Page 353«..1020..352353354355..360370..»

Bone marrow transplant – Mayo Clinic

By raymumme

Overview

A bone marrow transplant is a procedure that infuses healthy blood stem cells into your body to replace your damaged or diseased bone marrow. A bone marrow transplant is also called a stem cell transplant.

A bone marrow transplant may be necessary if your bone marrow stops working and doesn't produce enough healthy blood cells.

Bone marrow transplants may use cells from your own body (autologous transplant) or from a donor (allogeneic transplant).

Mayo Clinic's approach

A bone marrow transplant may be used to:

Bone marrow transplants can benefit people with a variety of both cancerous (malignant) and noncancerous (benign) diseases, including:

Bone marrow is the spongy tissue inside some bones. Its job is to produce blood cells. If your bone marrow isn't functioning properly because of cancer or another disease, you may receive a stem cell transplant.

To prepare for a stem cell transplant, you receive chemotherapy to kill the diseased cells and malfunctioning bone marrow. Then, transplanted blood stem cells are put into your bloodstream. The transplanted stem cells find their way to your marrow, where ideally they begin producing new, healthy blood cells.

A bone marrow transplant poses many risks of complications, some potentially fatal.

The risk can depend on many factors, including the type of disease or condition, the type of transplant, and the age and health of the person receiving the transplant.

Although some people experience minimal problems with a bone marrow transplant, others may develop complications that may require treatment or hospitalization. Some complications could even be life-threatening.

Complications that can arise with a bone marrow transplant include:

Your doctor can explain your risk of complications from a bone marrow transplant. Together you can weigh the risks and benefits to decide whether a bone marrow transplant is right for you.

If you receive a transplant that uses stem cells from a donor (allogeneic transplant), you may be at risk of developing graft-versus-host disease (GVHD). This condition occurs when the donor stem cells that make up your new immune system see your body's tissues and organs as something foreign and attack them.

Many people who have an allogeneic transplant get GVHD at some point. The risk of GVHD is a bit greater if the stem cells come from an unrelated donor, but it can happen to anyone who gets a bone marrow transplant from a donor.

GVHD may happen at any time after your transplant. However, it's more common after your bone marrow has started to make healthy cells.

There are two kinds of GVHD: acute and chronic. Acute GVHD usually happens earlier, during the first months after your transplant. It typically affects your skin, digestive tract or liver. Chronic GVHD typically develops later and can affect many organs.

Chronic GVHD signs and symptoms include:

You'll undergo a series of tests and procedures to assess your general health and the status of your condition, and to ensure that you're physically prepared for the transplant. The evaluation may take several days or more.

In addition, a surgeon or radiologist will implant a long thin tube (intravenous catheter) into a large vein in your chest or neck. The catheter, often called a central line, usually remains in place for the duration of your treatment. Your transplant team will use the central line to infuse the transplanted stem cells and other medications and blood products into your body.

If a transplant using your own stem cells (autologous transplant) is planned, you'll undergo a procedure called apheresis (af-uh-REE-sis) to collect blood stem cells.

Before apheresis, you'll receive daily injections of growth factor to increase stem cell production and move stem cells into your circulating blood so that they can be collected.

During apheresis, blood is drawn from a vein and circulated through a machine. The machine separates your blood into different parts, including stem cells. These stem cells are collected and frozen for future use in the transplant. The remaining blood is returned to your body.

If a transplant using stem cells from a donor (allogeneic transplant) is planned, you will need a donor. When you have a donor, stem cells are gathered from that person for the transplant. This process is often called a stem cell harvest or bone marrow harvest. Stem cells can come from your donor's blood or bone marrow. Your transplant team decides which is better for you based on your situation.

Another type of allogeneic transplant uses stem cells from the blood of umbilical cords (cord blood transplant). Mothers can choose to donate umbilical cords after their babies' births. The blood from these cords is frozen and stored in a cord blood bank until needed for a bone marrow transplant.

After you complete your pretransplant tests and procedures, you begin a process known as conditioning. During conditioning, you'll undergo chemotherapy and possibly radiation to:

The type of conditioning process you receive depends on a number of factors, including your disease, overall health and the type of transplant planned. You may have both chemotherapy and radiation or just one of these treatments as part of your conditioning treatment.

Side effects of the conditioning process can include:

You may be able to take medications or other measures to reduce such side effects.

Based on your age and health history, your doctor may recommend lower doses or different types of chemotherapy or radiation for your conditioning treatment. This is called reduced-intensity conditioning.

Reduced-intensity conditioning kills some cancer cells and somewhat suppresses your immune system. Then, the donor's cells are infused into your body. Donor cells replace cells in your bone marrow over time. Immune factors in the donor cells may then fight your cancer cells.

Your bone marrow transplant occurs after you complete the conditioning process. On the day of your transplant, called day zero, stem cells are infused into your body through your central line.

The transplant infusion is painless. You are awake during the procedure.

The transplanted stem cells make their way to your bone marrow, where they begin creating new blood cells. It can take a few weeks for new blood cells to be produced and for your blood counts to begin recovering.

Bone marrow or blood stem cells that have been frozen and thawed contain a preservative that protects the cells. Just before the transplant, you may receive medications to reduce the side effects the preservative may cause. You'll also likely be given IV fluids (hydration) before and after your transplant to help rid your body of the preservative.

Side effects of the preservative may include:

Not everyone experiences side effects from the preservative, and for some people those side effects are minimal.

When the new stem cells enter your body, they begin to travel through your body and to your bone marrow. In time, they multiply and begin to make new, healthy blood cells. This is called engraftment. It usually takes several weeks before the number of blood cells in your body starts to return to normal. In some people, it may take longer.

In the days and weeks after your bone marrow transplant, you'll have blood tests and other tests to monitor your condition. You may need medicine to manage complications, such as nausea and diarrhea.

After your bone marrow transplant, you'll remain under close medical care. If you're experiencing infections or other complications, you may need to stay in the hospital for several days or sometimes longer. Depending on the type of transplant and the risk of complications, you'll need to remain near the hospital for several weeks to months to allow close monitoring.

You may also need periodic transfusions of red blood cells and platelets until your bone marrow begins producing enough of those cells on its own.

You may be at greater risk of infections or other complications for months to years after your transplant.

A bone marrow transplant can cure some diseases and put others into remission. Goals of a bone marrow transplant depend on your individual situation, but usually include controlling or curing your disease, extending your life, and improving your quality of life.

Some people complete bone marrow transplantation with few side effects and complications. Others experience numerous challenging problems, both short and long term. The severity of side effects and the success of the transplant vary from person to person and sometimes can be difficult to predict before the transplant.

It can be discouraging if significant challenges arise during the transplant process. However, it is sometimes helpful to remember that there are many survivors who also experienced some very difficult days during the transplant process but ultimately had successful transplants and have returned to normal activities with a good quality of life.

Explore Mayo Clinic studies testing new treatments, interventions and tests as a means to prevent, detect, treat or manage this disease.

Living with a bone marrow transplant or waiting for a bone marrow transplant can be difficult, and it's normal to have fears and concerns.

Having support from your friends and family can be helpful. Also, you and your family may benefit from joining a support group of people who understand what you're going through and who can provide support. Support groups offer a place for you and your family to share fears, concerns, difficulties and successes with people who have had similar experiences. You may meet people who have already had a transplant or who are waiting for a transplant.

To learn about transplant support groups in your community, ask your transplant team or social worker for information. Also, several support groups are offered at Mayo Clinic in Arizona, Florida and Minnesota.

Mayo Clinic researchers study medications and treatments for people who have had bone marrow transplants, including new medications to help you stay healthy after your bone marrow transplant.

If your bone marrow transplant is using stem cells from a donor (allogeneic transplant), you may be at risk of graft-versus-host disease. This condition occurs when a donor's transplanted stem cells attack the recipient's body. Doctors may prescribe medications to help prevent graft-versus-host disease and reduce your immune system's reaction (immunosuppressive medications).

After your transplant, it will take time for your immune system to recover. You may be given antibiotics to prevent infections. You may also be prescribed antifungal, antibacterial or antiviral medications. Doctors continue to study and develop several new medications, including new antifungal medications, antibacterial medications, antiviral medications and immunosuppressive medications.

After your bone marrow transplant, you may need to adjust your diet to stay healthy and to prevent excessive weight gain. Maintaining a healthy weight can help prevent high blood pressure, high cholesterol and other negative health effects.

Your nutrition specialist (dietitian) and other members of your transplant team will work with you to create a healthy-eating plan that meets your needs and complements your lifestyle. Your dietitian may also give you food suggestions to control side effects of chemotherapy and radiation, such as nausea.

Your dietitian will also provide you with healthy food options and ideas to use in your eating plan. Your dietitian's recommendations may include:

After your bone marrow transplant, you may make exercise and physical activity a regular part of your life to continue to improve your health and fitness. Exercising regularly helps you control your weight, strengthen your bones, increase your endurance, strengthen your muscles and keep your heart healthy.

