Page 401«..1020..400401402403..410420..»

CIRM Contracting: $1.3 Million for IT, $887,282 for Legal

By Dr. Matthew Watson


The California stem cell agency this week performed its semi-annual public disclosure of its contracts with outside firms, the second largest item in its operational budget of $18.5 million.

The contracts are scheduled to run about $3.3 million this fiscal year, according to the budget approved last May. That figure is up about 18 percent from the previous year.

According to the contract information posted this week, the two largest contracting expenditures this year are for information technology work, including the ongoing struggles with the grants management system – $1.3 million – and legal help – $887,282. The figures were compiled by the California Stem Cell Report. CIRM did not provide totals.

Outside contracts are second to the cost of salaries and benefits at the agency. One reason for the size of the contracting expense is the small size of the CIRM staff, which is now about 50.

The contracting information will be presented to the CIRM directors' Governance Subcommittee next Friday. The committee is being asked to approve an increase in the contract with Kutir Corp., from $250,000 to $470,000. By the end of 2011, CIRM had already paid out $219,680 to Kutir. The firm provides software development services.

Infonetica, which provides technology advice, would also see an increase from $236,060 to $300,000, under the staff proposal.

A staff memo to the board said,

"(Kutir's) services are key as CIRM continues to progress in automating its grants management systems to meet the requirements of both new RFAs as well as ongoing reporting obligations.""

The public can participate in the Governance meeting at locations in San Francisco, Sacramento, Irvine, Los Angeles, South San Francisco and La Jolla. Specific addresses can be found on the agenda.

Source:
http://californiastemcellreport.blogspot.com/feeds/posts/default?alt=rss

To Read More: CIRM Contracting: $1.3 Million for IT, $887,282 for Legal
categoriaStem Cell Therapy commentoComments Off on CIRM Contracting: $1.3 Million for IT, $887,282 for Legal | dataFebruary 19th, 2012
Read All

Stem Cell Agency on Bee Article and Voter Expectations

By Dr. Matthew Watson


The California stem cell agency today said the seven-year-old "audacious vision" of voters when they created the $3 billion research effort "is still possible."

The comment was made in an item on the agency's blog by Amy Adams, the agency's communications manager.

Her entry point was an opinion piece in The Sacramento Bee on Sunday exploring some of the ins and outs of the agency. Among other things, CIRM President Alan Trounson was quoted by writer David Lesher as "optimistically" predicting successful California stem cell treatments in five years.

Adams wrote,

"Lesher makes clear that there are many challenges ahead in bringing new therapies to patients: he said of the voters who created CIRM, 'It was pretty audacious of them in 2004 to try to create another economic driver like Silicon Valley and save lives at the same time.'

"And while the vote was audacious, we agree with his conclusion that despite risks and challenges that vision is still possible." 

Source:
http://californiastemcellreport.blogspot.com/feeds/posts/default?alt=rss

To Read More: Stem Cell Agency on Bee Article and Voter Expectations
categoriaStem Cell Therapy commentoComments Off on Stem Cell Agency on Bee Article and Voter Expectations | dataFebruary 19th, 2012
Read All

Blue-Ribbon Panel Seeks Public Comment on California Stem Cell Agency

By Dr. Matthew Watson


The California public is being given a chance to weigh in with anonymous comments about what they think of the performance of the $3 billion California stem cell agency.

Their opinions are being sought by a blue-ribbon, Institute of Medicine panel. The IOM is being paid $700,000 by the agency to examine its operations.

The questions include the importance of stem cell research and CIRM's role, its openness and transparency, an assessment of its grant programs and how it should share information with the public, suggestions for improvements and more.

The online form was posted recently on the IOM web site and can be found here. The deadline for submissions is March 19.

The IOM also has survey forms for academic and non-profit CIRM grant recipients, CIRM grant recipients that are businesses(which the IOM calls "industry partners") and "leadership of CIRM-funded institutions." The deadline for those is March 19 as well.

Source:
http://californiastemcellreport.blogspot.com/feeds/posts/default?alt=rss

To Read More: Blue-Ribbon Panel Seeks Public Comment on California Stem Cell Agency
categoriaStem Cell Therapy commentoComments Off on Blue-Ribbon Panel Seeks Public Comment on California Stem Cell Agency | dataFebruary 19th, 2012
Read All

BioTime CEO Michael D. West to Present at New York Stem Cell Summit

By LizaAVILA

ALAMEDA, Calif.--(BUSINESS WIRE)--

BioTime, Inc. (NYSE Amex: BTX), a biotechnology company that develops and markets products in the field of regenerative medicine, today announced that Chief Executive Officer Michael D. West, Ph.D. will present at the 7th Annual New York Stem Cell Summit at Bridgewaters New York City on Tuesday, February 21, 2012 at 8:48 a.m. ET. Dr. West will provide an update and new information on the Company's manufacturing technologies and cell-based therapeutics in development. The presentation will be available online at http://www.biotimeinc.com.

The annual New York Stem Cell Summit provides investors, industry, practitioners, and analysts with the latest developments and investment opportunities in the stem cell marketplace.

About BioTime, Inc.

BioTime, headquartered in Alameda, California, is a biotechnology company focused on regenerative medicine and blood plasma volume expanders. Its broad platform of stem cell technologies is developed through subsidiaries focused on specific fields of applications. BioTime develops and markets research products in the field of stem cells and regenerative medicine, including a wide array of proprietary ACTCellerate™ cell lines, culture media, and differentiation kits. BioTime's wholly owned subsidiary ES Cell International Pte. Ltd. has produced clinical-grade human embryonic stem cell lines that were derived following principles of Good Manufacturing Practice and currently offers them for use in research. BioTime's therapeutic product development strategy is pursued through subsidiaries that focus on specific organ systems and related diseases for which there is a high unmet medical need. BioTime's majority owned subsidiary Cell Cure Neurosciences, Ltd. is developing therapeutic products derived from stem cells for the treatment of retinal and neural degenerative diseases. Cell Cure's minority shareholder Teva Pharmaceutical Industries has an option to clinically develop and commercialize Cell Cure's OpRegen™ retinal cell product for use in the treatment of age-related macular degeneration. BioTime's subsidiary OrthoCyte Corporation is developing therapeutic applications of stem cells to treat orthopedic diseases and injuries. Another subsidiary, OncoCyte Corporation, focuses on the diagnostic and therapeutic applications of stem cell technology in cancer, including the diagnostic product PanC-DxTM currently being developed for the detection of cancer in blood samples, therapeutic strategies using vascular progenitor cells engineered to destroy malignant tumors. ReCyte Therapeutics, Inc. is developing applications of BioTime's proprietary induced pluripotent stem cell technology to reverse the developmental aging of human cells to treat cardiovascular and blood cell diseases. BioTime's newest subsidiary, LifeMap Sciences, Inc., is developing an online database of the complex cell lineages arising from stem cells to guide basic research and to market BioTime's research products. In addition to its stem cell products, BioTime develops blood plasma volume expanders, blood replacement solutions for hypothermic (low-temperature) surgery, and technology for use in surgery, emergency trauma treatment and other applications. BioTime's lead product, Hextend®, is a blood plasma volume expander manufactured and distributed in the U.S. by Hospira, Inc. and in South Korea by CJ CheilJedang Corp. under exclusive licensing agreements. Additional information about BioTime, ReCyte Therapeutics, Cell Cure, OrthoCyte, OncoCyte, BioTime Asia, LifeMap Sciences, and ESI can be found on the web at http://www.biotimeinc.com.

Forward-Looking Statements

Statements pertaining to future financial and/or operating results, future growth in research, technology, clinical development, and potential opportunities for BioTime and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products, uncertainty in the results of clinical trials or regulatory approvals, need and ability to obtain future capital, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the business of BioTime and its subsidiaries, particularly those mentioned in the cautionary statements found in BioTime's Securities and Exchange Commission filings. BioTime disclaims any intent or obligation to update these forward-looking statements.

