Page 360«..1020..359360361362..370380..»

Vision saved by first induced pluripotent stem cell treatment – Stock Daily Dish

By daniellenierenberg

iPS cells may help halt failing vision

Getty

By Andy Coghlan

A woman in her 80s has become the first person to be successfully treated with induced pluripotent stem (iPS) cells. A slither of laboratory-made retinal cells has protected her eyesight, fighting her age-related macular degeneration a common form of progressive blindness.

Such stem cells can be coaxed to form many other types of cell. Unlike other types of stem cell, such as those found in an embryo, can be made from adult non-stem cells a discovery that in 2012.

Now, more than a decade after they were created, these stem cells have helped someone. at the RIKEN Laboratory for Retinal Regeneration in Kobe, Japan, and her team took skin cells from the woman and turned them into iPS cells. They then encouraged these to form retinal pigment epithelial cells, which are important for supporting and nourishing the retina cells that capture light for vision.

The researchers made a slither of cells measuring just 1 by 3 millimetres. Before in 2014, they first removed diseased tissue on her retina that was gradually destroying her sight. They then inserted the small patch of cells they had created, hoping they would become a part of her eye and stop her eyesight from degenerating.

Now the results are in. Published today, they show that the treatment hasnt made the womans vision any sharper, but it does seem to have prevented further deterioration with her vision now stable for more than two years. Since the graft, the woman says her vision is brighter.

Takahashi and her team have done incredible work, and deserve all the praise they get for this project, says , director of the Center for iPS Cell Research and Application at Kyoto University, who won the Nobel prize for and collaborated on this work. This is a landmark study and opens the door to similar treatments for many diseases, he says.

This first iPSC-derived retinal graft is an important landmark in the field of retinal regeneration, says at University College London, and head of a trial at Moorfields Eye Hospital in London of similar grafts made instead from human embryonic stem cells.

One worry about this approach is that turning the stem cells into new tissues could lead to cancer-causing genetic mutations though the team found no evidence of this in the treated woman. However, a trial of the technique in another person was cancelled in 2015, after tests revealed that the cells intended to be given to the man had developed genetic abnormalities.

But although it has taken many years to bring , many private centres around the world have been advertising unregulated treatments purporting to use stem cells for some time.

A second study published today shows just how badly some unregulated treatments described as stem cell therapies can go wrong. Three case reports of women given such treatments for age-related macular degeneration detail how one woman went blind and the vision of the other two became much worse.

All three ended up seeking emergency treatment in 2015, after each paid $5000 to a private clinic to receive injections of their own fatty tissue into their eyes.

Patients and physicians in the US should be made aware that not all stem cell clinics are safe, and that stem therapy as provided in private clinics in the US is unproven and potentially harmful, says at the University of Miamis Bascom Palmer Eye Institute, Florida, who subsequently treated two of the women.

Albini advises people to be suspicious of any procedure involving payment. Most legitimate research in the US does not require patients to pay for the experimental procedures, he says, adding that people should check whether a trial has been registered with the US Food and Drug Administration. Be aware that if it sounds too good to be true, it may indeed not be true.

Journal reference: New England Journal of Medicine, DOI: ;

:

More on these topics:

Continue reading here:
Vision saved by first induced pluripotent stem cell treatment - Stock Daily Dish

To Read More: Vision saved by first induced pluripotent stem cell treatment – Stock Daily Dish
categoriaIPS Cell Therapy commentoComments Off on Vision saved by first induced pluripotent stem cell treatment – Stock Daily Dish | dataDecember 12th, 2019
Read All

By turning stem cells into brain cells, Aspen Neuroscience hopes to rewind the progress of Parkinson’s disease – FierceBiotech

By daniellenierenberg

The idea of a cell therapy for Parkinsons disease starts out simple: Symptoms of the progressive disease are largely driven by the deaths of dopamine-producing neurons found deep within the brain. With lower levels of the neurotransmitter come the characteristic tremors, rigidity and slow movements.

By replacing those lost nerve cells with new dopamine producers, researchers hope to renew the brains connection to the bodys muscles and improve a persons overall motor function.

But in the brain, everything becomes more complicated. On top of the risk of immune system rejection that comes with any kind of living tissue transplant, its important to make sure the implanted cells function correctly and do not pick up any dangerous genetic mutations as they grow.

How ICON, Lotus, and Bioforum are Improving Study Efficiency with a Modern EDC

CROs are often at the forefront of adopting new technologies to make clinical trials more efficient. Hear how ICON, Lotus Clinical Research, and Bioforum are speeding database builds and automating reporting tasks for data management.

Now, a new company, Aspen Neuroscience, aims to tackle both obstacles at once.

First, the startup hopes to avoid any harmful immune reactions by using a patients own cells as a starting point. Then, Aspen plans to implement a rigorous quality control program employing whole genome sequencing and artificial intelligence to make sure the cells stay in line as theyre processed and readied for the procedure.

And to do it, the San Diego-based company is starting out with $6.5 million in seed money plus an impressive roster of names.

They are led by neurology researcher Howard Federoff, previously vice chancellor for health affairs and CEO of the University of California, Irvine health system as well as the executive dean of medicine at Georgetown University. Hes joined by Aspen co-founder and stem cell scientist Jeanne Loring, founding director and professor emeritus of the Center for Regenerative Medicine at the Scripps Research Institute.

Meanwhile, the seed round was led by Domain Associates and Axon Ventures with additional backing from Alexandria Venture Investments, Arch Venture Partners, OrbiMed and Section 32.

Aspen looks to combine its expertise in stem cell biology, genomics and neurology to offer the first autologous cell therapy for Parkinsons diseasewhile others in the space have pursued allogeneic routes, or therapies derived from donors other than the patient.

The process starts with a culture of the patients skin cells, which are then genetically induced to become pluripotent stem cellsor cells capable of differentiating into any other cell type in the body. These are then chemically nudged further to transform into precursor versions of the dopamine-producing neurons, which are typically found in the midbrain and regions responsible for the movement of limbs.

We can say without any equivocation that we can produce the population of cells necessary to transplant, and in a short enough period of time to have a potential beneficial impact on the evolution of the disease, said Federoff, who has also served as chair of the NIHs Recombinant DNA Advisory Committee and helped lead the U.S. Parkinsons Disease Gene Therapy Study Group.

We envisage that this will set back the clock on patients who have Parkinsons, unlike any other therapy that we know of, he told FierceMedTech in an interview.

The number of cells needed would be much smaller compared to other cell therapies and cancer treatments. The healthy human brain contains only about 200,000 dopamine-producing nerve cells, split between its two hemispheres, while patients with Parkinsons disease have lost about 50% or more of those neurons.

Aspen aims to evaluate two doses: one that aims to replace about 60% to 65% of a persons normal cell complement and another larger treatment, Federoff said.

Those smaller doses, as well as starting with a patients donor cells, help make the treatment safer to produce by requiring fewer steps. Each cycle of cell division and multiplication to increase their numbers carries the risk of introducing genetic mutations.

As the cells are grown, they are consistently evaluated with data-driven techniques pioneered by Lorings laboratory. Using whole genome RNA sequencing, Aspen will match the cells up at every stage with a genetic barcode taken from each patient at the start. This will allow them to look for changes, duplications or deletions in the pluripotent stem cell genome.

If the cells harbor mutations that are cancer drivers, we don't want to put those into people, Loring said. The only way is to check the sequencing before we transplant them.

The cells used in the transplant procedure arent fully grown; as neuron progenitors, they mimic the development steps seen in the brain of a growing fetus after theyre placed in the body as they wire themselves up to other neural structures and begin to form new networks of their own.

We anticipate that they will manufacture and release dopamine in a manner that is consistent with synaptic neurotransmission and the process of communicating from cell-to-cell, said Federoff. They will take up dopamine from synapses when it has done its business, bring it back into the cell, and prepare it for another synaptic release.

These are not just dopamine pumps, theyre real neurons, added Loring. They will genuinely replace the cells that have been lost in every way.

Aspen plans to pursue two courses of therapy, for the two major types of Parkinsons disease. Their lead candidate is for idiopathic, or sporadic Parkinsons, while their second is a CRISPR-edited version of the therapy designed to address one of the diseases most common genetic mutations, linked to about 5% of cases.

This would not only aim to restart dopamine production in this orphan indication, but also restore the damaged enzyme GBA, which is seen as an underlying cause. Federoff and Loring expect their sequencing-based quality check system will also help catch any off-target edits linked to the use of CRISPR-Cas9.

The company has yet to secure permission from the FDA to officially launch clinical trials, but the agency has signed off on Aspens plans to prepare a trial-ready cohort of Parkinsons disease patients in the meantime. This would include the initial stages of recruitment and testing, including the selection of patients capable of having their skin cells made into pluripotent stem cells.

After it receives its go-ahead from the FDA, Aspen plans to hit the ground running,enrolling at least 176 participants in a phase 1/2 study that includes a randomized stage to determine clinical benefits.

Read the original here:
By turning stem cells into brain cells, Aspen Neuroscience hopes to rewind the progress of Parkinson's disease - FierceBiotech

To Read More: By turning stem cells into brain cells, Aspen Neuroscience hopes to rewind the progress of Parkinson’s disease – FierceBiotech
categoriaSkin Stem Cells commentoComments Off on By turning stem cells into brain cells, Aspen Neuroscience hopes to rewind the progress of Parkinson’s disease – FierceBiotech | dataDecember 12th, 2019
Read All

CAMPUS: EGG DONATION – Artificial sperm cells to remove the genetic worries of sperm donation – ESHRE

By daniellenierenberg

A Campus meeting in November reviewed the arguments for and against donor conception, and the sometimes difficult ethical arguments raised by the prospect of a donor-conceived child. 'Artificial' sperm cells derived from testicular tissue or stem cells may resolve some of those arguments.

The problem is especially acute in cancers diagnosed in prepubertal boys in whom there are no sperm cells available for storage. Their only option for future fatherhood in the face of cancer treatment is adoption or donor sperm. And this, added Goossens, is not an exceptional problem. Incidence rates are around 17 cases per 100,000 population, with leukemia and CNS tumours the most commonly diagnosed. So the usual pathway to fertility preservation in these young cases is for the oncologist to warn of the risk to future fertility from the cancer treatments and refer to the fertility clinic. Biopsy of testicular tissue, of course, must be performed before any radio- or chemotherapy.

Goossens described two experimental techniques, spermatogonial stem cell retrieval and transplantation, and homotopic tissue grafting. The danger in the former procedure is a risk of introducing malignancy, so banked tissue must be free of malignant contamination. Experiments in mouse-to-mouse models have demonstrated spermatogenesis from tissue grafting, and most recently fully functional conception and delivery in a non-human primate (Grady). Similarly, experiments in mouse models with spermatogonial stem cell transplantation have so far proved efficient, with spontaneous pregnancy already possible.

Of course, the objective of this impressive experimental work is not merely a resolution to the question of genetic continuity in couples faced with third-party donation, but the future fertility and long-term quality of life of so many unfortunate young boys. Advances in cancer treatment have led to the increased survival of all children with cancer, and with it a new imperative for the restoration of their fertility. Not all cancer treatments cause complete testicular damage, but around one-third of children having treatment for pediatric cancers will end up infertile. Following the proof-of-concept study which saw the birth of Grady - in which testicular samples removed from prepubertal monkeys was frozen, thawed and regrafted under scrotal skin - the research group declared that their next logical step, with safety and feasibility apparent, is human trials.

1. Fayomi AP, Peters K, Sukhwani M, et al. Autologous grafting of cryopreserved prepubertal rhesus testis produces sperm and offspring. Science 2019; 363: 1314-1319.