Your treatment team may work with you to set up a routine exercise program to meet your needs. You may perform exercises daily, such as walking and other activities. As you recover, you can slowly increase your physical activity.

Read more:
Bone marrow transplant - Mayo Clinic

To Read More: Bone marrow transplant – Mayo Clinic
categoriaBone Marrow Stem Cells commentoComments Off on Bone marrow transplant – Mayo Clinic | dataApril 20th, 2018
Read All

New Jersey Stem Cell Therapy – Stem Cell Center Of NJ

By raymumme

COPD

Over 32 million Americans suffer from chronic obstructive pulmonary disease (also known as COPD). COPD is a progressive lung disease, however regenerative medicine, such as lung regeneration therapies using stem cells are showing potential for COPD by encouraging tissue repair and reducing inflammation to the diseased lung tissue.

Following up with stem cell therapy and exome therapy immediately in the first 36 to 48 hours after stroke symptoms surface has proven to be crucial to long-term recovery and regaining mobility again. Cell therapy also calms post-stroke inflammation in the body, and reduces risk of serious infections.

Parkinsons is a neurodegenerative brain disorder caused by the gradual loss of dopamine-producing cells in the brain. It afflicts more than 1 million people in the U.S., and currently, there is no known cure. Stem cell therapies have been showing incredible progress. Using induced pluripotent stem (iPS) cells, a mature cell can be reprogrammed into an embryonic-like, healthy and highly-functioning state, which has the potential to become a dopamine-producing cell in the brain.

A thick, full head of hair is possible, naturally! Stem cell and exosome therapy promotes healing from within to naturally stimulate hair follicles, which encourages new hair growth. Using your own stem cells, Platelet Rich Plasma (PRP) and exosomes, you can regrow your own healthy, thick hair naturally and restore your confidence!

Erectile Dysfunction (ED) is the inability to achieve or maintain an erection sufficient for satisfactory sexual intercourse. Regenerative medicine offers a non-surgical option that commonly uses the patients own stem cells, exosomes, and other sources of growth factors to regenerate healthy tissue to improve performance and sensation.

If chronic joint pain is derailing your active lifestyle, then youre not alone. Regenerative medicine offers a non-surgical option that commonly uses the patients own stem cells, exosomes, and other sources of growth factors to reduce inflammation, promote natural healing and regenerate healthy tissue surrounding the joint for relief.

Multiple Sclerosis (MS) affects 400,000 people in the U.S., and occurs when the body has an abnormal immune system response and attacks the central nervous system. Regenerative medicine now offers treatment for MS with stem cell therapy, which is an exciting and rapidly developing field of therapy. Stem cells work to repair damaged cells these new cells can become replacement cells to restore normal functionality.

Spinal cord injuries are as complex as they are devastating. Today, cellular treatments, usually a combination of therapies, such as stem cell, Platelet Rich Plasma (PRP) and exosome therapy with growth factors are showing promise in contributing to spinal cord repair and reducing inflammation at the site of injury.

If you have chronic nerve injury pain that doesnt fade, your health care provider may recommend surgery to reverse the damage. However, regenerative medicine offers a non-surgical option to repair damaged tissue and reduce inflammation at the site of injury. Stem cell therapy commonly uses the patients own stem cells, exosomes, and other sources of growth factors to regenerate healthy tissue.

Neuropathy also called peripheral neuropathy occurs when nerves are damaged and cant send messages from the brain and spinal cord to the muscles, skin and other parts of the body. Simply put, the two areas stop communicating. Stem cell and exosome therapies treat damaged nerves affected by neuropathy, and they have the ability to replicate and create new, healthy cells, while repairing damaged tissue.

Visit link:
New Jersey Stem Cell Therapy - Stem Cell Center Of NJ

To Read More: New Jersey Stem Cell Therapy – Stem Cell Center Of NJ
categoriaIPS Cell Therapy commentoComments Off on New Jersey Stem Cell Therapy – Stem Cell Center Of NJ | dataApril 15th, 2018
Read All

Stem Cell Treatments – Brain and Spinal Cord

By Sykes24Tracey

Because stem cells have the potential to generate cells designed to replace or repair cells damaged by spinal cord injury, advocates of stem cell research and treatment believe that the benefits far outweigh the negative aspects. Opponents of this research and treatment, however, typically bring up the issue of embryonic stem cells, which are harvested from embryos and fetal tissue. Accordingly, they feel the use of these embryonic stem cells is not moral or ethical. Because stem cells are harvested from embryos and fetal tissue, they feel it is not moral or ethical. Secondly, opponents are concerned about the health and safety of the participants in human stem cell research trials. It is important to note that non-embryonic stem cells, called somatic or adult stem cells, have recently been identified in various body tissues including brain, bone marrow, blood vessels, and various organ tissues.

Lets talk about how stem cell research could possibly impact spinal cord injury. Stem cell research came on the scene in 1998, when a group of scientists isolated pluripotent stem cells from human embryos and grew them in a culture. Since then, specialists have discovered that stem cells can become any of the 200 specialized cells in the body, giving them the ability to repair or replace damaged cells and tissues. While not yet known to have the diversification potential of embryonic stem cells, adult somatic cells act similarly and are generating excitement in the research and medical community.

When all is said and done, could stem cell treatment be the miracle cure for spinal cord injury and paralysis? Well, we dont really know. Because of all of the controversy, much of the evidence that shows stem cells can be turned into specific cells for transplantation involves only mice, whose cells are significantly different than human cells. Nevertheless, some initial research points to promising results. One hurdle that remains to be cleared is whether an immune response would reject a cellular transplant.

Ultimately, no one yet knows the extent to which stem cell treatment could help spinal cord injury and paralysis. Scientists remain hopeful, but currently there just hasnt been enough research done to substantiate any particular result. Additional research needs to be done before we have more definitive answers.

Again, we just dont know. Much of the answer depends upon whether the political process and moral debate continues to limitand put the hold onthe amount of research done. At this point its impossible to say for sure whenor even ifstem cells will be useful in the treatment of paralysis.

Read the original:
Stem Cell Treatments - Brain and Spinal Cord

To Read More: Stem Cell Treatments – Brain and Spinal Cord
categoriaSpinal Cord Stem Cells commentoComments Off on Stem Cell Treatments – Brain and Spinal Cord | dataApril 15th, 2018
Read All

What is a Stem Cell Transplant (Bone Marrow Transplant)? | Cancer.Net

By Sykes24Tracey

A stem cell transplant is a treatment for some types of cancer. For example, you might have one if you have leukemia, multiple myeloma, or some types of lymphoma. Doctors also treat some blood diseases with stem cell transplants.

In the past, patients who needed a stem cell transplant received a bone marrow transplant because the stem cells were collected from the bone marrow. Today, stem cells are usually collected from the blood, instead of the bone marrow. For this reason, they are now more commonly called stem cell transplants.

A part of your bones called bone marrow makes blood cells. Marrow is the soft, spongy tissue inside bones. It contains cells called hematopoietic stem cells (pronounced he-mah-tuh-poy-ET-ick). These cells can turn into several other types of cells. They can turn into more bone marrow cells. Or they can turn into any type of blood cell.

Certain cancers and other diseases keep hematopoietic stem cells from developing normally. If they are not normal, neither are the blood cells that they make. A stem cell transplant gives you new stem cells. The new stem cells can make new, healthy blood cells.

The main types of stem cell transplants and other options are discussed below.

Autologous transplant. Doctors call this an AUTO transplant. This type of stem cell transplant may also be called high-dose chemotherapy with autologous stem cell rescue.

In an AUTO transplant, you get your own stem cells after doctors treat the cancer. First, your health care team collects stem cells from your blood and freezes them. Next, you have powerful chemotherapy, and rarely, radiation therapy. Then, your health care team thaws your frozen stem cells. They put them back in your blood through a tube placed in a vein (IV).

It takes about 24 hours for your stem cells to reach the bone marrow. Then they start to grow, multiply, and help the marrow make healthy blood cells again.

Allogeneic transplantation. Doctors call this an ALLO transplant.

In an ALLO transplant, you get another persons stem cells. It is important to find someone whose bone marrow matches yours. This is because you have certain proteins on your white blood cells called human leukocyte antigens (HLA). The best donor has HLA proteins as much like yours as possible.

Matching proteins make a serious condition called graft-versus-host disease (GVHD) less likely. In GVHD, healthy cells from the transplant attack your cells. A brother or sister may be the best match. But another family member or volunteer might work.

Once you find a donor, you receive chemotherapy with or without radiation therapy. Next, you get the other persons stem cells through a tube placed in a vein (IV). The cells in an ALLO transplant are not typically frozen. So, doctors can give you the cells as soon after chemotherapy or radiation therapy as possible.

