Page 393«..1020..392393394395..400410..»

Spinal Cord Injury (SCI) Stem Cell Treatment

By LizaAVILA

Your current country *

Afghanistan land Islands Albania Algeria American Samoa Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cte d'Ivoire Croatia Cuba Curaao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guam Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hong Kong Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People's Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People's Democratic Republic Latvia Lebanon Lesotho Liberia Libya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Marshall Islands Martinique Mauritania Mauritius Mayotte Mexico Micronesia, Federated States of Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Northern Mariana Islands Norway Oman Pakistan Palau Palestinian Territory, Occupied Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Puerto Rico Qatar Runion Romania Russian Federation Rwanda Saint Barthlemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan, Province of China Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States United States Minor Outlying Islands Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Viet Nam Virgin Islands, British Virgin Islands, U.S. Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe

Link:
Spinal Cord Injury (SCI) Stem Cell Treatment

To Read More: Spinal Cord Injury (SCI) Stem Cell Treatment
categoriaSpinal Cord Stem Cells commentoComments Off on Spinal Cord Injury (SCI) Stem Cell Treatment | dataApril 8th, 2017
Read All

Asterias (AST): Blazing the Stem Cell Trail for Spinal Cord Injury – Equities.com

By raymumme

Yesterday we highlighted the GTCbio Stem Cell Summit in Boston. Another company we've been closely following is also represented at the conference, Asterias Biotherapeutics (NYSE: AST). Asterias is developing therapies based on pluripotent stem cells to address significant unmet medical needs in neurology and oncology. According to Boston Children's Hospital, pluripotent stem cells are the body's master cells, potentially able to produce any cell or tissue the body needs to repair itself. Like all stem cells, pluripotent stem cells are also able to self-renew, meaning they can perpetually create more copies of themselves.

The company draws its name from the common starfish, Asterias rubens, which has the ability to regenerate lost limbs even in adulthood. The company's lead product candidate, AST-OPC1, is currently in a Phase 1/2a dose ranging trial for spinal cord injury. As Patrick Cox discussed two months ago, Asterias' clinical trial has been generating significant interest.

In the company's earnings call last week, CEO Steve Cartt highlighted the ongoing clinical and corporate progress:

Source: Asterias Biotherapeutics Corporate Presentation, Jan. 24, 2017

We note that the company's cash position is much better than it was a year ago. As shown in the chart above, Asterias' spinal cord trial is funded by a grant from the California Institute of Regenerative Medicine (CIRM), which has certainly eased the burden. As of the end of February 2017, the company's cash and cash equivalents totaled $19.9 million and combined with its available-for-sale securities (mostly BioTime stock - see below*) totaled $33.5 million. Ryan Chavez, CFO, said, "We believe we currently have sufficient capital to fund operations through at least the first quarter of 2018."

* Readers may recall that Asterias was spun out of BioTime (NYSE: BTX) in 2014. BioTime remains the dominant shareholder, controlling 47% of the outstanding common and three out of the nine board seats (with a fourth board seat occupied by Broadwood Capital, BioTime's largest shareholder). Also, as mentioned above, Asterias holds about $13 million worth of BioTime stock. While the kids all seem to be playing well in the sandbox, this close relationship merits watching.

Jane Lebkowski, Asterias' President of Research and Development, was part of an immunotherapy roundtable at the Stem Cell Summit yesterday, discussing the company's research in therapeutics for lung cancer. Today, April 6th, at 10:40am ET, Dr. Michael West, CEO of BioTime, will deliver the conference keynote address entitled "The Promise of Pluripotency in the Manufacture of Advanced Cell-Based Therapeutics" - which sounds like a direct advertorial for a key BioTime asset - Asterias Biotherapeutics.

Please email us at content@equities.com if you are a Public Company and would like to see our Testimonials.

Please click here if you would like information on our new trading platform.

Please click here if you're an investor and would like to see our weekly newsletter.

DISCLOSURE: The views and opinions expressed in this article are those of the authors, and do not represent the views of equities.com. Readers should not consider statements made by the author as formal recommendations and should consult their financial advisor before making any investment decisions. To read our full disclosure, please go to: http://www.equities.com/disclaimer

View original post here:
Asterias (AST): Blazing the Stem Cell Trail for Spinal Cord Injury - Equities.com

To Read More: Asterias (AST): Blazing the Stem Cell Trail for Spinal Cord Injury – Equities.com
categoriaSpinal Cord Stem Cells commentoComments Off on Asterias (AST): Blazing the Stem Cell Trail for Spinal Cord Injury – Equities.com | dataApril 8th, 2017
Read All

Australian of the Year Alan Mackay-Sim on the advantage of being ‘an interested scientist’ – The Age

By NEVAGiles23

Suspended from a tree in the wilds of Tennessee, the remains of his hang-glider entangled in the branches above, his lower left leg pulverised and his chest badly bruised from his dramatic fall into the forest canopy, Alan Mackay-Sim felt hyper-alert from the electricity of adrenalin, the clarity of shock. Only the wind was audible, softly rustling the branches around him as he sucked in the forest air, perfumed with poplar and sweet-gum.

Knowing that the adrenalin coursing through his veins would soon give way to an agonising and possibly debilitating pain, the 28-year-old used these precious minutes to assess his predicament, to figure it out coolly like a man of science.

A broken leg, no doubt shattered in multiple places. Possibly hours before his fellow hang-gliding friends would be able to locate him; if they didn't reach him by nightfall, he could be dangling here until the next morning. Unfastening his harness and climbing down to the ground five metres below was not an option, at least, not without incurring further injury. To prevent blood from pooling and to save his leg, he quickly concluded, he'd have to carefully oh-so carefully free the hang-glider's stirrup bar and one of the ropes from his harness, create a splint for his injured left leg, secure it to his right leg and hoist up both limbs while hanging there like a gammy fruit bat.

Mackay-Sim had only arrived in the US a few weeks before, a post-doctoral researcher from the University of Sydney eager to extend his studies into the olfactory system specifically, what the nose tells the brain at the University of Philadelphia. But on that blustery October day back in 1979, when a freak wind gust whooshing around Lookout Mountain near Chattanooga sent a promising young Australian scientist nosediving into the forest, before a rescue team found himhanging in the tree just before sunset, both legs securely elevated, Mackay-Sim was set to gain some useful insights that would become valuable to him in his later life. Insights that would be peculiarly relevant to his work as a pioneering stem cell researcher specialising in the treatment of spinal cord injuries.

So badly broken was his leg that Mackay-Sim spent more than six months in a wheelchair, and many more months afterwards receiving intensive physiotherapy.

"It gave me some insight into what life's like in a wheelchair, and it stayed with me," says Mackay-Sim, settling into a chair in his office at the Institute for Drug Discovery at Griffith University, just down the corridor from the laboratory where he spent years toiling over petri dishes of nasal stem cells, in his life's mission to treat spinal injuries, hereditary spastic paraplegia and diseases like Parkinson's.

A photo of the late actor Christopher Reeve is pinned on a noticeboard behind him. "I met Christopher in 2003 when he came out for a conference; he was interested in our clinical trials," Mackay-Sim says, looking at the photo. "Then in the following year I spent some time at his home in New York, and we talked a lot about spinal cord injury repair, and his own personal story."

As Mackay-Sim explains, the higher up the spinal cord an injury is, the more severe the effects. "As we know, Christopher fell off a horse and became a full paraplegic on a respirator, but in fact he suffered only a small injury; the problem was that the bleed went straight into his spinal cord. It only takes a very small injury to stop transmission; you can have large injuries to the chest and not suffer long-term repercussions but here, in the neck, a small event can change your life."

Back in the late 1980s, after he started at Griffith University, Mackay-Sim became interested in a set of extraordinary busy-bee cells in the human nose called olfactory ensheathing cells nerve cells that regenerate every single day to recreate our sense of smell. If these wonder cells are continually regenerating, he kept asking himself, could they not be transplanted to another part of the body where cells don't regenerate, like the spinal cord?

Years of scientific slog followed until 2002, when Mackay-Sim was the first researcher in the world to remove cells from the nose of a patient paralysed in a car accident, grow them in a cell culture and then, with the help of surgeons at Brisbane's Princess Alexandra Hospital, implant them in the same patient's spinal cord. "By the time Christopher died in 2006, we'd transferred stem cells from the nose into three patients and shown it was safe to do so," he says. "One of the patients recovered some sensation above the injury, which was hopeful, but one person does not make real scientific evidence."

For Mackay-Sim, the importance of scientific breakthroughs in the treatment of life-threatening illnesses is deeply personal. In 2014, he was diagnosed with multiple myeloma, an incurable form of leukaemia. As a result of the illness, which breaks down bones in an advanced form of osteoporosis, and the punishing series of treatments that followed his diagnosis, involving radiation, chemotherapy and stem cell therapy (albeit a very different form from the one the scientist was researching), Mackay-Sim lost nine centimetres in height and shed more than 15 kilograms of body weight. "I became extremely sick from the chemotherapy just prior to the bone marrow transplant," the 65-year-old recalls. "It was the worst experience of my life."

There was also the initial shock of the diagnosis, and grief for the loss of his health after a highly active life, from football and rowing in his teens to distance cycling, scuba diving and hang-gliding, which he took up while atuniversity. "Both my parents lived into their 80s and 90s and I'd been cycling up to 200 kilometres a week for decades, so I wasn't anticipating something like this."

Still, as a scientist he couldn't help but observe the trajectory of his illness with stricken fascination. "I had some good conversations with my oncologist," he smiles. "As a biologist examining my own biology, it did demystify lots of things. One minute I was a grieving patient, the next an interested scientist."

Above all, Mackay-Sim refuses to sentimentalise his battle with the illness and asks that I don't embroider it in this story by turning it into some kind of triumph of personal will power over disease. "My survival is determined by the vagaries of the particular cancer I've got," he says matter-of-factly. "Some people have nasty genetic diseases that mean they die earlier. For the moment, I feel very healthy."

Surely his extreme fitness at least helped him to survive the ravages of chemo? "I think being fit and active all my life has given me a higher quality of life after treatment," he acknowledges. "But one doctor put it to me that I probably would have sought out treatment earlier if I wasn't so fit, because I dismissed the symptoms as simple back pain from the cycling. It took two years after the chemo and radiation for the pain to go away. 2016 was a year of normality for me my back became stable enough for me to get on a road bike again."

The diagnosis added poignancy to the evening in Canberra in late January when Mackay-Sim, out of 3000- plus nominations, was crowned Australian of the Year. Sitting alongside him were his American-born wife of nearly 34 years, Lisa Peine, a retired primary school teacher, their 28-year-old daughter Matilda, a trainee psychiatrist, and 25-year-old son Callum, an engineer.

Mackay-Sim with wife Lisa Peine in North Queensland in 1983. Photo: Courtesy of Alan Mackay-Sim

Perhaps no Australian of the Year is better placed to recognise just how precious a year can be, and more determined to seize the moment to put science and innovation at the top of the national conversation. A former Queenslander of the Year, Mackay-Sim sees science as vital to our future national wellbeing, especially after the recent wake-up call in international school education rankings, which placed Australia behind Kazakhstan and Slovenia in maths and science.

