Page 298«..1020..297298299300..310320..»

Bone Marrow Processing Systems Market : Industry Trends and Developments 2018 2025 – Cole of Duty

By daniellenierenberg

Bone marrow aspirationand trephine biopsy are usually performed on the back of the hipbone, or posterior iliac crest. An aspirate can also be obtained from the sternum (breastbone). For the sternal aspirate, the patient lies on their back, with a pillow under the shoulder to raise the chest. A trephine biopsy should never be performed on the sternum, due to the risk of injury to blood vessels, lungs or the heart.

The need to selectively isolate and concentrate selective cells, such as mononuclear cells, allogeneic cancer cells, T cells and others, is driving the market. Over 30,000 bone marrow transplants occur every year. The explosive growth of stem cells therapies represents the largest growth opportunity for bone marrow processing systems.

Request For Report Sample:https://www.trendsmarketresearch.com/report/sample/3374

Europe and North America spearheaded the market as of 2018, by contributing over 74.0% to the overall revenue. Majority of stem cell transplants are conducted in Europe, and it is one of the major factors contributing to the lucrative share in the cell harvesting system market.

In 2018, North America dominated the research landscape as more than 54.0% of stem cell clinical trials were conducted in this region. The region also accounts for the second largest number of stem cell transplantation, which is further driving the demand for harvesting in the region.

Asia Pacific is anticipated to witness lucrative growth over the forecast period, owing to rising incidence of chronic diseases and increasing demand for stem cell transplantation along with stem cell-based therapy. Japan and China are the biggest markets for harvesting systems in Asia Pacific.

Emerging countries such as Mexico, South Korea, and South Africa are also expected to report lucrative growth over the forecast period. Growing investment by government bodies on stem cell-based research and increase in aging population can be attributed to the increasing demand for these therapies in these countries.

Major players operating in the global bone marrow processing systems market are ThermoGenesis (Cesca Therapeutics inc.), RegenMed Systems Inc., MK Alliance Inc., Fresenius Kabi AG, Harvest Technologies (Terumo BCT), Arthrex, Inc. and others.

Covid 19 Impact [emailprotected]https://www.trendsmarketresearch.com/report/covid-19-analysis/3374

Here is the original post:
Bone Marrow Processing Systems Market : Industry Trends and Developments 2018 2025 - Cole of Duty

To Read More: Bone Marrow Processing Systems Market : Industry Trends and Developments 2018 2025 – Cole of Duty
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Processing Systems Market : Industry Trends and Developments 2018 2025 – Cole of Duty | dataJune 12th, 2020
Read All

BrainStorm to Present at the Raymond James Human Health Innovations Conference – Yahoo Finance

By daniellenierenberg

Management to Host One-on-One Investment Meetings

NEW YORK, June 11, 2020 /PRNewswire/ --BrainStorm Cell Therapeutics Inc.(NASDAQ: BCLI), a leading developer of adult stem cell therapies for neurodegenerative diseases, today announced Chaim Lebovits, CEO and Ralph Kern, MD, MHSc, President and Chief Medical Officer, will present a corporate overview on Thursday, June 18 at 9:00 am EST, during theRaymond James Human Health Innovations Conference, a virtual event connecting institutional investors with company management teams that will be held June 15-18, 2020.

Mr. Lebovits and Dr. Kern will update conference participants on the Company's investigational therapeutic, NurOwn, that is currently in a fully enrolled phase 3 study for the treatment of ALS and a phase 2 study for the treatment of progressive multiple sclerosis. Additionally, they will present an overview of the Company's financial position and pipeline. After the presentation, the management team will participate in a question and answer session with institutional investors.

Mr. Lebovits and Dr. Kern will be joined by David Setboun, PhD, MBA, Chief Operating Officer, Stacy Lindborg, PhD, Head of Global Clinical Research, and Preetam Shah, PhD, MBA, Chief Financial Officer, for a series of one-on-one meetings, with select institutional investors arranged by Raymond James.

Participants can view the presentation via the event link and those unable to join will have access to an archived link on the Company's Events and Presentation webpage after the conclusion of the conference.