There are 2 types of ALLO transplants. The best type for each patient depends his or her age and health and the type of disease being treated.

Ablative, which uses high-dose chemotherapy

Reduced intensity, which uses milder doses of chemotherapy

If your health care team cannot find a matched adult donor, there are other options. Research is ongoing to determine which type of transplant will work best for different patients.

Umbilical cord blood transplant. This may be an option if you cannot find a donor match. Cancer centers around the world use cord blood.

Parent-child transplant and haplotype mismatched transplant. These types of transplants are being used more commonly. The match is 50%, instead of near 100%. Your donor might be a parent, child, brother, or sister.

Your doctor will recommend an AUTO or ALLO transplant based mostly on the disease you have. Other factors include the health of your bone marrow and your age and general health. For example, if you have cancer or other disease in your bone marrow, you will probably have an ALLO transplant. In this situation, doctors do not recommend using your own stem cells.

Choosing a transplant is complicated. You will need help from a doctor who specializes in transplants. So you might need to travel to a center that does many stem cell transplants. Your donor might need to go, too. At the center, you talk with a transplant specialist and have an examination and tests. Before a transplant, you should also think about non-medical factors. These include:

Who can care for you during treatment

How long you will be away from work and family responsibilities

If your insurance pays for the transplant

Who can take you to transplant appointments

Your health care team can help you find answers to these questions.

The information below tells you the main parts of AUTO and ALLO transplants. Your health care team usually does the steps in order. But sometimes certain steps happen in advance, such as collecting stem cells. Ask your doctor what to expect before, during, and after a transplant.

A doctor puts a thin tube called a transplant catheter in a large vein. The tube stays in until after the transplant. Your health care team will collect stem cells through this tube and give chemotherapy and other medications through the tube.

You get injections of a medication to raise your number of white blood cells. White blood cells help your body fight infections.

Your health care team collects stem cells, usually from your blood.

Time: 1 to 2 weeks

Where its done: Clinic or hospital building. You do not need to stay in the hospital overnight.

Time: 5 to 10 days

Where its done: Clinic or hospital. At many transplant centers, patients need to stay in the hospital for the duration of the transplant, usually about 3 weeks. At some centers, patients receive treatment in the clinic and can come in every day.

Time: Each infusion usually takes less than 30 minutes. You may receive more than 1 infusion.

Where its done: Clinic or hospital.

Time: approximately 2 weeks

Where its done: Clinic or hospital. You might be staying in the hospital or you might not.

Time: Varies based on how the stem cells are collected

Where its done: Clinic or hospital

Time: 5 to 7 days

Where its done: Many ALLO transplants are done in the hospital.

Time: 1 day

Where its done: Clinic or hospital.

You take antibiotics and other drugs. This includes medications to prevent graft-versus-host disease. You get blood transfusions through your catheter if needed. Your health care team takes care of any side effects from the transplant.

After the transplant, patients visit the clinic frequently at first and less often over time.

Time: Varies

For an ablative transplant, patients are usually in the hospital for about 4 weeks in total.

For a reduced intensity transplant, patients are in the hospital or visit the clinic daily for about 1 week.

The words successful transplant might mean different things to you, your family, and your doctor. Below are 2 ways to measure transplant success.

Your blood counts are back to safe levels. A blood count is the number of red cells, white cells, and platelets in your blood. A transplant makes these numbers very low for 1 to 2 weeks. This causes risks of:

Infection from low numbers of white cells, which fight infections

Bleeding from low numbers of platelets, which stop bleeding

Tiredness from low numbers of red cells, which carry oxygen

Doctors lower these risks by giving blood and platelet transfusions after a transplant. You also take antibiotics to help prevent infections. When the new stem cells multiply, they make more blood cells. Then your blood counts improve. This is one way to know if a transplant is a success.

It controls your cancer. Doctors do stem cell transplants with the goal of curing disease. A cure may be possible for some cancers, such as some types of leukemia and lymphoma. For other patients, remission is the best result. Remission is having no signs or symptoms of cancer. After a transplant, you need to see your doctor and have tests to watch for any signs of cancer or complications from the transplant.

Talking often with the doctor is important. It gives you information to make health care decisions. The questions below may help you learn more about stem cell transplant. You can also ask other questions that are important to you.

Which type of stem cell transplant would you recommend? Why?

If I will have an ALLO transplant, how will we find a donor? What is the chance of a good match?

What type of treatment will I have before the transplant? Will radiation therapy be used?

How long will my treatment take? How long will I stay in the hospital?

How will a transplant affect my life? Can I work? Can I exercise and do regular activities?

How will we know if the transplant works?

What if the transplant doesnt work? What if the cancer comes back?

What are the side effects? This includes short-term, such as during treatment and shortly after. It also includes long-term, such as years later.

What tests will I need later? How often will I need them?

If I am worried about managing the costs of treatment, who can help me with these concerns?

Bone Marrow Aspiration and Biopsy

Making Decisions About Cancer Treatment

Donating Blood and Platelets

Donating Umbilical Cord Blood

Explore BMT

Be the Match: National Marrow Donor Program

Blood & Marrow Transplant Information Network

U.S. Department of Health and Human Services: Understanding Transplantation as a Treatment Option

National Bone Marrow Transplant Link

Read this article:
What is a Stem Cell Transplant (Bone Marrow Transplant)? | Cancer.Net

To Read More: What is a Stem Cell Transplant (Bone Marrow Transplant)? | Cancer.Net
categoriaBone Marrow Stem Cells commentoComments Off on What is a Stem Cell Transplant (Bone Marrow Transplant)? | Cancer.Net | dataApril 12th, 2018
Read All

Syrinx of the Spinal Cord or Brain Stem – Neurologic Disorders – Merck Manuals …

By raymumme

A syrinx is a fluid-filled cavity within the spinal cord (syringomyelia) or brain stem (syringobulbia). Predisposing factors include craniocervical junction abnormalities, previous spinal cord trauma, and spinal cord tumors. Symptoms include flaccid weakness of the hands and arms and deficits in pain and temperature sensation in a capelike distribution over the back and neck; light touch and position and vibration sensation are not affected. Diagnosis is by MRI. Treatment includes correction of the cause and surgical procedures to drain the syrinx or otherwise open CSF flow.

Syrinxes usually result from lesions that partially obstruct CSF flow. At least half of syrinxes occur in patients with congenital abnormalities of the craniocervical junction (eg, herniation of cerebellar tissue into the spinal canal, called Chiari malformation), brain (eg, encephalocele), or spinal cord (eg, myelomeningocele). For unknown reasons, these congenital abnormalities often expand during the teen or young adult years. A syrinx can also develop in patients who have a spinal cord tumor, scarring due to previous spinal trauma, or no known predisposing factors. About 30% of people with a spinal cord tumor eventually develop a syrinx.

Syringomyelia is a paramedian, usually irregular, longitudinal cavity. It commonly begins in the cervical area but may extend downward along the entire length of the spinal cord.

Syringobulbia, which is rare, usually occurs as a slitlike gap within the lower brain stem and may disrupt or compress the lower cranial nerve nuclei or ascending sensory or descending motor pathways.

Go here to see the original:
Syrinx of the Spinal Cord or Brain Stem - Neurologic Disorders - Merck Manuals ...

To Read More: Syrinx of the Spinal Cord or Brain Stem – Neurologic Disorders – Merck Manuals …
categoriaSpinal Cord Stem Cells commentoComments Off on Syrinx of the Spinal Cord or Brain Stem – Neurologic Disorders – Merck Manuals … | dataApril 12th, 2018
Read All

PPT Bone Marrow Transplantation Stem Cell …

By LizaAVILA

PowerShow.com is a leading presentation/slideshow sharing website. Whether your application is business, how-to, education, medicine, school, church, sales, marketing, online training or just for fun, PowerShow.com is a great resource. And, best of all, most of its cool features are free and easy to use.

You can use PowerShow.com to find and download example online PowerPoint ppt presentations on just about any topic you can imagine so you can learn how to improve your own slides andpresentations for free. Or use it to find and download high-quality how-to PowerPoint ppt presentations with illustrated or animated slides that will teach you how to do something new, also for free. Or use it to upload your own PowerPoint slides so you can share them with your teachers, class, students, bosses, employees, customers, potential investors or the world. Or use it to create really cool photo slideshows - with 2D and 3D transitions, animation, and your choice of music - that you can share with your Facebook friends or Google+ circles. That's all free as well!

For a small fee you can get the industry's best online privacy or publicly promote your presentations and slide shows with top rankings. But aside from that it's free. We'll even convert your presentations and slide shows into the universal Flash format with all their original multimedia glory, including animation, 2D and 3D transition effects, embedded music or other audio, or even video embedded in slides. All for free. Most of the presentations and slideshows on PowerShow.com are free to view, many are even free to download. (You can choose whether to allow people to download your original PowerPoint presentations and photo slideshows for a fee or free or not at all.) Check out PowerShow.com today - for FREE. There is truly something for everyone!