Mackay-Sim agrees unequivocally with Michelle Simmons, professor of quantum physics at the University of NSW, who drew headlines recently when she declared that the "feminised" nature of Australia's high school physics curriculum (emphasising the sociology of science with essays and theory instead of rigorous lab experiments and mathematical problem-solving) had been an unmitigated failure. Introduced in the 1980s, the approach had resulted in a long, slow decline in standards.

"Scientific understanding comes from learning the processes; it can be hard work but is absolutely essential," Mackay-Sim insists. "The key to a good science education in schools is to get well-trained teachers." (Mackay-Sim has been deeply encouraged by some of the science teachers he's met since winning the award.)

The choice of Mackay-Sim the first scientist honoured as Australian of the Year since immunologist Ian Frazer in 2006 was met with near-universal applause by Australia's scientific community, who no doubt feel dispirited in this post-truth world of climate-change denial, cuts to the CSIRO and the growing view by government agencies that basic research isn't worth it.

"We need to invest in young scientists," Mackay-Sim declared in his acceptance speech, adding that the discovery of new medical treatments can reduce the strain on health budgets. "More than 10,000 Australians live with a spinal cord injury a new person is added to this tally every day." But politicians need to take a long-term view of the benefits of basic research, he tells me, "a view much longer than the political horizon".

The announcement also gave the image of the Australian of the Year awards a much-needed polish. The 2016 winner, Lieutenant-General David Morrison, drew criticism for charging up to $15,000 a pop forpublic speaking engagements, as well as grandstanding about sexism in the military despite his own handling of the army's "Jedi Council" sex scandal, in which demeaning sex videos of women were distributed among a group of soldiers. (It was revealed that Morrison's office knew of the scandal 11 months prior to the former Chief of Army releasing a now-famous condemnation on YouTube of those involved.)

Will Mackay-Sim accept speakers' fees? "I knew nothing about speakers' fees when I accepted the award," he says crisply. "I'm not pursuing money after all, I've spent my life doing public research."

Although he hasn't received any fees to date, Mackay-Sim insists that if they are offered, the funds will be donated to the Hereditary Spastic Paraplegia Research Foundation, his charity of choice.

Mackay-Sim only had a day or so to bask in the glow of being named Australian of the Year before there was a claim his scientific achievements had beenoverstated in the application. A Polish scientist, Professor Pawel Tabakow, after being approached by an Australian journalist in Europe, declared that Mackay-Sim had nothing to do with the world-first surgery using olfactory stem cells that enabled a Polish paraplegic, Darek Fidyka, to walk again. "It is not our business who should be Australian of the Year," Tabakow told The Weekend Australian. "But it is our business when his work is being linked to the surgery of Fidyka. He has no link whatsoever."

The scientific hullaballoo arose from the submission to the Australia Day Council (ADC), which states that Mackay-Sim's research "helped play a central role in proving the safety of science that was a precursor to Dr Tabokow in Poland undertaking the first successful restoration of mobility in a quadriplegic man".

Although Mackay-Sim didn't write the submission to the ADC, doesn't know who did, and never claimed to be involved in Tabokow's work, an artificial straight line was drawn between the two scientists, especially when the word "precursor" was dropped from condensed versions of the ADC's quote in multiple news stories (we'll examine the fallout from the controversy a little later).

Padding amiably about his large, multi-room laboratory, past refrigerator-sized storage cabinets containing cell cultures, past white-coated scientists peering into microscopes, Mackay-Sim seems to be in his element, with every second person saying "Hi", "Hello", or "How are you?" If stem cells are indeedthe microscopic building blocks of the world, this is the tiny universe the scientist feels most comfortable in. But it's a laboratory that now has to hum along without him Mackay-Sim retired late last year, his duties now limited to popping into the university once a week as an emeritus professor.

Later in the day, Professor George D. Mellick, head of Clinical Neurosciences at Griffith, tells me that Mackay-Sim has always set aside time to mentor younger scientists, and to explain sometimes hideously complicated science to a lay audience, but would be the last person to crow about his own scientific achievements.

"One of the things that isn't highlighted very much about Alan's work is his research into Parkinson's. We've been able to learn a lot about Parkinson's by studying cells from people with the disease, and the information coming out of this research will hopefully lead to better treatments."

Back in his office, Mackay-Sim gives me a quick rundown, 101-style, on the human nose. No, the human sense of smell doesn't necessarily decline with age, unless illness or disease set in, and it is astonishingly adept at distinguishing hundreds of thousands of different odours. Yes, women do have a superior sense of smell to men, but the difference is surprisingly only slight. Yes, the first symptom of Parkinson's, before the typical tremors set in, is a reduced sense of smell, as it is with those sufferers who will go on to develop dementia. And yes paws down dogs do have a vastly more powerful sense of smell than humans, although it's impossible to quantify by exactly how much (Mackay-Sim has been known to hide from his spoodle Henry, to measure how long it takes for the dog to find him).

As he relays all this, Mackay-Sim's eyes twinkle and a smile lights up his face: it's easy to see how he'd be the perfect academic for Griffith to call on to schmooze a government minister or potential philanthropist and secure desperately sought-after funding. I ask him about his trademark moustache, which he's had since the early 1990s, when he shaved off a beard. "My wife wouldn't recognise me without it," he jokes. "She says that a small mammal could roost beneath my mouth."

Mackay-Sim, whose double-barrelled surname comes from his paternal grandfather, grew up in middle-class Roseville, on Sydney's leafy North Shore, the third of four brothers. His mother Lois was a nurse during World War II and later a full-time mum while his father Malcolm ran a hardware importing and distributing business, Macsim Distributors (now Macsim Fasteners, owned by Alan's eldest brother, Fraser). At North Sydney Boys' High he was "the opposite of a shit-stirrer. I was vice captain, head of the cadets, played football, was in the rowing team, had a shot at athletics, sang in the choir I did it all."

With wife, Lisa Peine, in Sulawesi, Indonesia, 2007. Photo: Courtesy of Alan Mackay-Sim

After graduating with honours in science from Macquarie University, Mackay-Sim picked up tutoring work in the department of physiology at the University of Sydney, where he completed a PhD on the brain's visual system. Two academic stints in the US followed, first at the University of Pennsylvania from 1979 until 1981, followed by two years at the University of Wyoming, during which time he met his wife Lisa, then living in northern Colorado.

The pair married in 1984, by which time Mackay-Sim had been offered a research role in the department of physiology at the University of Adelaide. He started at Griffith University in 1987, where his research concentrated on the biology of nasal cells.

At the height of the heated moral debate over the use of embryonic stem cells whether the therapeutic potential of stem cells could justify destroying human embryos to extract them Mackay-Sim met Pope Benedict XVI at a Vatican conference in 2005. The Pope congratulated him on his exclusive use of adult stem cells.

"I wasn't avoiding embryonic stem cells for religious reasons," Mackay-Sim explains. "It just so happenedthat I was working with adult stem cells at the time and the conference was looking at alternatives to using embryonic stem cells. But it was a scientific conference and I was impressed with its calibre; the only difference was that men in purple robes were sitting at the back asking questions."

Later in the same trip, Mackay-Sim was invited, along with a host of others, to the Apostolic Palace at Castel Gandolfo the Vatican summer palace. "You feel the history of the Roman Catholic Church, with the Pope coming in with his cardinals and the Swiss Guards," he says. "I'm not a believer, but it was a very powerful experience."

In 2006, the debate over embryonic stem cells virtually vanished when scientist Shinya Yamanaka from Japan's Kyoto University stunned the world by proving that stem cells needn't come from human embryos adult cells can be reprogrammed to act like stem cells, to be returned to an embryo-like state (Yamanaka's discovery won him the Nobel Prize in 2012). "Yamanaka worked out how to genetically engineer any cells so that they had the properties of embryonic stem cells," says Mackay-Sim, who nonetheless continued to focus on adult stem cells only.

Mackay-Sim accomplished his own world first in 2002 when, with the assistance of doctors at Brisbane's Princess Alexandra Hospital, he transplanted olfactory stem cells into the spinal cord of a man crippled in a car accident. The procedure was repeated with two other paraplegic patients at the same hospital and the study wrapped up in 2007.

While the procedures didn't result in any of the patients regaining useful movement in their legs, the results of Mackay-Sim's clinical trials, published in 2005 and 2008, paved the way for further development of olfactory stem cell transplantation.

One researcher who followed Mackay-Sim's trials closely was Geoffrey Raisman from University College London, who visited the Australian team shortly after the first operation in Brisbane to study their work. Raisman later led the British team who worked with Polish surgeon Tabakow on Darek Fidyka in 2012.

Tabakow deployed 100 separate micro-injections of olfactory sheathing cells above and below Fidyka's spinal injury, with the hope these cells would provide a skeleton for nerve fibres to grow and reconnect. A former volunteer firefighter, Fidyka had become paralysed in 2010 after a severe knife attack by the jealous ex-husband of his girlfriend. The repeated stab wounds to Fidyka's back severed his spinal cord, paralysing from the waistdown. (Fidyka's attacker, a fellow firefighter, committed suicide shortly afterwards.)

There's no doubt Tabakow's work was a major advance on Mackay-Sim's research. Tabakow's strategy was to extract ensheathing cells specifically from the olfactory bulbs in Fidyka's nose, grow them in a culture, while also extracting nerve cells from his ankle in a multi-pronged attempt at spinal cord reconstruction. After a series of operations, Fidyka can walk with the assistance of a frame, has regained some bladder control and sexual function, and can ride a tricycle.

Raisman described their new stem cell procedure as "more impressive than man walking on the moon", but it will have be tested on other paraplegics, including those with more severe injuries than Fidyka's, such as car accident victims who have had more of their spinal cord damaged, before it can be declared a reliable method of restoring mobility. As impressive as Tabakow's achievement is, it has still only worked on one patient.

Nobody, however, disputes Mackay-Sim's immense contribution to stem cell transplantation; his work is unimpeachable. If nothing else, he was at the forefront of the science showing that restoring the ability to walk to paraplegics is no longer science fiction. "What I've always said is that we did the first phase of clinicaltrials with olfactory stem cells, and the aim of those trials was to show they were safe," says Mackay-Sim. "That was the first important step."

Mackay-Sim wrote to Tabakow shortly after the controversy blew up, explaining that he didn't write the submission to the Australia Day Council, and was in no way claiming credit for Fidyka's remarkable recovery. "He wrote back a very nice email," says Mackay-Sim. "I believe I've given credit to other scientists in every interview I've given to journalists. I feel comfortable in my behaviour and ethics."

With Prime Minister Turnbull in January this year. Photo: Elesa Kurtz

Mackay-Sim can remember the day when he felt something was wrong terribly wrong. He'd been suffering back pain for months, but dismissed it as old age, or strain from bending over on his bicycle on long rides, and stocked up his pantry with painkillers. "I was in Colorado with Lisa visiting her family, and the pain became so bad I couldn't walk very far. I found the pain eased when I got on my bicycle. I flew home a week before she did; the plane trip back was absolute hell."