To receive ongoing BioTime corporate communications, please click on the following link to join our email alert list:
http://phx.corporate-ir.net/phoenix.zhtml?c=83805&p=irol-alerts

See the article here:
BioTime CEO Michael D. West to Present at New York Stem Cell Summit

To Read More: BioTime CEO Michael D. West to Present at New York Stem Cell Summit
categoriaUncategorized commentoComments Off on BioTime CEO Michael D. West to Present at New York Stem Cell Summit | dataFebruary 17th, 2012
Read All

China medicdal tourism– Cirrhosis–Stem cells therapy 1.mp4 – Video

By NEVAGiles23

16-02-2012 20:19 Many of our patients travel to Guangzhou from all over the world for medical treatment and tourism. China medical tourism can help with becoming a patient, travel arrangements and language assistance. If you want to know more about our services, please browse the web:htttp://www.medicaltourism.hk/ or mail to us: giels-x@medicaltourism.hk firstcare-china@hotmail.com Adult stem cells provide real improvement for cirrhosis patients Breakthrough adult stem cell research has shown that stem cells are able to regenerate and repair damaged or destroyed liver cells. For patients with cirrhosis, this means improved liver function, decreased pain and a significantly improved quality of life. Stem cell therapy offers the safest and most effective treatment alternative for liver cirrhosis and it is quickly becoming a preferred treatment in Asia. China medical tourism offers unique access to the best stem cell therapies available at leading medical facilities. Supporting data and statistics Three out of every four patients treated experienced a significant improvement in their condition following stem cell treatment. The following clinical results were observed: •Improved liver function •Decreased pain •Improved values for liver function, PLT (blood platelet) and blood ammonia You may see improvements during your hospitalization due to neurotrophic factors released during the stem cell transplantation, which stimulate nerve activity; new cells will grow for up to six months after you ...

Original post:
China medicdal tourism-- Cirrhosis--Stem cells therapy 1.mp4 - Video

To Read More: China medicdal tourism– Cirrhosis–Stem cells therapy 1.mp4 – Video
categoriaUncategorized commentoComments Off on China medicdal tourism– Cirrhosis–Stem cells therapy 1.mp4 – Video | dataFebruary 17th, 2012
Read All

Groundbreaking Clinical Trials Study Cord Blood Stem Cells to Help Treat Brain Injury and Hearing Loss

By Sykes24Tracey

SAN BRUNO, Calif., Feb. 16, 2012 /PRNewswire/ -- Cord Blood Registry (CBR) is the exclusive partner for a growing number of clinical researchers focusing on the use of a child's own cord blood stem cells to help treat pediatric brain injury and acquired hearing loss. To ensure consistency in cord blood stem cell processing, storage and release for infusion, three separate trials have included CBR in their FDA-authorized protocol—including two at the University of Texas Health Science Center at Houston (UTHealth) working in partnership with Children's Memorial Hermann Hospital, and a third at Georgia Health Sciences University, home of the Medical College of Georgia (MCG). This makes CBR the only family stem cell bank pairing researchers with prospective patients for these studies. 

(Logo: http://photos.prnewswire.com/prnh/20120216/AQ54476LOGO)

"Partnering with a series of specialists who want to research the use of a child's own newborn blood stem cells on a variety of disease states allows CBR to help advance medical research for regenerative therapies by connecting the child whose family banked with CBR to appropriate researchers," said Heather Brown, MS, CGC, Vice President of Scientific & Medical Affairs at Cord Blood Registry.  "The pediatric specialists from UTHealth, Children's Memorial Hermann Hospital, and Georgia Health Sciences University are at the forefront of stem cell research as they evaluate cord blood stem cells' ability to help facilitate the healing process after damage to nerves and tissue."

Hearing Loss and Traumatic Brain Injury Clinical Trials Break New Ground

Sensorineural hearing loss affects approximately 6 per 1,000 children by 18 years of age, with 9 percent resulting from acquired causes such as viral infection and head injury.(1,2,3)  The Principal Investigator of the hearing loss study is Samer Fakhri, M.D., surgeon at Memorial Hermann-Texas Medical Center and associate professor and program director in the Department of Otorhinolaryngology – Head & Neck Surgery at UTHealth.  He is joined by James Baumgartner, M.D., sponsor of the study and guest research collaborator for this first-of-its-kind FDA-regulated, Phase 1 safety study of the use of cord blood stem cells to treat children with acquired hearing loss. The trial follows evidence from published studies in animals that cord blood treatment can repair damaged organs in the inner ear. Clients of CBR who have sustained a post-birth hearing loss and are 6 weeks to 2 years old may be eligible for the year-long study. "The window of opportunity to foster normal language development is limited," said James Baumgartner, M.D.  "This is the first study of its kind with the potential to actually restore hearing in children and allow for more normal speech and language development."

Although the neurologic outcome for nearly all types of brain injury (with the exception of abuse) is better for children than adults,(4,5) trauma is the leading cause of death in children,(6) and the majority of the deaths are attributed to head injury.(7) Distinguished professor of pediatric surgery and pediatrics at UTHealth, Charles S. Cox, M.D. launched an innovative study building on a growing portfolio of research using stem cell-based therapies for neurological damage. The study will enroll 10 children ages 18 months to 17 years who have umbilical cord blood banked with CBR and have suffered a traumatic brain injury (TBI) and are enrolled in the study within 6-18 months of sustaining the injury. Read more about the trial here.

"The reason we have become interested in cord blood cells is because of the possibility of autologous therapy, meaning using your own cells. And the preclinical models have demonstrated some really fascinating neurological preservation effects to really support these Phase 1 trials," says Charles S. Cox, M.D., principle investigator of the trial. "There's anecdotal experience in other types of neurological injuries that reassures us in terms of the safety of the approach and there are some anecdotal hints at it being beneficial in certain types of brain injury."

Georgia Health Sciences University (GHSU) Focuses on Cerebral Palsy

At the GHSU in Augusta, Dr. James Carroll, professor and chief of pediatric neurology, embarked on the first FDA-regulated clinical trial to determine whether an infusion of stem cells from a child's own umbilical cord blood can improve the quality of life for children with cerebral palsy. The study will include 40 children whose parents have stored their cord blood at CBR and meet inclusion criteria. 

"Using a child's own stem cells as a possible treatment is the safest form of stem cell transplantation because it carries virtually no threat of immune system rejection," said Dr. Carroll. "Our focus on cerebral palsy breaks new ground in advancing therapies to change the course of these kinds of brain injury—a condition for which there is currently no cure."

Cerebral palsy, caused by a brain injury or lack of oxygen in the brain before birth or during the first few years of life, can impair movement, learning, hearing, vision and cognitive skills. Two to three children in 1,000 are affected by it, according to the Centers for Disease Control.(8)

Cord Blood Stem Cell Infusions Move From the Lab to the Clinic

These multi-year studies are a first step to move promising pre-clinical or animal research of cord blood stem cells into clinical trials in patients. Through the CBR Center for Regenerative Medicine, CBR will continue to partner with physicians who are interested in advancing cellular therapies in regenerative applications.

"The benefits of cord blood stem cells being very young, easy to obtain, unspecialized cells which have had limited exposure to environmental toxins or infectious diseases and easy to store for long terms without any loss of function, make them an attractive source for cellular therapy researchers today," adds Brown. "We are encouraged to see interest from such diverse researchers from neurosurgeons to endocrinologists and cardiac specialists."

About CBR

CBR® (Cord Blood Registry®) is the world's largest and most experienced cord blood bank.  The company has consistently led the industry in technical innovations and supporting clinical trials. It safeguards more than 400,000 cord blood collections for individuals and their families. CBR was the first family bank accredited by AABB and the company's quality standards have been recognized through ISO 9001:2008 certification—the global business standard for quality. CBR has also released more client cord blood units for specific therapeutic use than any other family cord blood bank. Our research and development efforts are focused on helping the world's leading clinical researchers advance regenerative medical therapies. For more information, visit http://www.cordblood.com.