EVENT: Raymond James Human Health Innovations Conference

PRESENTATION: Thursday, June 18th at 9:00 am EST

LINK: https://bit.ly/2YmZf8u

About NurOwn

NurOwn (autologous MSC-NTF) cells represent a promising investigational therapeutic approach to targeting disease pathways important in neurodegenerative disorders. MSC-NTF cells are produced from autologous, bone marrow-derived mesenchymal stem cells (MSCs) that have been expanded and differentiated ex vivo. MSCs are converted into MSC-NTF cells by growing them under patented conditions that induce the cells to secrete high levels of neurotrophic factors. Autologous MSC-NTF cells can effectively deliver multiple NTFs and immunomodulatory cytokines directly to the site of damage to elicit a desired biological effect and ultimately slow or stabilize disease progression. BrainStorm has fully enrolled a Phase 3 pivotal trial of autologous MSC-NTF cells for the treatment of amyotrophic lateral sclerosis (ALS). BrainStorm also recently receivedU.S.FDA acceptance to initiate a Phase 2 open-label multicenter trial in progressive MS and enrollment began inMarch 2019.

AboutBrainStorm Cell Therapeutics Inc.

BrainStorm Cell Therapeutics Inc.is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwn technology platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement. Autologous MSC-NTF cells have received Orphan Drug status designation from theU.S. Food and Drug Administration(U.S.FDA) and theEuropean Medicines Agency(EMA) in ALS. BrainStorm has fully enrolled a Phase 3 pivotal trial in ALS (NCT03280056), investigating repeat-administration of autologous MSC-NTF cells at sixU.S.sites supported by a grant from theCalifornia Institute for Regenerative Medicine(CIRM CLIN2-0989). The pivotal study is intended to support a filing forU.S.FDA approval of autologous MSC-NTF cells in ALS. BrainStorm also recently receivedU.S.FDA clearance to initiate a Phase 2 open-label multicenter trial in progressive Multiple Sclerosis. The Phase 2 study of autologous MSC-NTF cells in patients with progressive MS (NCT03799718) started enrollment inMarch 2019.

Story continues

Safe-Harbor Statement

Statements in this announcement other than historical data and information, including statements regarding future clinical trial enrollment and data, constitute "forward-looking statements" and involve risks and uncertainties that could causeBrainStorm Cell Therapeutics Inc.'sactual results to differ materially from those stated or implied by such forward-looking statements. Terms and phrases such as "may", "should", "would", "could", "will", "expect", "likely", "believe", "plan", "estimate", "predict", "potential", and similar terms and phrases are intended to identify these forward-looking statements. The potential risks and uncertainties include, without limitation, BrainStorm's need to raise additional capital, BrainStorm's ability to continue as a going concern, regulatory approval of BrainStorm's NurOwn treatment candidate, the success of BrainStorm's product development programs and research, regulatory and personnel issues, development of a global market for our services, the ability to secure and maintain research institutions to conduct our clinical trials, the ability to generate significant revenue, the ability of BrainStorm's NurOwn treatment candidate to achieve broad acceptance as a treatment option for ALS or other neurodegenerative diseases, BrainStorm's ability to manufacture and commercialize the NurOwn treatment candidate, obtaining patents that provide meaningful protection, competition and market developments, BrainStorm's ability to protect our intellectual property from infringement by third parties, heath reform legislation, demand for our services, currency exchange rates and product liability claims and litigation,; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available athttp://www.sec.gov. These factors should be considered carefully, and readers should not place undue reliance on BrainStorm's forward-looking statements. The forward-looking statements contained in this press release are based on the beliefs, expectations and opinions of management as of the date of this press release. We do not assume any obligation to update forward-looking statements to reflect actual results or assumptions if circumstances or management's beliefs, expectations or opinions should change, unless otherwise required by law. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.