What followed was a swift diagnostic journey from his GP to specialists at Brisbane's Wesley Hospital, resulting in a devastating diagnosis. "They suspected something cancerous quite quickly. I didn't realise how ill I was; by this stage, my kidneys weren't coping at all with the antibodies released from my white blood cells, which were going berserk trying to fight the disease. I was at risk of kidney failure and my bones were becoming very fragile. I started therapy almost immediately, in June 2014. Then began the cycles of chemotherapy and stem cell treatment in December."

Since the beginning of last year, however, Mackay-Sim's health has dramatically improved, and even though he's retired to his beachside home in Currimundi on the Sunshine Coast, he is still active in university affairs. He concedes that his health may prevent him from being as active as Rosie Batty, perhaps our most vigorous Australian of the Year to date. But he's already spoken at functions in Brisbane, Sydney and Perth, and will be attending the national March for Science on April 22, which coincides with Earth Day. He moves with the speed and fluidity of a man 10 or 15 years younger.

"I feel very healthy, very energised at the moment," says Mackay-Sim, who is planning a bicycle ride in Italy's Dolomites in July with a couple of mates. (Last year he and his wife went on the Great Victorian Bike Ride, a seven-day ride averaging 85 kilometres a day.)

"I do need to be selective with the number of invitations around Australian of the Year," he concedes, "but I'll do everything I can. After all, what more exciting time could you have to talk about science?"

Go here to see the original:
Australian of the Year Alan Mackay-Sim on the advantage of being 'an interested scientist' - The Age

To Read More: Australian of the Year Alan Mackay-Sim on the advantage of being ‘an interested scientist’ – The Age
categoriaSpinal Cord Stem Cells commentoComments Off on Australian of the Year Alan Mackay-Sim on the advantage of being ‘an interested scientist’ – The Age | dataApril 8th, 2017
Read All

Study: heart failure stem cell therapy safe, shows early signs of effectiveness – The San Diego Union-Tribune

By Dr. Matthew Watson

A stem cell treatment for heart failure patients is safe and shows early signs of effectiveness, according to a study published Wednesday.

The study was conducted by Japanese researchers in 27 patients, who received transplants of stem cells taken from their own thigh muscles. There were no major complications, and most patients showed considerable improvement in their symptoms.

The study was published in the open-access Journal of the American Heart Association. Dr Yoshiki Sawa of Osaka University Graduate School of Medicine was the senior author. It can be found at j.mp/stemheart.

However, two San Diego cardiologists who do stem cell research on heart disease cautioned that similar clinical trials have shown promise over the years, only to fail at the end for various reasons. There is no approved stem cell therapy for heart failure.

So while the trial itself appears to be well-conducted, the researchers are very far from actually proving their treatment is effective, said Dr. Richard Schatz of Scripps Health and Dr. Eric Adler of UC San Diego School of Medicine.

For one thing, the trial was small, they said, and larger trials are where the most rigorous scientific evaluations are made.

These early trials have looked beneficial in the past, Adler said. When we do the larger trials, the results are more equivocal.

Adler said the signs of efficacy in this trial are modest. For example, the change in ejection fraction, a measurement of efficiency in pumping blood, rose from 27 percent to 30 percent in 15 of the 27 patients. Their heart failure was associated with a lack of blood flow, or ischemia. The remaining non-ischemic patients actually had a slight decline.

The entire field of stem cell and regenerative therapy for heart disease has been a disappointment to date, Schatz said.

Weve been at it for 20 years now, and we dont have a product or a positive (late-stage) trial, so that tells you pretty much everything you need to know, he said. Its not for lack of trying or billions of dollars invested. Its just very, very difficult.

The cardiac field has had more success with other technologies, such as cardiac stents. Schatz is the co-inventor of the first stent.

In the study, the researchers acknowledge that previous attempts had only been modestly effective. They devised a method of producing sheets of muscle stem cells and attaching them to the inner layer of the sac that encloses the heart, a layer that rests directly on the heart surface.

The stem cell sheets stimulate healing by producing chemicals that stimulate cardiac regeneration, the study said. The cells themselves dont survive in the long term, but by the time they die they have served their purpose.

Loss of function

Heart failure is a progressive disease in which the heart gradually loses its ability to pump blood. This can be triggered by a heart attack or any other cause that damages the heart muscle.

When damaged heart muscle is replaced with scar tissue, as often happens, the heart loses pumping capacity. It becomes overstressed, and its output of blood declines. This limits the patients ability to engage in intensive physical activity. In advanced cases, patients may become bedridden.

Existing treatments include drugs and LVAD units, which take over some of the hearts function to relieve stress. Some drugs may help the heart work more efficiently, but none have been shown to improve heart failure by actually regenerating lost heart muscle.

Stem cell therapy is tested in patients who havent responded well to other treatments. Trials have been and are being conducted in San Diego area hospitals.

Scripps Health has been testing a cardiac stem cell therapy from Los Angeles-based Capricor. The cells, taken from donor hearts, are injected into the coronary artery, where they are expected to settle in the heart and encourage regrowth.

UC San Diego is testing a heart failure therapy from Teva Pharmaceutical Industries. It consists of bone marrow derived mesenchymal precursor cells. These can give rise to several different cell types, including muscle cells.

And many other trials are going on throughout the country and internationally.

Adler and Schatz said theres reason for optimism in the long run, as technologies improve.

Just because the other trials have been negative doesnt mean this technique wont be beneficial, Adler said. Its just too early to tell.

That said, Schatz emphasized that the nature of the three-phase clinical trial process means that the show-stoppers for a treatment typically appear late.

Tighter standards needed

Clean trials trials where we all agree that this is the patient population we want to look at, are needed, he said.

For example, heart failure comes in two types, he said. Ischemic heart failure is caused by heart attacks and blocked arteries, which impede blood flow. Non-ischemic heart failure can be caused by damage from diseases, such as a virus.

Non-ischemics can be younger people, in their 20s and 30s, while the ischemic patients are older. Mixing those patient groups in a single trial is a mistake, he said.

Theyre different animals, Schatz said.

Another pitfall is failing to screen carefully enough to enroll only patients likely to benefit, Schatz said.

You can have a patient who has chest pain, and coronary disease just incidentally, he said.

His shoulder or chest pain is from a virus. So he goes into the trial and gets a placebo injection in his arm of cortisone, and his arm pain goes away. And because hes in that placebo group, hes counted as a success the pain went away. It has nothing to do with his heart. Thats an extreme example, but we actually saw that happen.

In a failed gene therapy trial for heart disease, some patients apparently had received the injection in the wrong location, missing the heart muscle, Schatz said.

You assume they got the gene, but they didnt, Schatz said. The study was negative, and thats why I think it was negative.

Such errors dont show up in Phase 1 trials, Adler and Schatz said, because theyre focused on evaluating safety. And these early trials dont have many patients, there arent enough to comfortably determine the therapy is really effective.

By the last stage of the trial, these sources of error have often been identified and trial standards have tightened up. And thats when the faulty assumptions made early appear as the trial ends in failure.

Despite those forbidding hurdles, Adler said research should continue.

This disease is killing a lot of people. Theres not going to be enough hearts to go around for transplant. Theres six million Americans with heart failure, and theres 2,000 heart transplants a year. So coming up with novel regenerative cell-based therapy is something were still excited about.

bradley.fikes@sduniontribune.com

(619) 293-1020

The rest is here:
Study: heart failure stem cell therapy safe, shows early signs of effectiveness - The San Diego Union-Tribune

To Read More: Study: heart failure stem cell therapy safe, shows early signs of effectiveness – The San Diego Union-Tribune
categoriaCardiac Stem Cells commentoComments Off on Study: heart failure stem cell therapy safe, shows early signs of effectiveness – The San Diego Union-Tribune | dataApril 8th, 2017
Read All

How cells react to injury from open-heart surgery: Research … – Science Daily

By Dr. Matthew Watson


Science Daily
How cells react to injury from open-heart surgery: Research ...
Science Daily
Investigators have learned how cardiac muscle cells react to a certain type of injury that can be caused by open-heart surgery. The findings point to a new ...

and more »

Visit link:
How cells react to injury from open-heart surgery: Research ... - Science Daily

To Read More: How cells react to injury from open-heart surgery: Research … – Science Daily
categoriaCardiac Stem Cells commentoComments Off on How cells react to injury from open-heart surgery: Research … – Science Daily | dataApril 8th, 2017
Read All

TiGenix reports 2016 full year results | P&T Community – P&T Community

By LizaAVILA

TiGenix reports 2016 full year results | P&T Community
P&T Community
PRESS RELEASERegulated informationinsider information TiGenix reports 2016 full year results (Conference call and webcast today at 13:00 CEST)

and more »

Read more from the original source:
TiGenix reports 2016 full year results | P&T Community - P&T Community

To Read More: TiGenix reports 2016 full year results | P&T Community – P&T Community
categoriaCardiac Stem Cells commentoComments Off on TiGenix reports 2016 full year results | P&T Community – P&T Community | dataApril 8th, 2017
Read All

Stem cell donor registry drive seeks to help retired Brookline teacher – NewHampshire.com

By Dr. Matthew Watson

BROOKLINE Fighting for her life, a retired Brookline teacher who has been struggling with cancer for more than four years is hoping to find a donor for a stem cell transplant.

This week, Kathi Bond of Temple has undergone 96 hours of around-the-clock chemotherapy, but next week provides a new and unique opportunity for the 66-year-old woman battling a bone marrow cancer known as multiple myeloma.

A marrow donor registry drive will take place on Tuesday in an effort to find a match for Bond, who has undergone numerous, unsuccessful therapies throughout the past several years.

She is not the type that wants to be lying in a bed staring at a blank wall she would rather be climbing mountains, said Bonds husband, David Bond. She is a very vibrant woman, but on paper she is very ill.

Kathi Bond, who retired in 2013 from her environmental science teaching position in the Brookline School District because of the cancer, has already undergone an autologous stem cell transplant where her own cells were used for the procedure.

While this effort placed her in remission for more than a year, her body eventually began to reject the treatment and she fell ill again in the fall of 2016, and is now at stage 3 multiple myeloma.

I think emotionally, for any cancer patient, it is a roller coaster, said David Bond. You have good days and bad days glimmers of light and then news that things arent working.

Multiple myeloma is a plasma cell disorder that attacks cells in a persons bone marrow. Since traditional treatments are not working for Kathi Bond, doctors are now looking for radical ways to preserve her life, and a donor transplant is the next alternative.

Unfortunately, at this point, they have not found a match for Kathi, said her husband. But we have always felt that optimism is stronger than adversity. There will be a match out there somewhere.

A marrow donor registry drive will take place from 3:30 p.m. to 7 p.m. Tuesday at the Richard Maghakian Memorial School, 22 Milford St. in Brookline. Participants must be ages 18 to 44, and will have their cheek swabbed to determine compatibility.

Kathi Bond, who is currently hospitalized, is attempting to reduce the number of myeloma cancer cells in an effort to make the future transplant more successful. She is working with an oncologist in Nashua, and the Dana-Farber Cancer Institute to determine the best course of action for an incurable illness.

She is fairly strong right now, but a transplant is desperately needed, said David Bond.

Cancer is no longer a private struggle, he said, adding it affects so many families. In 1984, Kathi Bond lost her older sister to lymphoma.