 

(1)  Bergstrom L, Hemenway WG, Downs MP. A high risk registry to find congenital deafness. Otolaryngol Clin North Am. 1977;4:369-399.
(2)  Billings KR, Kenna MA. Causes of pediatric sensorineural hearing loss: yesterday and today. Arch Otolaryngol Head Neck Surg. 1999 May;125(5):517-21.
(3)  Smith RJ, Bale JF Jr, White KR. Sensorineural hearing loss in children. Lancet. 2005;365(9462):879-890.
(4)  Faul M, Xu L, Wald MM, Coronado VG. Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. Atlanta (GA): Centers for Disease Control and Prevention, National Center for Injury Prevention and Control; 2010.
(5)  Schnitzer, Patricia, PH.D., "Prevention of Unintentional Childhood Injuries", American Academy of Family Physicians, 2006.
(6)  Centers for Disease Control and Prevention, "10 Leading Causes of Death, United States, 1997-2007", WISQARS, National Center for Health Statistics (NCHS), National Vital Statistics System
(7)  Marquez de la Plata, Hart et al, National Institutes of Health, "Impact of Age on Long-term Recovery From Traumatic Brain Injury", Arch Phys Med Rehabilitation, May 2008.
(8)  Centers for Disease Control and Prevention, http://www.cdc.gov/Features/dsCerebralPalsy, accessed February 6, 2012

 

Continued here:
Groundbreaking Clinical Trials Study Cord Blood Stem Cells to Help Treat Brain Injury and Hearing Loss

To Read More: Groundbreaking Clinical Trials Study Cord Blood Stem Cells to Help Treat Brain Injury and Hearing Loss
categoriaCardiac Stem Cells commentoComments Off on Groundbreaking Clinical Trials Study Cord Blood Stem Cells to Help Treat Brain Injury and Hearing Loss | dataFebruary 17th, 2012
Read All

Juice Beauty’s to boost organic skin care further with Stem Cellular Repair line

By NEVAGiles23

Posted on February 17, 2012, Friday

KUCHING: Organic solutions company Juice Beauty is introducing three new products in its Stem Cellular Repair line to the public, incorporating technology and science in delivering the new products.

“The three products, namely Stem Cellular Repair Moisturiser, Stem Cellular Repair Eye Treatment and Stem Cellular Repair Booster Serum work at the cellular level to repair damage and increase cellular proliferation,” explained Juice Beauty retail outlet manager, Shirley Ann Tan.

The products were noted to have used the brand’s own proprietary blend of organic fruit stem cells injected into its clinically validated antioxidant rich organic juice base to help decrease DNA damage and accelerate cellular proliferation.

Tan stated that Juice Beauty products were antioxidant-rich and made from 100 per cent organic juices. The formulations were protected from environmental contamination with high tech airtight pump jars.

The manager added, “The reason we are so intent in creating organic products is that we want people to avoid using harmful chemicals in their skin care range for health purposes. People with eczema, skin problems and allergies could feel free to try out our organic products.”

Juice Beauty’s boasts its patent-pending juice base which does not have any drying effect on the skin or suffocate the skin as alcohol- or petroleum-based products do.

“Using an organic juice base provides the benefit of having every drop of the product feed your skin,” she highlighted.

The new products are currently available at Juice Beauty’s outlet at tHe Spring Mall.

<< Previous Entry - Next Entry >>

Read the original post:
Juice Beauty’s to boost organic skin care further with Stem Cellular Repair line

To Read More: Juice Beauty’s to boost organic skin care further with Stem Cellular Repair line
categoriaSkin Stem Cells commentoComments Off on Juice Beauty’s to boost organic skin care further with Stem Cellular Repair line | dataFebruary 16th, 2012
Read All

Synthetic protein amplifies genes needed for stem cells

By Dr. Matthew Watson

Public release date: 16-Feb-2012
[ | E-mail | Share ]

Contact: Tara Womersley
tara.womersley@ed.ac.uk
44-131-650-9836
University of Edinburgh

Scientists have found a way to generate and maintain stem cells much more efficiently by amplifying the effect of an essential protein.

Researchers from Denmark, Scotland and the USA have created synthetic versions of a protein, which manipulates adult cells ? such as skin cells ? so that they can subsequently revert to an earlier, embryonic like state. These reverted cells have the potential to become any cell in the body.

As well as reverting adult cells to this state ? known as induced pluripotent stem cells , the protein also plays a key role in maintaining embryonic stem cells in a pure form. If the protein ? Oct4 ? is not present, the embryonic stem cells will start to differentiate into specific cells.

In order to reprogamme adult cells to have stem cell properties viruses need to be added to cell cultures to trigger production of significant quantities of Oct4.

Oct4 plays a powerful role in regulating stem cell genes. However, while large quantities of Oct4 are needed too much of it can ruin the properties of stem cells.

Scientists, whose work is published in the journal Cell Reports, were able to overcome this by producing a synthetic version of Oct4 that amplified the effect of the protein in its natural form.

The synthetic version of Oct4 was much more efficient in turning on genes that instruct cells on how to be stem cells and, as a result, the cells did not need as much Oct4 for either reprogramming or to remain as stem cells ? thereby eliminating problems caused by too much Oct4.

In fact, the synthetic Oct4 could support stem cells under conditions that they do not normally grow. These findings could also help scientists find new ways generate stem cells in the laboratory.

The study showed that Oct4 was mainly responsible for turning on genes that instruct cells on how to become stem cells, rather than turning off genes that encourage the cells to differentiate.

"Our discovery is an important step towards generating and maintaining stem cells much more effectively," says Professor Joshua Brickman, affiliated with both The Danish Stem Cell Center (DanStem), University of Copenhagen and Medical Research Council Centre for Regenerative Medicine at the University of Edinburgh.

"Embryonic stem cells are characterized, among other things, by their ability to perpetuate themselves indefinitely and differentiate into all the cell types in the body ? a trait called pluripotency. But to be able to use them medically, we need to be able to maintain them in a pure state, until they're needed. When we want to turn a stem cell into a specific cell, such as insulin producing beta cell, or a nerve cell in the brain, we'd like this process to occur accurately and efficiently. This will not be possible if we don't understand how to maintain stem cells as stem cells. As well as maintaining embryonic stem cells in their pure state more effectively, the artificially created Oct4 was also more effective at reprogramming adult cells into so-called induced Pluripotent Stem cells, which have many of the same traits and characteristics as embryonic stem cells but can derived from the patients to both help study degenerative disease and eventually treat them.."

Oct4 is a so-called transcription factor ? a protein that binds to specific DNA sequences, thereby controlling the flow (or transcription) of genetic information from DNA to mRNA. The synthetic version of Oct4 was created by using recombinant DNA technology whereby a gene was modified to produce new and more active protein. The modified gene was either introduced into stem cells or used to reprogram adult skin cells.

If scientists can exploit this programming of stem cell programs, it will improve the ability to generate stem cells directly from a patient. These cells could in turn potentially be used for individualised studies and for developing individualized therapies for degenerative diseases such as type 1 diabetes and neuro-degenerative diseases.

###

The paper "Transcriptional Activation by Oct4 Is Sufficient for the Maintenance and Induction of Pluripotency", is published in Cell Reports on February 16, 2012, 12:00 EST US time/18:00 Danish time/17:00 UK time. The study involved mouse embryonic stem cells, early embryonic progenitors cells in frogs as well as iPS cells from both mouse and human sources. The research was supported by grants from the Novo Nordisk Foundation (DK), the Medical Reseach Council and the Biotechnology and Biological Sciences Research Council (MRC and BBSRC, UK).