Go here to see the original:
CAMPUS: EGG DONATION - Artificial sperm cells to remove the genetic worries of sperm donation - ESHRE

To Read More: CAMPUS: EGG DONATION – Artificial sperm cells to remove the genetic worries of sperm donation – ESHRE
categoriaSkin Stem Cells commentoComments Off on CAMPUS: EGG DONATION – Artificial sperm cells to remove the genetic worries of sperm donation – ESHRE | dataDecember 12th, 2019
Read All

BioRestorative Therapies Receives Patent in Israel For Its Metabolic Program – Yahoo Finance

By daniellenierenberg

MELVILLE, N.Y., Dec. 12, 2019 (GLOBE NEWSWIRE) -- BioRestorative Therapies, Inc. (BioRestorative or the Company) (BRTX), a life sciences company focused on stem cell-based therapies, today announced that the Israeli Patent Office has issued BioRestorative a Notice of Allowance on its patent application for a method of generating brown fat stem cells. This is the eighth patent issued, in the United States and other countries, for the Companys brown fat technology related to BioRestoratives metabolic program (ThermoStem Program).

Once issued in Israel, the final patent will allow for a method of isolating and differentiating a non-embryonic human brown adipose-derived stem cell into functional human brown adipocytes and a method of identifying compounds that modifies metabolic activity of human brown adipocytes. The technology is applicable for potential therapeutic uses for treating a wide range of degenerative and metabolic disorders, including but not limited to diabetes, obesity, hypertension and cardiac deficiency.

We continue to drive innovative and novel technology focusing on transformative therapies for our brown fat program, said Mark Weinreb, CEO of BioRestorative Therapies. We are pleased to add to our intellectual property library this recently issued patent by the Israeli Patent Office for our metabolic program to help power disruptive ways to treat metabolic disorders.

About BioRestorative Therapies, Inc.

BioRestorative Therapies, Inc. (www.biorestorative.com) develops therapeutic products using cell and tissue protocols, primarily involving adult stem cells. Our two core programs, as described below, relate to the treatment of disc/spine disease and metabolic disorders:

Forward-Looking Statements

This press release contains "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, and such forward-looking statements are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. You are cautioned that such statements are subject to a multitude of risks and uncertainties that could cause future circumstances, events or results to differ materially from those projected in the forward-looking statements as a result of various factors and other risks, including, without limitation, whether the Company will be able to consummate the private placement and the satisfaction of closing conditions related to the private placement and those set forth in the Company's Form 10-K filed with the Securities and Exchange Commission. You should consider these factors in evaluating the forward-looking statements included herein, and not place undue reliance on such statements. The forward-looking statements in this release are made as of the date hereof and the Company undertakes no obligation to update such statements.

CONTACT:Email: ir@biorestorative.com

Read the original:
BioRestorative Therapies Receives Patent in Israel For Its Metabolic Program - Yahoo Finance

To Read More: BioRestorative Therapies Receives Patent in Israel For Its Metabolic Program – Yahoo Finance
categoriaCardiac Stem Cells commentoComments Off on BioRestorative Therapies Receives Patent in Israel For Its Metabolic Program – Yahoo Finance | dataDecember 12th, 2019
Read All

Data from Exploratory Analysis Show Merck’s KEYTRUDA (pembrolizumab) Improved Overall Survival as Monotherapy for the First-Line Treatment of…

By daniellenierenberg

KRAS mutations occur in approximately 20% of people with non-small cell lung cancer, and some previous studies have suggested that these mutations are associated with a poorer response to treatment, said Dr. Jonathan Cheng, vice president, oncology clinical research, Merck Research Laboratories. It was therefore encouraging to see in this exploratory analysis that KEYTRUDA monotherapy was associated with a survival benefit in certain patients with metastatic nonsquamous non-small cell lung cancer, regardless of KRAS mutational status.

The objective of the exploratory analysis was to assess the prevalence of KRAS mutations and their association with efficacy in the KEYNOTE-042 trial. Of the 1,274 untreated patients with metastatic nonsquamous NSCLC whose tumors expressed PD-L1 (TPS 1%) enrolled in KEYNOTE-042, 301 patients had KRAS evaluable data (n=232 without any KRAS mutation; n=69 with any KRAS mutation, including n=29 with the KRAS G12C mutation). Tissue tumor mutational burden (tTMB) and KRAS mutational status were determined by whole-exome sequencing (WES) of tumor tissue and matched normal DNA (blood). Patients were randomized 1:1 to receive KEYTRUDA 200 mg intravenously every three weeks (Q3W) (n=637) or investigators choice of chemotherapy (pemetrexed or paclitaxel) (n=637). Treatment continued until progression of disease or unacceptable toxicity. The primary endpoint was OS with a TPS of 50%, 20% and 1%, which were assessed sequentially. The secondary endpoints were PFS and ORR.

Findings from this exploratory analysis showed that KEYTRUDA monotherapy was associated with improved clinical outcomes, regardless of KRAS mutational status, in patients with metastatic nonsquamous NSCLC versus chemotherapy. In this analysis, KEYTRUDA reduced the risk of death by 58% (HR=0.42 [95% CI, 0.22-0.81]) in patients with any KRAS mutation and by 72% (HR=0.28 [95% CI, 0.09-0.86]) in patients with the KRAS G12C mutation compared to chemotherapy. The safety profile of KEYTRUDA was consistent with what has been seen in previously reported studies among patients with metastatic NSCLC.

Additional efficacy results from this exploratory analysis showed:

With Any KRAS Mutation

With KRAS G12CMutation

Without Any KRAS Mutation

KEYTRUDA Mono-therapy

(N = 30)

Chemo-therapy

(N = 39)

KEYTRUDA Mono-therapy(N = 12)

Chemo-therapy(N = 17)

KEYTRUDA Mono-therapy

(N = 127)

Chemo-therapy(N = 105)

OS, median, mo(95% CI)

28 (23-NR)

11 (7-25)

NR (23-NR)

8 (5-NR)

15 (12-24)

12 (11-18)

OS, HR(95% CI)

0.42 (0.22-0.81)

0.28 (0.09-0.86)

0.86 (0.63-1.18)

ORR, %(95% CI)

56.7

18.0

66.7

23.5

29.1

21.0

PFS, median, mo(95% CI)

12 (8-NR)

6 (4-9)

15 (10-NR)

6 (4-8)

6 (4-7)

6 (6-8)

PFS, HR(95% CI)

0.51 (0.29-0.87)

0.27 (0.10-0.71)

1.00 (0.75-1.34)

Data from an exploratory analysis of KEYNOTE-189 (Abstract #LBA5), which evaluated KRAS mutations and their association with efficacy outcomes for KEYTRUDA in combination with pemetrexed and platinum chemotherapy, were also presented in a mini-oral session today at the ESMO Immuno-Oncology Congress 2019. KEYNOTE-189 was conducted in collaboration with Eli Lilly and Company, the makers of pemetrexed (ALIMTA).

About Lung Cancer

Lung cancer, which forms in the tissues of the lungs, usually within cells lining the air passages, is the leading cause of cancer death worldwide. Each year, more people die of lung cancer than die of colon and breast cancers combined. The two main types of lung cancer are non-small cell and small cell. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for about 85% of all cases. Small cell lung cancer (SCLC) accounts for about 10 to 15% of all lung cancers. Lung cancer can also be characterized by the presence of different biomarkers, including PD-L1, KRAS, ALK, EGFR and ROS1. KRAS mutations occur in about 20% of NSCLC cases. Between 2008 and 2014, the five-year survival rate for patients diagnosed in the U.S. with advanced NSCLC was only 5%.

About KEYTRUDA (pembrolizumab) Injection, 100mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,000 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patients likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Small Cell Lung Cancer

KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least one other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic HNSCC with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for the treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [CPS 10] as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

Microsatellite Instability-High (MSI-H) Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR).

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Selected Important Safety Information for KEYTRUDA

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grade 3-5 in 1.5% of patients.

Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)

Immune-Mediated Hepatitis

The rest is here:
Data from Exploratory Analysis Show Merck's KEYTRUDA (pembrolizumab) Improved Overall Survival as Monotherapy for the First-Line Treatment of...

To Read More: Data from Exploratory Analysis Show Merck’s KEYTRUDA (pembrolizumab) Improved Overall Survival as Monotherapy for the First-Line Treatment of…
categoriaCardiac Stem Cells commentoComments Off on Data from Exploratory Analysis Show Merck’s KEYTRUDA (pembrolizumab) Improved Overall Survival as Monotherapy for the First-Line Treatment of… | dataDecember 12th, 2019
Read All

Cell Separation Technology Market : Industry Overview, Trends and Growth Opportunities Forecasted Till 2027 – VaporBlash

By daniellenierenberg

Transparency Market Research (TMR)has published a new report on the globalcell separation technology marketfor the forecast period of 20192027. According to the report, the global cell separation technology market was valued at ~US$ 5 Bnin 2018, and is projected to expand at a double-digit CAGR during the forecast period.

Overview

Cell separation, also known as cell sorting or cell isolation, is the process of removing cells from biological samples such as tissue or whole blood. Cell separation is a powerful technology that assists biological research. Rising incidences of chronic illnesses across the globe are likely to boost the development of regenerative medicines or tissue engineering, which further boosts the adoption of cell separation technologies by researchers.

Request PDF Sample of Cell Separation Technology Market Report @https://www.transparencymarketresearch.com/sample/sample.php?flag=S&rep_id=1925

Expansion of the global cell separation technology market is attributed to an increase in technological advancements and surge in investments in research & development, such asstem cellresearch and cancer research. The rising geriatric population is another factor boosting the need for cell separation technologies Moreover, the geriatric population, globally, is more prone to long-term neurological and other chronic illnesses, which, in turn, is driving research to develop treatment for chronic illnesses. Furthermore, increase in the awareness about innovative technologies, such as microfluidics, fluorescent-activated cells sorting, and magnetic activated cells sorting is expected to propel the global cell separation technology market.

North America dominated the global cell separation technology market in 2018, and the trend is anticipated to continue during the forecast period. This is attributed to technological advancements in offering cell separation solutions, presence of key players, and increased initiatives by governments for advancing the cell separation process. However, insufficient funding for the development of cell separation technologies is likely to hamper the global cell separation technology market during the forecast period. Asia Pacific is expected to be a highly lucrative market for cell separation technology during the forecast period, owing to improving healthcare infrastructure along with rising investments in research & development in the region.

Enquiry for Discount on Cell Separation Technology Market Report @https://www.transparencymarketresearch.com/sample/sample.php?flag=D&rep_id=1925

Rising Incidences of Chronic Diseases, Worldwide, Boosting the Demand for Cell Therapy

Incidences of chronic diseases such as diabetes, obesity, arthritis, cardiac diseases, and cancer are increasing due to sedentary lifestyles, aging population, and increased alcohol consumption and cigarette smoking. According to the World Health Organization (WHO), by 2020, the mortality rate from chronic diseases is expected to reach73%, and in developing counties,70%deaths are estimated to be caused by chronic diseases. Southeast Asia, Eastern Mediterranean, and Africa are expected to be greatly affected by chronic diseases. Thus, the increasing burden of chronic diseases around the world is fuelling the demand for cellular therapies to treat chronic diseases. This, in turn, is driving focus and investments on research to develop effective treatments. Thus, increase in cellular research activities is boosting the global cell separation technology market.