CONTACTS

Investor Relations:Preetam Shah, MBA, PhDChief Financial OfficerBrainStorm Cell Therapeutics Inc.Phone: +1-862-397-1860pshah@brainstorm-cell.com

Media:

Sean LeousWestwicke/ICR PRPhone: +1-646-677-1839sean.leous@icrinc.com

View original content:http://www.prnewswire.com/news-releases/brainstorm-to-present-at-the-raymond-james-human-health-innovations-conference-301074370.html

SOURCE Brainstorm Cell Therapeutics Inc

Link:
BrainStorm to Present at the Raymond James Human Health Innovations Conference - Yahoo Finance

To Read More: BrainStorm to Present at the Raymond James Human Health Innovations Conference – Yahoo Finance
categoriaBone Marrow Stem Cells commentoComments Off on BrainStorm to Present at the Raymond James Human Health Innovations Conference – Yahoo Finance | dataJune 12th, 2020
Read All

Avalon GloboCare strikes three-way material transfer agreement with Weill Cornell Medicine and Arbele Limited – Proactive Investors USA & Canada

By daniellenierenberg

The company said the move was aimed at the development of next generation cellular immunotherapy FLASH-CAR technology

(), a clinical-stage developer of cell-based technologies and therapeutics, announced Thursday that it has struck a three-way material transfer agreement (MTA) with Weill Cornell Medicine in New York City and the companys strategic partner, Arbele Limited.

With this agreement, Avalon GloboCare and Arbele Limited intend to collaborate with Weill Cornell Medicine and co-develop the standardized laboratory steps necessary to generate clinical-grade CAR-T and CAR-natural killer (NK) cells for use in future human clinical trials with Avalons first FLASH-CAR platform candidate, AVA-011.Similar to T-cells, NK cells are a type of white blood cell, also able to attack cancer cells, but utilize different mechanisms.

The company said this process development step will provide the bridge between Avalons benchtop research and the bio-manufacturing processes to potentially deliver the clinical-grade cellular immunotherapy product to patients.

READ:Avalon GloboCare advancing immune cell therapy to treat blood cancers using FLASH-CAR technology

We are excited about this agreement to translate our cellular therapy candidates into standardized, clinical-grade cell products that could be used in future clinical trials, Avalon GloboCare CEO David Jin said in a statement.

This step reflects our dedication to establishing an infrastructure to develop our cellular immunotherapy candidates and to maintain the highest possible standards for generating clinical-grade cells for human cancer trials, he added.

AVA-011 is a next generation cellular immunotherapy candidate using Avalons FLASH-CAR technology that targets both CD19 and CD22 tumor antigens on cancer cells. Avalon has already successfully completed pre-clinical research on AVA-011, including tumor cytotoxicity studies.

Avalon expects to begin a first-in-human clinical trial with AVA-011 for the treatment of relapsed or refractory B-cell lymphoblastic leukemia (B-ALL) and non-Hodgkin lymphoma in the first quarter of 2021. The goal is to use AVA-011 as a bridge to bone marrow stem cell transplant therapy, currently the only curative approach for patients with these blood cancers.

Avalons next generation immune cell therapy using FLASH-CAR technology is being co-developed with the companys strategic partner Arbele Limited. The adaptable FLASH-CAR platform can be used to create personalized cell therapy from a patients own cells, as well as off-the-shelf cell therapy from a universal donor, expanding the reach of cancer patients that can be treated.

Avalon, based in Freehold, New Jersey, specializes in developing cell-based technologies and is involved in the management of stem-cell banks and clinical laboratories.

Contact the author Uttara Choudhury at [emailprotected]

Follow her on Twitter: @UttaraProactive

View post:
Avalon GloboCare strikes three-way material transfer agreement with Weill Cornell Medicine and Arbele Limited - Proactive Investors USA & Canada

To Read More: Avalon GloboCare strikes three-way material transfer agreement with Weill Cornell Medicine and Arbele Limited – Proactive Investors USA & Canada
categoriaBone Marrow Stem Cells commentoComments Off on Avalon GloboCare strikes three-way material transfer agreement with Weill Cornell Medicine and Arbele Limited – Proactive Investors USA & Canada | dataJune 12th, 2020
Read All

CRISPR Therapeutics and Vertex Announce New Clinical Data for Investigational Gene-Editing Therapy CTX001 in Severe Hemoglobinopathies at the 25th…

By daniellenierenberg

-Beta thalassemia: Two patients are transfusion independent at 5 and 15 months after CTX001 infusion; data demonstrate clinical proof-of-concept for CTX001 in transfusion-dependent beta thalassemia-