Contact: Tara Womersley, Press and PR Officer, University of Edinburgh, 44-131-650-9836 or 44-7791-355-804

Link to Cell Report: http://cellreports.cell.com/

Embargo: Until February 16 at 12:00 EST US time/18:00 Danish time/17:00 UK time

About DanStem

The Danish Stem Cell Center opened in the Summer 2011 as a hub for international basic, translational and early clinical stem cell research. Professor Brickman and his group joined DanStem in October 2011 to partake in the build-up the center.

DanStem address basic questions in stem cell and developmental biology, and develop novel stem cell based therapeutic approaches for diabetes and cancer. It is supported by two major grants from Novo Nordisk Foundation (DKK 350 million (? 47 million)) and the Danish Research Council for Strategic Research (DKK 64.8 million (? 8,7 million)), respectively. More information about DanStem at: http://danstem.ku.dk

About Medical Research Council Centre for Regenerative Medicine

The MRC Centre for Regenerative Medicine (CRM) is a world leading research centre based at the University of Edinburgh. Together we study stem cells, disease and tissue repair to advance human health. Our research is aimed at developing new treatments for major diseases including cancer, heart disease, diabetes, degenerative diseases such as multiple sclerosis and Parkinson's disease, and liver failure. http://www.crm.ed.ac.uk


[ | E-mail | Share ]

 

AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.

Read the original here:
Synthetic protein amplifies genes needed for stem cells

To Read More: Synthetic protein amplifies genes needed for stem cells
categoriaSkin Stem Cells commentoComments Off on Synthetic protein amplifies genes needed for stem cells | dataFebruary 16th, 2012
Read All

Histogenics to Present at 7th Annual New York Stem Cell Summit

By NEVAGiles23

WALTHAM, Mass.--(BUSINESS WIRE)--

Histogenics Corporation, a privately held regenerative medicine company, today announced that the Company will present at the 7th Annual New York Stem Cell Summit on February 21st at Bridgewaters New York City. Kirk Andriano, Ph.D., Vice President of Research and Development for Histogenics, will speak about current and future cell therapies being developed by the Company as it works toward commercialization. Lead candidates include NeoCart®, an autologous bioengineered neocartilage grown outside the body using the patient’s own cells for the regeneration of cartilage lesions, and VeriCart™, a three-dimensional cartilage matrix designed to stimulate cartilage repair in a simple, one-step procedure. NeoCart recently entered a Phase 3 clinical trial after reporting positive Phase 2 data, in which all primary endpoints were met and a favorable safety profile was demonstrated.

Dr. Andriano earned his BS in chemistry and biology from Utah State University and his MS and Ph.D. in bioengineering from the University of Utah. Prior to his work at Histogenics, he was the Chief Technology Officer for ProChon Biotech, Ltd. which was acquired by Histogenics in May 2011.

About Histogenics

Histogenics is a leading regenerative medicine company that combines cell therapy and tissue engineering technologies to develop highly innovative products for tissue repair and regeneration. In May of 2011, Histogenics acquired Israeli cell-therapy company ProChon BioTech. Histogenics’ flagship products focus on the treatment of active patients suffering from articular cartilage derived pain and immobility. The Company takes an interdisciplinary approach to engineering neocartilage that looks, acts and lasts like hyaline cartilage. It is developing new treatments for sports injuries and other orthopaedic conditions, where demand is growing for long-term alternatives to joint replacement. Histogenics has successfully completed Phase 1 and Phase 2 clinical trials of its NeoCart autologous tissue implant and is currently in a Phase 3 IND clinical study. Based in Waltham, Massachusetts, the company is privately held. For more information, visit http://www.histogenics.com.

Read the original:
Histogenics to Present at 7th Annual New York Stem Cell Summit

To Read More: Histogenics to Present at 7th Annual New York Stem Cell Summit
categoriaUncategorized commentoComments Off on Histogenics to Present at 7th Annual New York Stem Cell Summit | dataFebruary 16th, 2012
Read All

World Stem Cells, LLC. Stem Cell Treatments In Cancun at Advanced Cellular Medicine Clinic

By Sykes24Tracey

World Stem Cells, LLC Stem Cell Therapy at a state of the art clinic in beautiful Cancun. The clinic is staffed by top specialist in the field of stem cell implants and a new laboratory to support the stem cell treatments given.

(PRWEB) February 16, 2012

World Stem Cells, LLC. contract laboratory Advanced Cellular Engineering Lab (Ingenieria Celular Advanzada S.A. de C.V.) a new adult stem cell laboratory being built in Cancun, Mexico to support Stem Cell research, stem cell clinical trials and stem cell treatments. This was accomplished by private funding in conjunction with World Stem Cells, LLC worldstemcells.com a US patient management company, Medicina Biocelular Avanzada , S.E. de C.V. a Mexican patient management company and Advanced Cellular Medicine Clinic of Cancun, a Stem Cell treatment Clinic owned and operated by Dr. Sylvia M. Abblitt a well known board certified hematologist and oncologist, in Cancun.

Uniquely, Dr. Abblitt is one of a limited number of physicians licensed to perform autologous and allogeneic stem cell transplants. Dr. Abblitt has been utilizing stem cell therapies with successes for many years.

She is the president and lab director of Advanced Cellular Engineering Lab (Ingenieria Celular Advanzada S.A. de C.V.). Her extensive background includes having been the laboratory director and head of hematology for Hospital Fernando Quiroz for 11 years. As a pioneer in the stem cell transplant field, she brings a vast array of knowledge to the lab. Her memberships include the american association of blood banks (aabb), Mexican society of transfusional medicine, interamerica society of transfusional medicine, Mexican association) for studies of hematologyandicms and ICMS (international cellular medical society and all patients are monitored by ICMS an independent agency for a period of between 2-20 years on a quarterly basis. Dr. abblitt has had a 26-year clinical practice history.

The laboratory construction is complete and operations were transferred to our new facility. This facility provides Cancun, and patient around the world, a state of the art GLP laboratory to support their stem cell treatments in a beautiful, and positive environment. The lab was designed and constructed to provide one ISO7 lab, one wet lab along with a treatment area. This will allow stem cell retrieval, testing, culturing, selection, counting, analyses and sorting along with cryopreservation, without removal from the lab. This all in house capability reduces the possibility of contamination and errors. Dr. M. Abblitt will operate the Lab under cGMP/cGLP guidelines and use the state of the art facility to provide quality care to her stem cell transplant patients.

Working under the guidelines set forth by ICMS world stem cells, LLC ( http://worldstemcells.com/ ) provides stem cell treatment for ankylosing spondylitis, autism, cerebral palsy, charcot-marie-tooth disease (cmt), crohn’s diseases, copd, fuch’s disease, guillain-barre’ syndrome, hashimoto’s thryroiditis, itp, kidney diseases, macular degeneration, lupus (sle), multiple sclerosis, pad, parkinson’s disease, rheumatoid arthritis, scleroderma, stroke, ulcerative colitis

The laboratory will be engaged in private clinical trials, IRB’s and joint studies with US companies, Mexican Educational Institutes, US universities and doctors to better understand the benefits and precaution to be taken in the stem cell treatment process.

###

Charles Newcomer

727-421-4359
Email Information

Read the original post:
World Stem Cells, LLC. Stem Cell Treatments In Cancun at Advanced Cellular Medicine Clinic

To Read More: World Stem Cells, LLC. Stem Cell Treatments In Cancun at Advanced Cellular Medicine Clinic
categoriaUncategorized commentoComments Off on World Stem Cells, LLC. Stem Cell Treatments In Cancun at Advanced Cellular Medicine Clinic | dataFebruary 16th, 2012
Read All

Patients' own cardiac stem cells could repair 'heart attack' damage

By LizaAVILA

Washington, Feb 14 (ANI): Researchers have conducted a stem cell study in mice, which suggests a novel strategy for treating damaged cardiac tissue in patients following a heart attack.

The approach potentially could improve cardiac function, minimize scar size, lead to the development of new blood vessels - and avoid the risk of tissue rejection.