For a small fee you can get the industry's best online privacy or publicly promote your presentations and slide shows with top rankings. But aside from that it's free. We'll even convert your presentations and slide shows into the universal Flash format with all their original multimedia glory, including animation, 2D and 3D transition effects, embedded music or other audio, or even video embedded in slides. All for free. Most of the presentations and slideshows on PowerShow.com are free to view, many are even free to download. (You can choose whether to allow people to download your original PowerPoint presentations and photo slideshows for a fee or free or not at all.) Check out PowerShow.com today - for FREE. There is truly something for everyone!

Visit link:
PPT Bone Marrow Transplantation Stem Cell ...

To Read More: PPT Bone Marrow Transplantation Stem Cell …
categoriaBone Marrow Stem Cells commentoComments Off on PPT Bone Marrow Transplantation Stem Cell … | dataApril 10th, 2018
Read All

Spinal Chord Injury Stem Cell Therapy | NSI Stem Cell

By LizaAVILA

How Adipose Stem Cell Technology Develops Spinal Cord Injury Treatment

No matter where they may naturally be found in the body, Adult Stem Cells are like electricity. They are pure potential. When properly stimulated, stem cells become whatever type of cell the body needs: bone, blood, cartilage, muscle, nerve, and more. The results of studies like those published on CellTherapyJournal.org and reported on at MedScape.com state that stem cells, particularly Adipose-Derived Stem Cells, have great potential in the development of Stem Cell Therapy for Spinal Cord Injury.*

When a Spinal Cord Injury occurs, the resulting inflammation releases inhibiting factors that ultimately cause the fibers of nerve cells to retract. Scar tissue develops, effectively preventing a bridge to be formed across the area of injury. This, in essence, is what prevents healing and causes the debilitating effects after injury. But research has shown that Adult Stem Cells, particularly Adipose-Derived Stem Cells, have the potential for bridging the gap. Additionally, stem cells might excrete substances that reduce damaging inflammation. Already, trials involving Spinal Cord Injury Therapy via stem cells are producing remarkable effects.

Studies from around the world are reporting exciting results, from trial subjects undergoing stem cell therapy for spinal cord injury who regain the capacity to feel light touch to some who were able to walk for at least an hour with the aid of a walker. An improvement in bladder and bowel control was also reported.

Where To Find Stem Cell Therapy In The U.S.

No medical clinic is better equipped and keeps a closer eye on the very latest Stem Cell Treatments than NSI Stem Cell Center in Florida. Rest assured that we are poised and ready to offer stem cell Spinal Cord Injury Therapy at its earliest development. We are already providing therapies for neurological disorders such as Multiple Sclerosis and Parkinsons Disease, as well as many treatments for a growing list of other injuries, illnesses, and chronic conditions.

Well be happy to answer any of your questions regarding the advanced and exciting field of FDA guideline-compliant Stem Cell Therapy we practice. Call (877) 278-3623 or use our Contact Page. We have a FREE brochure waiting for you.

Continued here:
Spinal Chord Injury Stem Cell Therapy | NSI Stem Cell

To Read More: Spinal Chord Injury Stem Cell Therapy | NSI Stem Cell
categoriaSpinal Cord Stem Cells commentoComments Off on Spinal Chord Injury Stem Cell Therapy | NSI Stem Cell | dataApril 7th, 2018
Read All

Printing Skin Cells on Burn Wounds – Wake Forest School of …

By daniellenierenberg

Skin is the body's largest organ. Loss of the skin barrierresults in fluid and heat loss and the risk of infection. Thetraditional treatment for deep burns is to cover them with healthyskin harvested from another part of the body. But in cases ofextensive burns, there often isn't enough healthy skin toharvest.

During phase I of AFIRM, WFIRM scientists designed, built andtested a printer designed to print skin cells onto burn wounds. The"ink" is actually different kinds of skin cells. A scanner is usedto determine wound size and depth. Different kinds of skin cellsare found at different depths. This data guides the printer as itapplies layers of the correct type of cells to cover the wound. Youonly need a patch of skin one-tenth the size of the burn to growenough skin cells for skin printing.

During Phase II of AFIRM, the WFIRM team will explore whether atype of stem cell found in amniotic fluid and placenta (afterbirth)is effective at healing wounds. The goal of the project is to bringthe technology to soldiers who need it within the next 5 years.

This video -- with a mock hand and burn -- demonstrates the process.

Original post:
Printing Skin Cells on Burn Wounds - Wake Forest School of ...

To Read More: Printing Skin Cells on Burn Wounds – Wake Forest School of …
categoriaSkin Stem Cells commentoComments Off on Printing Skin Cells on Burn Wounds – Wake Forest School of … | dataApril 2nd, 2018
Read All

Studies: Stem cells reverse heart damage – CNN

By LizaAVILA

Story highlights

On a June day in 2009, a 39-year-old man named Ken Milles lay on an exam table at Cedars-Sinai Medical Center in Los Angeles. A month earlier, he'd suffered a massive heart attack that destroyed nearly a third of his heart.

"The most difficult part was the uncertainty," he recalls. "Your heart is 30% damaged, and they tell you this could affect you the rest of your life." He was about to receive an infusion of stem cells, grown from cells taken from his own heart a few weeks earlier. No one had ever tried this before.

About three weeks later, in Kentucky, a patient named Mike Jones underwent a similar procedure at the University of Louisville's Jewish Hospital. Jones suffered from advanced heart failure, the result of a heart attack years earlier. Like Milles, he received an infusion of stem cells, grown from his own heart tissue.

"Once you reach this stage of heart disease, you don't get better," says Dr. Robert Bolli, who oversaw Jones' procedure, explaining what doctors have always believed and taught. "You can go down slowly, or go down quickly, but you're going to go down."

Conventional wisdom took a hit Monday, as Bolli's group and a team from Cedars-Sinai each reported that stem cell therapies were able to reverse heart damage, without dangerous side effects, at least in a small group of patients.

In Bolli's study, published in The Lancet, 16 patients with severe heart failure received a purified batch of cardiac stem cells. Within a year, their heart function markedly improved. The heart's pumping ability can be quantified through the "Left Ventricle Ejection Fraction," a measure of how much blood the heart pumps with each contraction. A patient with an LVEF of less than 40% is considered to suffer severe heart failure. When the study began, Bolli's patients had an average LVEF of 30.3%. Four months after receiving stem cells, it was 38.5%. Among seven patients who were followed for a full year, it improved to an astounding 42.5%. A control group of seven patients, given nothing but standard maintenance medications, showed no improvement at all.

"We were surprised by the magnitude of improvement," says Bolli, who says traditional therapies, such as placing a stent to physically widen the patient's artery, typically make a smaller difference. Prior to treatment, Mike Jones couldn't walk to the restroom without stopping for breath, says Bolli. "Now he can drive a tractor on his farm, even play basketball with his grandchildren. His life was transformed."

At Cedars-Sinai, 17 patients, including Milles, were given stem cells approximately six weeks after suffering a moderate to major heart attack. All had lost enough tissue to put them "at big risk" of future heart failure, according to Dr. Eduardo Marban, the director of the Cedars-Sinai Heart Institute, who developed the stem cell procedure used there.

The results were striking. Not only did scar tissue retreat -- shrinking 40% in Ken Milles, and between 30% and 47% in other test subjects -- but the patients actually generated new heart tissue. On average, the stem cell recipients grew the equivalent of 600 million new heart cells, according to Marban, who used MRI imaging to measure changes. By way of perspective, a major heart attack might kill off a billion cells.

"This is unprecedented, the first time anyone has grown living heart muscle," says Marban. "No one else has demonstrated that. It's very gratifying, especially when the conventional teaching has been that the damage is irreversible."

Perhaps even more important, no treated patient in either study suffered a significant health setback.

The twin findings are a boost to the notion that the heart contains the seeds of its own rebirth. For years, doctors believed that heart cells, once destroyed, were gone forever. But in a series of experiments, researchers including Bolli's collaborator, Dr. Piero Anversa, found that the heart contains a type of stem cell that can develop into either heart muscle or blood vessel components -- in essence, whatever the heart requires at a particular point in time. The problem for patients like Mike Jones or Ken Milles is that there simply aren't enough of these repair cells waiting around. The experimental treatments involve removing stem cells through a biopsy, and making millions of copies in a laboratory.

The Bolli/Anversa group and Marban's team both used cardiac stem cells, but Bolli and Anversa "purified" the CSCs, so that more than 90% of the infusion was actual stem cells. Marban, on the other hand, used a mixture of stem cells and other types of cells extracted from the patient's heart. "We've found that the mixture is more potent than any subtype we've been able to isolate," he says. He says the additional cells may help by providing a supportive environment for the stem cells to multiply.