At the time, he said there were no donor drives, walks for cancer or fundraisers to research cancer treatments.

Today, we save lives because we share our story, and compassionate people step forward and join the fight, he said.

The Bonds are hopeful to find a match from next weeks marrow donor registry drive, but said even if they dont, the data may be useful in helping to find a match for someone else in desperate need.

Kathleen Milewski, a second-grade teacher at RMMS in Brookline, along with the Bonds two daughters, have been instrumental in helping to organize Tuesdays drive, according to David Bond.

Joining the registry is as simple as a cheek swab, and the donation process, should you be a match, is similar to giving blood in over 70 percent of the cases, said Milewski. Kathi needs a match in order to continue to live with multiple myeloma.

David Bond said a donor transplant is his wifes greatest hope for a life of near-normalcy. A donors stem cells will result in a total reboot of the patients marrow, and as new donor stem cells develop and mature, they will over-populate the bad cells.

khoughton@newstote.com

Read this article:
Stem cell donor registry drive seeks to help retired Brookline teacher - NewHampshire.com

To Read More: Stem cell donor registry drive seeks to help retired Brookline teacher – NewHampshire.com
categoriaBone Marrow Stem Cells commentoComments Off on Stem cell donor registry drive seeks to help retired Brookline teacher – NewHampshire.com | dataApril 8th, 2017
Read All

Stem cells: Single-use bioreactors and microcarriers can overcome scale-up issues, experts – BioPharma-Reporter.com

By LizaAVILA

The only practical way to scale-up volumes of mesenchymal stem cells (MSCs) is by using microcarriers in single-use bioreactors, say scientists from A*STAR and Instituto Superior Tcnico.

MSCs are multipotent stromal cells that can differentiate into a variety of cell types which are being investigated for tissue engineering and cellular therapies.

Such cells come from bone marrow, adipose tissue and umbilical cord blood but are very rare, according to Ana Fernandes-Platzgummer, a research scientist for the Stem Cell Engineering Research Group at the Instituto Superior Tcnico in Lisbon, Portugal.

Totipotent cells can form all the cell types in a body, plus the extraembryonic, or placental, cells. The only totipotent cells are embryonic cells within the first couple of cell divisions after fertilisation.

Pluripotent cells can give rise to all of the cell types that make up the body. While embryonic stem cells are considered pluripotent, this class includes induced pluripotent stem cells (iPSC) derived from skin or blood cells that have been reprogrammed back into an embryonic-like pluripotent state.

Multipotent cells are more limited than pluripotent cells but can develop into more than one cell type. This class includes mesenchymal stem cells (MSCs) derived from bone marrow, adipose tissue and umbilical cord blood, and hematopoietic stem cells (HSCs) derived from mesoderm and located in the red bone marrow.

There are only about 100,000 stem cells in an umbilical cord, she told delegates at the 1st Stem Cell Community day in Germany this week. For cellular therapies we need doses of more than one million cells per kg [ideal (IBW) or actual (ABW) body weight] so we need to expand these cells.

Scale-up challenges

Stem cells can be successfully cultivated using flasks and labscale-volume bioreactors but there are many problems in monitoring and controlling growth, and issues with productivity and cell harvest. Therefore scale-up is a problem, hindered further due to a lack of technologies and processes available to cell therapy makers.

The event in Hamburg organised by bioprocessing tech firm Eppendorf looked to address these challenges in stem cell cultivation and scale-up by bringing together industry and academia.

And Fernandes-Platzgummer said that research by the Instituto Superior Tcnico together with Thermo Fisher-owned Life Technologies showed positive results in the expansion of human MSCs from different sources using a fully-controlled stirred-tank bioreactor combined with microcarrier technology.

The advantage of this is its easy scalability, the high surface area [of the microcarrier], the ability to monitor and control cultivation, and the reduced labour costs and risks of contamination, she said.

After five days cultivation the team produced clinically-relevant cell numbers, she added, using an 800ml spinner flask bioreactor, Thermo Fishers serum-free medium StemPro and reagent TrypLE Select CTS, and plastic microcarriers coated with the xeno-free substrate CELLstart (also made by Thermo Fisher).

'10,000 doses per year, each of a billion cells'

In a separate presentation, Steve Oh principal scientist and associate director at the Bioprocessing Technology Institute (BTI), part of Singapores Agency for Science, Technology and Research (A*STAR) said a similar set-up had shown promise in moving MSC cultivation into scalable technologies and his team is trying to move to a 15L scale.

However, the goal for MSC-based therapies would be producing commercial volumes of 10,000 doses per year, each of a billion cells from the onset, he added.

We looked at all the approaches and really the only practical experience I have of a technology that will succeed is microcarrier technology using single-use bioreactors, he said.

Oh added microcarriers produce higher cell densities with the same amount of media while allowing greater control of the process by providing another metric to configure.

Furthermore, having only thin layers of cells between each carrier offers benefits in the harvesting of stem cells which he said is as problematic as cultivation due to the large aggregates of cell clusters formed which are difficult to break up.

Read the original:
Stem cells: Single-use bioreactors and microcarriers can overcome scale-up issues, experts - BioPharma-Reporter.com

To Read More: Stem cells: Single-use bioreactors and microcarriers can overcome scale-up issues, experts – BioPharma-Reporter.com
categoriaBone Marrow Stem Cells commentoComments Off on Stem cells: Single-use bioreactors and microcarriers can overcome scale-up issues, experts – BioPharma-Reporter.com | dataApril 8th, 2017
Read All

Machine learning predicts the look of stem cells – Nature.com

By raymumme

No two stem cells are identical, even if they are genetic clones. This stunning diversity is revealed today in an enormous publicly available online catalogue of 3D stem cell images. The visuals were produced using deep learning analyses and cell lines altered with the gene-editing tool CRISPR. And soon the portal will allow researchers to predict variations in cell layouts that may foreshadow cancer and other diseases.

The Allen Cell Explorer, produced by the Allen Institute for Cell Science in Seattle, Washington, includes a growing library of more than 6,000 pictures of induced pluripotent stem cells (iPS) key components of which glow thanks to fluorescent markers that highlight specific genes.

The Cell Explorer complements ongoing projects by several groups that chart the uniqueness of single cells at the level of DNA, RNA and proteins. Rick Horwitz, director of the Allen Institute for Cell Science, says that the institutes images may hasten progress in stem cell research, cancer research and drug development by revealing unexpected aspects of cellular structure. You cant predict the outcome of a football game if you know stats on all the players but have never watched a game.

The project began about a year ago with adult skin cells that had been reprogrammed into an embryonic-like, undifferentiated state. Horwitz and his team then used CRISPRCas9 to insert tags in genes to make structures within the cells glow. The genes included those that code for proteins that highlight actin filaments, which help cells to move and maintain their shape. It quickly became clear that the cells, which were all genetic clones from the same parent cell, varied in the placement, shape and number of their components, such as mitochondria and actin fibres.

Computer scientists analysed thousands of the images using deep learning programs and found relationships between the locations of cellular structures. They then used that information to predict where the structures might be when the program was given just a couple of clues, such as the position of the nucleus. The program learned by comparing its predictions to actual cells.

The deep learning algorithms are similar to those that companies use to predict peoples preferences, Horwitz says. If you buy a chainsaw at Amazon, it might then show you chain oil and plaid shirts.

The 3D interactive tool based on this deep learning capability should go live later this year. At the moment, the site shows a preview of how it will work using side-by-side comparisons of predicted and actual images.

Benjamin Freedman, a cell biologist at the University of Washington in Seattle, looks forward to playing with the Cell Explorers predictive function once the Allen Institute team has taught their algorithm to recognize more iPS cells that have been changed genetically or chemically. For example, Freedman says he could delete a gene related to kidney disease in one of the fluorescently tagged stem cells from the Allen Institute and see how the mutation affects the glowing structure. Then he could use the sites modelling tool to determine how other cellular components might be altered. Ultimately, Freedman says, we want to understand processes at the cellular level that cause disease in the kidney as a whole.

In the coming months, Allen Institute researchers will update the site with images of stem cells at different stages of cell division, and as they transform into distinct cell types, such as heart and kidney cells. Catching cells at different time points can be crucial to identifying fundamental processes, says Horwitz.

Allen Institute for Cell Science

Structural differences in the DNA (purple) and cellular membrane (blue) of genetically identical stem cells.

The Allen Institutes visual emphasis on stem cells dovetails with a number of efforts to catalogue other aspects of cells. For example, the London-based charity Cancer Research UK is creating interactive virtual-reality models of breast cancer cells in tumours. And an international effort called the Human Cell Atlas seeks to define all human cell types in terms of their molecular profiles, including DNA sequences, RNA transcripts and proteins.

Aviv Regev, a computational biologist at the Broad Institute in Cambridge, Massachusetts, who is working on the Human Cell Atlas, says that the Allen Cell Explorer complements her project by focusing on the look of cellular features as opposed to how genes, RNA and proteins interact within the cell. The community is accepting that there are a lot of differences between cells that we thought were the same until recently, she says, so now were taking an unbiased approach to learn about pieces in the puzzle we didnt know existed before.

Originally posted here:
Machine learning predicts the look of stem cells - Nature.com

To Read More: Machine learning predicts the look of stem cells – Nature.com
categoriaSkin Stem Cells commentoComments Off on Machine learning predicts the look of stem cells – Nature.com | dataApril 8th, 2017
Read All

Stem Cell Drug Screen Yields Potential Alternative to Statins – R & D Magazine

By JoanneRUSSELL25

Scientists at the Medical University of South Carolina (MUSC) have found that a class of heart failure drugs might decrease low-density lipoprotein (LDL) cholesterol levels in patients who do not respond to statins. In a study appearing in the April 6, 2017 issue ofCell Stem Cell, cardiac glycosides reduced levels of a precursor of LDL in liver-like cells, and patients taking cardiac glycosides for heart failure had low LDL.

Not everyone with high LDL cholesterol responds to statins. Statins increase levels of a cell surface receptor that removes LDL cholesterol from the bloodstream. However, statins do not work in patients with familial hypercholesterolemia (FH), who have a rare mutation in that receptor. FH patients have very high cholesterol and die of cardiovascular disease by their forties. The existing drugs for FH can cause fatty liver disease, and the best treatment is a liver transplant.

Stephen A. Duncan, D. Phil., SmartStateTMChair of Regenerative Medicine at MUSC, and his colleagues, including Max A. Cayo, Ph.D., an MSTP student at the Medical College of Wisconsin, developed a drug screen to identify an alternative to statins. They focused on apolipoprotein B (ApoB), a molecule that liver cells use to make LDL and which is normal in patients with FH. Drugs that decrease ApoB could potentially lower cholesterol independently of the LDL receptor in FH patients and also in patients with other forms of high cholesterol.

FH was a perfect model for testing alternatives to statins. Yet the rarity of FH meant these liver cells were scarce. Duncan's group obtained skin cells from a patient with the rare disorder from the Next Generation Genetic Association Studies consortium of the National Heart, Lung, and Blood Institute, which studies genetic mutations linked to cardiovascular diseases. Next, they generated induced pluripotent stem cells from these skin cells. Stem cells continually double their numbers while in culture. This meant that a sample of converted skin cells from a single patient with FH provided a renewable source of liver-like cells that retained the mutation.