In the investigation, the researchers isolated and characterized a novel type of cardiac stem cell from the heart tissue of middle-aged mice following a heart attack.

Then, in one experiment, they placed the cells in the culture dish and showed they had the ability to differentiate into cardiomyocytes, or "beating heart cells," as well as endothelial cells and smooth muscle cells, all of which make up the heart.

In another, they made copies, or "clones," of the cells and engrafted them in the tissue of other mice of the same genetic background who also had experienced heart attacks. The cells induced angiogenesis, or blood vessel growth, or differentiated, or specialized, into endothelial and smooth muscle cells, improving cardiac function.

"These findings are very exciting," said first author Jianqin Ye, PhD, MD, senior scientist at UCSF's Translational Cardiac Stem Cell Program.

First, "we showed that we can isolate these cells from the heart of middle-aged animals, even after a heart attack." Second, he said, "we determined that we can return these cells to the animals to induce repair."

Importantly, the stem cells were identified and isolated in all four chambers of the heart, potentially making it possible to isolate them from patients' hearts by doing right ventricular biopsies, said Ye.

This procedure is "the safest way of obtaining cells from the heart of live patients, and is relatively easy to perform," he said.

"The finding extends the current knowledge in the field of native cardiac progenitor cell therapy," said senior author Yerem Yeghiazarians, MD, director of UCSF's Translational Cardiac Stem Cell Program and an associate professor at the UCSF Division of Cardiology.

"Most of the previous research has focused on a different subset of cardiac progenitor cells. These novel cardiac precursor cells appear to have great therapeutic potential."

The hope, he said, is that patients who have severe heart failure after a heart attack or have cardiomyopathy would be able to be treated with their own cardiac stem cells to improve the overall health and function of the heart.

Because the cells would have come from the patients, themselves, there would be no concern of cell rejection after therapy.

The findings suggest a potential treatment strategy, said Yeghiazarians. he study has been published online in the journal PLoS ONE. (ANI)

Link:
Patients' own cardiac stem cells could repair 'heart attack' damage

To Read More: Patients' own cardiac stem cells could repair 'heart attack' damage
categoriaCardiac Stem Cells commentoComments Off on Patients' own cardiac stem cells could repair 'heart attack' damage | dataFebruary 16th, 2012
Read All

Stem cells a fix for 'broken hearts'?

By daniellenierenberg

When a piece of muscle in a person’s heart dies from lack of blood flow, it scars over and is lost.  But a team of researchers from the Cedars-Sinai Heart Institute in Los Angeles has proven that those muscles may not necessarily be gone forever.

In a ground-breaking study that may change how heart attacks are treated, Dr. Eduardo Marban and his team used stem cells to re-grow damaged heart muscle.  In the 17 patients who received the therapy, Marban measured an average 50 percent reduction in the size of the scar tissue

“One of the holy grails in medicine has been the use of medicine to achieve regeneration,” Marban said.  “Patients that were treated not only experienced shrinkage of their scars, but also new growth of their heart muscle, which is very exciting.”

The stem cells were not derived from embryos, but instead were developed from the patients’ own hearts.  Marban’s team inserted a catheter into the diseased hearts and took a small biopsy of muscle.  In the laboratory, the tissue was manipulated into producing stem cells.  After a few weeks of marinating in culture, researchers had enough stem cells to re-inject them into the patients’ hearts.  Over the course of a year, the stem cells took root in cardiac tissue, encouraging the heart to create new muscle and blood vessels.  In other words, the heart actually began to mend itself.

Click here to see an animation of how the process works.

“We’ve achieved what we have achieved using adult stem cells – in this case – actually specifically from a patient’s own heart back into the same patient.   There’s no ethical issues with that – there’s no destruction of embryos.  There’s no reason to worry about immune rejection."

While similar research has been done using stem cells from bone marrow, this is the first time that stem cells derived from a patient’s own cardiac tissue have been used.

Marban believes this therapy could be broadly used in many of the 5 to 7 million Americans who suffer from heart disease every year.  And he said the applications could go well beyond diseased hearts.

“If we can do that in the heart, I don’t see any reason, conceptually, why we couldn’t do it in kidneys for example, or pancreas or other organs that have very limited regenerative capacity,” Marban said.

While the procedure may be a revolutionary medical technique, there are still a few more puzzling questions about the research that Marban would like to investigate further.  For example, while the patients grew new heart muscle and saw a dramatic reduction in scar tissue, the actual function of their hearts did not show a significant improvement.  And it appeared the stem cells themselves may not have turned into cardiac muscle, but rather they stimulated the heart to produce new muscle cells.

Because this was a “Phase 1” study, it was really meant to measure whether the procedure was safe.  Of the 17 patients who were given the stem cell injections, six experienced “serious adverse events,” but only one was regarded to be possibly related to the treatment.  

The potential success of this research could hold a lot of promise for the millions of Americans who suffer from heart disease each and every year, which is the leading cause of death in the United States.  If his future experiments yield the same results as this initial study, Marban believes he could be offering this therapy to patients within four years – and that could go a long way in mending all of America’s broken hearts.

Originally posted here:
Stem cells a fix for 'broken hearts'?

To Read More: Stem cells a fix for 'broken hearts'?
categoriaBone Marrow Stem Cells commentoComments Off on Stem cells a fix for 'broken hearts'? | dataFebruary 16th, 2012
Read All

Bone marrow drive hopes to help student and save lives

By raymumme

When LSA senior Daniel Lee returned to the United States in December from a family trip to Italy feeling ill, he was rushed to the hospital where he received a life-threatening diagnosis — he had aplastic anemia, a disease that prevents bone marrow from producing red and white blood cells.

Upon hearing news of Lee’s dire need for a bone marrow transplant, students mobilized to encourage members of the campus community to donate marrow and raise awareness about the importance of joining the National Marrow Donor Registry.

As part of this effort, Sigma Kappa sorority members will work with DKMS Americas, a donor recruitment center, helping students, faculty and staff members register for the Be The Match Registry today from 10 a.m. to 4 p.m. in the Anderson AB Room in the Union.

LSA senior Samira Monavvari, Lee’s friend, has been working to promote today’s event via Facebook and has received more than 1,000 confirmed attendees. Monavvari said she hopes to be able to help someone else in need of a transplant, even if she doesn't find a match for Lee.

“The fact that Dan is going through this makes us want to donate to people who we don’t even know because it’s so hard seeing what he’s going through,” Monavvari said.

According to Monavvari, Lee is known jokingly by his friends as “the next Steve Jobs,” adding that he is extremely smart, driven and friendly.

“If you ask him what he wants to do, he’ll always say he wants to be known for something,” Monavvari said. “He is the kind of kid who gets along with everyone … that’s why (his diagnosis) has touched everyone so much.”

LSA junior Jessica Kaltz, a member of Sigma Kappa, started organizing the drive prior to Lee’s diagnosis. Kaltz worked with Christian Montgomery, a University alum and DKMS Americas employee, over the past few months to organize the registry at the University.

She wrote in an e-mail interview that she hopes that Lee’s story will inspire people to attend today’s event.

“When people hear about Dan’s story, I think they will see that by simply taking five minutes of their time by signing up to become a donor, they could possibly be the life-saving difference that Dan needs,” Kaltz wrote.

Montgomery explained that the process for joining the registry involves having potential donors fill out a short form and then submit a cheek swab to determine their tissue type.
Potential donors will then be added to the Be The Match Registry, a national list of potential bone marrow donors.

If the donor is contacted as a match and decides to continue with the process, he or she will be required to take a blood test in order to obtain the best match for the patient in need.

Between four and six weeks later, the donor will undergo a marrow extraction procedure or peripheral blood stem cell donation, depending on the patient’s condition. Contrary to popular belief, the donor typically does not experience significant pain, a common misconception about the two procedures, Montgomery said.

