a second chance at life because of Jacks story. Itsmade my year.

Andrew said: There was an email going around at work, urging people to sign up to the Anthony Nolan register, as a way of showing our support for Vicki and her son Jack, who had just been diagnosed. Id never heard of Anthony Nolan before, but I didnt hesitate. Seeing Vicki at the Christmas party really made it sink in what Id done. It was an emotional moment and it was clear how much it meant to her.

Continue reading here:
Andrew donates bone marrow after hearing about brave boy

To Read More: Andrew donates bone marrow after hearing about brave boy
categoriaBone Marrow Stem Cells commentoComments Off on Andrew donates bone marrow after hearing about brave boy | dataDecember 31st, 2014
Read All

News & Events

By JoanneRUSSELL25

NIH-funded study yields encouraging early results

Three-year outcomes from an ongoing clinical trial suggest that high-dose immunosuppressive therapy followed by transplantation of a person's own blood-forming stem cells may induce sustained remission in some people with relapsing-remitting multiple sclerosis (RRMS). RRMS is the most common form of MS, a progressive autoimmune disease in which the immune system attacks the brain and spinal cord. The trial is funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, and conducted by the NIAID-funded Immune Tolerance Network (ITN) .

Three years after the treatment, called high-dose immunosuppressive therapy and autologous hematopoietic cell transplant or HDIT/HCT, nearly 80 percent of trial participants had survived without experiencing an increase in disability, a relapse of MS symptoms or new brain lesions. Investigators observed few serious early complications or unexpected side effects, although many participants experienced expected side effects of high-dose immunosuppression, including infections and gastrointestinal problems. The three-year findings are published in the Dec. 29, 2014, online issue of JAMA Neurology.

These promising results support the need for future studies to further evaluate the benefits and risks of HDIT/HCT and directly compare this treatment strategy to current MS therapies, said NIAID Director Anthony S. Fauci, M.D. If the findings from this study are confirmed, HDIT/HCT may become a potential therapeutic option for people with this often-debilitating disease, particularly those who have not been helped by standard treatments.

Scientists estimate that MS affects more than 2.3 million people worldwide. Symptoms can vary widely and may include disturbances in speech, vision and movement. Most people with MS are diagnosed with RRMS, which is characterized by periods of relapse or flare up of symptoms followed by periods of recovery or remission. Over years, the disease can worsen and shift to a more progressive form.

In the study, researchers tested the effectiveness of HDIT/HCT in 25 volunteers with RRMS who had relapsed and experienced worsened neurological disability while taking standard medications. Doctors collected blood-forming stem cells from participants and then gave them high-dose chemotherapy to destroy their immune systems. The doctors returned the stem cells to the participants to rebuild and reset their immune systems.

Notably, participants did not receive any MS drugs after transplant, yet most remained in remission after three years, said Daniel Rotrosen, M.D., director of NIAIDs Division of Allergy, Immunology and Transplantation. In contrast, other studies have shown that the best alternative MS treatments induce much shorter remissions and require long-term use of immunosuppressive drugs that can cause serious side effects.

The study researchers plan to follow participants for a total of five years, recording all side effects associated with the treatment. Final results from this and similar studies promise to help inform the design of larger trials to further evaluate HDIT/HCT in people with MS.

The work was sponsored by NIAID, NIH, and conducted by the ITN (contract number N01 AI015416) and NIAID-funded statistical and clinical coordinating centers (contract numbers HHSN272200800029C and HHSN272200900057C). The ClinicalTrials.gov identifier for the study High-Dose Immunosuppression and Autologous Transplantation for Multiple Sclerosis (HALT-MS) is NCT00288626.

NIAID conducts and supports research at NIH, throughout the United States, and worldwide to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

See the article here:
News & Events

To Read More: News & Events
categoriaSpinal Cord Stem Cells commentoComments Off on News & Events | dataDecember 30th, 2014
Read All

Stem cell registry will make cancer treatment cheaper

By Sykes24Tracey

NEW DELHI: India may soon have an official database on stem cell donors and recipients. The health ministry is evaluating a proposal along with All India Institute of Medical Sciences (AIIMS) to create a donor registry as part of the National Health Mission (NHM), a senior official told TOI.

The proposal suggests enrolling all district hospitals in the first phase to seek stem cell details from across the country. "Once a stem cell donor registry is in place, a willing donor can be contacted and one can coordinate easily. Also, this would enhance access to safe blood," the official said.

Stem cells, found in bone marrow, are like building blocks which can grow into any normal cell of the body such as red blood cells to carry oxygen, white blood cells to fight infection, or platelets to stop bleeding.

Apart from the donor registry, the ministry is also looking at creating facilities for human leucocyte antigen (HLA) typing. HLA-typing is a process conducted for matching donors and recipients of stem cell. HLA-typing is necessary to minimize rejection of stem cell transplant, experts say.