Other scientists, including Dr. Douglas Losordo, have produced improvements in cardiac patients using stem cells derived from bone marrow. "The body contains cells that seem to be pre-programmed for repair," explains Losordo. "The consistent thing about all these approaches is that they're leveraging what seems to be the body's own repair mechanism."

Losordo praised the Lancet paper, and recalls the skepticism that met Anversa's initial claims, a decade ago, that there were stem cells in the adult heart. "Some scientists are always resistant to that type of novelty. You know the saying: First they ignore you, then they attack you and finally they imitate you."

Denis Buxton, who oversees stem cell research at the National Heart, Lung and Blood Institute at the National Institutes of Health, calls the new studies "a paradigm shift, harnessing the heart's own regenerative processes." But he says he would like to see more head-to-head comparisons to determine which type of cells are most beneficial.

Questions also remain about timing. Patients who suffer large heart attacks are prone to future damage, in part because the weakened heart tries to compensate by dilating -- swelling -- and by changing shape. In a vicious circle, the changes make the heart a less efficient pump, which leads to more overcompensation, and so on, until the end result is heart failure. Marban's study aimed to treat patients before they could develop heart failure in the first place.

In a third study released Monday, researchers treated patients with severe heart failure with stem cells derived from bone marrow. In a group of 60 patients, those receiving the treatment had fewer heart problems over the course of a year, as well as improved heart function.

A fourth study also used cells derived from bone marrow, but injected them into patients two to three weeks after a heart attack. Previous studies, with the cells given just days afterward, found a modest improvement in heart function. But Monday, the lead researcher, Dr. Dan Simon of UH Case Medical Center, reported that with the three-week delay, patients did not see the same benefit.

With other methods, there may be a larger window of opportunity. At least in initial studies, Losordo's bone marrow treatments helped some patients with long-standing heart problems. Bolli's Lancet paper suggests that CSCs, too, might help patients with advanced disease. "These patients had had heart failure for several years. They were a wreck!" says Bolli. "But we found their stem cells were still very competent." By that, he means the cells were still capable of multiplying and of turning into useful muscle and blood vessel walls.

Marban has an open mind on the timing issue. In fact, one patient from his control group e-mailed after the study was complete, saying he felt terrible and pleading for an infusion of stem cells. At Marban's request, the FDA granted special approval to treat him. "He had a very nice response. That was 14 months after his heart attack. Of course that's just one person, and we need bigger studies," says Marban.

For Ken Milles, the procedure itself wasn't painful, but it was unsettling. The biopsy to harvest the stem cells felt "weird," he recalls, as he felt the doctor poking around inside his heart. The infusion, a few weeks later, was harder. The procedure -- basically the same as an angioplasty -- involved stopping blood flow through the damaged artery for three minutes, while the stem cells were infused. "It felt exacfly like I was having a heart attack again," Milles remembers.

Milles had spent the first weeks after his heart attack just lying in bed re-watching his "Sopranos" DVDs, but within a week of the stem cell infusion, he says, "I was reinvigorated." Today he's back at work full time, as an accounting manager at a construction company. He's cut out fast food and shed 50 pounds. His wife and two teenage sons are thrilled.

Denis Buxton says the new papers could prove a milestone. "We don't have anything else to actually regenerate the heart. These stem cell therapies have the possibility of actually reversing damage."

Bolli says he'll have to temper his enthusiasm until he can duplicate the results in larger studies, definitive enough to get stem cell therapy approved as a standard treatment. "If a phase 3 study confirmed this, it would be the biggest advance in cardiology in my lifetime. We would possibly be curing heart failure. It would be a revolution."

Read this article:
Studies: Stem cells reverse heart damage - CNN

To Read More: Studies: Stem cells reverse heart damage – CNN
categoriaCardiac Stem Cells commentoComments Off on Studies: Stem cells reverse heart damage – CNN | dataApril 2nd, 2018
Read All

Stem Cells & Spinal Cord Injuries – sci-info-pages.com

By Dr. Matthew Watson

Stem cell therapy can be defined as a part of a group of new techniques, or technologies that rely on replacing diseased or dysfunctional cells with healthy, functioning ones. These new techniques are being applied experimentally to a wide range of human disorders, including many types of cancer, neurological diseases such as Parkinson's disease and ALS (Lou Gehrig's disease), spinal cord injuries, and diabetes.

Coalition for the Advancement of Medical ResearchThe Coalition for the Advancement of Medical Research (CAMR) is comprised of nationally-recognized patient organizations, universities, scientific societies, foundations, and individuals with life-threatening illnesses and disorders, advocating for the advancement of breakthrough research and technologies in regenerative medicine - including stem cell research and somatic cell nuclear transfer - in order to cure disease and alleviate suffering.

Portraits of HopeVolunteer group of patients and their families and friends who believe that stem cell research has the potential to save the lives of those afflicted by many medical conditions, including spinal cord injury. Purpose is to show the faces and recount the stories of people who have such illnesses and present these portraits to federal and state legislators in request for government support.

Link:
Stem Cells & Spinal Cord Injuries - sci-info-pages.com

To Read More: Stem Cells & Spinal Cord Injuries – sci-info-pages.com
categoriaSpinal Cord Stem Cells commentoComments Off on Stem Cells & Spinal Cord Injuries – sci-info-pages.com | dataMarch 21st, 2018
Read All

STEM CELLS – Issue – Wiley Online Library

By raymumme

Advertisement

Stem Cells May Help Improve Corneal Wound Healing

Stem Cell Treatment Has Potential to Help Parkinsons Disease Unexpected Brain Area

Subscribe to RSS headline updates from: Powered by FeedBurner

Subscribe to RSS headline updates from: Powered by FeedBurner

Video abstract from Drs. Banerjee, Surendran, Bharti, Morishita, Varshney, and Pal on their recently published STEM CELLS paper entitled, "Long non-coding RNA RP11-380D23.2 drives distal-proximal patterning of the lung by regulating PITX2 expression." Read the paper here.

Video abstract from Drs. Sayed, Ospino, Himmati, Lee, Chanda, Mocarski, and Cooke on their recently published STEM CELLS paper entitled, "Retinoic Acid Inducible Gene 1 Protein (RIG1)-like Receptor Pathway is Required for Efficient Nuclear Reprogramming." Read the paper here.

iOS App for iPad or iPhone

Download the STEM CELLS app from the Apple store

New Android App Available!

Download the STEM CELLS app from the Google Play Store

Continue reading here:
STEM CELLS - Issue - Wiley Online Library

To Read More: STEM CELLS – Issue – Wiley Online Library
categoriaCardiac Stem Cells commentoComments Off on STEM CELLS – Issue – Wiley Online Library | dataMarch 16th, 2018
Read All

Induced Pluripotent Stem Cells for Cardiovascular …

By LizaAVILA

Nearly 500,000 people in the US die of sudden cardiac death each year, and long QT syndrome (LQTS) is a major form of sudden cardiac death. LQTS can be triggered by drug exposure or stresses. Drug-induced LQTS is the single most common reason for drugs to be withdrawn from clinical trials, causing major setbacks to drug discovery efforts and exposing people to dangerous drugs. In most cases, the mechanism of drug-induced LQTS is unknown. However, there are genetic forms of LQTS that should allow us to make iPS cellderived heart cells that have the key features of LQTS. Our objective is to produce a cell-based test for LQTS with induced pluripotent stem (iPS) cell technology, which allows adult cells to be reprogrammed to be stem celllike cells.Despite the critical need, current tests for drug-induced LQTS are far from perfect. As a result, potentially unsafe drugs enter clinical trials, endangering people and wasting millions of dollars in research funds. When drugs that cause LQTS, such as terfenadine (Seldane), enter the market, millions of people are put at serious risk. Unfortunately, it is very difficult to know when a drug will cause LQTS, since most people who develop LQTS have no known genetic risk factors. The standard tests for LQTS use animal models or hamster cells that express human heart genes at high levels. Unfortunately, cardiac physiology in animal models (rabbits and dogs) differs from that in humans, and hamster cells lack many key features of human heart cells. Human embryonic stem cells (hESCs) can be differentiated into heart cells, but we do not know the culture conditions that would make the assay most similar to LQTS in a living person. These problems could be solved if we had a method to grow human heart cells from people with genetic LQTS mutations, so that we know the exact test conditions that would reflect the human disease. This test would be much more accurate than currently available tests and would help enable the development of safer human pharmaceuticals.Our long-term goal is to develop a panel of iPS cell lines that better represent the genetic diversity of the human population. Susceptibility to LQTS varies, and most people who have life-threatening LQTS have no known genetic risk factors. We will characterize iPS cells with well-defined mutations that have clinically proven responses to drugs that cause LQTS. These iPS cell lines will be used to refine testing conditions. To validate the iPS cellbased test, the results will be directly compared to the responses in people. These studies will provide the foundation for an expanded panel of iPS cell lines from people with other genetic mutations and from people who have no genetically defined risk factor but still have potentially fatal drug-induced LQTS. This growing panel of iPS cell lines should allow for testing drugs for LQTS more effectively and accurately than any current test.To meet these goals, we made a series of iPS cells that harbor different LQTS mutations. These iPS cells differentiate into beating cardiomyocytes. We are now evaluating these LQTS cell lines in cellular assays. We are hopeful that our studies will meet or exceed all the aims of our original proposal.