Montgomery is not only a DKMS employee, but also a bone marrow donor himself. In 2007, he registered at an event in the Diag, and in January 2008 he was contacted as a potential match for a 22-year-old female in New Jersey suffering from paroxysmal nocturnal hemoglobinuria, a rare blood disease.

Nicole Mausteller, the patient to whom Montgomery made his donation, said her disorder was discovered through blood work that was required as part of the process of becoming a dental assistant.

Montgomery donated through marrow extraction in May 2008, a procedure that he said left him a bit stiff and sore for a few days. After receiving a one-month, six-month and one-year update, Montgomery and Mausteller agreed to exchange contact information. They have been in contact since February 2010 and remain good friends.

“He’s my hero,” Mausteller said.

Excerpt from:
Bone marrow drive hopes to help student and save lives

To Read More: Bone marrow drive hopes to help student and save lives
categoriaBone Marrow Stem Cells commentoComments Off on Bone marrow drive hopes to help student and save lives | dataFebruary 16th, 2012
Read All

Horizon in new super-cell elite

By daniellenierenberg

Cambridge personalised medicines pioneer Horizon Discovery Ltd has landed another showpiece deal as part of a new super-cell consortium.

Business Weekly understands that the UK company stands to make a seven-figure haul over the lifetime of an EU-funded project aimed at understanding hES cell differentiation control.

Horizon provides research tools to support the development of personalised medicines. It has joined the EU-FP7 funded ‘4D-Cell-Fate’ consortium  whose aim is to shed light on how stem cell re-programming and differentiation is regulated at the epigenetic level.

As a member of the consortium, Horizon will generate cell-lines harbouring endogenous pathway reporter genes and labelled versions of specific epigenetic target proteins to study their function.

Commercialisation of the output of the programme will be governed by a consortium agreement defined by EU regulation.

4DCellFate brings together 12 groups from nine countries, including academics, research-intensive SMEs, and Pharma, each an international leader in its field, combining expertise in a wide range of cutting-edge technologies and scientific approaches.

The aim of the 4D CellFate project, which is currently funded for five years, is to establish an integrated approach to explore the structure and function of the large multi-protein epigenetic complexes that are involved in control of stem cell self-renewal, lineage commitment, and differentiation.

Horizon will use its proprietary virally-mediated gene-engineering technology, GENESIS™, to alter endogenous genes in hES cells (e.g. via tagging with GFP and HaloTag® technologies) with unprecedented accuracy and precision.

By gaining a greater insight into how Polycomb Repressive Complexes (PRCs), and Nucleosome Remodelling and Deacetylation complexes (NuRD) control stem cell differentiation, it is hoped that better methods will be identified to generate ethical sources of ‘iPS’ stem cells and direct the fate of stem cells into the many forms of specific tissue types that are needed for disease therapy.

Dr Chris Torrance, CSO of Horizon, said: “Generating stem cells and differentiated cell types with greater precision, definition and safety are key areas for delivering on the great promise that stem cell-based therapies could bring to many disease areas.

“Horizon’s gene targeting technology will play a key role in helping to dissect key biological pathways in the fate of stem cells as part of the 4D Cell Fate project. Through this process, new and important approaches to disease therapy will be determined.”

CEO Dr Darrin Disley added: “Our company has a commitment to active involvement in cutting-edge research with leading experts in translational fields, including bringing the power of rAAV-mediated gene targeting technology to the 4D Cell Fate project.”

Read the original:
Horizon in new super-cell elite

To Read More: Horizon in new super-cell elite
categoriaIPS Cell Therapy commentoComments Off on Horizon in new super-cell elite | dataFebruary 16th, 2012
Read All

Cytomedix to Showcase Aldagen's Promising Autologous Cell Therapy Technology at Two Regenerative Medicine Meetings

By raymumme

GAITHERSBURG, MD--(Marketwire -02/16/12)- Cytomedix, Inc. (OTC.BB: CMXI.OB - News) (the "Company"), a leading developer of biologically active regenerative therapies for wound care, inflammation and angiogenesis, today announced that Chief Operating Officer Edward L. Field will present a clinical overview of Aldagen's autologous cell therapy technology at two upcoming meetings: The Cell Society's 2nd Annual Clinical Meeting being held February 17-18 at the Coronado Marriott Resort in San Diego; and the 7th Annual New York Stem Cell Summit being held on February 21 at Bridgewaters New York in New York City.

Mr. Field will present during the session, "Commercialization Opportunities with Adult Stem Cell Therapies," on Friday, February 17 from 8:00 a.m. to 10:00 a.m. Pacific time at the Cell Society meeting.

Cell Society International is a non-profit organization dedicated to advancing the clinical application of adult stem cell therapies worldwide. Cell Society's 2nd Annual Clinical Meeting will continue in the tradition established at the 1st Annual Meeting and will offer a unique opportunity for multidisciplinary, international clinical collaboration designed to enhance understanding and thought-provoking insight into treatments and cures for disease and agonizing medical conditions. This year's clinical focus will center on therapies particularly relevant to cardiology, neurology, and orthopedic and plastic surgery.

At the Stem Cell Summit, Mr. Field will present at 2:35 p.m. Eastern time. This meeting showcases more than 30 of the world's leaders in this rapidly evolving industry. The New York Stem Cell Summit brings the future of this dynamic industry to life for investors, industry, practitioners and analysts so they can learn about the investment opportunities in the stem cell marketplace, groundbreaking stem cell products that physicians use today and the growing market potential in terms of revenues.

About Cytomedix, Inc.

Cytomedix, Inc. develops, sells and licenses regenerative biological therapies primarily for wound care, inflammation and angiogenesis. The Company markets the AutoloGel™ System, a device for the production of autologous platelet rich plasma ("PRP") gel for use on a variety of exuding wounds; the Angel® Whole Blood Separation System, a blood processing device and disposable products used for the separation of whole blood into red cells, platelet poor plasma ("PPP") and PRP in surgical settings; and the activAT® Autologous Thrombin Processing Kit, which produces autologous thrombin serum from PPP. The activAT® kit is sold exclusively in Europe and Canada, where it provides a completely autologous, safe alternative to bovine-derived products. On February 8, 2012 Cytomedix announced the acquisition of Aldagen, a biopharmaceutical company developing regenerative cell therapies based on its proprietary ALDH bright cell ("ALDHbr") technology, currently in a Phase 2 trial for the treatment of ischemic stroke. For additional information please visit http://www.cytomedix.com

Safe Harbor Statement
Statements contained in this communication not relating to historical facts are forward-looking statements that are intended to fall within the safe harbor rule for such statements under the Private Securities Litigation Reform Act of 1995. The information contained in the forward-looking statements is inherently uncertain, and Cytomedix' actual results may differ materially due to a number of factors, many of which are beyond Cytomedix' ability to predict or control, including many among others, risks and uncertainties related to the Company's ability to successfully integrate this acquisition, to successfully manage contemplated clinical trials, to manage and address the capital needs, human resource, management, compliance and other challenges of a larger, more complex and intergrated business enterprise, viability and effectiveness of the Company's sales approach and overall marketing strategies, commercial success or acceptance by the medical community, competitive responses, the Company's ability to raise additional capital and to continue as a going concern, and Cytomedix's ability to execute on its strategy to market the AutoloGel™ System as contemplated. To the extent that any statements made here are not historical, these statements are essentially forward-looking. The Company uses words and phrases such as "believes," "forecasted," "projects," "is expected," "remain confident," "will" and/or similar expressions to identify forward-looking statements in this press release. Undue reliance should not be placed on forward-looking information. These forward-looking statements are subject to known and unknown risks and uncertainties that could cause actual events to differ from the forward-looking statements. More information about some of these risks and uncertainties may be found in the reports filed with the Securities and Exchange Commission by Cytomedix, Inc. Cytomedix operates in a highly competitive and rapidly changing business and regulatory environment, thus new or unforeseen risks may arise. Accordingly, investors should not place any reliance on forward-looking statements as a prediction of actual results. Except as is expressly required by the federal securities laws, Cytomedix undertakes no obligation to update or revise any forward-looking statements, whether as a result of new information, changed circumstances or future events or for any other reason. Additional risks that could affect our future operating results are more fully described in our U.S. Securities and Exchange Commission filings, including our Annual Report for the year ended December 31, 2010, filed with the SEC and other subsequent filings. These filings are available at http://www.sec.gov.