Once created, this would be the first government registry in the country. Till now, such registries have been run in the country by a few NGOs such as Bharat Stem Cells.

According to Bharat Stem Cells, there is usually 25% chance of a patient finding a matching donor within the family. The rest depend on unrelated voluntary stem cell donors.

Stem cell therapy has been shown to be effective in various blood disorders and in treatment of cancer. It is widely used in bone marrow transplantation. However, stem cell treatment remains expensive because of limited research as well as unavailability and lack of coordination between donors and recipients. Some private hospitals charge as much as Rs 1 lakh per session for stem cell therapy. On an average, stem cell treatment is estimated to cost around Rs 15-16 lakh.

According to the official, the idea behind including stem cell into NHM is to make it affordable by creating records and providing facilities.

Stay updated on the go with The Times of Indias mobile apps. Click here to download it for your device.

More:
Stem cell registry will make cancer treatment cheaper

To Read More: Stem cell registry will make cancer treatment cheaper
categoriaBone Marrow Stem Cells commentoComments Off on Stem cell registry will make cancer treatment cheaper | dataDecember 30th, 2014
Read All

Malones donate $42.5 million to CSU for new stem-cell research facility

By Dr. Matthew Watson

John and Leslie Malone pose with Maikel at Harmony Sporthorses, December 2, 2014.

The largest ever cash donation to Colorado State University stems from a novel treatment to get a dressage horse with a bum knee back into the show ring.

John and Leslie Malone's $42.5 million gift, announced Monday, will create the CSU Institute for Biologic Translational Therapies in the College of Veterinary Medicine and Biomedical Sciences, a 100,000-square-foot facility to develop stem-cell research into commercially viable treatments for animals and humans.

"This is the largest cash gift in the history of the university and it's absolutely staggering," said Brett Anderson, CSU's vice president for advancement. "It really allows us to be the best in the nation."

The Malone money will fund half of the $65 million cost to construct the facility. The school is looking for more donations to match the Malones' contribution. So far, an additional $10 million has been raised.

The Malones also provided $10 million to cover the Institute's operating expenses once the facility is built.

"The Malones have been so gracious. We asked them if they want to put their name on the building, but they said if it's helpful to you in order to get another major donor, we are happy to let you name it for someone else," Anderson said. "They are an incredible couple."

John Malone, who made his millions at the helm of Tele-Communications Inc. and now chairs the giant Liberty Media Corp., and his wife, Leslie, could not be reached for comment on Monday.

The Malones, who raise and train dressage and jumping horses on a ranch near Kiowa, last year donated $6 million to the school to establish the Leslie A. Malone Presidential Chair in Equine Sports Medicine.

They later brought Blixt, their dressage horse with a bad knee, to the vet school's Orthopaedic Research Center.

Here is the original post:
Malones donate $42.5 million to CSU for new stem-cell research facility

To Read More: Malones donate $42.5 million to CSU for new stem-cell research facility
categoriaBone Marrow Stem Cells commentoComments Off on Malones donate $42.5 million to CSU for new stem-cell research facility | dataDecember 30th, 2014
Read All

Skin cells are being used to create artificial sperm and eggs

By Sykes24Tracey

Scientists are now creating primordial germ cells (precursors to egg and sperm) with human stem cells and even skin cells. This new work,published inCelltoday, takes us beyond what was previously just done using stem cells.

One of the first events in the early development of both mice and men is the creation of primordial germ cells (PGCs). After an egg is fertilized by sperm, embryonic stem cells begin to differentiate into various basic cell types that make up the fetus. A small number of these stem cellsdevelop into primordial germ cells, which will go on to become egg or sperm. Germ cells are immortal in the sense that they provide an enduring link between all generations, carrying genetic information from one generation to the next,Cambridges Azim Suranisays in auniversity statement.

Researchers have now figured out how to reprogram cells to act like embryonic stem cells. These induced pluripotent stem (iPS) cells have been used to develop humanretinasandintestines, for example, according to IFLScience. Researchers have also created iPS cells that could differentiate into primordial germ cells, but its only been successful in rodents.

Now, a team of researchers from the U.K. and Israel traced the genetic chain of events that directs a human stem cell to develop into a primordial germ cell. This stage in our development is called specification,and once PGCs become specified,they continue developing toward precursor sperm cells or ova pretty much on autopilot,Jacob Hanna from the Weizmann Institute of Sciencesays in anews release.

A master gene called SOX17 works to direct stem cells which in previous studies was found to direct stem cells into becoming lung, gut and pancreas cells. But the gene working as part of primordial germ cell specification is a new development.