Originally posted here:
Induced Pluripotent Stem Cells for Cardiovascular ...

To Read More: Induced Pluripotent Stem Cells for Cardiovascular …
categoriaCardiac Stem Cells commentoComments Off on Induced Pluripotent Stem Cells for Cardiovascular … | dataMarch 16th, 2018
Read All

Stem Cell Therapy for Duchenne Muscular Dystrophy …

By LizaAVILA

Duchenne muscular dystrophy (DMD) is the most common and serious form of muscular dystrophy. One out of every 3500 boys is born with the disorder, and it is invariably fatal. Until recently, there was little hope that the widespread muscle degeneration that accompanies this disease could be combated.

However, stem cell therapy now offers that hope. Like other degenerative disorders, DMD is the result of loss of cells that are needed for correct functioning of the body. In the case of DMD, a vital muscle protein is mutated, and its absence leads to progressive degeneration of essentially all the muscles in the body.

To begin to approach a therapy for this condition, we must provide a new supply of stem cells that carry the missing protein that is lacking in DMD. These cells must be delivered to the body in such a way that they will engraft in the muscles and produce new, healthy muscle tissue on an ongoing basis.

We now possess methods whereby we can generate stem cells that can become muscle cells out of adult cells from skin or fat by a process known as reprogramming. Reprogramming is the addition of genes to a cell that can dial the cell back to becoming a stem cell. By reprogramming adult cells, together with addition to them of a correct copy of the gene that is missing in DMD, we can potentially create stem cells that have the ability to create new, healthy muscle cells in the body of a DMD patient. This is essentially the strategy that we are developing in this proposal.

We start with mice that have a mutation in the same gene that is affected in DMD, so they have a disease similar to DMD. We reprogram some of their adult cells, add the correct gene, and grow the cells in incubators in a manner that will produce muscle stem cells. The muscle stem cells can be identified and purified by using an instrument that detects characteristic proteins that muscles make.

The corrected muscle stem cells are transplanted into mice with DMD, and the ability of the cells to generate healthy new muscle tissue is evaluated. Using the mouse results as a guide, a similar strategy will then be pursued with human cells, utilizing cells from patients with DMD. The cells will be reprogrammed, the correct gene added, and the cells grown into muscle stem cells. The ability of these cells to make healthy muscle will be tested by injection into mice with DMD that are immune-deficient, so they will accept a graft of human cells.

In order to make this process into something that could be used in the clinic, we will develop standard procedures for making and testing the cells, to ensure that they are effective and safe. In this way, this project could lead to a new stem cell therapy that could improve the clinical condition of DMD patients. If we have success with DMD, similar methods could be used to treat other degenerative disorders, and perhaps even some of the degeneration that occurs during normal aging

Read more from the original source:
Stem Cell Therapy for Duchenne Muscular Dystrophy ...

To Read More: Stem Cell Therapy for Duchenne Muscular Dystrophy …
categoriaIPS Cell Therapy commentoComments Off on Stem Cell Therapy for Duchenne Muscular Dystrophy … | dataMarch 16th, 2018
Read All

Adult Stem Cells and Gene Therapy Save a Young Boy With …

By JoanneRUSSELL25

When people talk about something that saved their skin, they usually mean that it helped them out of a difficult situation. But a young boy in Germany has literally had his skinand his lifesaved through the use of genetically-engineered adult stem cells.

The boy suffered from a condition called junctional epidermolysis bullosa, a severe and often lethal disease in which a mutation leaves the skin cells unable to interconnect and maintain epidermal integrity. The skin blisters and falls off, and the slightest touch or abrasion can leave a patch of skin gone and a painful, difficult-to-heal wound behind. There is no cure for the disease and little other than palliative care available for sufferers of the most severe forms.

Now researchers have combined use of adult stem cells with genetic engineering to successfully treat the young boys life-threatening condition. The boys doctors in Germany called on Dr. Michele De Luca at the University of Modena and Reggio Emilia in Italy to use a technique he has developed to correct the genetic problem and grow new skin.

Over many years, Dr. De Luca has developed a method to grow skin from a patients own epidermal adult stem cells, correct the genetic mutation in the laboratory, and use the genetically-engineered adult stem cells to grow healthy new skin. Dr. De Luca and his team took a tiny patch of skin from the boy, isolated the epidermal stem cells and corrected the genetic problem in stem cell culture. Then they grew sheets of genetically-corrected skin and transplanted them onto the boy.

Reports called the boys recovery stunning, with successful replacement of 80 percent of his skin. Before the procedure, the boys doctors tried several treatments to no avail. One doctor even said, We had a lot of problems in the first days keeping this kid alive. Yet within six months of starting the process, the boy was back in school.

PRO-LIFE COLLEGE STUDENT? LifeNews is looking for interns interested in writing, social media, or video creation. Contact us today.

His skin has remained healthy and completely blister-free. According to the published reports now 21 months after the boys transplant, he loves to show off his new skin and is enjoying school, playing soccer, and being a normal kid. The research has also taught scientists much about the possibilities of using adult stem cells in combination with gene therapy for treatment of diseases.

LifeNews Note: File photo.

Read more:
Adult Stem Cells and Gene Therapy Save a Young Boy With ...

To Read More: Adult Stem Cells and Gene Therapy Save a Young Boy With …
categoriaSkin Stem Cells commentoComments Off on Adult Stem Cells and Gene Therapy Save a Young Boy With … | dataMarch 13th, 2018
Read All

Development of 3D Bioprinting Techniques using Human …

By LizaAVILA

In this project, we aim to develop a 3D bioprinting technology to create functional cardiac tissues via encapsulation of cardiomyocytes derived from hESCs. To further improve their viability and cardiac functionality, we are developing a new vascularization technique to enhance the cardiac tissue model through the incorporation of functional vasculature using 3D bioprinting. In Specific Aim 1, we have successfully developed and optimized a rapid 3D bioprinting technique to create biomimetic 3D micro-architectures using hyaluronic acid (HA)-based biomaterials and hESC-derived cardiomyocytes. A protocol for the synthesis of the photopolymeriable hydrogel biomaterial (hyaluronic acid-glycidyl methacrylate (HA-GM)) proposed for use with the 3D bioprinting platform has been created and refined. HA-GM chemical synthesis efficiency was evaluated. H7 human embryonic stem cells (hESC) were used. These hESC derived cardiomyoctes (hESC-CMs) were shown to be well differentiated based on examining surface markers (Nkx2.5 & cardiac troponin T) and mRNA expression (Nkx2.5, ISL1, MYL2, and MYL7). These cells have been encapsulated within a 3D vasculature pattern of photopolymerized HA-GM hydrogel biomaterial. Digital images derived from a 3D model of the heart have been printed and the direct printing of biomaterials and cell-laden materials has been successfully achieved. Fluorescent staining showed encapsulated cell survival of this structure after 2-weeks of incubation. We have successfully measured the physiological function of cells embedded within the hydrogel constructs. We assessed changes in the cell viability, alignment and function of cells within hydrogel constructs. We successfully characterized electrical function of cardiomyocytes by optical mapping of Spontaneous Beats in unpatterned and patterned tissue constructs. We further measured mechanical function in the tissue constructs by cantilever displacement. We have also measured calcium transients in our 3D printed tissue constructs by live confocal imaging at varying frequencies. In Specific Aim 2, we have created an advanced vascularization technique for 3D pre-vascularized cardiac tissues with precise control of spatial organization. Human umbilical vein endothelial cells (HUVECs) were encapsulated within a mesh of hexagonal channels and cardiomyocytes were encapsulated within islands between these channels to demonstrate the capability of spatially printing distinct cell populations into a simple prevascularized co-culture model. Cells in this bioprinted configuration showed proliferation and viability. To investigate the formation of the endothelial network, we performed immunofluorescence staining on the prevascularized tissues after 1-week culture in vitro. Human-specific CD31 staining (green) in confocal microscopy shows the conjunctive network formation of HUVECs at different patterned channel widths.

Read this article:
Development of 3D Bioprinting Techniques using Human ...