Increase in Geriatric Population Boosting the Demand for Surgeries

The geriatric population is likely to suffer from chronic diseases such as cancer and neurological disorders more than the younger population. Moreover, the geriatric population is increasing at a rapid pace as compared to that of the younger population. Increase in the geriatric population aged above 65 years is projected to drive the incidences of Alzheimers, dementia, cancer, and immune diseases, which, in turn, is anticipated to boost the need for corrective treatment of these disorders. This is estimated to further drive the demand for clinical trials and research that require cell separation products. These factors are likely to boost the global cell separation technology market.

According to the United Nations, the geriatric population aged above 60 is expected to double by 2050 and triple by 2100, an increase from962 millionin 2017 to2.1 billionin 2050 and3.1 billionby 2100.

Productive Partnerships in Microfluidics Likely to Boost the Cell Separation Technology Market

Technological advancements are prompting companies to innovate in microfluidics cell separation technology. Strategic partnerships and collaborations is an ongoing trend, which is boosting the innovation and development of microfluidics-based products. Governments and stakeholders look upon the potential in single cell separation technology and its analysis, which drives them to invest in the development ofmicrofluidics. Companies are striving to build a platform by utilizing their expertise and experience to further offer enhanced solutions to end users.

Stem Cell Research to Account for a Prominent Share

Stem cell is a prominent cell therapy utilized in the development of regenerative medicine, which is employed in the replacement of tissues or organs, rather than treating them. Thus, stem cell accounted for a prominent share of the global market. The geriatric population is likely to increase at a rapid pace as compared to the adult population, by 2030, which is likely to attract the use of stem cell therapy for treatment. Stem cells require considerably higher number of clinical trials, which is likely to drive the demand for cell separation technology, globally. Rising stem cell research is likely to attract government and private funding, which, in turn, is estimated to offer significant opportunity for stem cell therapies.

Biotechnology & Pharmaceuticals Companies to Dominate the Market

The number of biotechnology companies operating across the globe is rising, especially in developing countries. Pharmaceutical companies are likely to use cells separation techniques to develop drugs and continue contributing through innovation. Growing research in stem cell has prompted companies to own large separate units to boost the same. Thus, advancements in developing drugs and treatments, such as CAR-T through cell separation technologies, are likely to drive the segment.

As per research, 449 public biotech companies operate in the U.S., which is expected to boost the biotechnology & pharmaceutical companies segment. In developing countries such as China, China Food and Drug Administration(CFDA) reforms pave the way for innovation to further boost biotechnology & pharmaceutical companies in the country.

Global Cell Separation Technology Market: Prominent Regions

North America to Dominate Global Market, While Asia Pacific to Offer Significant Opportunity

In terms of region, the global cell separation technology market has been segmented into five major regions: North America, Europe, Asia Pacific, Latin America, and the Middle East & Africa. North America dominated the global market in 2018, followed by Europe. North America accounted for a major share of the global cell separation technology market in 2018, owing to the development of cell separation advanced technologies, well-defined regulatory framework, and initiatives by governments in the region to further encourage the research industry. The U.S. is a major investor in stem cell research, which accelerates the development of regenerative medicines for the treatment of various long-term illnesses.

The cell separation technology market in Asia Pacific is projected to expand at a high CAGR from 2019 to 2027. This can be attributed to an increase in healthcare expenditure and large patient population, especially in countries such as India and China. Rising medical tourism in the region and technological advancements are likely to drive the cell separation technology market in the region.

Launching Innovative Products, and Acquisitions & Collaborations by Key Players Driving Global Cell Separation Technology Market

The global cell separation technology market is highly competitive in terms of number of players. Key players operating in the global cell separation technology market include Akadeum Life Sciences, STEMCELL Technologies, Inc., BD, Bio-Rad Laboratories, Inc., Miltenyi Biotech, 10X Genomics, Thermo Fisher Scientific, Inc., Zeiss, GE Healthcare Life Sciences, PerkinElmer, Inc., and QIAGEN.

These players have adopted various strategies such as expanding their product portfolios by launching new cell separation kits and devices, and participation in acquisitions, establishing strong distribution networks. Companies are expanding their geographic presence in order sustain in the global cell separation technology market. For instance, in May 2019, Akadeum Life Sciences launched seven new microbubble-based products at a conference. In July 2017, BD received the U.S. FDAs clearance for its BD FACS Lyric flow cytometer system, which is used in the diagnosis of immunological disorders.

Continued here:
Cell Separation Technology Market : Industry Overview, Trends and Growth Opportunities Forecasted Till 2027 - VaporBlash

To Read More: Cell Separation Technology Market : Industry Overview, Trends and Growth Opportunities Forecasted Till 2027 – VaporBlash
categoriaCardiac Stem Cells commentoComments Off on Cell Separation Technology Market : Industry Overview, Trends and Growth Opportunities Forecasted Till 2027 – VaporBlash | dataDecember 12th, 2019
Read All

Got dry skin but no time for a facial? These hydration sheet masks are just as good – CNA

By daniellenierenberg

How do you know if your skin is dry? For starters, it feels rough to the touch and, in extreme cases, it may start flaking and you may even feel a tearing sensation.

The good news is that dryskin can be easily avoided, and the most efficient way to hydrate parched skin is with a hydrating sheet mask. All it takes is 15 to 20 minutes and youre on your way to plumped, glowing skin.

These days, hydration sheet masks are loaded with so much extra goodness vitamins, minerals, amino acids,organic acids, plant stem cells andpeptidesthat gointo the formulas that these can also help fight wrinkles, eliminate dark spots and lighten skin tone.

CHARLOTTE TILBURY INSTANT MAGIC FACIAL DRY SHEET MASK, S$76

Yes, this is a dry mask that you can get at Sephora. The magic all comes from the warmth of your skin: The bio-mimetic vector delivery system turns a combo of ingredients (crocus bulb extract, plant stem cells, peptides and vitamin B3) from solid to liquid.

Wear the dry mask by looping the hoops over each ear then simply activate the formula by massaging upwards to move the mask into place. After 15 minutes, take it off then gently tap the remaining essence into the skin. Youll soon notice a glow that is similar to the one you get after a super shiok facial.

But dont throw away the mask just yet the dry formula is engineered for reuse. In fact, you can use it three more times. Just slip it back (the formula side facing inward) into the resealable foil pouch for when you need it next. So really, thats four masks for the price of one.

UTENA PURESA SHEET MASK HYALURONIC ACID 5S, S$12.90

You can pick this up at Watsons. There are five masks to a pack and each one combines the benefits of hyaluronic acid and royal jelly extract, infused with a gel-like essence that works to hydrate skin like a jelly mask. To make the most of it, first smoothen the jelly bits onto the face before placing the sheet over the face.

But theres more: Peek into the packaging and youll see lots of jelly bits left. Apply these remaining bits anywhere else you want to hydrate. We personally like to spread it over the neck, the back of the palms and even the elbows. Yes, it also works as a body hydration gel.

SK II FACIAL TREATMENT MASK, S$127

Love SK IIs Facial Treatment Essence? Then youll love this sheet mask because its drenched with so much Facial Treatment Essence that it feels as if youve dunked your face into a tub of Pitera.

It contains 50 micro-nutrients like vitamins, minerals, amino acids and organic acids to condition skin's natural functions. Twenty minutes is all it takes to rehydrate, clarify complexion and have crystal clear skin.

LA MER THE TREATMENT LOTION HYDRATING MASK, S$45

Each sheet mask is infused with a full ounce of La Mers liquid energy skin hydrator and its equipped with Japanese skin-hugging technology that delivers a concentrated surge of healing hydration directly onto the skin to nourish and soften fine lines.

STARSKIN RED CARPET READY HYDRATING BIO-CELLULOSE SECOND SKIN FACE MASK, S$18

Another mask you can pick up at Sephora is one with a difference. Instead of prepping your face, you prep the mask massage the still-closed sachet to distribute the serum liquid evenly before opening.

The exclusive Bio Cellulose sheet a thin biodegradable microfibre is infused with a delicious cocktail of coconut juice, Amino acids and brown algae that work together to strengthen the skin barrier and promote moisture retention. Dull and dehydrated skin doesnt stand a chance.

More here:
Got dry skin but no time for a facial? These hydration sheet masks are just as good - CNA

To Read More: Got dry skin but no time for a facial? These hydration sheet masks are just as good – CNA
categoriaSkin Stem Cells commentoComments Off on Got dry skin but no time for a facial? These hydration sheet masks are just as good – CNA | dataDecember 12th, 2019
Read All

Gore, Mayo Clinic team up to deliver breakthrough medical therapies – Plastics Today

By daniellenierenberg

Materials science company W. L. Gore & Associates Inc. (Newark, DE) has announced a joint venture with the Mayo Clinic (Rochester, MN) to further develop a therapeutic system using stem cells and bio-absorbable scaffolds to treat a condition affecting patients with Crohns disease. Avobis Bio, based in Delaware, will draw on the expertise of scientists and medical professionals from both organizations to build on the encouraging results of an investigational treatment for perianal fistulas.

A debilitating condition that affects patients with Crohns disease, perianal fistulas are painful tunneling wounds connecting the anus to the skin, explained Gore in a press release. Few healing options exist, and patients endure multiple surgeries and ongoing risk of life-threatening complications, said Gore.

"Perianal fistulas are truly life-altering for Crohn's patients, and treatment options have eluded gastroenterologists and surgeons for years," added William Faubion Jr., MD, a Mayo Clinic gastroenterologist who specializes in inflammatory bowel diseases.

The innovative treatment involves harvesting a patients own mesenchymal stem cells, which then are populated on Gore's bioabsorbable polymer scaffold and surgically implanted in the fistula. A phase I clinical trial showed that 76% of patients healed within a year. If this outcome is validated in a larger trial, Gore said that it would dramatically exceed outcomes achieved with existing treatments.

This project is the initial focus of Avobis Bio, which describes its overall mission as an exploration of the use of mesenchymal stem cells combined with enabling bioabsorbable scaffolds that enhance the effectiveness of the cells in stimulating the body to heal.

Delivering a patients mesenchymal stem cells on a synthetic scaffold that biodegrades over time may be a first-of-its-kind medical therapy, noted Joe Carlson, a reporter at the Minneapolis-based Star Tribune reporting on the joint venture. If successful, Avobis Bio may one day offer a variety of tissue and organ-repair therapies combining Mayo's stem cell expertise and Gore's medical materials, he wrote.

Gore is perhaps best known to the public for its Gore-Tex outerwear, but the privately held $3.7 billion engineering and manufacturing firm sells products in an array of industries, including a line of medical devices designed to repair nonnatural holes in body organs, added Carlson. Mayo has used Gore-made devices for many years.

Original post:
Gore, Mayo Clinic team up to deliver breakthrough medical therapies - Plastics Today

To Read More: Gore, Mayo Clinic team up to deliver breakthrough medical therapies – Plastics Today
categoriaSkin Stem Cells commentoComments Off on Gore, Mayo Clinic team up to deliver breakthrough medical therapies – Plastics Today | dataDecember 12th, 2019
Read All

Five recent drug target discoveries for pancreatic cancer – Drug Target Review

By daniellenierenberg

This article highlights some of the most recent drug target discoveries that could be used to develop and design a treatment for pancreatic cancer.

Scientists investigating pancreatic cancer have identified new targets which, with further research, could be the basis for developing future therapies. Listed below are five of the most recent target discoveries, in order of their journal publication dates, with the newest first.

Scientists at the Queen Mary University of London, UK and Zhengzhou University, China have developed a personalised vaccine system that may be able to delay the onset of pancreatic cancer.

Cells taken from mice, mutated chemically into pancreatic cancer cells and then infected with Adenovirus (AdV) as a prime or Vaccinia virus (VV) as a boost, create a vaccine product. The virus kills the cancerous cells in such a way that their antigens are released and are therefore able to prime the immune system to prevent pancreatic cancer returning.