-Sickle cell disease: Patient is free of vaso-occlusive crises at 9 months after CTX001 infusion-

-Five patients with beta thalassemia and two patients with sickle cell disease have been treated to date with CTX001 and all have successfully engrafted-

ZUG, Switzerland and CAMBRIDGE, Mass. and BOSTON, June 12, 2020 (GLOBE NEWSWIRE) -- CRISPR Therapeutics (Nasdaq: CRSP) and Vertex Pharmaceuticals Incorporated (Nasdaq: VRTX) today announced new clinical data for CTX001, an investigational CRISPR/Cas9 gene-editing therapy, from the CLIMB-111 and CLIMB-121 Phase 1/2 trials in transfusion-dependent beta thalassemia (TDT) and severe sickle cell disease (SCD), and highlighted recent progress in the CTX001 development program. These data were presented during an oral presentation at the European Hematology Association (EHA) virtual congress by Dr. Selim Corbacioglu, Professor of Pediatrics and the Chair of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Regensburg University Hospital, Regensburg, Germany.

CLIMB-111 Trial in Transfusion-Dependent Beta Thalassemia Updated ResultsData presented today at EHA demonstrate clinical proof-of-concept for CTX001 in TDT. Data include longer-duration follow-up data for the first patient with TDT treated with CTX001 and new data for the second TDT patient treated. CRISPR Therapeutics and Vertex announced initial data for the first TDT patient in November of 2019.

Patient 1 with TDT has the 0/IVS-I-110 genotype, which is associated with a severe phenotype similar to 0/0, and had a transfusion requirement of 34 units of packed red blood cells per year (annualized rate during the two years prior to consenting for the trial) before enrolling in the clinical trial. As previously reported, the patient achieved neutrophil engraftment 33 days after CTX001 infusion and platelet engraftment 37 days after infusion. After CTX001 infusion, two serious adverse events (SAEs) occurred, neither of which the principal investigator (PI) considered related to CTX001: pneumonia in the presence of neutropenia, and veno-occlusive liver disease attributed to busulfan conditioning; both subsequently resolved. New data presented today show that at 15 months after CTX001 infusion, the patient was transfusion independent and had total hemoglobin levels of 14.2 g/dL, fetal hemoglobin of 13.5 g/dL, and F-cells (erythrocytes expressing fetal hemoglobin) of 100.0%. Bone marrow allelic editing was 78.1% at 6 months and 76.1% at one year.

Patient 2 with TDT has the 0/IVS-II-745 genotype and had a transfusion requirement of 61 units of packed red blood cells per year (annualized rate during the two years prior to consenting for the trial) before enrolling in the clinical trial. The patient achieved neutrophil engraftment 36 days after CTX001 infusion and platelet engraftment 34 days after infusion. After CTX001 infusion, two SAEs occurred, neither of which the PI considered related to CTX001: pneumonia and an upper respiratory tract infection; both subsequently resolved. At 5 months after CTX001 infusion, the patient was transfusion independent and had total hemoglobin levels of 12.5 g/dL, fetal hemoglobin of 12.2 g/dL, and F-cells (erythrocytes expressing fetal hemoglobin) of 99.4%.

Hemoglobin data over time are presented for Patient 1 and Patient 2 below.

Figure 1accompanying this announcement is available at https://www.globenewswire.com/NewsRoom/AttachmentNg/35581299-d683-44b0-a75e-7a1a9b9fe9eb

CLIMB-121 Trial in Severe Sickle Cell Disease Updated Results Data presented today at EHA reflect longer-duration follow-up data for the first patient with SCD treated with CTX001. CRISPR Therapeutics and Vertex announced initial data for this first SCD patient in November of 2019.

Patient 1 with SCD experienced seven vaso-occlusive crises (VOCs) and five packed red blood cell transfusions per year (annualized rate during the two years prior to consenting for the trial) before enrolling in the clinical trial. As previously reported, the patient achieved neutrophil and platelet engraftment 30 days after CTX001 infusion. After CTX001 infusion, three SAEs occurred, none of which the PI considered related to CTX001: sepsis in the presence of neutropenia, cholelithiasis and abdominal pain; all subsequently resolved. New data presented today show that at 9 months after CTX001 infusion, the patient was free of VOCs, was transfusion independent and had total hemoglobin levels of 11.8 g/dL, 46.1% fetal hemoglobin, and F-cells (erythrocytes expressing fetal hemoglobin) of 99.7%. Bone marrow allelic editing was 81.4% at 6 months. Figure 2 presents the hemoglobin data over time for this patient.