The international team followed their discovery by actually making primordial germ cells in the lab. Using both embryonic stem cells and iPS cells (reprogrammed adult skin cells) from both males and females, the researchersmade sex cell precursors with up to 40 percent efficiency. When they compared the protein markers of their new, lab-grown PGCs with real PGCs collected from aborted fetuses,Nature reports, they were found to be very similar.

Get our daily newsletter or follow us.

Please enter your email below:

See the rest here:
Skin cells are being used to create artificial sperm and eggs

To Read More: Skin cells are being used to create artificial sperm and eggs
categoriaSkin Stem Cells commentoComments Off on Skin cells are being used to create artificial sperm and eggs | dataDecember 30th, 2014
Read All

Stem cells to transplant in the brain: Stealth UCSF spinout Neurona Therapeutics raises $7.6M

By raymumme

A UCSF spinout is growing neuronal stemcells to transplant into the brain, for potential use in treating epilepsy, spinal cord injury, Parkinsons and Alzheimers disease and investors are listening. Because one thing thatdifferentiatesNeurona Therapeutics is that its stem cells turn exclusively intointerneuron cells which are less likely to be tumorigenic than other IPS cells.

The companyhasraised $7.6 million of a proposed $24.3 million round, according to a regulatory filing. But the companys staying a touch under the radar it lacks a website, and tis the season for calls to the company to remain unanswered.

But funding for the six-year-old company comes from 11 investors. Listed on the documents contact pages areTim Kutzkeyand David Goeddel, both partners at early stage healthcare venture firm The Column Group giving some insight into who the startupsinvestors are.

Also listed is Leo Guthart, a managing partner at New York private equity firm TopSpin Partner, and Arnold Kriegstein, director of the UCSF developmental and stem cell biology program.

Kriegsteinand his UCSF colleagues filed a patentfor the in vitro production of medial ganglionic eminence (MGE) precursor cells which are, in essence, immature cells that morphinto nerve cells. The work that led to the patent was funded bythe California Institute of Regenerative Medicine, the NIH and the Osher Foundation.

We think this one type of cell may be useful in treating several types of neurodevelopmental and neurodegenerative disorders in a targeted way,Kriegstein said in a UCSF statement last year.

Neurona Therapeutics scientific backers collaborated on a paper on these MGE cells inCell Stem Cell,finding that mouse models closely mimicked human cells inneural cell development and that human cells can successfully be transplanted into mouse brains. UCSF writes:

Kriegstein sees MGE cells as a potential treatment to better control nerve circuits that become overactive in certain neurological disorders. Unlike other neural stem cells that can form many cell types and that may potentially be less controllable as a consequence most MGE cells are restricted to producing a type of cell called an interneuron. Interneurons integrate into the brain and provide controlled inhibition to balance the activity of nerve circuits.

To generate MGE cells in the lab, the researchers reliably directed the differentiation of human pluripotent stem cells either human embryonic stem cells or induced pluripotent stem cells derived from human skin. These two kinds of stem cells have virtually unlimited potential to become any human cell type. When transplanted into a strain of mice that does not reject human tissue, the human MGE-like cells survived within the rodent forebrain, integrated into the brain by forming connections with rodent nerve cells, and matured into specialized subtypes of interneurons.

Get our daily newsletter or follow us.

Continued here:
Stem cells to transplant in the brain: Stealth UCSF spinout Neurona Therapeutics raises $7.6M

To Read More: Stem cells to transplant in the brain: Stealth UCSF spinout Neurona Therapeutics raises $7.6M
categoriaSkin Stem Cells commentoComments Off on Stem cells to transplant in the brain: Stealth UCSF spinout Neurona Therapeutics raises $7.6M | dataDecember 30th, 2014
Read All

Adipose-derived Stem Cells: Current Findings and Future …

By JoanneRUSSELL25

Abstract: Adipose tissue is an abundant source of mesenchymal stem cells, which have shown promise in the field of regenerative medicine. Furthermore, these cells can be readily harvested in large numbers with low donor-site morbidity. During the past decade, numerous studies have provided preclinical data on the safety and efficacy of adipose-derived stem cells, supporting the use of these cells in future clinical applications. Various clinical trials have shown the regenerative capability of adipose-derived stem cells in subspecialties of medical fields such as plastic surgery, orthopedic surgery, oral and maxillofacial surgery, and cardiac surgery. In addition, a great deal of knowledge concerning the harvesting, characterization, and culture of adipose-derived stem cells has been reported. This review will summarize data from in vitro studies, pre-clinical animal models, and recent clinical trials concerning the use of adipose-derived stem cells in regenerative medicine.