The team treated their liver-like cells with the SPECTRUM drug library, a collection of 2300 pharmaceuticals, many of which have reached clinical trials. In a surprising finding, all nine cardiac glycosides in the library, some once widely prescribed for heart failure, reduced ApoB levels in liver-like cells from the patient with FH, ranging from 29 percent (ouabain) to 38 percent (digoxin) to 73 percent (gitoxin). In further tests, they also lowered ApoB levels in human hepatocytes and reduced them by 30 percent in mice engineered to grow normal human livers without the FH mutation at doses eight times below their toxicity thresholds. Molecular tests revealed that glycosides shorten the lifetime of the ApoB molecule, in part by increasing how quickly it is degraded.

As everyone needs ApoB to make LDL cholesterol, this was proof that cardiac glycosides could potentially also work in patients with other forms of high cholesterol. To find out, the team combed through more than five thousand records of patients prescribed cardiac glycosides for heart failure who also had LDL cholesterol records. On average, LDL cholesterol levels were lower in those taking a cardiac glycoside (reduction of 9 mg/dL) or a statin (reduction of 14 mg/dL) than in those not taking any drug. No difference in LDL cholesterol levels was noted between those taking an angiotensin-converting enzyme inhibitor, another heart failure drug with no known role in cholesterol production, and those not taking any drug. Duncan's team also found patients who had LDL measurements recorded both before and after being prescribed a cardiac glycoside. LDL cholesterol dropped in 16 out of 21 patients and by an average of nearly 26 points, which was similar to the 32-point drop seen in a matching group of patients prescribed statins.

This study contains the first evidence to date that cardiac glycosides could potentially reduce LDL cholesterol independently of the LDL receptor, where statins act, by promoting ApoB degradation.

It is not clear from this study whether cardiac glycosides decrease LDL cholesterol in patients who do not have heart failure or at what dose they should be used. The cardiac glycosides have narrow ranges of efficacy for the treatment of heart failure, above which they can be toxic. However, they could offer inexpensive, life-saving options for patients with FH. Digoxin, the cardiac glycoside most commonly prescribed for heart failure, costs less than one dollar per day. Additionally, a cardiac glycoside in a low dose could conceivably provide an added benefit to patients already taking a statin. Finally, using stem cell-based screens of drugs that are already on the market is an innovative way to investigate treatments for rare liver diseases.

"There are so few livers available for transplant," says Duncan. "Having the stem cell model where we make liver cells in the culture dish opens up a possibility of using this not only to investigate a disease, but also as a way to discover drugs that could fix a disease."

Continued here:
Stem Cell Drug Screen Yields Potential Alternative to Statins - R & D Magazine

To Read More: Stem Cell Drug Screen Yields Potential Alternative to Statins – R & D Magazine
categoriaSkin Stem Cells commentoComments Off on Stem Cell Drug Screen Yields Potential Alternative to Statins – R & D Magazine | dataApril 8th, 2017
Read All

Neurotrophic factors in ALS: a winning combination? – ALS Research Forum

By LizaAVILA

Distinct growth factors promote the survival of specific types of motor neurons in the spinal cord, according to a study led by Georg Haase, of Aix-Marseille University in Marseille, France. The results suggest that these factors may work together to provide trophic support to motor neurons in the CNS and therefore, a combination of them may be needed to protect motor neurons damaged by disease.

Growth factors have always been tantalizingly attractive in ALS, said Nicholas Boulis of Emory University Medical School, who was not involved in the study. But the problem is, there has been a failure of growth factors to perform [in the clinic]. This study provides tangible evidence that you may be able to get a bigger effect by combining growth factors.

The study appeared on March 16 in the Proceedings of the National Academy of Sciences.

Neurotrophic Factors in ALS: The power of two+

Sorting out ALS. George Haases team at Aix-Marseille University in France used a FACS-based method to identify NTFs needed to protect distinct classes of motor neurons in the developing lumbar spinal cord. Now, the researchers are adapting this method to determine which of these substances may be needed to protect adult motor neurons, including those affected by ALS. The results may help clinicians develop neuroprotective treatment strategies tailored for the disease. [Courtesy of Schaller et al., 2017, PNAS]

Researchers first turned to neurotrophic factors (NTFs) in the early 1990s as a potential therapy for ALS in hopes to promote the survival of motor neurons damaged by the disease. But initial therapies proved ineffective in part due to delivery challenges (see Rogers, 2014).

In more recent years, neuroscientists discovered that many of these growth factors may work together to provide trophic support for motor neurons and promote their survival at least in the developing spinal cord (see Gould and Enomoto, 2009). But how these substances orchestrate this process remains an open question.

A growing number of researchers suspect that there may be distinct classes of motor neurons that are protected by distinct NTFs during development. To test this hypothesis, Haases team at Aix-Marseille University in France isolated motor neurons from the developing lumbar spinal cord in the mouse and determined which growth factors supported them.

To carry out this analysis, first author Sbastien Schaller and colleagues dissected out lumbar spinal cords at day E12 and suspended the tissue. Then, they used fluorescence-activated cell sorting (FACS) to isolate the motor neurons, cultured them and exposed them to combinations of neurotrophic substances.

The technique enabled motor neurons to be specifically captured from embryos by using Hb9:GFP mice, originally developed by Columbia Universitys Thomas Jessell in New York, which express GFP in motor neurons in the developing central nervous system.

100% of the cells expressed the motor neuronal markers ChAT and SMI 32, and none expressed interneuronal markers, indicating the exquisite purity of the isolated cells, said Haase. That, combined with the methods speed and degree of automation, make FACS-derived motor neurons a promising platform for future studies, he said, including screening for potential ALS therapies.

A combinatorial approach? Beginning in the early 1990s, researchers developed potential neuroprotective therapies for ALS that delivered single neurotrophic substances. But according to a new study, multiple NTFs may be needed to promote the survival of motor neurons affected by the disease. [Courtesy of Schaller et al., 2017, PNAS]

Next, the team exposed motor neurons to 12 different neurotrophic factors (BDNF, NT3, GDNF, neurturin, artemin, persephin, CNTF, CT1, LIF, HGF, IGF1, and VEGF), alone or in combination. Individually, all NTFs promoted neuronal survival after 3 days in culture, with GDNF being the most effective (43%). HGF, however, protected only about 20% of motor neurons in culture. But when HGF, CNTF and artemin were combined, motor neuron survival reached nearly 50%.

The effects were additive, explained Haase. That suggested to us that each [of these growth factors] were supporting a subset of motor neurons.

To test that hypothesis, the researchers used subtype cell surface-specific antibodies to label three major subsets of motor neurons from the lumbar spinal cordthe medial motor column, which innervate axial muscles, the lateral motor column, which innervate limb muscles, and preganglionic, which synapse with downstream neurons of the autonomic motor system. They then used FACS to separate each subtype, and exposed them to HGF, CNTF or artemin.

They found that each of these NTFs promoted the survival of distinct classes of motor neurons in the lumbar spinal cord. For example, HGF preferentially supported survival of motor neurons in the lateral motor column neurons, key motor neurons affected by ALS.

The effects were mediated by distinct neurotrophic factor receptors decorating the surface of each type of motor neuron, explained Haase. When we blocked the HGF receptor, we completely blocked the survival effect of HGF. That means these motor neurons depend on this particular factor for their survival.

Additional analysis indicated that CNTF and artemin protected other types of motor neurons located elsewhere in the spinal cord.

Lateral thinking. HGF promotes the survival of motor neurons that innervate the limbs through a c-Met-mediated mechanism at least in the developing spinal cord (Schaller et al., 2017). The neurotrophic substance is the basis of Viromeds VM202, a gene therapy-based strategy now being evaluated at the phase 1/2 stage (Sufit et al., 2017). [Image: Emw, Wikimedia Commons.]

Together, the findings suggest that these substances provide trophic support and promote the survival of specific types of motor neurons in the developing spinal cord.

This is a very high-quality paper that helps clarify the field, said Clive Svendsen of Cedars-Sinai in Los Angeles, California. Until now, it was not clear that distinct subsets of motor neurons may respond to their own subsets of growth factors.

Motor neurons that could potentially include those that descend from the brainstem, and those involved in breathing, also affected by the disease.

The results suggest that combining growth factors may offer more therapeutic benefit than single factors in ALS according to Nicholas Boulis.

Svendsen agreed. This is suggesting that for therapies, if you want to protect motor neurons, you may have to expand to include multiple growth factors, Svendsen said. However, he noted, and as confirmed in this study, GDNF by itself is still perhaps the most powerful all-around survival factor for motor neurons.

Svendsen is now developing a potential therapy for ALS that uses genetically engineered neural stem cells to deliver GDNF to the spinal cord. The Phase 1 clinical trial is soon to be launched (see October 2016 news).

Neuroprotective therapies: the next generation?

The next big question, which this paper leaves open, according to Svendsen is whether the growth factors identified in this study protect motor neurons in the adult nervous system.

Haase agreed. This is a critical question, and we are adapting our method to look at this now.

A stem cell-based approach? Haases team previously developed a FACS-based technique to isolate reprogrammed motor neurons generated from human iPS cells (Toli et al., 2015). The approach could be used to identify key neurotrophic substances that promote the survival of patient-derived motor neurons. [Image: Reprogrammed sALS motor neuron, Alves et al., 2015. CC BY 4.0].

Some neural circuits change drastically during adulthood, while others stay pretty much the same, so weve got to do the experiments to find out, explained Svendsen. But I will probably be trying HGF soon in my own experiments.

In the meantime, said Haase, it is important to keep in mind that the growth factors found to be less effective in this study should not be ruled out as potential therapies. They may act sequentially during development, or may require co-factors to exert their effect which were not present in our growth medium, he said.

It is also important to keep in mind that this study did not evaluate the ability of any of these substances to regenerate axons, a key goal in terms of developing therapies for ALS and other motor neuron diseases including SMA.

The challenges of delivery, which have stymied the field to date, remain paramount, Haase also noted. Gene delivery approaches with adeno-associated vectors have been studied for single growth factors, but if several are needed, a larger-capacity vector, such as lentivirus, may be required, according to Boulis. Multiple rounds of ex vivo gene therapy to equip stem cells with multiple growth factor genes, would be another option, followed by surgical implantation of the modified cells.

Further exploration in in vivo models and patient-derived iPS cells are an important next step to determine which combination of these substances could be of the most benefit, added Boulis.

But despite these challenges, Boulis agrees this approach is worth considering. As a surgeon who does translational work on the application of growth factors to ALS, this may be an Aha! moment.

Reference

Schaller S, Buttigieg D, Alory A, Jacquier A, Barad M, Merchant M, Gentien D, de la Grange P, Haase G. Novel combinatorial screening identifies neurotrophic factors for selective classes of motor neurons. Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2486-E2493. [PubMed].

Toli D, Buttigieg D, Blanchard S, Lemonnier T, Lamotte dIncamps B, Bellouze S, Baillat G, Bohl D, Haase G.Modeling amyotrophic lateral sclerosis in pure human iPSc-derived motor neurons isolated by a novel FACS double selection technique. Neurobiol Dis. 2015 Oct;82:269-80. [PubMed].