Figure 2 accompanying this announcement is available at https://www.globenewswire.com/NewsRoom/AttachmentNg/7610c5bd-25c8-4f5b-be86-8bc16ed57eb1

With these new data, we are beginning to see early evidence of the potential durability of benefit from treatment with CTX001, as well as consistency of the therapeutic effect across patients, said Samarth Kulkarni, Ph.D., Chief Executive Officer of CRISPR Therapeutics. These highly encouraging early data represent one more step toward delivering on the promise and potential of CRISPR/Cas9 therapies as a new class of potentially transformative medicines to treat serious diseases.

The data announced today are remarkable, including the demonstration of clinical proof-of-concept in TDT, said Reshma Kewalramani, M.D., Chief Executive Officer and President of Vertex. While these are still early days, these data mark another important milestone for this program and for the field of gene editing. The results presented at this medical conference add to results previously shared demonstrating that CRISPR/Cas9 gene editing has the potential to be a curative therapy for severe genetic diseases like sickle cell and beta thalassemia.

In my 25 years of caring for children and young adults facing both sickle cell disease and beta thalassemia, I have seen how these diseases can adversely affect patients lives in very significant ways, said Dr. Haydar Frangoul, Medical Director of Pediatric Hematology and Oncology at Sarah Cannon Research Institute, HCA Healthcares TriStar Centennial Medical Center and senior author of the abstract presented at the EHA virtual congress. I am encouraged by the preliminary results, which demonstrate, in essence, a functional cure for patients with beta thalassemia and sickle cell disease.

Recent Progress in the Phase 1/2 Clinical TrialsCLIMB-111 for TDT has dosed a total of 5 patients, and all patients have successfully engrafted. The trial is also now open for concurrent dosing after successful dosing and engraftment of the first two patients. Additionally, CLIMB-111 has been expanded to allow enrollment of 0/0 patients and is in the process of being expanded to allow enrollment of pediatric patients ages 12 years or older.

CLIMB-121 for SCD has dosed a total of 2 patients and both patients have successfully engrafted. The trial is also now open for concurrent dosing after successful dosing and engraftment of these first two patients.

The initial safety profile in these trials appears to be consistent with myeloablative busulfan conditioning and an autologous hematopoietic stem cell transplant.

In March 2020, clinical trial sites in the U.S. and Europe temporarily paused their elective hematopoietic stem cell transplant programs due to the COVID-19 pandemic, and as a result, CRISPR and Vertex temporarily paused conditioning and dosing in these trials. Enrollment, mobilization and drug product manufacturing in each trial remains ongoing. The companies are now in the process of re-initiating dosing with CTX001 at certain clinical trial sites. The CLIMB-111 and CLIMB-121 clinical trials are ongoing, and patients will be followed for 2 years following CTX001 infusion. The companies expect to provide additional data in the second half of 2020.

About CTX001CTX001 is an investigational ex vivo CRISPR gene-edited therapy that is being evaluated for patients suffering from TDT or severe SCD in which a patients hematopoietic stem cells are engineered to produce high levels of fetal hemoglobin (HbF; hemoglobin F) in red blood cells. HbF is a form of the oxygen-carrying hemoglobin that is naturally present at birth, which then switches to the adult form of hemoglobin. The elevation of HbF by CTX001 has the potential to alleviate transfusion requirements for TDT patients and reduce painful and debilitating sickle crises for SCD patients.

Based on progress in this program to date, CTX001 has been granted Regenerative Medicine Advanced Therapy (RMAT) from the U.S. FDA, Orphan Drug Designation from both the FDA and the European Medicines Agency (EMA), and Fast Track Designation from the FDA for both SCD and TDT.

CTX001 is being developed under a co-development and co-commercialization agreement between CRISPR Therapeutics and Vertex. CTX001 is the most advanced gene-editing approach in development for TDT and SCD.