To Read More: Development of 3D Bioprinting Techniques using Human …
categoriaCardiac Stem Cells commentoComments Off on Development of 3D Bioprinting Techniques using Human … | dataMarch 10th, 2018
Read All

Lung Institute | Stem Cell Research Study for Lung Disease

By Dr. Matthew Watson

The Problem with Chronic Pulmonary Diseases

Chronic Obstructive Pulmonary Disease (COPD) is a progressive lung disorder that often occurs as a result of prolonged cigarette smoking, second-hand smoke, and polluted air or working conditions. COPD is the most prevalent form of chronic lung disease. The physiological symptoms of COPD include shortness of breath (dyspnea), cough, and sputum production, exercise intolerance and reduced Quality of Life (QOL). These signs and symptoms are brought about by chronic inflammation of the airways, which restricts breathing. When fibrotic tissues contract, the lumen is narrowed, compromising lung function. As histological studies confirm, airway fibrosis and luminal narrowing are major features that lead to airflow limitation in COPD1-3.

Today, COPD is a serious global health issue, with a prevalence of 9-10% of adults aged 40 and older4. And the prevalence of the disease is only expected to rise. Currently COPD accounts for 27% of tobacco related deaths and is anticipated to become the fourth leading cause of death worldwide by 2030 5. Today, COPD affects approximately 600 million individualsroughly 5% of the worlds population 6. Despite modern medicine and technological advancements, there is no known cure for COPD.

The difficulty in treating COPD and other lung diseases rests in the trouble of stimulating alveolar wall formation15. Until recently, treatment has been limited by two things: a lack of understanding of the pathophysiology of these disease processes on a molecular level and a lack of pharmaceutical development that would affect these molecular mechanisms. This results in treatment focused primarily in addressing the symptoms of the disease rather than healing or slowing the progression of the disease itself.

The result is that there are few options available outside of bronchodilators and corticosteroids7. Although lung transplants are performed as an alternative option, there is currently a severe shortage of donor lungs, leaving many patients to die on waiting lists prior to transplantation. Lung transplantation is also a very invasive form of treatment, commonly offering poor results, a poor quality of life with a 5-year mortality rate of approximately 50%, and a litany of health problems associated with lifelong immunosuppression13.

However, it has been shown that undifferentiated multipotent endogenous tissue stem cells (cells that have been identified in nearly all tissues) may contribute to tissue maintenance and repair due to their inherent anti-inflammatory properties. Human mesenchymal stromal cells have been shown to produce large quantities of bioactive factors including cytokines and various growth factors which provide molecular cueing for regenerative pathways. This affects the status of responding cells intrinsic in the tissue 18. These bioactive factors have the ability to influence multiple immune effector functions including cell development, maturation, and allo-reactive T-cell responses 19. Although research on the use of autologous stem cells (both hematopoietic and mesenchymal) in regenerative stem cell therapy is still in the early stages of implementation, it has shown substantive progress in treating patients with few if any adverse effects.

The Lung Institute (LI) provided treatment by harvesting autologous stem cells (hematopoietic stem cells and mesenchymal stromal cells) by withdrawing adipose tissue (fat), bone marrow or peripheral blood. These harvested cells are isolated and concentrated, and along with platelet-rich plasma, are then reintroduced into the body and enter the pulmonary vasculature (vessels of the lungs) where cells are trapped in the microcirculation (the pulmonary trap). Alternatively, nebulized stem cells are reintroduced through the airways in patients who have undergone an adipose (fat tissue) treatment.

Individuals diagnosed with COPD were tracked by the Lung Institute to measure the effects of treatment via either the venous protocol or adipose protocol on both their pulmonary function as well as their Quality of Life.

All PFTs were performed according to national practice guideline standards for repeatability and acceptability8-10. On PFTs, pre-treatment data was collected through on-site testing or through previous medical examinations by the patients primary physician (if done within two weeks). The test was then repeated by their primary physician 6 months after treatment.*

* Due to the examination information required from primary physicians, only 25 out of 100 patients are reflected in the PFT data.

Patients with progressive COPD will typically experience a steady decrease in their Quality of Life. Given this development, a patients Quality of Life score is frequently used to define additional therapeutic effects, with regulatory authorities frequently encouraging their use as primary or secondary outcomes17.

On quality of life testing, data was collected through the implementation of the Clinical COPD Questionnaire (CCQ) based survey17. The survey measured the patients self-assessed quality of life on a 0-6 scale, with adverse Quality of Life correlated in ascending numerical order. It was implemented in three stages: pre-treatment, 3-months post-treatment, and 6-months post-treatment. The survey measured two distinct outcomes: the QLS score, which measured the patients self-assessed quality of life score, and the QIS, a percentage-based measurement determining the proportion of patients within the sample that experienced QLS score improvements.

Over the duration of six months, the results of 100 patients treated for COPD through venous and adipose based therapies were tracked by the Lung Institute in order to measure changes in pulmonary function and any improvement in Quality of Life.

Of the 100 patients treated by the Lung Institute, 64 were male (64%) and 36 were female (36%). Ages of those treated range from 55-88 years old with an average age of 71. Throughout the study, 82 (82%) were treated with venous derived stem cells, while 18 (18%) were treated from stem cells derived from adipose tissue.

* The survey measured the patients self-assessed quality of life on a 0-6 scale, with adverse Quality of Life correlated in ascending numerical order.

Over the course of the study, the patient group averaged an increase of 35.5% to their Quality of Life (QLS) score within three months of treatment. While in the QIS, 84% of all patients found that their Quality of Life score had improved within three months of treatment (figure 1.3).

Within the PFT results, 48% of patients tested saw an increase of over 10% to their original pulmonary function with an average increase of 16%. During the three to six month period after treatment, patients saw a small decline in their progress, with QLS scores dropping from 35.5% to 32%, and the QIS from 84% to 77%.Fletcher and Petos work shows that patient survival rate can be improved through appropriate or positive intervention14 (figure 1.4). It remains to be seen if better quality of life will translate to longevity, but if one examines what factors allow for improved quality of life such as improvement in oxygen use, exercise tolerance, medication use, visits to the hospital and reduction in disease flare ups then one can see that quality of life improves in association with clinical improvement.

Currently the most utilized options for treating COPD are bronchodilator inhalers with or without corticosteroids and lung transplant each has downsides. Inhalers are often used incorrectly11, are expensive over time, and can only provide temporary relief of symptoms. Corticosteroids, though useful, have risk of serious adverse side effects such as infections, blood sugar imbalance, and weight gain to name a few 16. Lung transplants are expensive, have an adverse impact on quality of life and have a high probability of rejection by the body the treatment of which creates a new set of problems for patients. In contrast, initial studies of stem cells treatments show efficacy, lack of adverse side effects and may be used safely in conjunction with other treatments.

Through the data collected by the Lung Institute, developing methodologies for this form of treatment are quickly taking place as other entities of the medical community follow suit. In a recent study of regenerative stem cell therapy done by the University of Utah, patients exhibited improvement in PFTs and oxygen requirement compared to the control group with no acute adverse events12. Through the infusion of stem cells derived from the patients own body, stem cell therapy minimizes the chance of rejection to the highest degree, promotes healing and can improve the patients pulmonary function and quality of life with no adverse side effects.

Although more studies using a greater number of patients is needed to further examine objective parameters such as PFTs, exercise tests, oxygen, medication use and hospital visits, larger sample sizes will also help determine if one protocol is more beneficial than others. With deeper research, utilizing economic analysis along with longer-term follow up will answer questions on patient selection, the benefits of repeated treatments, and a possible reduction in healthcare costs for COPD treatment.

The field of Cellular Therapy and Regenerative Medicine is rapidly advancing and providing effective treatments for diseases in many areas of medicine.The Lung Institutes strives to provide the latest in safe, effective therapy for chronic lung disease and maintain a leadership role in the clinical application of these technologies.

In a landscape of scarce options and rising costs, the Lung Institute believes that stem cell therapy is the future of treatment for those suffering from COPD and other lung diseases. Although data is limited at this stage, we are proud to champion this form of treatment while sharing our findings.

See the rest here:
Lung Institute | Stem Cell Research Study for Lung Disease

To Read More: Lung Institute | Stem Cell Research Study for Lung Disease
categoriaIPS Cell Therapy commentoComments Off on Lung Institute | Stem Cell Research Study for Lung Disease | dataMarch 9th, 2018
Read All

Paraplegic breakthrough using adult stem cells – WND

By raymumme

In an apparent major breakthrough, scientists in Korea report using umbilical cord blood stem cells to restore feeling and mobility to a spinal-cord injury patient.

The research, published in the peer-reviewed journal Cythotherapy, centered on a woman had been a paraplegic 19 years due to an accident.

After an infusion of umbilical cord blood stem cells, stunning results were recorded:

The patient could move her hips and feel her hip skin on day 15 after transplantation. On day 25 after transplantation her feet responded to stimulation.

Umbilical cord cells are considered adult stem cells, in contrast to embryonic stem cells, which have raised ethical concerns because a human embryo must be destroyed in order to harvest them.