Follow this link:
Cytomedix to Showcase Aldagen's Promising Autologous Cell Therapy Technology at Two Regenerative Medicine Meetings

To Read More: Cytomedix to Showcase Aldagen's Promising Autologous Cell Therapy Technology at Two Regenerative Medicine Meetings
categoriaUncategorized commentoComments Off on Cytomedix to Showcase Aldagen's Promising Autologous Cell Therapy Technology at Two Regenerative Medicine Meetings | dataFebruary 16th, 2012
Read All

Pathfinder to Present at New York Stem Cell Summit

By NEVAGiles23

CAMBRIDGE, Mass., Feb. 16, 2012 (GLOBE NEWSWIRE) -- Pathfinder Cell Therapy, Inc. ("Pathfinder," or "the Company") (OTCQB:PFND.PK - News), a biotechnology company focused on the treatment of diseases characterized by organ-specific cell damage, today announced that Richard L. Franklin, M.D., Ph.D., Founder, CEO and President of Pathfinder, will present at the 7th Annual New York Stem Cell Summit being held on Tuesday, February 21, 2012.

Event: 7th Annual New York Stem Cell Summit
Date: Tuesday, February 21, 2012
Place: Bridgewaters New York, 11 Fulton Street, New York, NY
Time: 3:35 pm ET

Dr. Franklin will be providing an overview of the Company's novel Pathfinder Cell therapy.

The New York Stem Cell Summit brings together stem cell company executives, researchers, investors and physicians to explore investment opportunities in stem cell research and innovation. More information can be found at http://www.stemcellsummit.com.

About Pathfinder

Pathfinder is developing a novel cell-based therapy and has generated encouraging preclinical data in models of diabetes, renal disease, myocardial infarction, and critical limb ischemia, a severe form of peripheral vascular disease. Leveraging its internal discovery of Pathfinder Cells ("PCs") Pathfinder is pioneering a new field in regenerative medicine.

PCs are a newly identified mammalian cell type present in very low quantities in a variety of organs, including the kidney, liver, pancreas, lymph nodes, myometrium, bone marrow and blood. Early studies indicate that PCs stimulate regeneration of damaged tissues without the cells themselves being incorporated into the newly generated tissue. Based on testing to date, the cells appear to be "immune privileged," and their effects appear to be independent of the tissue source of PCs. For more information please visit: http://www.pathfindercelltherapy.com.

FORWARD LOOKING STATEMENTS

This press release contains forward-looking statements. You should be aware that our actual results could differ materially from those contained in the forward-looking statements, which are based on management's current expectations and are subject to a number of risks and uncertainties, including, but not limited to, our inability to obtain additional required financing; costs and delays in the development and/or FDA approval, or the failure to obtain such approval, of our product candidates; uncertainties or differences in interpretation in clinical trial results, if any; our inability to maintain or enter into, and the risks resulting from our dependence upon, collaboration or contractual arrangements necessary for the development, manufacture, commercialization, marketing, sales and distribution of any products; competitive factors; our inability to protect our patents or proprietary rights and obtain necessary rights to third party patents and intellectual property to operate our business; our inability to operate our business without infringing the patents and proprietary rights of others; general economic conditions; the failure of any products to gain market acceptance; technological changes; and government regulation. We do not intend to update any of these factors or to publicly announce the results of any revisions to these forward-looking statements.

View original post here:
Pathfinder to Present at New York Stem Cell Summit

To Read More: Pathfinder to Present at New York Stem Cell Summit
categoriaUncategorized commentoComments Off on Pathfinder to Present at New York Stem Cell Summit | dataFebruary 16th, 2012
Read All

Stem Cells Help Regrow Heart Tissue

By NEVAGiles23

Stem cells harvested from a patient's own heart can be used to help repair muscle damaged during a heart attack, according to a preliminary study published online Monday in The Lancet. While it's too soon to know if the technique will help patients live longer, the study is the second small, promising study of cardiac stem cells in three months.

The new study involved 25 patients who had suffered very serious heart attacks; 24% of their heart's major pumping chamber had been replaced by scar tissue. One year later, doctors saw no improvement in those randomly assigned to get standard care. Among the 17 given stem cells, however, "we reversed about half the injury to the heart," said study author Eduardo Marban, director of the Cedars-Sinai Heart Institute in Los Angeles, in an e-mail. "We dissolved scar and replaced it with living heart muscle."

Warren Sherman, director of stem cell research and regenerative medicine at Columbia University Medical Center in New York, says the study was an important proof of the potential of stem cells - harvested from patients, grown in the lab, then injected back into patients' hearts.

Doctors don't yet know exactly how the stem cells reduce the size of the dead zone of scar tissue, says Kenneth Margulies, director of heart failure and transplant research at the University of Pennsylvania. And while the shrinking suggests that the stem cells are replacing dead cells with living ones, doctors can't definitely prove that without doing a biopsy of the actual cells, he says.

The new study's encouraging results seem to confirm the findings of another small study of heart stem cells, published in The Lancet in November, which also showed an improvement in heart-attack survivors who received the treatment, Margulies says. On the other hand, a third study, found no benefit from stem cells created from patients' own bone marrow.

Four stem-cell patients developed serious complications, compared to only one of the other patients, the study says. That suggests stem-cell therapy has a "satisfactory" safety record, but "is not risk-free," Margulies says.

The idea of regenerating heart tissue "was a pretty far-out idea" only 10 to 20 years ago, Margulies says. There's some evidence that heart tissue is capable of making some small repairs on its own, although not enough to help people who've had a heart attack.

Marban developed the process of growing heart stem cells while working at Johns Hopkins University, which has filed an application for a patent on the idea and licensed it to a company in which Marban has a financial interest. No money from that company was used to pay for the study, which was funded by Cedars-Sinai and the National Institutes of Health.

About 1.3 million Americans have a heart attack each year.

USA Today

You Might Be Interested In

Link:
Stem Cells Help Regrow Heart Tissue

To Read More: Stem Cells Help Regrow Heart Tissue
categoriaCardiac Stem Cells commentoComments Off on Stem Cells Help Regrow Heart Tissue | dataFebruary 15th, 2012
Read All

Stem cell study in mice offers hope for treating heart attack patients

By NEVAGiles23

In the investigation, reported online in the journal PLoS ONE, the researchers isolated and characterized a novel type of cardiac stem cell from the heart tissue of middle-aged mice following a heart attack.

Then, in one experiment, they placed the cells in the culture dish and showed they had the ability to differentiate into cardiomyocytes, or "beating heart cells," as well as endothelial cells and smooth muscle cells, all of which make up the heart.

In another, they made copies, or "clones," of the cells and engrafted them in the tissue of other mice of the same genetic background who also had experienced heart attacks. The cells induced angiogenesis, or blood vessel growth, or differentiated, or specialized, into endothelial and smooth muscle cells, improving cardiac function.

"These findings are very exciting," said first author Jianqin Ye, PhD, MD, senior scientist at UCSF's Translational Cardiac Stem Cell Program. First, "we showed that we can isolate these cells from the heart of middle-aged animals, even after a heart attack." Second, he said, "we determined that we can return these cells to the animals to induce repair."

Importantly, the stem cells were identified and isolated in all four chambers of the heart, potentially making it possible to isolate them from patients' hearts by doing right ventricular biopsies, said Ye. This procedure is "the safest way of obtaining cells from the heart of live patients, and is relatively easy to perform," he said.