About CLIMB-111The ongoing Phase 1/2 open-label trial, CLIMB-Thal-111, is designed to assess the safety and efficacy of a single dose of CTX001 in patients ages 18 to 35 with TDT. The trial will enroll up to 45 patients and follow patients for approximately two years after infusion. Each patient will be asked to participate in a long-term follow-up trial.

About CLIMB-121The ongoing Phase 1/2 open-label trial, CLIMB-SCD-121, is designed to assess the safety and efficacy of a single dose of CTX001 in patients ages 18 to 35 with severe SCD. The trial will enroll up to 45 patients and follow patients for approximately two years after infusion. Each patient will be asked to participate in a long-term follow-up trial.

About the Gene-Editing Process in These TrialsPatients who enroll in these trials will have their own hematopoietic stem and progenitor cells collected from peripheral blood. The patients cells will be edited using the CRISPR/Cas9 technology. The edited cells, CTX001, will then be infused back into the patient as part of a stem cell transplant, a process which involves, among other things, a patient being treated with myeloablative busulfan conditioning. Patients undergoing stem cell transplants may also encounter side effects (ranging from mild to severe) that are unrelated to the administration of CTX001. Patients will initially be monitored to determine when the edited cells begin to produce mature blood cells, a process known as engraftment. After engraftment, patients will continue to be monitored to track the impact of CTX001 on multiple measures of disease and for safety.

About the CRISPR-Vertex Collaboration CRISPR Therapeutics and Vertex entered into a strategic research collaboration in 2015 focused on the use of CRISPR/Cas9 to discover and develop potential new treatments aimed at the underlying genetic causes of human disease. CTX001 represents the first treatment to emerge from the joint research program. CRISPR Therapeutics and Vertex will jointly develop and commercialize CTX001 and equally share all research and development costs and profits worldwide.

About CRISPR TherapeuticsCRISPR Therapeutics is a leading gene editing company focused on developing transformative gene-based medicines for serious diseases using its proprietary CRISPR/Cas9 platform. CRISPR/Cas9 is a revolutionary gene editing technology that allows for precise, directed changes to genomic DNA. CRISPR Therapeutics has established a portfolio of therapeutic programs across a broad range of disease areas including hemoglobinopathies, oncology, regenerative medicine and rare diseases. To accelerate and expand its efforts, CRISPR Therapeutics has established strategic collaborations with leading companies including Bayer, Vertex Pharmaceuticals and ViaCyte, Inc. CRISPR Therapeutics AG is headquartered in Zug, Switzerland, with its wholly-owned U.S. subsidiary, CRISPR Therapeutics, Inc., and R&D operations based in Cambridge, Massachusetts, and business offices in San Francisco, California and London, United Kingdom. For more information, please visit http://www.crisprtx.com.

CRISPR Therapeutics Forward-Looking StatementThis press release may contain a number of forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, including statements made by Dr. Kulkarni, Dr. Kewalramani and Dr. Frangoul in this press release, as well as statements regarding CRISPR Therapeutics expectations about any or all of the following: (i) the status of clinical trials (including, without limitation, the expected timing of data releases and activities at clinical trial sites) related to product candidates under development by CRISPR Therapeutics and its collaborators, including expectations regarding the data that is being presented at the European Hematology Associations virtual congress; (ii) the expected benefits of CRISPR Therapeutics collaborations; and (iii) the therapeutic value, development, and commercial potential of CRISPR/Cas9 gene editing technologies and therapies. Without limiting the foregoing, the words believes, anticipates, plans, expects and similar expressions are intended to identify forward-looking statements. You are cautioned that forward-looking statements are inherently uncertain. Although CRISPR Therapeutics believes that such statements are based on reasonable assumptions within the bounds of its knowledge of its business and operations, forward-looking statements are neither promises nor guarantees and they are necessarily subject to a high degree of uncertainty and risk. Actual performance and results may differ materially from those projected or suggested in the forward-looking statements due to various risks and uncertainties. These risks and uncertainties include, among others: potential impacts due to the coronavirus pandemic, such as the timing and progress of clinical trials; the potential for initial and preliminary data from any clinical trial and initial data from a limited number of patients (as is the case with CTX001 at this time) not to be indicative of final trial results; the potential that CTX001 clinical trial results may not be favorable; that future competitive or other market factors may adversely affect the commercial potential for CTX001; uncertainties regarding the intellectual property protection for CRISPR Therapeutics technology and intellectual property belonging to third parties, and the outcome of proceedings (such as an interference, an opposition or a similar proceeding) involving all or any portion of such intellectual property; and those risks and uncertainties described under the heading "Risk Factors" in CRISPR Therapeutics most recent annual report on Form 10-K, and in any other subsequent filings made by CRISPR Therapeutics with the U.S. Securities and Exchange Commission, which are available on the SEC's website at http://www.sec.gov. Existing and prospective investors are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date they are made. CRISPR Therapeutics disclaims any obligation or undertaking to update or revise any forward-looking statements contained in this press release, other than to the extent required by law.