Further Reading

Rogers, ML. Neurotrophic Therapy for ALS/MND. New York: Springer New York; c2014. p. 1755-85. (Kostrzewa RM, editor. Handbook of Neurotoxicity.)

Gould TW, Enomoto H. Neurotrophic modulation of motor neuron development. Neuroscientist. 2009 Feb;15(1):105-16. [PubMed].

disease-als gdnf HGF neuroprotection neurotrophic factor topic-clinical topic-randd VEGF

Read the original here:
Neurotrophic factors in ALS: a winning combination? - ALS Research Forum

To Read More: Neurotrophic factors in ALS: a winning combination? – ALS Research Forum
categoriaIPS Cell Therapy commentoComments Off on Neurotrophic factors in ALS: a winning combination? – ALS Research Forum | dataApril 8th, 2017
Read All

Stem Cells Market is Expected to Cross US$ 297 Billion by 2022 – MilTech

By LizaAVILA

The global stem cells market is expected to grow at an incredible CAGR of 25.5% from 2015 to 2022 and reach a market value of US$297 billion by 2022.

Florida, April 06: Market Research Engine adds a new research study on the report, titled Global Stem Cells Market Analysis by Therapy, Application and Geography Trends and Forecast, 2015 2022.

The global stem cells market is expected to grow at an incredible CAGR of 25.5% from 2015 to 2022 and reach a market value of US$297 billion by 2022.

Browse Full Report from here: http://www.marketresearchengine.com/reportdetails/global-stem-ce

The emergence of Induced Pluripotent Stem (iPS) cells as an alternative to ESCs (embryonic stem cells), growth of developing markets, and evolution of new stem cell therapies represent promising growth opportunities for leading players in this sector.

Due to the increased funding from Government and Private sector and rising global awareness about stem cell therapies and research are the main factors which are driving this market. A surge in therapeutic research activities funded by governments across the world has immensely propelled the global stem cells market. However, the high cost of stem cell treatment and stringent government regulations against the harvesting of stem cells are expected to restrain the growth of the global stem cells market.

This report will definitely help you make well informed decisions related to the stem cell market.

The stem cell therapy market includes large number of players that are involved in development of stem cell therapies of the treatment of various diseases. Mesoblast Ltd. (Australia), Aastrom Biosciences, Inc. (U.S.), Celgene Corporation (U.S.), and StemCells, Inc. (U.S.) are the key players involved in the development of stem cell therapies across the globe.

Download Free Sample Report: http://www.marketresearchengine.com/requestsample/global-stem-ce

Scope of the Report

This market research report categorizes the stem cell therapy market into the following segments and sub-segments:

By Mode of Therapy

Allogeneic Stem Cell Therapy Market o CVS Diseases o CNS Diseases o GIT diseases o Eye Diseases o Musculoskeletal Disorders o Metabolic Diseases o Immune System Diseases o Wounds and Injuries o Others

Autologous Stem Cell Therapy Market o GIT Diseases o Musculoskeletal Disorders o CVS Diseases o CNS Diseases o Wounds and Injuries o Others

By Therapeutic Applications

Musculoskeletal Disorders Metabolic Diseases Immune System Diseases GIT Diseases Eye Diseases CVS Diseases CNS Diseases Wounds and Injuries Others

By Geography

North America Europe Asia-Pacific RoW (Rest of the World)

About MarketResearchEngine.com

Market Research Engine is a global market research and consulting organization. We provide market intelligence in emerging, niche technologies and markets. Our market analysis powered by rigorous methodology and quality metrics provide information and forecasts across emerging markets, emerging technologies and emerging business models. Our deep focus on industry verticals and country reports help our clients to identify opportunities and develop business strategies.

Media Contact

Company Name: Market Research Engine Contact Person: John Bay Email: john@marketresearchengine.com Phone: +1-855-984-1862, +91-860-565-7204 Website: http://www.marketresearchengine.com/

Address: 3422 SW 15 Street, Suite #8942, Deerfield Beach, FL 33442, United States

This release was published on openPR.

Read the original here:
Stem Cells Market is Expected to Cross US$ 297 Billion by 2022 - MilTech

To Read More: Stem Cells Market is Expected to Cross US$ 297 Billion by 2022 – MilTech
categoriaIPS Cell Therapy commentoComments Off on Stem Cells Market is Expected to Cross US$ 297 Billion by 2022 – MilTech | dataApril 8th, 2017
Read All

Can Stem Cell ‘Patch’ Help Heart Failure? – Everyday Health (blog)

By daniellenierenberg

Scientists report another step in the use of stem cells to help treat people with debilitating heart failure.

In an early study of 27 patients, Japanese researchers used patients' own muscle stem cells to create a "patch" that was placed on the heart.

Over the next year, the patients generally showed small improvements in their symptoms -- including the ability to walk without becoming breathless and fatigued.

However, experts cautioned that while the results are encouraging, there's a lot of work left ahead before stem cells can be used to treat heart failure.

"They've shown that this approach is feasible," said Dr. Eiran Gorodeski, a heart failure specialist at the Cleveland Clinic in Ohio.

But it's not clear whether the stem-cell tactic was actually effective, said Gorodeski, who was not involved in the study.

RELATED: Antidepressant No Help to Heart Failure Patients

That's because the study didn't include a comparison group that did not receive stem cells.

So it's possible, Gorodeski explained, that the "modest" symptom improvements would have happened anyway. All of the patients were on standard medications, and some had heart devices implanted.

Stem cells are primitive cells that mature into the various cells that make up the body's tissues. In the past 15 years or so, scientists have tried to use the cells to help repair some of the damage seen in heart failure.

Heart failure is a progressive disease where the heart muscle is too damaged to efficiently pump blood throughout the body. It often arises after a heart attack.

Symptoms of heart failure include fatigue, breathlessness and swelling in the limbs. The condition cannot be cured, although medications and implantable devices can treat the symptoms.

In the new study, the researchers used stem cells from the patients' own thigh muscle to create a patch they placed on the heart.

That's in contrast to many past studies, where researchers have injected stem cells -- often from patients' bone marrow -- into the heart.

The patch tactic could have some advantages, said senior researcher Dr. Yoshiki Sawa, of Osaka University.

He said animal research suggests that cells in sheet form survive for a longer period, compared to injections.

To test the safety of the approach, Sawa's team recruited 27 patients who had debilitating symptoms despite standard heart failure therapies. The scientists extracted stem cells from each patient's thigh muscle, then cultured the cells so that they formed a sheet.

The sheet was placed on each patient's heart.

The tactic appeared safe, the researchers said, and there were signs of symptom improvements over the next six months to a year.

Why would stem cells from the thigh muscle affect the heart? It's not clear, Sawa acknowledged.

The stem cells don't grow into new heart muscle cells. Instead, Sawa explained, they seem to produce chemicals called cytokines that can promote new blood vessel growth in damaged areas of the heart. The theory, he said, is that "hibernating" cells in the heart muscle can then function better.

Still, it's too soon to know what the new findings mean, said Gorodeski.

This type of trial, called phase 1, is designed to look at the safety and feasibility of a therapy, Gorodeski said. It takes later-phase trials -- where some patients receive the treatment, and others do not -- to prove that a therapy actually works.

Those trials are underway, Sawa said.

Other studies are further along. Last year, researchers reported on a trial testing infusions of stem cells taken from the bone marrow of patients with severe heart failure.

Patients who received the therapy were less likely to die or be hospitalized over the next year, versus those given standard treatment only. But the study was small, and the stem cells had only a minor impact on patients' heart function.

So it's not clear why the stem-cell patients fared better, Gorodeski said.

For now, he stressed, all stem-cell therapies for heart failure remain experimental.

"There's no cell therapy that we can offer patients right now," Gorodeski said.

The message for patients, he added, is that heart failure can be treated, and researchers are looking for "innovative" ways to improve that treatment.

The study was published April 5 in theJournal of the American Heart Association.

Read more here:
Can Stem Cell 'Patch' Help Heart Failure? - Everyday Health (blog)

To Read More: Can Stem Cell ‘Patch’ Help Heart Failure? – Everyday Health (blog)
categoriaBone Marrow Stem Cells commentoComments Off on Can Stem Cell ‘Patch’ Help Heart Failure? – Everyday Health (blog) | dataApril 7th, 2017
Read All

Experimental Stem Cell Treatment Might Reverse Symptoms Of Multiple Sclerosis – CBS New York

By daniellenierenberg

April 6, 2017 7:01 PM

NEW YORK (CBSNewYork) Theres potentially exciting news for the two and a half million people around the world struggling with multiple sclerosis.

There is no known cure, but now an experimental treatment in Israel may be able to reverse the symptoms, CBS2s Dr. Max Gomez reports.

MS is a progressive degenerative disease where the insulation around nerve fibers in the brain and spinal cord starts to break down. Its the immune system attacking the insulation.

Medications can slow the disease but dont stop it. Stem cells may be much better.

As Dr. Max reports, walking on a treadmill is a big step for Malia Litman. She had been a top trial attorney in Dallas until she was diagnosed with multiple sclerosis 18 years ago. Slowly, the disease robbed her of her balance, her mobility and her energy.

You can imagine how contracted my world had become, she says.

After she fell and broke her leg, she was in a wheelchair for weeks. Her MS medicines werent really working anymore.

Her search for alternative treatments led toDr. Dimitrios Karussis.

Answers for our diseases and our medical problems are hidden inside our body, hesays.

Karussis heads the experimental stem cell research atHadassah Medical Organization in Israel. He harvests an MS patients own adult stem cells from their bone marrow, then injects them back into their spinal fluid.

As neurologists, we have never seen or even believed that it is possible to reverse any disability, he says.

Litman says within 24 hours of her first treatment, I picked up my leg and went, Oh my god, and I just started crying.

She says her speech is more clear and she has more energy, and shes adamant its not a placebo effect, pointing to a number of tests before and after treatment that show improvement.

Karussis says one patient was even able to walk again.

Researchers are now collaborating with teams at the Mayo Clinic and Harvard, finishing a double-blind study to prove its effectiveness.

Look what I can do now! Its amazing, Litman says.

She still uses her walker but can now get on her rowing machine. After four treatments, shes reactivated her law license and is taking on a case.

I feel like I have my life back. I dont care if I walk with a walker the rest of my life. Although I think I may actually be able to walk again with a couple more treatments, she says.

As Dr. Max reports, the theory is that the stem cells are somehow spurringthe regeneration of the insulating nerve sheaths that are deteriorating in MS.

However, the course of the disease is so variable that Litmans improvement may not be due to the stem cell treatment. Thats why the double-blind studyis so important.

Hadassah Medical Organizations researchers are also looking at the treatments effect on ALS patients.

Read the original post:
Experimental Stem Cell Treatment Might Reverse Symptoms Of Multiple Sclerosis - CBS New York

To Read More: Experimental Stem Cell Treatment Might Reverse Symptoms Of Multiple Sclerosis – CBS New York
categoriaBone Marrow Stem Cells commentoComments Off on Experimental Stem Cell Treatment Might Reverse Symptoms Of Multiple Sclerosis – CBS New York | dataApril 7th, 2017
Read All

Girl still in need of bone marrow match – Temple Daily Telegram

By Dr. Matthew Watson

The search continues.