Injection of the virus-infected cells into mice destined to develop pancreatic cancer doubled their survival rate, compared to their unvaccinated counterparts. The vaccine also delayed the onset of the condition in these mice.

Using cells from the recipient of the vaccine enables the immune system to respond to the exact antigens seen in tumour cells of the individual, resulting in a vaccine regime tailored to them.

Through this international collaboration, we have made progress towards the development of a prophylactic cancer vaccine against pancreatic cancer, said Professor Yaohe Wang, leader of the study, from Queen Mary University of London and the Sino-British Research Centre at Zhengzhou University in China.

Researchers at Sanford Burnham Prebys Medical Discovery Institute in the US have identified that a combination of two anti-cancer compounds, already approved for use to treat other cancers, shrank pancreatic tumours in mice.

Our study identifies a potential treatment combination that can immediately be tested against these aggressive tumours. We are already meeting with oncologists at Oregon Health & Science University, US to discuss how to advance this discovery into clinical evaluation, explained Dr Zeev Ronai, a professor in Sanford Burnham Prebys Tumor Initiation and Maintenance Program, also senior author of the study.

Scientists used L-asparaginase to starve pancreatic tumours of asparagine, an amino acid required by cells for protein synthesis. However, the tumour cells did not die, instead switching on a stress response pathway whereby they could produce asparagine themselves. Scientists then used an MEK inhibitor to block the stress response pathway, causing the pancreatic tumour to shrink.

L-asparaginase is already US Food and Drug Administration (FDA) approved to treat leukaemias and similarly the MEK inhibitor is approved for the treatment of solid tumours, including melanoma skin cancer.

This research lays the basis for the inhibition of pancreatic tumour growth by a combined synergistic attack based on asparagine restriction and MAPK signalling inhibition, says Dr Eytan Ruppin, chief of the Cancer Data Science Library at the National Cancer Institute (NCI) and co-author of the study.

Scientists from the Max Planck Institute for Biology of Ageing, Germany have identified that YME1L, a protease in the membrane of mitochondria, is activated when a cell uses glycolysis to produce energy anaerobically.

scientists were able to reduce tumour growth by switching off the glycolysis signalling pathway in the mitochondria

Cells adapt to oxygen deficiency by switching their energy supply to glycolysis, which ferments sugar without oxygen. This switch is often necessary in old age, as the cells in the body become poorly supplied with oxygen and nutrients.

Cancer cells can also face this problem; prior to angiogenesis, tumours are poorly perfused and so the tissue is deprived of oxygen. Oxidative stress in tumours drives the switch-on of multiple pathways. This includes the glycolysis pathway that alters the behaviour of the mitochondria to provide tumour cells with energy despite being starved of oxygen.

Scientists found that the YME1L protease is activated during the conversion to glycolysis. YME1L appears altered and breaks down various proteins in the organelles, preventing the formation of new mitochondria and causing the remaining organelles to change their metabolism. This process eventually stops as YME1L begins to degrade itself at high activity.

Researchers examined cancer cells originating from patients with pancreatic tumours and were able to reduce tumour growth by switching off the glycolysis signalling pathway in the mitochondria, with reproducible results both in the petri dish and in pancreatic tumours in mice.

There is currently no treatment available for pancreatic cancer. I believe that this protease can be a very interesting therapeutic target because we have seen that the signalling pathway is also active in human patients with pancreatic cancer, explained Thomas Langer, the Max Planck Director, continuing: However, there are no known substances that have an effect on this protease.

Researchers at the Crick Institute have identified cancer stem cells as a driver of pancreatic cancer growth. These cells can metastasise and differentiate into different tumour types to continue the spread of cancer.

Cancer stem cells appear at all stages of cancer growth so being able to identify where they are present could be vital in both targeting cancer and developing new treatments, according to the researchers. Analysis of gene expression in the cancer stem cells identified a protein, CD9, is present on tumour surfaces during development and when it is more established. This protein could therefore be used as a marker to help locate these cells.

A further development of the study established that this protein is not just a marker of cancer stem cells, but also promotes their malignant behaviour. By altering the amount of CD9 in tumour cells in mice, researchers found that reduced levels of this protein caused smaller tumours to form and increasing levels of CD9 created more aggressive cells able to form large tumours quickly.

These cells are vital to pancreatic cancer and if even just a few of them survive chemotherapy, the cancer is able to bounce back. We need to find effective ways to remove these cells and so stop them from fuelling cancer growth. However, we need more experiments to validate the importance of CD9 in human pancreatic cancer, says Victoria Wang, lead author and member of the Adult Stem Cell Laboratory at the Crick Institute.

A look into cancer stem cell metabolism also revealed CD9 increases the rate tumour cells take up glutamine, an amino acid which helps provide energy for cancer growth.

Now we know this protein is both linked to cancer stem cells and helps cancer growth, this could guide the development of new treatments that are targeted at the protein and so cut off the supply of glutamine to cancer stem cells, effectively starving the cancer, says Axel Behrens, corresponding author and group leader in the Adult Stem Cell Laboratory at the Crick Institute.

Scientists at Tel Aviv University, Israel have found that PJ34, a small molecule, causes human pancreatic cancer cells to self-destruct. The researchers tested PJ34 on xenografts (transplants) of human pancreatic tumours in mice.

this mechanism also exists in other types of cancer and therefore the treatment could be valuable for use on those resistant to current therapies

The mice were treated with a molecule called PJ34, which is permeable in the cell membrane but affects human cancer cells exclusively. This molecule causes an anomaly during the duplication of human cancer cells, provoking their rapid cell death. Thus, cell multiplication itself resulted in cell death in the treated cancer cells, explains Professor Malca Cohen-Armon, project lead at Tel Aviv Universitys Sackler Faculty of Medicine.

The treatment consisted of daily PJ34 injections for 14 days and four weeks later there was a relative drop of 90 percent in the number of cancer cells within the tumours of the mice. Cohen-Armon also noted there were no adverse side-effects observed in the mice.

This mechanism similarly exists in other types of cancer and therefore the treatment could be valuable for use on those resistant to current therapies. The molecule PJ34 is being tested in pre-clinical trials according to FDA regulations before clinical trials begin.

The rest is here:
Five recent drug target discoveries for pancreatic cancer - Drug Target Review

To Read More: Five recent drug target discoveries for pancreatic cancer – Drug Target Review
categoriaSkin Stem Cells commentoComments Off on Five recent drug target discoveries for pancreatic cancer – Drug Target Review | dataDecember 12th, 2019
Read All

What its like to get laser hair removal as a black woman – Yahoo Lifestyle

By daniellenierenberg

Im hairythats just fact, and its something Ive always been aware of. Ill never forget being in summer camp as a kid, wearing shorts every day and becoming very aware that my legs were much hairier than those of the girls around me. Now, Im no longer ashamed of being hairyIve actually come to embrace it. But in the past two decades, Ive gotten very acquainted with epilators, including laser hair removal.

I got my first laser hair removal treatment two years ago. It seemed like everyone was getting it done, but as a black woman, I knew I wasnt everyone. For brown skin, laser hair removal isnt a spur-of-the-moment decision, a process that should be approached through a Groupon or the local nail salon (yes, some nail salons actually perform laser hair removal). For us, the process can be a bit more expensive and tedious, and should be approached with the utmost caution.

Why? Well, lasers target pigment, and due to the high content of melanin in our skin, risks of discoloration and hyper-pigmentation are astronomically higher. So thats why, according to Chris Karavolas, owner of Romeo And Juliette Laser Hair Removal, darker skin requires a completely different laser all together, and operators with much more experience. Darker skin complexions need to be careful because not all centers have the right lasers for dark skin, and even if they do they do, many do not have enough experience in treating dark skin, he says.

When it comes to those specialized lasers, there are two options. Its important to treat with an Nd:YAG laser, such as the Candela GentleYAG or GentleMax Pro, says Anne Chapas, M.D., medical director of Union Square Laser Dermatology in New York City. The wavelength of a YAG laser goes deeper into the skin than a diode laser and is less absorbed by the surrounding skin pigment, so it more successfully treats the stem cells of the hair follicle. Additionally, more treatments may be required than for fairer skin: Expect to receive at least six sessions, Chapas says.

Knowing all these things, I went into laser hair removal with cautious optimism. I chose to treat my Brazilian areayears of improper hair removal had left me with ingrown and severe discoloration, to the point that my wax lady refused to continue treating me because my skin had gotten so irritated. I was sure that I wanted to continue being hair-free down there, so I decided to get laser hair removal on my vagina area. I was nervous heading into my first appointment, so I made sure to ask the aesthetician at Romeo & Juliette in-depth questions about her experience with dark skin, as well as requesting to see photos of previous clients and inquiring about a patch test. Then, it was showtime.

I like to think that I have a pretty high pain tolerance. However, laser removal certainly made me question that belief. I wont lie and say that it didnt hurt. It did. It felt like being snapped, hard, by rubber bands, but it was quick, and the results I saw were almost immediate. I was advised to shave right before the treatment, in order to give the laser immediate access to the hair follicle, and because, well, nobody likes the smell of burning hair. After about 10 minutes, I was sent on my way and advised to come back in another six weeks. Laser hair removal requires a strict schedule and works in conjunction with the hair cycle for optimal results. Every appointment thereafter was just as easy, and now, completely through all six of my sessions, my hair is almost completely gone, with the occasional stubble appearing here and there.

So how do you know if your skin will need one of these specialized lasers? Different ethnicitiesregardless of skin tonereact differently to lasers. Your skin may appear to be a 3 or 4 on the Fitzpatrick scale, but if youre, say, Latin or Asian, it could react to the laser as a 6 would, Dr. Chapas says. So be sure that youre only going to facilities that have operators trained in dermatology, and are skilled enough to differentiate your skin tone.

Read more here:
What its like to get laser hair removal as a black woman - Yahoo Lifestyle

To Read More: What its like to get laser hair removal as a black woman – Yahoo Lifestyle
categoriaSkin Stem Cells commentoComments Off on What its like to get laser hair removal as a black woman – Yahoo Lifestyle | dataDecember 12th, 2019
Read All

Cutting Edge Exosome Regenerative Therapy Comes to Yelm’s AM Medical – ThurstonTalk

By daniellenierenberg

When embryonic Stem Cell therapy was first discovered in 1998, it changed the face of medicine. The idea of being able to regenerate and replace damaged cells seemed futuristic at the time, yet today such treatments are commonplace. Now, science has taken another quantum leap this time into the nano-sized world of exosomes, tiny bubbles that grow out of cell walls and contain much of the information contained within the cell including Growth factors, microRNA and messenger RNA. Mesenchymal stem cell (MSC) exosome therapy is currently one of the hottest trends in regenerative medicine, one that patients at AM Medical in Yelm can now experience.

Everyone has heard of stem cell therapy, but it turns out that its not the stem cells that are doing the work, says Dr. Ana Mihalcea, President of AM Medical. Its the exosomes that carry the information of regeneration. Infused stem cells, attach to blood vessel walls, and then give off exosomes.

Exosomes have several key differences from stem cells; they do not get removed from the circulation like stem cells, which are in the body for less than 72 hours before they get destroyed by the immune system; they do not produce a rejection reaction because they are not a cell and contain no DNA, and they pass the blood brain barrier, Mihalcea notes. In a study on stroke scientists fluorescently tagged exosomes, and the infused exosomes went exactly to the region where the stroke had occurred, she adds. The same was not true of stem cells as they do not cross the blood brain barrier.