About VertexVertex is a global biotechnology company that invests in scientific innovation to create transformative medicines for people with serious diseases. The company has multiple approved medicines that treat the underlying cause of cystic fibrosis (CF) a rare, life-threatening genetic disease and has several ongoing clinical and research programs in CF. Beyond CF, Vertex has a robust pipeline of investigational small molecule medicines in other serious diseases where it has deep insight into causal human biology, including pain, alpha-1 antitrypsin deficiency and APOL1-mediated kidney diseases. In addition, Vertex has a rapidly expanding pipeline of genetic and cell therapies for diseases such as sickle cell disease, beta thalassemia, Duchenne muscular dystrophy and type 1 diabetes mellitus.

Founded in 1989 in Cambridge, Mass., Vertex's global headquarters is now located in Boston's Innovation District and its international headquarters is in London, UK. Additionally, the company has research and development sites and commercial offices in North America, Europe, Australia and Latin America. Vertex is consistently recognized as one of the industry's top places to work, including 10 consecutive years on Science magazine's Top Employers list and top five on the 2019 Best Employers for Diversity list by Forbes. For company updates and to learn more about Vertex's history of innovation, visit http://www.vrtx.com or follow us on Facebook, Twitter, LinkedIn, YouTube and Instagram.

Vertex Special Note Regarding Forward-Looking StatementsThis press release contains forward-looking statements as defined in the Private Securities Litigation Reform Act of 1995, including, without limitation, statements made by Dr. Kulkarni, Dr. Kewalramani and Dr. Frangoul in this press release, and statements regarding our plans and expectations for our clinical trials and clinical trial sites, and our expectations regarding future data announcements. While Vertex believes the forward-looking statements contained in this press release are accurate, these forward-looking statements represent the company's beliefs only as of the date of this press release and there are a number of risks and uncertainties that could cause actual events or results to differ materially from those expressed or implied by such forward-looking statements. Those risks and uncertainties include, among other things, that data from the company's development programs may not support registration or further development of its compounds due to safety, efficacy or other reasons, and other risks listed under Risk Factors in Vertex's annual report and subsequent quarterly reports filed with the Securities and Exchange Commission and available through the company's website at http://www.vrtx.com. Vertex disclaims any obligation to update the information contained in this press release as new information becomes available.

(VRTX-GEN)

CRISPR Therapeutics Investor Contact:Susan Kim, +1 617-307-7503susan.kim@crisprtx.com

CRISPR Therapeutics Media Contact:Rachel EidesWCG on behalf of CRISPR+1 617-337-4167reides@wcgworld.com

Vertex Pharmaceuticals IncorporatedInvestors:Michael Partridge, +1 617-341-6108orZach Barber, +1 617-341-6470orBrenda Eustace, +1 617-341-6187

Media:mediainfo@vrtx.comorU.S.: +1 617-341-6992orHeather Nichols: +1 617-839-3607orInternational: +44 20 3204 5275

Read the rest here:
CRISPR Therapeutics and Vertex Announce New Clinical Data for Investigational Gene-Editing Therapy CTX001 in Severe Hemoglobinopathies at the 25th...