The report said motor activity was noticed on day 7, and she was able to maintain an upright position on day 13. Fifteen days after surgery, she began to elevate both lower legs about one centimeter.

The studys abstract says not only did the patient regain feeling, but 41 days after stem cell transplantation, testing also showed regeneration of the spinal cord at the injured cite and below it.

The scientists conclude the transplantation could be a good treatment method for paraplegic patients.

Bioethics specialist Wesley J. Smith, writing in Lifesite.com, expressed enthusiasm about the apparent breakthrough, but also urged caution.

We have to be cautious, said Smith, a senior fellow at the Seattle-based Discovery Institute and a special consultant to the Center for Bioethics and Culture. One patient does not a treatment make.

The authors of the study note, writes Smith, that the lamenectomy the patient received might have offered some benefit.

But still, this is a wonderful story that offers tremendous hope for paralyzed patients, he said.

The fact that the patient has a very old injury, Smith added, makes the results even more dramatic.

Smith said he has known about the study for some time, but because I didnt want to be guilty of the same hyping that is so often engaged in by some therapeutic cloning proponents, I waited until it was published in a peer reviewed journal.

Like most breakthroughs using adult stem cells, this one has been completely ignored by the U.S. mainstream media, Smith pointed out.

Can you imagine the headlines if the cells used had been embryonic? he asked.

Read the original post:
Paraplegic breakthrough using adult stem cells - WND

To Read More: Paraplegic breakthrough using adult stem cells – WND
categoriaSpinal Cord Stem Cells commentoComments Off on Paraplegic breakthrough using adult stem cells – WND | dataMarch 4th, 2018
Read All

Adult Stem Cell Success Story | Spinal Cord Injury | SCRF

By raymumme

(May, 2010) If there was ever a woman on a mission, its Laura Dominguez. Doctors once told her shed never walk again. And while shes not ready to run a marathon, shes already proving them wrong, with the best yet to come.

An oil spill on a San Antonio freeway is blamed for the car crash that sent Laura and her brother directly into a retaining wall one summer afternoon in 2001. Laura was just 16 years old at the time and the crash left her completely paralyzed from the neck down. Surgeons say she suffered whats known as a C6 vertebrae fracture that severely damaged her spinal cord.

I refused to accept their prognosis that I never would walk again and began searching for other options, says Laura. After stays in several hospitals for nearly a year, Laura and her mother relocated to San Diego, CA so that she could undergo extensive physical therapy. While in California, they met a family whose daughter was suffering from a similar spinal cord injury. They were also looking for other alternatives to deal with spinal cord injuries.

After extensive research and consultations with medical experts in the field of spinal cord injuries, they decided to explore a groundbreaking new surgical procedure using adult stem cells pioneered by Dr. Carlos Lima of Portugal.

The surgery involved the removal of tissue from the olfactory sinus area at the back of the nose--and transplanting it into the spinal cord at the injury site. Both procedures, the harvesting of the tissue and the transplant, were done at the same time. Laura was the tenth person in the world and the second American to have this procedure done and was featured in a special report by PBS called Miracle Cell.(Link to Miracle Cell (PBS) Episode)

Following the surgery she returned to California where she continued with the physical therapy regimen, then eventually returned home to San Antonio. Upon her return home, an MRI revealed her spinal cord was beginning to heal. Approximately 70% of the lesion now looked like normal spinal cord tissue. More importantly to Laura, she began to regain feeling in parts of her upper body and within six months of the surgery regained feeling down to her abdomen.

Improvements in sensory feelings have continued until the present time. She can feel down to her hips, and has regained feeling and some movement in her legs. Lauras upper body has gained more strength and balance and one of the most evident improvements has been her ability to stand and remain standing, using a walker, and with minimal assistance. When she stands she can contract her quadriceps and hamstring muscles.

Every week it seems Im able to do something new, something different that I hadnt done the week before, says Laura.

Now Lauras story is poised to take a new, potentially groundbreaking turn. In the Fall of 2009, she traveled again to Portugal where adult stem cells were extracted from her nose for culturing. As this story is written, she is preparing to fly back to Portugal where scar tissue at her injury site will be removed and her own adult stem cells injected in the area of her original wound.

The Laura Dominguez story is not complete. The next chapter may or may not yield the results she seeksbut no one can deny the determination and courage of Laura. For her part, she has one goal in mind: I will walk again.

We shall update this site and keep you informed on her progress.

Read more:
Adult Stem Cell Success Story | Spinal Cord Injury | SCRF

To Read More: Adult Stem Cell Success Story | Spinal Cord Injury | SCRF
categoriaSpinal Cord Stem Cells commentoComments Off on Adult Stem Cell Success Story | Spinal Cord Injury | SCRF | dataMarch 1st, 2018
Read All

Bone marrow | anatomy | Britannica.com

By Sykes24Tracey

Bone marrow, also called myeloid tissue, soft, gelatinous tissue that fills the cavities of the bones. Bone marrow is either red or yellow, depending upon the preponderance of hematopoietic (red) or fatty (yellow) tissue. In humans the red bone marrow forms all of the blood cells with the exception of the lymphocytes, which are produced in the marrow and reach their mature form in the lymphoid organs. Red bone marrow also contributes, along with the liver and spleen, to the destruction of old red blood cells. Yellow bone marrow serves primarily as a storehouse for fats but may be converted to red marrow under certain conditions, such as severe blood loss or fever. At birth and until about the age of seven, all human marrow is red, as the need for new blood formation is high. Thereafter, fat tissue gradually replaces the red marrow, which in adults is found only in the vertebrae, hips, breastbone, ribs, and skull and at the ends of the long bones of the arm and leg; other cancellous, or spongy, bones and the central cavities of the long bones are filled with yellow marrow.

Red marrow consists of a delicate, highly vascular fibrous tissue containing stem cells, which differentiate into various blood cells. Stem cells first become precursors, or blast cells, of various kinds; normoblasts give rise to the red blood cells (erythrocytes), and myeloblasts become the granulocytes, a type of white blood cell (leukocyte). Platelets, small blood cell fragments involved in clotting, form from giant marrow cells called megakaryocytes. The new blood cells are released into the sinusoids, large thin-walled vessels that drain into the veins of the bone. In mammals, blood formation in adults takes place predominantly in the marrow. In lower vertebrates a number of other tissues may also produce blood cells, including the liver and the spleen.

Because the white blood cells produced in the bone marrow are involved in the bodys immune defenses, marrow transplants have been used to treat certain types of immune deficiency and hematological disorders, especially leukemia. The sensitivity of marrow to damage by radiation therapy and some anticancer drugs accounts for the tendency of these treatments to impair immunity and blood production.

Examination of the bone marrow is helpful in diagnosing certain diseases, especially those related to blood and blood-forming organs, because it provides information on iron stores and blood production. Bone marrow aspiration, the direct removal of a small amount (about 1 ml) of bone marrow, is accomplished by suction through a hollow needle. The needle is usually inserted into the hip or sternum (breastbone) in adults and into the upper part of the tibia (the larger bone of the lower leg) in children. The necessity for a bone marrow aspiration is ordinarily based on previous blood studies and is particularly useful in providing information on various stages of immature blood cells. Disorders in which bone marrow examination is of special diagnostic value include leukemia, multiple myeloma, Gaucher disease, unusual cases of anemia, and other hematological diseases.

More here:
Bone marrow | anatomy | Britannica.com

To Read More: Bone marrow | anatomy | Britannica.com
categoriaBone Marrow Stem Cells commentoComments Off on Bone marrow | anatomy | Britannica.com | dataFebruary 16th, 2018
Read All

Home – STEM CELL SCIENCE

By LizaAVILA

Stem cell can be isolated from the the bone marrow and adipose tissue in the abdomen that are capable of forming new blood vessels and heart muscle cells. The cell number is so small in the tissues that the cells should be grown for several weeks before there is enough for the treatment of patients.

We have conducted three clinical stem cell therapy studies in which patients with coronary artery disease havebeen treated with their own mesenchymal stem cells from either the bone marrow or adipose tissue. Encouraging results are available from two studies and there is ongoing follow-up in the third study. Treatments with stem cells have in all previous studies been without any side effects.

During the course of the SCIENCE study a total of 138 patients with heart failure will be included and treated in a so-called blinded placebo-controlled design. This means that 92 patients will receive stem cells and 46 patients placebo (inactive medication, saline). Choice of treatment will be done by drawing lots. The study is carried out by an international collaboration between cardiac centers in Denmark, Poland, Germany, Netherlands, Austria and Sloveniaand the industrial partners Terumo BCT and COOK Tegentec.

See original here:
Home - STEM CELL SCIENCE

To Read More: Home – STEM CELL SCIENCE
categoriaCardiac Stem Cells commentoComments Off on Home – STEM CELL SCIENCE | dataFebruary 13th, 2018
Read All

Page 353«..1020..352353354355..360370..»


Copyright :: 2024