As a result of their powerful cargo, exosomes can be used to address a multitude of conditions, including arthritis, autoimmune disorders, cardiovascular and neurogenerative diseases like Parkinsons and Alzheimers. Old cells can be reprogrammed by MSC exosomes as the target cells can transcribe the microRNA into functional proteins. Just like a virus, the exosome information of the young stem cells can infect the old cells with Youth, explains Mihalcea.

Spinal cord injuries are an area in which exosomes have produced dramatic results. Mihalcea cites the example of Dr. Douglas J. Spiels Interventional Pain Specialty Practice in NJ. Dr. Spiel has been able to rehabilitate spinal cord injuries with Exosome infusions into the spine and intravenously, she says. After several weeks, hes had patients regain muscle strength and sensation. These are prolonged, ongoing regenerative effects that continued to improve for months after the infusion.

When it comes to autoimmune diseases, inflammation plays a key role. Again, exosomes are able to reduce the problem by downregulating inflammation. TGF Beta 3 [Transforming growth factor beta-3] is the most important anti-inflammatory protein in the body and is abundant in MSC exosomes says Mihalcea. Many more Growth factors for blood vessel growth, neuronal and other tissue growth are present, allowing regenerative effects in all organ systems including skin wounds and burns.

The exosomes at AM Medical come from a laboratory in Florida that conducted pioneering research in the field. They come from perinatal mesenchymal stem cells and are scanned for any possible viruses to ensure their safety. Once harvested, the exosomes are concentrated so they can be infused in large doses.

For patients who qualify, the infusion process takes 10 to 15 minutes. Already, its been producing results for AM Medical patients. Weve had people with arthritis and chronic pain who had great responses, Mihalcea notes. There is an overall increase in wellbeing and sense of rejuvenation that is definitely noticeable.

Perhaps one of the largest sources of excitement over exosomes has to do with their anti-aging effects. Recently, ideas about the root causes of aging have been evolving, according to Mihalcea. Its been thought that aging occurs due to multiple different reasons like stem cell exhaustion, epigenetic changes, telomere shortening and others, she explains. It turns out that exosomes can modify almost all the hallmarks of aging. Theyre changing epigenetic expression to youthful function, and there are many potential applications. This is a new frontier in regenerative medicine that can help many people.

Learn more by watching Dr. Ana Mihalceas video on Exosomes The New Frontier Part 1: Longevity and Age reversal or reading further on the AM Medical website.

Sponsored

See the rest here:
Cutting Edge Exosome Regenerative Therapy Comes to Yelm's AM Medical - ThurstonTalk

To Read More: Cutting Edge Exosome Regenerative Therapy Comes to Yelm’s AM Medical – ThurstonTalk
categoriaSpinal Cord Stem Cells commentoComments Off on Cutting Edge Exosome Regenerative Therapy Comes to Yelm’s AM Medical – ThurstonTalk | dataDecember 12th, 2019
Read All

A Real-Time Window Into the Hidden World of the Colon of a Living Animal – SciTechDaily

By daniellenierenberg

Biomedical engineers at Duke University have developed a system that allows for real-time observations of individual cells in the colon of a living mouse.

Researchers expect the procedure to allow new investigations into the digestive systems microbiome as well as the causes of diseases such as inflammatory bowel disease and colon cancer and their treatments.

The procedure described online today (December 11, 2019) in Nature Communications involves surgically implanting a transparent window into a mouses abdominal skin above the colon. Similar setups are already being used to allow live looks into the detailed inner workings of the brain, spinal cord, liver, lungs and other organs. Imaging a live colon, however, is a slipperier proposition.

A brain doesnt move around a lot, but the colon does, which makes it difficult to get detailed images down to a single cell, said Xiling Shen, the Hawkins Family Associate Professor of Biomedical Engineering at Duke University. Weve developed a magnetic system that is strong enough to stabilize the colon in place during imaging to obtain this level of resolution, but can quickly be turned off to allow the colon to move freely.

This video shows green fluorescent colon neurons activated by neurostimulation in real-time. This is the first time that sacral nerve stimulation, an FDA approved therapy for colon motility disorders, has definitively been shown to activate neurons in the colon in live animals, explaining why the therapy might work.

Credit: Xiling Shen, Duke University

Immobilizing the colon for imaging is a tricky task for traditional methods such as glue or stitches. At best they can cause inflammation that would ruin most experiments. At worst they can cause obstructions, which can quickly kill the mouse being studied.

To skirt this issue, Shen developed a magnetic device that looks much like a tiny metal nasal strip and can be safely attached to the colon. A magnetic field snaps the colon into place and keeps it stable during imaging, but once turned off, leaves the colon free to move and function as normal.

A vital organ that houses much of the digestive systems microbiome, the colon can be afflicted by diseases such as inflammatory bowel disease, functional gastrointestinal disorders, and cancer. It also plays a key role in regulating the immune system, and can communicate directly with the brain through sacral nerves.

There is a great need to better understand the colon, because it can suffer from so many diseases and plays so many roles with significant health implications, Shen said. In the study, Shen and his colleagues conducted several proof-of-principle experiments that provide starting points for future lines of research.

The researchers first colonized a living mouse colon with E. coli bacteria, derived from Crohns disease patients, that had been tagged with fluorescent proteins. The researchers then showed they could track the migration, growth and decline of the bacteria for more than three days. This ability could help researchers understand not only how antagonistic bacteria afflict the colon, Shen says, but the positive roles probiotics can play and which strains can best help people with gastrointestinal disorders.

In the next experiment, mice were bred with several types of fluorescent immune cells. The researchers then induced inflammation in the colon and carefully watched the activation of these immune cells. Shen says, this approach could be used with various types of immune cells and diseases to gain a better understanding of how the immune system responds to challenges.

Shen and his colleagues then showed that they could tag and track colon epithelial stem cells associated with colorectal cancer throughout radiation treatment. They also demonstrated that they could watch nerves throughout the colon respond to sacral nerve stimulation, an emerging therapy for treating motility and immune disorders such as functional gastrointestinal disorders and irritable bowel disorder.

While we know electrically stimulating the sacral nerves can alleviate the symptoms of these gastrointestinal disorders, we currently have no idea why or any way to optimize these treatments, Shen said. Being able to see how the colons neurons respond to different waveforms, frequencies and amplitudes of stimulation will be invaluable in making this approach a better option for more patients.

###

Reference: An intravital window to image the colon in real time by Nikolai Rakhilin, Aliesha Garrett, Chi-Yong Eom, Katherine Ramos Chavez, David M. Small, Andrea R. Daniel, Melanie M. Kaelberer, Menansili A. Mejooli, Qiang Huang, Shengli Ding, David G. Kirsch, Diego V. Bohrquez, Nozomi Nishimura, Bradley B. Barth and Xiling Shen, 11 December 2019, Nature Communications.DOI: 10.1038/s41467-019-13699-w

This work was supported by National Institutes of Health (R35GM122465, OT2OD023849), the Defense Advanced Research Projects Agency (N66001-15-2-4059) and the National Cancer Institutes (R35CA197616).

Read the rest here:
A Real-Time Window Into the Hidden World of the Colon of a Living Animal - SciTechDaily

To Read More: A Real-Time Window Into the Hidden World of the Colon of a Living Animal – SciTechDaily
categoriaSpinal Cord Stem Cells commentoComments Off on A Real-Time Window Into the Hidden World of the Colon of a Living Animal – SciTechDaily | dataDecember 12th, 2019
Read All

Lab: Electric implant could allow people with crippling injuries to walk again – Metro Newspaper UK

By daniellenierenberg

PATIENTS with life-changing injuries could walk again thanks to a pioneering electrical spinal implant. The device has proven effective in trials on macaque monkeys and researchers in Canada are hopeful it will be available for use on human patients in as little as a decade.

Lead researcher Dr Vivian Mushahwar, of the University of Albertas Neuroscience and Mental Health Institute, said: We think that intraspinal stimulation itself will get people to start walking longer and longer, and maybe even faster.

That in itself becomes their therapy. Theres been an explosion of knowledge in neuroscience over the last 20 years.

Were at the edge of merging the human and the machine.

The device features hair-like electrical wires that plunge deep into the spinal grey matter, sending electrical signals to trigger the networks that already know how to do the hard graft.

To work alongside the implant, the team created a map to identify which parts of the spinal cord trigger the hip, knees, ankles and toes, and the areas that put movements together.

People tend to think the brain does all the thinking, but the spinal cord has built-in intelligence, said Dr Mushahwar.

A complex chain of motor and sensory networks regulate everything from breathing to bowels, while the brain stems contribution is basically go! and faster!

Your spinal cord isnt just moving muscles, its giving you your natural gait. Being able to control standing and walking would improve bone health, improve bowel and bladder function, and reduce pressure ulcers, the researchers say.

For those with less severe spinal injuries, an implant could be therapeutic, removing the need for months of gruelling physical therapy regimes that have limited success, they add. The team are now focused on refining the hardware further by miniaturising an implantable stimulator and getting approval for human trials.

The first generation of the implants will require a patient to control walking and movement through physical means, but longer term, the implants could potentially include a direct connection to the brain, they say.

Dr Mushahwar said it has the power to transform lives.

Imagine the future, a person just thinks and commands are transmitted to the spinal cord. People stand up and walk. This is the dream, she said.

23million The number of lives saved globally by vaccines between 2000 and 2018, as estimated by the US Centers for Disease Control and Prevention

WHILE they may not be as talkative as Jungle Books King Louie, it turns out wild orangutans have some serious communication skills.

Researchers at the University of Exeter in Devon have identified 11 vocal signals and 21 physical gesture types that the apes use to communicate with one another.

The findings reveal orangutans are highly responsive to communication, reacting either before gesturing ended or in less than a second in 90 per cent of communications.

The team studied video footage of 16 orangutans consisting of seven mother-child pairs and a pair of siblings, noting a total of 1,299 communicative signals 858 vocal signals and 441 gestures.

The sounds included the kiss squeak a sharp kiss noise created while inhaling the grumph (a low sound lasting one or two seconds made on the inhale), the gorkum (a kiss squeak followed by a series of multiple grumphs) and the self-explanatory raspberry.

Gestures included beckoning, stamping, pushing out a lower lip, shaking objects and presenting a body part.

The eight identified goals or requests of their communications are acquire object, climb on me, climb on you, climb over, move away, decrease intensity, resume play and stop that.

Orangutans are the most solitary of all the apes, which is why most studies have been done on African apes, and not much is known about wild orangutan gestures, said University of Exeter scientist Dr Helen Morrogh-Bernard. We spent two years filming more than 600 hours of footage of orangutans in the Sabangau peat swamp forest in Borneo, Indonesia.

While some of our findings support what has been discovered by zoo-based studies, other aspects are new and these highlight the importance of studying communication in its natural context.

More signals are likely to be identified in the future, the researchers say.

1/2million The number of hermit crabs estimated to have been killed by plastic waste, according to a study by the Natural History Museum

WE MAY like to put our feet up at Christmas but for older people, even a short period of reduced physical activity could lead to significant loss of muscle mass and gains in body fat.

Just a fortnight of walking fewer than 1,500 steps a day could have a severe impact making daily tasks harder and kick-starting chronic health conditions a University of Liverpool study found.

The team measured the effect of two weeks inactivity on 47 participants, around half of whom were elderly. All lost muscle size, strength and bone mass. But the older volunteers also experienced a big drop in cardio fitness and mitochondrial function the way cells produce energy.

If the gym is hard to get to, people should be encouraged to just meet 10,000 steps, said researcher Juliette Norman. Even this can guard against reductions in muscle and bone health as well as maintaining healthy levels of body fat.