Gabi Ornelas was diagnosed with acute lymphoblastic leukemia in February 2015.

An online service is needed to view this article in its entirety. You need an online service to view this article in its entirety.

If you have previously registered on tdtnews.com, and have a current online subscription you may login with your email and password. Online subscribers get access to all of the Temple Daily Telegram's online content, plus a digital replica of the print edition. Some third party content, including circulars may not be available online.

If you have questions regarding access, please contact circulation at tdtcir@tdtnews.comor 254-778-4444 between 8 a.m. and 5 p.m. Monday through Friday.

Need an account? Create one now.

kAmr96>@E96C2AJ :D?E 8@:?8 E@ 4FC6 E96 5:D62D6 2?5 v23: 😀 8@:?8 E@ ?665 2 3@?6 >2CC@H @C DE6> 46== EC2?DA=2?E] $@ 72C[ ?@ >2E49 92D 366? 7@F?5] w6C 72>:=J 92D 366? E6DE65 2?5 ?@?6 2C6 >2E496D]k^Am

kAm~? $2EFC52J[ E96 &?:G6CD:EJ @7 |2CJ w2C5:?q2J=@C 32D632== E62> 😀 9@DE:?8 2 q6 %96 |2E49 3@?6 >2CC@H 5C:G6 DE2CE:?8 2E `aib_ A]>] 2E #65 |FC77 u:6=5 😕 q6=E@?]k^Am

kAm%96 5C:G6 H:== ?@E @?=J 36?67:E v23:[ :7 2 >2E49 😀 7@F?5 7@C 96C[ 3FE E9@FD2?5D @7 @E96CD 24C@DD E96 4@F?ECJ H9@[ E@@[ ?665 E@ 7:?5 2 3=@@5 >2CC@H 5@?@C[ D2:5 $E6A92?:6 y2C5@E[ 4@>>F?:EJ 6?8286>6?E >2?286C 7@C E96 $4@EE U2>Aj (9:E6 |65:42= r6?E6C q6 %96 |2E49 q@?6 |2CC@H s@?@C !C@8C2>]k^Am

kAmv23: 92D 96C FAD 2?5 5@H?D[ 96C 8C2?5>@E96C rJ?E9:2 #:@D D2:5]k^Am

kAm%96 J@F?8DE6C 2EE6?5D y6776CD@? t=6>6?E2CJ 😕 %6>A=6] w6C D49@@= 52JD 2C6 D9@CE6?65 E@ 2 92=7 52J[ 96C 8C2?5>@E96C D2:5]k^Am

kAmv23: 92D 496>@E96C2AJ 6G6CJ EH@ H66

kAm$96 =:<6D E@ D:?8 2?5 52?46[ D96D 2? 2>2K:?8 =:EE=6 8:C=[ #:@D D2:5]k^Am

kAmv23: E6==D 96C 8C2?5>@E96C E92E D96 H:== 7:89E F?E:= 2 >2E49 😀 7@F?5]k^Am

kAm$96 42==D 96CD6=7 2 ?:?;2 H2CC:@C[ #:@D D2:5]k^Am

kAmtG6CJ E9C66 >:?FE6D D@>6@?6 😀 5:28?@D65 H:E9 2 3=@@5 42?46C[ 244@C5:?8 E@ q6 %96 |2E49 #68:DECJ]k^Am

kAm(96? 2 A6CD@? ;@:?D E96 q6 %96 |2E49 #68:DECJ[ E96:C E:DDF6 EJA6 😀 25565 E@ E96 C68:DECJ] xED ?@E 2 >2CC@H 5@?2E:@?j E96J 5@?E 24EF2==J 5@?2E6 F?E:= E96J 2C6 2 >2E49 7@C 2 A2E:6?E]k^Am

kAmy@:?:?8 E96 C68:DECJ C6BF:C6D 2 D2>A=6 @7 46==D[ FDF2==J 4@==64E65 3J DH233:?8 E96 :?D:56 E96 4966<] %9:D D2>A=6 😀 FD65 E@ 4@>A2C6 DA64:7:4 AC@E6:? >2C<6CD @7 A2E:6?ED H9@ ?665 2 3@?6 >2CC@H EC2?DA=2?E]k^Am

kAmx7 2 >2E49 😀 >256] E96 5@?2E65 >2CC@H 😀 C6EC:6G65 7C@> E96 9:A 2?5 8:G6? E@ E96 A2E:6?E 😕 E96 7@C> @7 2 EC2?D7FD:@?]k^Am

kAms@?@CD ?665 E@ 36 36EH66? E96 286D @7 `g 2?5 cc]k^Am

kAm~?=J b_ A6C46?E @7 A2E:6?ED 7:?5 2 >2E49 H:E9:? E96:C 72>:=:6Dj f_ A6C46?E C6=J @? DEC2?86CD]k^Am

kAmu@C :?7@C>2E:@?[ 42== adcfacag`` @C 6>2:= >2CC@H k2 9C67lQ>2:=E@i5@?@CoDH]@C8Qm5@?@CoDH]@C8k^2m]k^Am

Read more from the original source:
Girl still in need of bone marrow match - Temple Daily Telegram

To Read More: Girl still in need of bone marrow match – Temple Daily Telegram
categoriaBone Marrow Stem Cells commentoComments Off on Girl still in need of bone marrow match – Temple Daily Telegram | dataApril 7th, 2017
Read All

Jonathan Pitre ‘strong’ as he endures first days of chemo – Ottawa Citizen

By Sykes24Tracey

Jonathan Pitre rests in bed, his pillow with his Boston terrier, Gibson, on it close by. Tina Boileau / -

As he continues high-dose chemotherapy in advance of his second stem-cell transplant, Jonathan Pitre is keeping his dog, Gibson, close to his heart.

Pitre, 16, is wearing a glass pendant with a picture of his Boston terrier throughout his days in the University of Minnesota Masonic Childrens Hospital.

He says that having it around his neck except for sleeping gives him strength even in the darkest moments, said his mother, Tina Boileau, who had the pendant made for him one day after he entered the hospital.

It was the only thing he really wanted, Boileau said.

Pitre is in Minnesota for his second stem-cell transplant, seven months after the first one failed to engraft. Usually, patients undergoing a second transplant so soon after the first do not receive full doses of chemotherapy and radiation because their immune systems are already weakened.

Jonathan Pitre wears his glass pendant that has a picture of his Boston terrier, Gibson, in it. His mom had the pendant made for him after he entered the hospital. Tina Boileau / -

But doctors are taking no chances with Pitre.Hes receiving eight days of high-dose chemotherapy and one day of full-body radiation the same regimen as his first transplant in order to increase the probability of success.

The conditioning regimen is necessary to destroy Pitres bone marrow cells so that the transplanted cells will have room to grow; it also suppresses Pitres immune system so that it doesnt attack the donated stem cells.

Blood tests show Pitre has not developed antibodies to combat another infusion of stem cells from his mother, the original donor. It means Boileau can again serve as the stem cell donor when the transplant takes place on April 13.

As part of the conditioning regimen, doctors are also infusing Pitre withantithymocyte globulin (ATG), a drug designed to further suppress the immune system by acting against specific white blood cells that can attack bone marrow stem cells.

On Thursday, Pitre was three days into the nine-day regimen. Boileau said hes had a low-grade fever, but has otherwise tolerated the treatment well.

He is as strong mentally and physically as he can be, Boileau said. If anything, hes fighting even harder this time; hes really focused on making this transplant work.

Pitrebelieves his incredible willpower might be able to operate on a cellular level, and he has vowed to direct his own cells to co-operate with his mothers stem cells.

Pitre is the first Canadian to take part in the clinical trial operated by the University of Minnesotas Dr. Jakub Tolar, a pediatric transplant specialist who has adapted stem-cell therapy as a treatment for the most severe forms of epidermolysis bullosa (EB).

Pitre suffers from recessive dystrophic EB, a rare, painful and deadly form of the blistering skin disease.

Although the transplant can be accompanied by life-threatening complications, it is the only EB treatment that holds the potential to dramatically improve the condition. Two-thirds of theEB patients who have survived the transplant have experienced reduced blistering and better wound healing.

Read the original post:
Jonathan Pitre 'strong' as he endures first days of chemo - Ottawa Citizen

To Read More: Jonathan Pitre ‘strong’ as he endures first days of chemo – Ottawa Citizen
categoriaBone Marrow Stem Cells commentoComments Off on Jonathan Pitre ‘strong’ as he endures first days of chemo – Ottawa Citizen | dataApril 7th, 2017
Read All

Spherical biodegradable carriers support scalable and cost-effective stem cell expansion and bone formation – Medical Xpress

By Dr. Matthew Watson

April 5, 2017 Stem cells (red) on polycaprolactone-based microcarriers. Credit: Elsevier

Bone tissue engineering is theoretically now possible at a large scale. A*STAR researchers have developed small biodegradable and biocompatible supports that aid stem cell differentiation and multiplication as well as bone formation in living animal models.

Mesenchymal stem cells self-renew and differentiate into fat, muscle, bone, and cartilage cells, which makes them attractive for organ repair and regeneration. These stem cells can be isolated from different sources, such as the human placenta and fatty tissue. Human early mesenchymal stem cells (heMSCs), which are derived from fetal bone marrow, were thought to be best suited for bone healing, but were not readily accessible for therapeutic use.

Existing approaches to expand stem cells for industrial applications tend to use two-dimensional materials as culture media, but their production yields are too low for clinical demand. Furthermore, stem cells typically need to be harvested with enzymes and attached to a scaffold before they can be implanted.

To bring commercially viable cell therapies to market, Asha Shekaran and Steve Oh, from the A*STAR Bioprocessing Technology Institute, have created directly implantable microscopic spheres in collaboration with the A*STAR Institute of Materials Research and Engineering. These spheres, which acted as heMSC microcarriers, consist of a biodegradable and biocompatible polymer called polycaprolactone.

According to Shekaran, their initial aim was to expand stem cells on microcarriers in bioreactors to scale up production. However, this strategy threw up difficulties, especially when attempting to effectively dissociate the cells from the microcarriers and transfer them to biodegradable scaffolds for implantation.

"A biodegradable microcarrier would have a dual purpose," Shekaran says, noting that it could potentially provide a substrate for cell attachment during scalable expansion in bioreactors, and a porous scaffold for cell delivery during implantation.

The researchers generated their microcarriers by synthesizing polycaprolactone spheres and coating them with two proteins polylysine and fibronectin. These proteins are found in the extracellular matrix that assists cell adhesion, growth, proliferation, and differentiation in the body.

Microcarriers that most induced cell attachment also promoted cell differentiation into bone-like matrix more strongly than conventional two-dimensional supports. In addition, implanted stem cells grown on these microcarriers produced an equivalent amount of bone to their conventionally-derived analogs.

"This is encouraging because microcarrier-based expansion and delivery are more scalable than two-dimensional culture methods," says Shekaran.

The team now plans to further investigate the therapeutic potential of these microcarrierstem cell assemblies in actual bone healing models.