Introduction

In the field of regenerative medicine, basic research and preclinical studies have been conducted to overcome clinical shortcomings with the use of mesenchymal stem cells (MSCs). MSCs are present in adult tissues, including bone marrow and adipose tissue. For many years, bone marrow-derived stem cells (BSCs) were the primary source of stem cells for tissue engineering applications (Caplan, 1991; Pittenger et al., 1999; Caplan, 2007). However, recent studies have shown that subcutaneous adipose tissue provides a clear advantage over other stem cell sources due to the ease with which adipose tissue can be accessed as well as the ease of isolating stem cells from harvested tissue (Schffler et al., 2007). Initial enzymatic digestion of adipose tissue yields a mixture of stromal and vascular cells referred to as the stromal-vascular fraction (SVF) (Traktuev et al., 2008). A putative stem cell population within this SVF was first identified by Zuk et al. and named processed lipoaspirate (PLA) cells (Zuk et al., 2001; Zuk et al., 2002).

There is no consensus when it comes to the nomenclature used to describe progenitor cells from adipose tissue-derived stroma, which can sometimes lead to confusion. The term PLA refers to adipose-derived stromal cells and adipose-derived stem cells (ASCs) and describes cells obtained immediately after collagenase digestion. Accordingly, the term ASC will be used throughout this review.

ASCs exhibit stable growth and proliferation kinetics and can differentiate toward osteogenic, chondrogenic, adipogenic, myogenic, or neurogenic lineages in vitro (Zuk et al., 2002; Izadpanah et al., 2006; Romanov et al., 2005). Furthermore, a group has recently described the isolation and culture of ASCs with multipotent differentiation capacity at the single-cell level (Rodriguez, et al., 2005).

Using these attractive cell populations, recent studies have explored the safety and efficacy of implanted/administrated ASCs in various animal models. Furthermore, clinical trials using ASCs have been initiated in some medical subspecialties. This review summarizes the current preclinical data and ongoing clinical trials and their outcomes in a variety of medical fields.

Characterization and Localization

ASCs express the mesenchymal stem cell markers CD10, CD13, CD29, CD34, CD44, CD54, CD71, CD90, CD105, CD106, CD117, and STRO-1. They are negative for the hematopoietic lineage markers CD45, CD14, CD16, CD56, CD61, CD62E, CD104, and CD106 and for the endothelial cell (EC) markers CD31, CD144, and von Willebrand factor (Zuk et al., 2002; Musina et al., 2005; Romanov et al., 2005). Morphologically, they are fibroblast-like and preserve their shape after expansion in vitro (Zuk et al., 2002; Arrigoni et al., 2009; Zannettino et al., 2008).

The similarities between ASCs and BSCs may indicate that ASCs are derived from circulating BSCs, which infiltrate into the adipose compartment through vessel walls (Zuk et al., 2002; Zannettino et al., 2008; Brighton et al., 1992; Canfield et al., 2000; Bianco et al., 2001). On the other hand, according to a recent theory, these stem cells are actually pericytes (Traktuev et al., 2008; Chen et al., 2009; Crisan et al., 2008; Zannettino et al., 2008; Tintut et al., 2003; Abedin et al., 2004; Amos et al., 2008). Pericytes around microvessels express alpha-smooth muscle actin (-SMA) as well as certain MSC markers (CD44, CD73, CD90, CD105); however, they do not express endothelial or hematopoietic cell markers (Chen et al., 2009). Pericytes adhere, proliferate in culture, sustain their initial antigenic profile, and can differentiate into bone, cartilage and fat cells (Chen et al., 2009). Moreover, injected MSCs migrate to the blood vessels in vivo and become pericytes (Chen et al., 2009). Considering the above-mentioned data, it can be speculated that pericytes are the ancestors of MSCs, but this does not mean that all MSCs are descendants of pericytes (Chen et al., 2009) or that all pericytes are necessarily stem cells (Lin et al., 2008; Traktuev et al., 2008; da Silva et al., 2008; Abedin et al., 2004; Tintut et al., 2003; Zannettino et al., 2008; Amos et al., 2008).

Traktuev et al. (2008) defined a periendothelial pericyte-like subpopulation of ASCs. These cells were CD34+, CD31-, CD45-, and CD144- and expressed mesenchymal cell markers, smooth muscle antigens, and pericytic markers, including chondroitin sulfate proteoglycan (NG2), CD140a, and CD140b (PDGF receptor and , respectively) (Traktuev et al., 2008; Amos et al., 2008). However, Lin et al. (2008) could not co-localize CD34 and CD104b, and thus concluded that CD34+/CD31- cells of adipose vasculature are not pericytes.

Go here to read the rest:
Adipose-derived Stem Cells: Current Findings and Future ...

To Read More: Adipose-derived Stem Cells: Current Findings and Future …
categoriaUncategorized commentoComments Off on Adipose-derived Stem Cells: Current Findings and Future … | dataDecember 30th, 2014
Read All

Page 445«..1020..444445446447..450460..»


Copyright :: 2024