EXPERIENCING stress at a young age could help you live longer. Juvenile Caenorhabditis elegans worms that produce more oxidants and free radicals, which are associated with stress and ageing, last longer, US researchers at the University of Michigan found. Study leader Daphne Bazopoulou said early exposure may make you better able to fight stress later in life.

AGE can be predicted by protein levels in the blood. Using blood samples from more than 4,000 18- to 95-year-olds, scientists at Stanford University, California, found 373 proteins that peak and trough across a lifespan. The blood test can also show how physiological and real ages compare, which could flag those more at risk of ageing-related illnesses or reveal the ageing effect of drugs and treatments.

To brag flagrantly is, most of us realise, unbecoming, and so a favoured mitigation tactic has emerged: the humblebrag. This is a way of masking a boast, either in a feigned complaint or as fake modesty, such as its so exhausting staying in touch with all my friends or if someone told me Id pass with first-class honours, Id never have believed them. Unfortunately for humblebraggers, the tactic is too transparent to work. Last year, researchers at the University of North Carolina and Harvard Business School found humblebraggers are less liked, and perceived as less competent, because they appear insincere.

Astronomers have found magnetic field strengths near supermassive black holes can be as strong as their intense gravitational fields. These fields are able to expel material from the vicinity of the black hole to form highly energetic outflows called jets. However, this process is not acting on material that has already passed beyond the black holes event horizon, where not even light can escape. Such material would need to be accelerated to the speed of light to escape, which would require an infinite amount of energy. No magnet, however powerful, could provide this.

The ethics of Nazi research dissected

What really happens in near-death experiences

Having babies in space

Read more:
Lab: Electric implant could allow people with crippling injuries to walk again - Metro Newspaper UK

To Read More: Lab: Electric implant could allow people with crippling injuries to walk again – Metro Newspaper UK
categoriaSpinal Cord Stem Cells commentoComments Off on Lab: Electric implant could allow people with crippling injuries to walk again – Metro Newspaper UK | dataDecember 12th, 2019
Read All

How research in Sheffield is giving hope to MS sufferers – Yorkshire Post

By daniellenierenberg

A campaign has been launched to fund vital research into Multiple Sclerosis in Sheffield. Catherine Scott reports.

Sheffield Hospitals Charity is appealing for support to fund a new research project being undertaken in the city that could help find a cure for Multiple Sclerosis (MS).

MS affects more than 100,000 people in the UK and is the most common cause of physical disability in young adults. It can cause pain, fatigue, problems with memory and thinking, speech and vision problems, but most noticeably, loss of mobility.

The disease occurs when the bodys immune system becomes faulty, instead of protecting against viruses and germs, the immune system attacks the nerve fibres in the brain and spinal cord.

Currently, there is no effective treatment for MS and existing treatments focus on alleviating symptoms and their impact on long term disability. But Sheffield scientists Professor Basil Sharrack and Professor John Snowden are determined to find better treatments and even a cure for MS.

One of these 100,000 people, and a patient of Professors Sharrack and Snowden, is Allison Parfitt, 50 from Sheffield who has had MS since 2008.

Allison explained the impact this had on her life: When I was diagnosed, I felt like my whole world was falling apart around me. MS controls my life. I feel exhausted all over my whole body is tired, right down to my fingertips.

Some days, every move I make is like walking through quick sand, everything is slower. My mind feels like theres a fog inside it, stopping me from concentrating or thinking clearly. My legs wont support me anymore, so I have to use crutches or a wheelchair to get around.

Im a very independent person but that is being taken away from me. I cant even go to the shops on my own anymore, I need someone with me.

The research going on here in Sheffield gives me hope. Hope that one day, Ill receive that call to say a cures been found. It would be good to know that people in the future wont have to go through what I have.

The project will be delivered by Professor Basil Sharrack, Consultant Neurologist and Professor John Snowden, Consultant Haematologist from Sheffield Teaching Hospitals.

Professor Sharrack explained how supporting his research could help future patients like Allison.

For the first time ever, weve been able to reverse disability in some patients with MS using a brand new stem cell therapy trialled right here in Sheffield and its like nothing weve seen before.

First we destroy the faulty immune system that causes MS and then we replace it with a healthy new one, grown from a patients own stem cells. In some patients it has reversed some of the disabilities associated with their MS condition, but this isnt suitable for everyone as stem cell treatment can be quite aggressive.

The pair wants to build upon the success of their stem cell work by trying to identify a biomarker a test which will allow clinicians to predict how each patients disease is likely to progress.

Professor John Snowden explained further: Once a biomarker is identified, it can be used to measure the progression of MS and predict how the disease will develop and how it will respond to treatment.

This could help us revolutionise the way in which MS patients are treated. Doctors will be able to make more informed choices about which treatment course to follow and when to start and escalate the treatment to prevent long-term disability.

We will gain a crucial understanding about how MS works, which will help provide new information that could help identify new drugs that could potentially cure MS.

For the first time, it feels like a cure for MS could be right around the corner. Thats why it is so critical that our research goes ahead.

No other hospital in the UK combines neurology and haematology in the way we do here in Sheffield we are in a unique position. We want to get started with our research as soon as possible so that people living with MS right now can benefit from the discoveries we make. By donating to Sheffield Hospitals Charitys Multiple Sclerosis Appeal you could help create a better future for people like Allison.

Sheffield Hospitals Charity is aiming to raise 200,000 to support the research project. Anyone interested in donating or fundraising to enable the MS research to be undertaken can find out more at http://www.sheffieldhospitalscharity.org.uk/msresearch

Here is the original post:
How research in Sheffield is giving hope to MS sufferers - Yorkshire Post

To Read More: How research in Sheffield is giving hope to MS sufferers – Yorkshire Post
categoriaSpinal Cord Stem Cells commentoComments Off on How research in Sheffield is giving hope to MS sufferers – Yorkshire Post | dataDecember 12th, 2019
Read All

New Mechanism of Bone Maintenance and Repair Discovered – Technology Networks

By daniellenierenberg

Led by researchers at Baylor College of Medicine, a study published in the journal Cell Stem Cell reveals a new mechanism that contributes to adult bone maintenance and repair and opens the possibility of developing therapeutic strategies for improving bone healing.

Adult bone repair relies on the activation of bone stem cells, which still remain poorly characterized, said corresponding author Dr. Dongsu Park, assistant professor of molecular and human genetics and of pathology and immunology at Baylor. Bone stem cells have been found both in the bone marrow inside the bone and also in the periosteum the outer layer of tissue that envelopes the bone. Previous studies have shown that these two populations of stem cells, although they share many characteristics, also have unique functions and specific regulatory mechanisms.

Of the two, periosteum stem cells are the least understood. It is known that they comprise a heterogeneous population of cells that can contribute to bone thickness, shaping and fracture repair, but scientists had not been able to distinguish between different subtypes of bone stem cells to study how their different functions are regulated.

In the current study, Park and his colleagues developed a method to identify different subpopulations of periosteum stem cells, define their contribution to bone fracture repair in live mouse models and identify specific factors that regulate their migration and proliferation under physiological conditions.

Periosteal stem cells are major contributors to bone healing

The researchers discovered specific markers for periosteum stem cells in mouse models. The markers identified a distinct subset of stem cells that contributes to life-long adult bone regeneration.

We also found that periosteum stem cells respond to mechanical injury by engaging in bone healing, Park said. They are important for healing bone fractures in the adult mice and, interestingly, their contribution to bone regeneration is higher than that of bone marrow stem cells.

In addition, the researchers found that periosteal stem cells also respond to inflammatory molecules called chemokines, which are usually produced during bone injury. In particular, they responded to chemokine CCL5.

Periosteal stem cells have receptors molecules on their cell surface that bind to CCL5, which sends a signal to the cells to migrate toward the injured bone and repair it. Deleting the CCL5 gene in mouse models resulted in marked defects in bone repair or delayed healing. When the researchers supplied CCL5 to CCL5-deficient mice, bone healing was accelerated.

The findings suggested potential therapeutic applications. For instance, in individuals with diabetes or osteoporosis in which bone healing is slow and may lead to other complications resulting from limited mobility, accelerating bone healing may reduce hospital stay and improve prognosis.

Our findings contribute to a better understanding of how adult bones heal. We think this is one of the first studies to show that bone stem cells are heterogeneous and that different subtypes have unique properties regulated by specific mechanisms, Park said. We have identified markers that enable us to tell bone stem cell subtypes apart and studied what each subtype contributes to bone health. Understanding how bone stem cell functions are regulated offers the possibility to develop novel therapeutic strategies to treat adult bone injuries.

Reference

Ortinau et al. (2019) Identification of Functionally Distinct Mx1+SMA+ Periosteal Skeletal Stem Cells. Cell Stem Cell. DOI: https://doi.org/10.1016/j.stem.2019.11.003

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Read more:
New Mechanism of Bone Maintenance and Repair Discovered - Technology Networks

To Read More: New Mechanism of Bone Maintenance and Repair Discovered – Technology Networks
categoriaBone Marrow Stem Cells commentoComments Off on New Mechanism of Bone Maintenance and Repair Discovered – Technology Networks | dataDecember 12th, 2019
Read All

Deacon Butch King learns to accept the ‘gift’ of cancer – Arkansas Catholic

By daniellenierenberg

By Aprille HansonAssociate Editor

Aprille Hanson

Deacon Butch King and his wife Debbie (left) stand with their daughter Paula Draeger (center) in front of the Seed of Hope garden at UAMS Winthrop P. Rockefeller Cancer Institute in Little Rock Dec. 4. Last month, King was able to place a seed of hope token into the garden, signifying he is cancer-free, thanks to a stem cell donation from his daughter.

Aprille Hanson

Deacon Butch King and his wife Debbie (left) stand with their daughter Paula Draeger (center) in front of the Seed of Hope garden at UAMS Winthrop P. Rockefeller Cancer Institute in Little Rock Dec. 4. Last month, King was able to place a seed of hope token into the garden, signifying he is cancer-free, thanks to a stem cell donation from his daughter.

Deacon Butch King was given a gift in 2017. He was diagnosed with a rare disease MDS/MPN, myelodysplastic/myeloproliferative neoplasm-unclassifiable to be exact.

The hybrid disease results when bone marrow overproduces unhealthy blood cells, according to University of Arkansas for Medical Sciences in Little Rock.

The diagnosis sent the family on a harrowing journey for the next two and a half years: four changes of insurance coverage and medical facilities, 19 rounds of chemotherapy, 430 lab results, 14 bone marrow biopsies, 11.25 gallons of donated blood and the disease progressing to Acute Myeloid Leukemia.

Looking at a deadly disease as a gift takes a radical faith in God, one that King and his wife Debbie have carried with grace to his cancer-free diagnosis Nov. 4.

It was given to us as a gift. And how do we manage gifts? We care for them, we nurture them, we polish them, show them off with pride and we give thanks to God. Those are his words, our words together. We had a gift and we had to manage it, we didnt get a choice, his wife said.

King was ordained a deacon in 2012, serving at Immaculate Conception Church in North Little Rock. The couple has four children, 12 grandchildren and six great-grandchildren, with another on the way in March. After 23 years of serving in the U.S. Air Force working in secure communications, he spent 22 years with the U.S. Postal Service.

In October 2016, he had a metal stent placed in his heart and could not have any surgeries for the following six months. In November of that year, he twisted his knee at work. When he was finally ready to have knee surgery in May, his lab work was irregular. In June they learned he had developed a rare blood disorder, MDS, which later in the year progressed to MPN. It required a stem cell transplant, with only a 30 percent chance of surviving a transplant.

I was kind of stunned at first, King said. As a deacon, he had been used to visiting the sick in nursing homes and hospitals.