"The finding extends the current knowledge in the field of native cardiac progenitor cell therapy," said senior author Yerem Yeghiazarians, MD, director of UCSF's Translational Cardiac Stem Cell Program and an associate professor at the UCSF Division of Cardiology. "Most of the previous research has focused on a different subset of cardiac progenitor cells. These novel cardiac precursor cells appear to have great therapeutic potential."

The hope, he said, is that patients who have severe heart failure after a heart attack or have cardiomyopathy would be able to be treated with their own cardiac stem cells to improve the overall health and function of the heart. Because the cells would have come from the patients, themselves, there would be no concern of cell rejection after therapy.

The cells, known as Sca-1+ stem enriched in Islet (Isl-1) expressing cardiac precursors, play a major role in cardiac development. Until now, most of the research has focused on a different subset of cardiac progenitor, or early stage, cells known as, c-kit cells.

The Sca-1+ cells, like the c-kit cells, are located within a larger clump of cells called cardiospheres.

The UCSF researchers used special culture techniques and isolated Sca-1+ cells enriched in the Isl-1expressing cells, which are believed to be instrumental in the heart's development. Since Isl-1 is expressed in the cell nucleus, it has been difficult to isolate them but the new technique enriches for this cell population.

The findings suggest a potential treatment strategy, said Yeghiazarians. "Heart disease, including heart attack and heart failure, is the number one killer in advanced countries. It would be a huge advance if we could decrease repeat hospitalizations, improve the quality of life and increase survival." More studies are being planned to address these issues in the future.

An estimated 785,000 Americans will have a new heart attack this year, and 470,000 who will have a recurrent attack. Heart disease remains the number one killer in the United States, accounting for one out of every three deaths, according to the American Heart Association.

Medical costs of cardiovascular disease are projected to triple from $272.5 billion to $818.1 billion between now and 2030, according to a report published in the journal Circulation.

More information: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0030329

Provided by University of California, San Francisco (news : web)

Go here to see the original:
Stem cell study in mice offers hope for treating heart attack patients

To Read More: Stem cell study in mice offers hope for treating heart attack patients
categoriaCardiac Stem Cells commentoComments Off on Stem cell study in mice offers hope for treating heart attack patients | dataFebruary 15th, 2012
Read All

Bone marrow transplant registration to be held in young boy's memory

By Dr. Matthew Watson

WALLACE, NC (WECT) - Last year, thousands of people became aware of the serious medical condition of a six-year-old boy from Duplin County.

Wright Lanier passed away in mid-December, but there is no doubt he made an impact on the people who followed his medical condition on Facebook.

In 2010, Wright was diagnosed with a rare immune deficiency. Initially, doctors thought that he had lymphoma.

"The doctors, a lot of times, knew something was wrong, but in testing him nothing ever showed up," said Wright's mother, Dona Lanier. "He had a rare immune deficiency called XLP, which always looked like Lymphona in his body."

Because his condition was worsening, doctors decided Wright needed a bone marrow transplant, which is a procedure to replace damaged or destroyed bone marrow with healthy bone marrow stem cells. The stem cells can develop into the red blood cells that carry oxygen through your body. The white cells are the ones that fight infections and the platelets help with blood clotting.

While the transplant actually worked, complications were too great, and Wright died just over a year after the surgery.

"The bone marrow transplant, according to the Cincinnati hospital and Chapel Hill, was a success, meaning it completely cured his XLP and MPS," explained Dona.  "Wright just unfortunately had a lot of complications as a result of the transplant that resulted in his passing."

"While bone marrow transplants are life saving procedures for a lot of children and adults, with diseases that used to be deadly, it can also be very dangerous, and unfortunately not everyone who has a bone marrow transplant survives," said Doctor David Hill, a Wilmington pediatrician.

Before Wright got sick, his mother was the school nurse at Penderlea School. Many of the teachers, including Donna Mintz, followed Wright's progress, and shortly after his death, plans were made to honor the young boy's short life.  A bone marrow registration drive will be held in his name in Wallace this weekend.

"If you knew Wright, you would be spoiled by the smile he had and he gave the best hugs in the world," said Mintz, a teacher and family friend. "And we want to do anything we can for the memory of Wright, to help his family."

"He had the biggest heart and he did live every day like it was his last," said Wright's mom. "He found joy in every single day".

The "Be The Match" registry drive will be held in honor of Wright Lanier this Saturday, from 11 a.m. - 4  p.m. in the Wallace Woman's Club building. Normally, there is a charge to be checked to see if you can become a donor, but this weekend, the fee has been waived.

There will also be other fundraising events taking place on Saturday, and all proceeds will go directly to the "Be The Match" registry.

Copyright 2012 WECT. All rights reserved.

Visit link:
Bone marrow transplant registration to be held in young boy's memory

To Read More: Bone marrow transplant registration to be held in young boy's memory
categoriaBone Marrow Stem Cells commentoComments Off on Bone marrow transplant registration to be held in young boy's memory | dataFebruary 15th, 2012
Read All

Research and Markets: Primary and Stem Cells: Gene Transfer Technologies and Applications

By daniellenierenberg

DUBLIN--(BUSINESS WIRE)--

Research and Markets (http://www.researchandmarkets.com/research/fc9dd6/primary_and_stem_c) has announced the addition of John Wiley and Sons Ltd's new book "Primary and Stem Cells: Gene Transfer Technologies and Applications" to their offering.

This book describes basic cell engineering methods, emphasizing stem cell applications, and use of the genetically modified stem cells in cell therapy and drug discovery. Together, the chapters introduce and offer insights on new techniques for engineering of stem cells and the delivery of transgenes into stem cells via various viral and non-viral systems. The book offers a guide to the types of manipulations currently available to create genetically engineered stem cells that suit any investigator's purpose, whether it's basic science investigation, creation of disease models and screens, or cells for therapeutic applications.

Key Topics Covered:

PART I: CLONING AND GENE DELIVERY

1. DNA Assembly Technologies Based on Homologous Recombination

2. Multigene Assembly for Construction of Synthetic Operons: Creation and Delivery of an Optimized All-IN-One Expression Construct for Generating Mouse iPS Cells

3. Strategies for the Delivery of Naked DNA

PART II: NONINTEGRATING TECHNOLOGIES

4. Episomal Vectors

5. Nonintegrating DNA Virus

6. Nonintegrating RNA Viruses

7. Protein Delivery

PART III: INTEGRATING TECHNOLOGIES

8. Sleeping Beauty Transposon-Mediated Stable Gene Delivery

9. Integrating Viral Vectors for Gene Modifications

10. Bacteriophage Integrases for Site-Specific Integration

11. Improving Gene Targeting Efficiency in Human Pluripotent Stem Cells

PART IV: APPLICATIONS

12. Modified Stem Cells as Disease Models and in Toxicology Screening

13. Screening and Drug Discovery

INDEX

Author:

UMA LAKSHMIPATHY is a principal investigator at Life Technologies. She has a PhD in life sciences, with academic and industry experience in molecular biology and stem cells. Dr. Lakshmipathy holds four patents and has authored more than forty publications.

BHASKAR THYAGARAJAN is a program manager at Life Technologies. He has a PhD in pharmacology, with expertise in the areas of molecular biology, DNA recombination, gene and cell therapy, and protein purification. He holds one patent and has authored more than twenty publications.

For more information visit http://www.researchandmarkets.com/research/fc9dd6/primary_and_stem_c

Read the rest here:
Research and Markets: Primary and Stem Cells: Gene Transfer Technologies and Applications

To Read More: Research and Markets: Primary and Stem Cells: Gene Transfer Technologies and Applications
categoriaIPS Cell Therapy commentoComments Off on Research and Markets: Primary and Stem Cells: Gene Transfer Technologies and Applications | dataFebruary 15th, 2012
Read All

Page 401«..1020..400401402403..410420..»