Explore further: Study shows adipose stem cells may be the cell of choice for therapeutic applications

More information: Asha Shekaran et al. Biodegradable ECM-coated PCL microcarriers support scalable human early MSC expansion and in vivo bone formation, Cytotherapy (2016). DOI: 10.1016/j.jcyt.2016.06.016

What do financial mathematics (stock price prediction) and particle diffusion in liquids have to do with building a better HIV vaccine? According to University of Iowa microbiologist Hillel Haim, you can apply concepts from ...

Rutgers University scientists have determined the three-dimensional structure of the target of the first-line anti-tuberculosis drug rifampin. They have also discovered a new class of potential anti-tuberculosis drugs that ...

Aneuploidy is a condition in which cells contain an abnormal number of chromosomes, and is known to be the cause of many types of cancer and genetic disorders, including Down Syndrome. The condition is also the leading cause ...

Washington State University researchers have found a promising way to preserve sperm stem cells so boys could undergo cancer treatment without risking their fertility.

A PET imaging probe developed by Massachusetts General Hospital (MGH) investigators appears able to diagnose and stage pulmonary fibrosisan often life-shortening lung diseaseas well as monitor the response to treatment. ...

Lots of factors can contribute to how fast an organism ages: diet, genetics and environmental interventions can all influence lifespan. But in order to understand how each factor influences agingand which ones may help ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

See the rest here:
Spherical biodegradable carriers support scalable and cost-effective stem cell expansion and bone formation - Medical Xpress

To Read More: Spherical biodegradable carriers support scalable and cost-effective stem cell expansion and bone formation – Medical Xpress
categoriaBone Marrow Stem Cells commentoComments Off on Spherical biodegradable carriers support scalable and cost-effective stem cell expansion and bone formation – Medical Xpress | dataApril 7th, 2017
Read All

Researchers will use stem cell therapy to grow heart muscle in new study – Cardiovascular Business

By Sykes24Tracey

The U.S. Food and Drug Administration (FDA) has approved a new study that will test the efficacy of a stem cell technique used on children suffering from congenital heart disease.

The study is being hosted by Boston Childrens Hospital and Mesoblast Limited, a regenerative medicine company based in Australia. Their 24-patient trial will test the efficacy of Mesoblasts proprietary allogenic mesenchymal precursor cells (MPCs) in a corrective heart surgery on children under the age of 5 that suffer from hypoplastic left heart syndrome (HLHS), according to an April 3 press release.

The new technique is designed to save more patients with HLHS because current treatment is not always effective. Right now physicians generally perform a single, ventricle palliation, which results in the patient using only the right ventricle to the support the hearts entire circulation. However, the treatment is usually only a temporary fix because the right ventricle will eventually tire out, putting the patient at an increased risk for sudden cardiac arrest.

In the randomized, controlled trial, researchers will inject Mesoblasts MPC-150-IM into the left ventricle during surgical recruitment procedures, which should improve ventricular mass and function and ultimately lead to a higher likelihood of biventricular conversion.

The objective of combining Boston Children Hospitals expertise in pioneering surgical approaches to treating hypoplastic heart syndrome with the regenerative potential of our lead cardiovascular product, MPC-150-IM, is to develop a highly innovative treatment for this complex congenital condition as well as other serious and life-threatening cardiac diseases in children, said Kenneth Brow, the senior clinical development executive and head of cardiovascular diseases at Mesoblast, in a statement.

More:
Researchers will use stem cell therapy to grow heart muscle in new study - Cardiovascular Business

To Read More: Researchers will use stem cell therapy to grow heart muscle in new study – Cardiovascular Business
categoriaCardiac Stem Cells commentoComments Off on Researchers will use stem cell therapy to grow heart muscle in new study – Cardiovascular Business | dataApril 5th, 2017
Read All

New technique helps researchers determine how stem cells differentiate – Phys.Org

By daniellenierenberg

April 5, 2017

Stem cell differentiation can now be seen thanks to a combination of machine learning and microfabrication techniques developed by scientists at the RIKEN Quantitative Biology Center in Japan. The results, published in PLOS One, followed the differentiation of human mesenchymal stem cells (MSC) which are easily obtained from adult bone marrow.

MSCs have proven to be important for regenerative medicine and stem cell therapy because they can potentially repair many different types of organ damage, as they have the ability to differentiate into various cell types including bone, muscle and fat. Depending on the way the cells are grown the results can be quite different and so controlling differentiation is an important goal.

Observing MSC differentiation under different conditions is an essential step in understanding how to control the process. However, this has proved challenging on two fronts. First, the physical space in which the cells are grown has a dramatic impact on the results, causing significant variation in the types of cells into which they differentiate. Studying this effect requires consistent and long lasting spatial confinement. Second, classifying the cell types which have developed through manual observation is time consuming.

Previous studies have confined cell growth with fibronectin on a glass slide. The cells can only adhere and differentiate where the fibronectin is present and are thus chemically confined. However, this procedure requires high technical skill to maintain the confinement for an extended period of time. To overcome this, the first author of the study, Nobuyuki Tanaka, decided to look for a new way to confine them. Using a simple agarose gel physical confinement system, he found that he could maintain them for up to 15 days. Tanaka says, "It was wonderful to be able to do this, because agarose gel is a commonly used material in biology laboratories and can be easily formed into a micro-cast in a PDMS silicone mold."

He continues, "The advantage of this system is that once the PDMS molds are obtained the user only needs agarose gel and a vacuum desiccator to create highly reproducible micro-casts." The vacuum pump pulls the agarose gel into the mold. He explains, "We provided the protocol to our coauthors at ETH Zurich and they performed the agarose micro-casting and conducted the stem cell differentiation study. Stem cells were captured in the micro-structures and their differentiation was controlled under the captured condition."

Tanaka's paper also describes an automated cell type classification system, using machine learning, which reduces the time and labor needed to analyze cells. "Combined together, these tools give us a powerful way to understand how stem cells differentiate in given conditions."

According to Yo Tanaka, leader of the Laboratory for Integrated Biodevice, where the research was conducted, "We hope this will break down the barriers that have hindered research in this area so far and help to establish harmony between biologists and engineers. The focus of engineers has traditionally been to develop new technologies, but scientists prefer to use well established technologies. However, if our newly developed technology is simple enough it can spread rapidly, this is our goal."

Explore further: Stem cells seem speedier in space

More information: PLOS One (2017). DOI: 10.1371/journal.pone.0173647

Journal reference: PLoS ONE

Provided by: RIKEN

Growing significant numbers of human stem cells in a short time could lead to new treatments for stroke and other diseases. Scientists are sending stem cells to the International Space Station to test whether these cells ...

To date, it has been assumed that the differentiation of stem cells depends on the environment they are embedded in. A research group at the University of Basel now describes for the first time a mechanism by which hippocampal ...

Scientists have discovered a new way to replicate the regenerative power of stem cells in the lab, which could lead to powerful treatments for injuries and diseases.

Though immune therapy and regenerative medicine are promising areas of research for future medical therapies, they are limited today by the difficulty of creating stem cells, and scientists around the world are searching ...

Researchers at the UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have discovered that a metabolic molecule called alpha-ketoglutarate helps pluripotent stem cells mature early in the process ...

Tissue Regeneration Materials Unit at MANA, NIMS successfully developed gold nanoparticles that have functional surfaces and act on osteogenic differentiation of stem cells.

Great apes help a person access an object when that person thinks they knowswhere it is but is mistaken, according to a study published April 5, 2017 in theopen-access journal PLOS ONE by David Buttelmann from Max Planck ...

What's brightly colored, lives on shipwrecks, filter-feeds like a whale, and shoots webs like Spiderman? If you can't readily come up with an answer, that's okay: until now, such animals weren't known to science. But as of ...

When whiteflies take off, they don't just spread their wings and fly. Just .03 of an inch long, these tiny insects possess a variety of sophisticated techniques that provide them with exceptional stability in the air. Tel ...

An American who fell in love with both the Great Barrier Reef and his wife via The University of Queensland has led a breakthrough discovery that could protect one of the Seven Natural Wonders. Husband-and-wife Professor ...

A detailed analysis of 39 U.S. fisheries by Duke University economists offers strong new evidence that catch shares curb the "race to fish" that compresses fishing seasons.

(Phys.org)A team of researchers from several institutions in Germany has found that middle-age killifish fed the gut contents of younger killifish lived longer than normal. In their paper uploaded to the bioRxiv preprint ...

Adjust slider to filter visible comments by rank

Display comments: newest first

This is really great! Getting stem cells to differentiate in to desired adult cells is what is holding back stem cell therapies. This is a MAJOR step in that direction!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Originally posted here:
New technique helps researchers determine how stem cells differentiate - Phys.Org

To Read More: New technique helps researchers determine how stem cells differentiate – Phys.Org
categoriaBone Marrow Stem Cells commentoComments Off on New technique helps researchers determine how stem cells differentiate – Phys.Org | dataApril 5th, 2017
Read All

Lungs of mice found to produce blood – The Manitoban

By daniellenierenberg

Home Science & Tech

By Malak Abason April 5, 2017

Lungs are a crucial organ in many animals, including humans. While their function has always seemed pretty straightforward to take in oxygen, transfer it into blood, and exhale carbon dioxide scientists have found a previously unrecognized function of the lungs of mice: blood production.

The study, which was published in Nature by researchers at the University of California San Francisco, was performed by inserting fluorescent protein into the mouses genome.

The protein caused the platelets (small blood cells that bind together to help create blood clots when a blood vessel is damaged), in the mouse to glow, allowing scientists to trace the platalets paths. What they found was a massive number of megakaryocytes, a stem cell that produces in the lungs.

When researched further, scientists found that the lung was producing over 10 million blood-producing platelets per hour, and the platelets produced by the lung accounted for the majority of platelets in the mouses circulatory system. Researchers are theorizing that the megakaryocytes are created in the bone marrow, but then travel to the lung to produce platelets.

While it is known that human lungs produce platelets and produce blood, as small amounts of megakaryocytes have been found in lungs before, if these findings are reproduced in humans, it will prove that the sheer amount that lungs produce has been greatly underestimated.

The study also found a reservoir of stem cells with the ability to become blood cells in the lungs. Researchers implanted lungs with the fluorescent megakaryocyte cells into mice that had been engineered to have no blood stem cells in their bone marrow, and found that the fluorescent cells travelled from the lungs to the marrow, and helped to produce platelets and other ingredients in blood, including neutrophils. In cases where the bone marrow is dealing with platelet or stem cell deficiency, these stem cells were able to leave the lung and contribute to the refilling of platelets in the marrow.

If further research indicates that these findings also apply to humans which they very well may, considering the genetic and biological similarities between mice and humans it will not only disprove the current theory that states the bone marrow accounts for most of the human bodys platelet production, but it will also affect how scientists approach treating blood diseases in humans, particularly ones that result in a platelet deficiency, such as thrombocytopenia.

Link:
Lungs of mice found to produce blood - The Manitoban

To Read More: Lungs of mice found to produce blood – The Manitoban
categoriaBone Marrow Stem Cells commentoComments Off on Lungs of mice found to produce blood – The Manitoban | dataApril 5th, 2017
Read All

Page 393«..1020..392393394395..400410..»


Copyright :: 2024