This is one of the stories you can say, I know how you feel because Ive been there or were praying for you and really mean it, he said.

With every roadblock of insurance not covering the procedure or a hospital turning the transplant down because he was high risk, faith prevailed.

In December 2017, their youngest daughter Paula Draeger, 38, was a perfect match for a stem cell transplant, an extremely rare result.

OK, we can do this; were going to heal him. Weve got the perfect match. If this doesnt work, nothing will. So that was just kind of the reaction, lets do it, the married mother of two said.

Debbie King said, Shes a Spina bifida baby. We were told that she would be a vegetable when she had her spinal surgery. So shes a miracle to be here; long before this ever came God had a plan.

Once Medicare kicked in, insurance would cover a transplant if a clinical trial was available. It led the family to 13 visits to University of Oklahoma Stephenson Cancer Center in Oklahoma City, though they refused the transplant.

Debbie King said they specifically chose Oklahoma City because the family had been, and still are, praying daily for Blessed Stanley Rothers intercession.

The martyr, who grew up on a farm in Okarche, Okla., was declared blessed on Sept. 23, 2017, in Oklahoma City. He was killed in 1981 while serving his people in Guatemala.

He needed a miracle. And we said God provides miracles, Debbie King said.

Before we started any treatment we would place the entire illness and what would be happening at Blessed Stanley Rothers gravesite in Oklahoma City, visiting 11 times, she said.

Whats the miracle? The miracle is the faith. And thats what Butch has said, she said.

On March 13, the Kings were told they wouldnt be continuing the trial in Oklahoma.

We were ready to just be on maintenance and enjoy the days we had, she said. On March 14, our 44th wedding anniversary we were celebrating what we thought could be our last one.

But Dr. Appalanaidu Sasapu, hematologist oncologist with the UAMS Stem Cell Transplantation and Cellular Therapy Program, never gave up on them. Because Kings disease had progressed to leukemia in April, the stem cell procedure could now be done at UAMS and covered by insurance.

Draeger said the stem cell donations, done over a weekend via a port, were simple, with no side effects aside from building her energy up in the following week.

For what youre able to give somebody, what you have to endure pales in comparison to what hes been through and what you can give him, she said.

King no longer has the blood disease and is cancer free, though he will continue at least a years worth of chemotherapy treatments.

Since his diagnosis, they attend the smaller St. Patrick Church in North Little Rock for Mass, but he cannot yet return to ministry.

We do our prayer time in the mornings and evenings, we count our blessings every night before we go to bed and we just know, what was our blessing today? Did we see somebody that we havent seen before that God put in our path? Is it a new doctor who is going to take this on? King said.

But through this whole process weve been truly blessed, had no regrets. If I had to do it over, if thats the path of my life that God wants me to take, then Ill do it.

Please read our Comments Policy before posting.

Read the original post:
Deacon Butch King learns to accept the 'gift' of cancer - Arkansas Catholic

To Read More: Deacon Butch King learns to accept the ‘gift’ of cancer – Arkansas Catholic
categoriaBone Marrow Stem Cells commentoComments Off on Deacon Butch King learns to accept the ‘gift’ of cancer – Arkansas Catholic | dataDecember 12th, 2019
Read All

GIMEMA AML1310 trial of risk-adapted, MRD-guided therapy for young patients with newly diagnosed AML – AML Global Portal

By daniellenierenberg

Regardless of the advancements made in understanding the genetic and molecular landscapes of acute myeloid leukemia (AML) in young patients, bespoke treatment approaches are yet to be adopted. Based on the NCCN 2009 guidelines,2 AML risk stratification depends on genetic/cytogenetic abnormalities of AML cells and groups patients into favorable-risk" (FR), intermediate-risk (IR) or poor-risk (PR) categories. This will then determine the treatment pathway of whether they will receive allogeneic stem cell transplantation (allo-SCT). Currently, treatment of IR patients is less defined and often post-induction treatment with allo-SCT is adopted. Nevertheless, this approach does not appropriately take into account the heterogeneity in this group regarding the risk of disease relapse. Despite high complete remission (CR) rates in these patients, overall survival (OS) remains low due to the high rate of relapse incidence.3

Adriano Venditti et al., from the Gruppo Italiano Malattie EMatologiche dellAdulto (GIMEMA) Foundation investigated in a multicenter prospective clinical trial (NCT01452646) the benefit of risk-adapted, MRD-based therapy in young adults with AML. This study consisted of the integration of pre-treatment cytogenetics/genetics with post-treatment MRD assessment (detected using multiparametric flow cytometry [MFC]) to stratify patients to receive post-consolidation autologous stem cell transplantation (auto-SCT) or allo-SCT.1

In conclusion, the authors recognized that this study has intrinsic limitations due to scientific progression over time, such as better understanding of basic biology, new AML classification and increased MRD monitoring, which makes the historical control not wholly comparable. However, this is the first study that attempts to apply a prospective program of risk-adapted, MRD-driven treatment in patients with NCCN-IR AML, that integrates genetics and post-consolidation MRD status.

Patients that were in the NCCN-IR group demonstrated that allo-SCT can be avoided if patients are tested MRD-negative after induction therapy. In contrast, if patients are MRD-positive, allo-SCT improved OS and prolonged DFS to comparable levels as those of patients in the NCCN-FR group. Patients in the IR group, who could not be monitored for LAIP had an inferior 2-year OS of 50% when compared to the other risk groups. This suggests that, in this group, a number of patients could have benefited from an allo-SCT. Further studies that integrate baseline factors and monitor MRD are needed, as it could potentially be a promising tool to refine and customize outcome prediction in patients with AML.

Link:
GIMEMA AML1310 trial of risk-adapted, MRD-guided therapy for young patients with newly diagnosed AML - AML Global Portal

To Read More: GIMEMA AML1310 trial of risk-adapted, MRD-guided therapy for young patients with newly diagnosed AML – AML Global Portal
categoriaBone Marrow Stem Cells commentoComments Off on GIMEMA AML1310 trial of risk-adapted, MRD-guided therapy for young patients with newly diagnosed AML – AML Global Portal | dataDecember 12th, 2019
Read All

AgeX Therapeutics and Lineage Cell Therapeutics Announce Issuance of U.S. Patent for Method of Generating Induced Pluripotent Stem Cells – Yahoo…

By daniellenierenberg

AgeX Therapeutics, Inc. (NYSE American: AGE) and Lineage Cell Therapeutics, Inc. (NYSE American and TASE LCTX), announced today that the United States Patent and Trademark Office (USPTO) has issued U.S. Patent No. 10,501,723, entitled "Methods of Reprogramming Animal Somatic Cells" covering what is commonly designated "induced Pluripotent Stem (iPS) cells. The issued claims include methods to manufacture pluripotent cells capable of becoming any cell in the body. The patent has an early priority date, having been filed before the first scientific publication of Shinya Yamanaka, for which he won the Nobel Prize for Physiology or Medicine in 2012.

"This patent broadly describes multiple techniques for reprogramming cells of the body back to the all-powerful stem cell state," said Dr. Michael D. West, CEO of AgeX and first inventor on the patent. "Perhaps more significantly, it includes certain factors that address some of the difficulties currently encountered with iPS cells. It also reflects the foundational work our scientists have undertaken to apply reprogramming technology to age-reversal, specifically, induced Tissue Regeneration (iTR) which is currently a focus of AgeX product development." A video describing the significance of the patent in AgeXs product development is available on the AgeX website.

"The issuance of this patent highlights Lineages dominant position in the field of cell therapy," stated Brian M. Culley, CEO of Lineage. "Our efforts to develop new treatments rely on well-characterized and NIH-approved human cell lines. These lines are not genetically manipulated, which avoids the safety concerns associated with genetic aberrations arising from the creation of iPS cells. We believe the Lineage cell lines provide the safest option for our current clinical-stage programs, particularly in immune-privileged anatomical sites such as the eye (OpRegen for the treatment of dry AMD) and spinal cord (OPC1, for the treatment of spinal cord injury). However, the vast intellectual property estate which underlies our cell therapy platform has never been limited to these particular cell lines. As one example, this newly-issued patent provides us with proprietary methods for producing induced pluripotent stem cells, or, as it was practiced by us prior to Yamanaka, Analytical Reprogramming Technology (ART). In certain settings, an ART/iPS approach might offer important advantages, such as for an autologous treatment or when the selection of preferential attributes from a series of iPS lines is desirable. Questions as to which stem cell technology is preferred ultimately will be answered by clinical safety and efficacy and likely will be indication-specific, so we believe it is in the best interest of our shareholders to generate patented technology which enables us to pursue programs in either or both formats which we believe will ensure the highest probability of success."

Induced Pluripotent Stem Cells (iPS) are typically derived from adult skin or blood cells which have been "reprogrammed" or "induced" to retrace their developmental age and regain the potential to form all of the young cell and tissue types of the body. In 2010 inventors of the -723 patent issued today demonstrated that this reversal of developmental aging even extended to the telomere clock of cell aging. This reprogramming technology provides an alternate source of starting material for the manufacture of potentially any type of human cell needed for therapeutic purposes. Because iPSCs can be derived directly from adult tissues, they can be used to generate pluripotent cells from patients with known genetic abnormalities for drug discovery or as an alternative source of cell types for regenerative therapies.

U.S. Patent No. 10,501,723, entitled "Methods of Reprogramming Animal Somatic Cells" was assigned to Advanced Cell Technology of Marlborough, Massachusetts (now Astellas Institute for Regenerative Medicine) and licensed to Lineage and sublicensed to AgeX Therapeutics for defined fields of use. Inventors of the patent include Michael D. West, CEO of AgeX and previous CEO of Advanced Cell Technology, Karen B. Chapman, Ph.D., and Roy Geoffrey Sargent, Ph.D.

About AgeX Therapeutics

AgeX Therapeutics, Inc. (NYSE American: AGE) is focused on developing and commercializing innovative therapeutics for human aging. Its PureStem and UniverCyte manufacturing and immunotolerance technologies are designed to work together to generate highly-defined, universal, allogeneic, off-the-shelf pluripotent stem cell-derived young cells of any type for application in a variety of diseases with a high unmet medical need. AgeX has two preclinical cell therapy programs: AGEX-VASC1 (vascular progenitor cells) for tissue ischemia and AGEX-BAT1 (brown fat cells) for Type II diabetes. AgeXs revolutionary longevity platform induced Tissue Regeneration (iTR) aims to unlock cellular immortality and regenerative capacity to reverse age-related changes within tissues. AGEX-iTR1547 is an iTR-based formulation in preclinical development. HyStem is AgeXs delivery technology to stably engraft PureStem cell therapies in the body. AgeX is developing its core product pipeline for use in the clinic to extend human healthspan and is seeking opportunities to establish licensing and collaboration agreements around its broad IP estate and proprietary technology platforms.

Story continues

For more information, please visit http://www.agexinc.com or connect with the company on Twitter, LinkedIn, Facebook, and YouTube.

About Lineage Cell Therapeutics, Inc.

Lineage Cell Therapeutics is a clinical-stage biotechnology company developing novel cell therapies for unmet medical needs. Lineages programs are based on its proprietary cell-based therapy platform and associated development and manufacturing capabilities. With this platform Lineage develops and manufactures specialized, terminally-differentiated human cells from its pluripotent and progenitor cell starting materials. These differentiated cells are developed either to replace or support cells that are dysfunctional or absent due to degenerative disease or traumatic injury or administered as a means of helping the body mount an effective immune response to cancer. Lineages clinical assets include (i) OpRegen, a retinal pigment epithelium transplant therapy in Phase I/IIa development for the treatment of dry age-related macular degeneration, a leading cause of blindness in the developed world; (ii) OPC1, an oligodendrocyte progenitor cell therapy in Phase I/IIa development for the treatment of acute spinal cord injuries; and (iii) VAC2, an allogeneic cancer immunotherapy of antigen-presenting dendritic cells currently in Phase I development for the treatment of non-small cell lung cancer. Lineage is also evaluating potential partnership opportunities for Renevia, a facial aesthetics product that was recently granted a Conformit Europenne (CE) Mark. For more information, please visit http://www.lineagecell.com or follow the Company on Twitter @LineageCell.

Forward-Looking Statements

Certain statements contained in this release are "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995. Any statements that are not historical fact including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates" should also be considered forward-looking statements. Forward-looking statements involve risks and uncertainties. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the business of AgeX Therapeutics, Inc. and its subsidiaries, particularly those mentioned in the cautionary statements found in more detail in the "Risk Factors" section of AgeXs Annual Report on Form 10-K and Quarterly Reports on Form 10-Q filed with the Securities and Exchange Commissions (copies of which may be obtained at http://www.sec.gov). Subsequent events and developments may cause these forward-looking statements to change. AgeX specifically disclaims any obligation or intention to update or revise these forward-looking statements as a result of changed events or circumstances that occur after the date of this release, except as required by applicable law.

View source version on businesswire.com: https://www.businesswire.com/news/home/20191210005435/en/

Contacts

Media Contact for AgeX:Bill Douglass Gotham Communications, LLCbill@gothamcomm.com (646) 504-0890

Continue reading here:
AgeX Therapeutics and Lineage Cell Therapeutics Announce Issuance of U.S. Patent for Method of Generating Induced Pluripotent Stem Cells - Yahoo...

To Read More: AgeX Therapeutics and Lineage Cell Therapeutics Announce Issuance of U.S. Patent for Method of Generating Induced Pluripotent Stem Cells – Yahoo…
categoriaIPS Cell Therapy commentoComments Off on AgeX Therapeutics and Lineage Cell Therapeutics Announce Issuance of U.S. Patent for Method of Generating Induced Pluripotent Stem Cells – Yahoo… | dataDecember 12th, 2019
Read All

Patent Granted To Lineage & AgeX – Anti Aging News

By daniellenierenberg

Lineage Cell Therapeutics and AgeX Therapeutics have been awarded a United States Patent and Trademark Office patent for Methods Of Reprogramming Animal Somatic Cells.

The issuance of this patent highlights Lineages dominant position in the field of cell therapy, stated Brian M. Culley, CEO of Lineage. Our efforts to develop new treatments rely on well-characterized and NIH-approved human cell lines. These lines are not genetically manipulated, which avoids the safety concerns associated with genetic aberrations arising from the creation of iPS cells. We believe the Lineage cell lines provide the safest option for our current clinical-stage programs, particularly in immune-privileged anatomical sites such as the eye (OpRegen for the treatment of dry AMD) and spinal cord (OPC1, for the treatment of spinal cord injury). However, the vast intellectual property estate which underlies our cell therapy platform has never been limited to these particular cell lines. As one example, this newly-issued patent provides us with proprietary methods for producing induced pluripotent stem cells, or, as it was practiced by us prior to Yamanaka, Analytical Reprogramming Technology (ART). In certain settings, an ART/iPS approach might offer important advantages, such as for an autologous treatment or when the selection of preferential attributes from a series of iPS lines is desirable. Questions as to which stem cell technology is preferred ultimately will be answered by clinical safety and efficacy and likely will be indication-specific, so we believe it is in the best interest of our shareholders to generate patented technology which enables us to pursue programs in either or both formats which we believe will ensure the highest probability of success.

This patent broadly describes multiple techniques for reprogramming cells of the body back to the all-powerful stem cell state, said Dr Michael D West, CEO of AgeX and first inventor on the patent. Perhaps more significantly, it includes certain factors that address some of the difficulties currently encountered with iPS cells. It also reflects the foundational work our scientists have undertaken to apply reprogramming technology to age-reversal, specifically, induced Tissue Regeneration (iTR) which is currently a focus of AgeX product development.

Patent 10,501,723 covers induced pluripotent stem cells which includes methods to manufacture iPSs cells that are capable of becoming any cell within the body. This patent has an early priority date having been filed before the first scientific publication, and was assigned to Advanced Cell Technology of Marlborough, Massachusetts and licenced to Lineage as well as being sublicensed to Age X for defined fields of use.

Original post:
Patent Granted To Lineage & AgeX - Anti Aging News

To Read More: Patent Granted To Lineage & AgeX – Anti Aging News
categoriaIPS Cell Therapy commentoComments Off on Patent Granted To Lineage & AgeX – Anti Aging News | dataDecember 12th, 2019
Read All

Global Blood and Bone Marrow Cancer Treatment Market Trends & Analysis During the Forecast Period, 2019-2027 – ResearchAndMarkets.com – Business…

By daniellenierenberg

DUBLIN--(BUSINESS WIRE)--The "Global Blood and Bone Marrow Cancer Treatment Market Size, Market Share, Application Analysis, Regional Outlook, Growth Trends, Key Players, Competitive Strategies and Forecasts, 2019 to 2027" report has been added to ResearchAndMarkets.com's offering.

The global blood and bone marrow cancer treatment market was valued at US$ 38.8 Bn in 2018 and is expected to reach US$ 74.9 Bn by 2027, expanding at a CAGR of 7.7% from 2019 to 2027.

Market Insights

Blood cancer begins in the bone marrow which is the integral source of stem cells which later are differentiated in different types of blood cells in the human body. Researchers at Bristol Myers Squibb Company have stated that approximately 1.85 million new cases of blood cancer will be diagnosed by 2040 throughout the globe.

Lymphoma is the largest indication segment for blood and bone marrow cancer treatment market. It is prevalent in 2 types Hodgkin lymphoma and Non-Hodgkin lymphoma throughout the globe. The chief variables responsible for its rising prevalence worldwide are increasing prescription of immunosuppressant drugs for treating chronic infections and genetic mutations. Leukemia occurs when the DNA of immature white blood cells gets damaged due to exposure to ionizing radiation, hazardous chemicals, smoking, etc. The prevalence rate of leukemia is highly variable across different ethnic groups with men to women ratio of 1.4.

Chemotherapy is reigning the therapy segment for blood and bone marrow cancer treatment market. The key parameter hold responsible for its increasing demand is the availability of its generic version at affordable cost, drastically reducing the healthcare burden on ailing patients. Oncologists prefer to use them in combination therapy either with radiotherapy or immunotherapy to treat patients showing resistance to first-line drug therapy. Immunotherapy will be the fastest-growing segment during the forecast period owing to its promising drug pipeline for the treatment of blood cancer.

North America representing a market share of 34.6% is dominating the regional segment for blood and bone marrow cancer treatment market. The chief contributing factor for its market supremacy is a growing incidence of blood cancer. As per the research citings of the Leukemia and Lymphoma Society (CDC) figures after every 3 minutes, 1 person in the U.S. is diagnosed with blood cancer. In 2019, approximately 176,200 people in the U.S. are diagnosed with blood cancer in the United States. Europe holds a market share of 30.8% owing to the supportive regulatory framework provided by the European Medical Agency for the development and sale of medication for the treatment of blood cancer. The Asia Pacific accounts for 18.4% market share on account of rising public health awareness related to blood cancer & its treatment and developing healthcare infrastructure.

Key Market Movements:

Key Topics Covered:

Chapter 1. Preface

1.1. Report Scope and Description

1.1.1. Purpose of the Report

1.1.2. Target Audience

1.1.3. USP and Key Offerings

1.2. Research Scope

1.3. Research Methodology

1.3.1. Phase I-Secondary Research

1.3.2. Phase II-Primary Research

1.3.3. Approach Adopted

1.3.4. Top-down Approach

1.3.5. Bottom-up Approach

1.3.6. Phase III-Expert Panel Review

1.3.7. Assumptions

1.4. Market Segmentation

Chapter 2. Executive Summary

2.1. Global Blood and Bone Marrow Cancer Treatment Market Portraiture

2.2. Global Blood and Bone Marrow Cancer Treatment Market, by Indication, 2018 (US$ Bn)

2.3. Global Blood and Bone Marrow Cancer Treatment Market, by Therapy, 2018 (US$ Bn)

2.4. Global Blood and Bone Marrow Cancer Treatment Market, by Geography, 2018 (US$ Bn)

Chapter 3. Blood and Bone Marrow Cancer Treatment Market: Dynamics and Future Outlook

3.1. Market Overview

3.2. Drivers

3.3. Challenges

3.4. Opportunities

3.5. Attractive Investment Proposition, by Geography, 2018

3.6. Competitive Analysis: Global Blood and Bone Marrow Cancer Treatment Market, by Key Players, 2018

Chapter 4. Global Blood and Bone Marrow Cancer Treatment Market, by Indication

4.1. Overview

4.2. Multiple Myeloma

4.3. Leukemia

4.4. Lymphoma

4.5. Others

Chapter 5. Global Blood and Bone Marrow Cancer Treatment Market, by Therapy

5.1. Chemotherapy

5.2. Immunotherapy

5.3. Stem Cell Transplant

5.4. Radiotherapy

5.5. Pipeline Analysis

5.5.1. Phase III Drug

5.5.1.1. Eltrombopag

5.5.1.2. Avatrombopag

5.5.1.3. Hetrombopag

5.5.1.4. Omidubicel

5.5.1.5. Fedratinib

5.5.1.6. ATIR101

5.5.1.7. Pegylated Proline Interferon Alpha-2b

5.5.2. Tabular Representation of Phase II and I Pipeline Drugs

Chapter 6. Global Blood and Bone Marrow Cancer Treatment Market, by Geography

6.1. Overview

6.2. North America Blood and Bone Marrow Cancer Treatment Market Analysis, 2017- 2027

6.3. Europe Blood and Bone Marrow Cancer Treatment Market Analysis, 2017 - 2027

6.4. Asia Pacific Blood and Bone Marrow Cancer Treatment Market Analysis, 2017 - 2027

6.5. Latin America Blood and Bone Marrow Cancer Treatment Market Analysis, 2017 - 2027

6.6. Middle East and Africa Blood and Bone Marrow Cancer Treatment Market Analysis, 2017 - 2027

Chapter 7. Company Profiles

7.1. AstraZeneca, Plc.

7.1.1. Business Description

7.1.2. Financial Information (Subject to data availability)

7.1.3. Product Portfolio

7.1.4. News Coverage

7.2. Celgene, Inc.

7.3. Bristol Myers Squibb & Company

7.4. Eli Lilly & Company

7.5. Johnson & Johnson Company

7.6. F.Hoffman La-Roche Ltd.

7.7. Merck & Co., Inc.

7.8. Novartis AG

7.9. Pfizer, Inc.

7.10. Varian Medical Systems, Inc.

For more information about this report visit https://www.researchandmarkets.com/r/pi0qoz

Follow this link:
Global Blood and Bone Marrow Cancer Treatment Market Trends & Analysis During the Forecast Period, 2019-2027 - ResearchAndMarkets.com - Business...

To Read More: Global Blood and Bone Marrow Cancer Treatment Market Trends & Analysis During the Forecast Period, 2019-2027 – ResearchAndMarkets.com – Business…
categoriaBone Marrow Stem Cells commentoComments Off on Global Blood and Bone Marrow Cancer Treatment Market Trends & Analysis During the Forecast Period, 2019-2027 – ResearchAndMarkets.com – Business… | dataDecember 10th, 2019
Read All

Page 360«..1020..359360361362..370380..»


Copyright :: 2025