To Read More: CRISPR Therapeutics and Vertex Announce New Clinical Data for Investigational Gene-Editing Therapy CTX001 in Severe Hemoglobinopathies at the 25th…
categoriaBone Marrow Stem Cells commentoComments Off on CRISPR Therapeutics and Vertex Announce New Clinical Data for Investigational Gene-Editing Therapy CTX001 in Severe Hemoglobinopathies at the 25th… | dataJune 12th, 2020
Read All

Impact of Corona on Spinal Fusion Market Statistics, Investment Trends, Key Players and Forecast 2020-2026 | Cotton, Rayon, Blended – Cole of Duty

By daniellenierenberg

Spinal Fusion Market 2020: Latest Analysis

Chicago, United States:- The report titled Global Spinal Fusion Market is one of the most comprehensive and important additions to Report Hive Research archive of market research studies. It offers detailed research and analysis of key aspects of the global Spinal Fusion market. The market analysts authoring this report have provided in-depth information on leading growth drivers, restraints, challenges, trends, and opportunities to offer a complete analysis of the global Spinal Fusion market. Market participants can use the analysis on market dynamics to plan effective growth strategies and prepare for future challenges beforehand. Each trend of the global Spinal Fusion market is carefully analyzed and researched about by the market analysts.

Top Players of Spinal Fusion Market are Studied: Market by Materials, Cotton, Rayon, Blended

Download Free Sample PDF (including full TOC, Tables, and Figures) of Spinal Fusion Market Research 2020-2026:- @

Global Spinal Fusion Market is estimated to reach xxx million USD in 2020 and projected to grow at the CAGR of xx% during 2020-2026. According to the latest report added to the online repository of Report Hive Research the Spinal Fusion market has witnessed an unprecedented growth till 2020. The extrapolated future growth is expected to continue at higher rates by 2026.

Our exploration specialists acutely ascertain the significant aspects of the global Spinal Fusion market report. It also provides an in-depth valuation in regards to the future advancements relying on the past data and present circumstance of Spinal Fusion market situation. In this Spinal Fusion report, we have investigated the principals, players in the market, geological regions, product type, and market end-client applications. The global Spinal Fusion report comprises of primary and secondary data which is exemplified in the form of pie outlines, Spinal Fusion tables, analytical figures, and reference diagrams. The Spinal Fusion report is presented in an efficient way that involves basic dialect, basic Spinal Fusion outline, agreements, and certain facts as per solace and comprehension.

Segmentation by Application: Cord Blood Stem Cells CryopreservationOther Stem Cells Cryopreservation

Segmentation by Type: Liquid phaseVapor phase

NOTE:Due to the pandemic, we have included a special section on the Impact of COVID 19 on the Spinal Fusion Market which would mention How the Covid-19 is Affecting the Spinal Fusion Industry, Market Trends and Potential Opportunities in the COVID-19 Landscape, Covid-19 Impact on Key Regions and Proposal for Spinal Fusion Players to Combat Covid-19 Impact.

The Essential Content Covered in the GlobalSpinal Fusion Market Report:

* Top Key Company Profiles.* Main Business and Rival Information* SWOT Analysis and PESTEL Analysis* Production, Sales, Revenue, Price and Gross Margin* Market Share and Size

The report provides a 6-year forecast (2020-2026) assessed based on how the Spinal Fusion market is predicted to grow in major regions like USA, Europe, Japan, China, India, Southeast Asia, South America, South Africa, Others.

Key Questions Answered In this Report:

What is the overall market size in 2019? What will be the market growth during the forecast period i.e. 2020-2026?

Which region would have high demand for product in the upcoming years?

What are the factors driving the growth of the market?

Which sub-market will make the most significant contribution to the market?

What are the market opportunities for existing and entry-level players?

What are various long-term and short-term strategies adopted by the market players?

What are the key business strategies being adopted by new entrants in the Spinal Fusion Market?

Get Full Customize report or for any Special Discount [emailprotected] https://www.reporthive.com/request_customization/2250326

Table of Contents

Market Overview: This is the first section of the report that includes an overview of the scope of products offered in the global Spinal Fusion market, segments by product and application, and market size.

Market Competition by Player: Here, the report shows how the competition in the global Spinal Fusion market is growing or decreasing based on deep analysis of market concentrate rate, competitive situations and trends, expansions, merger and acquisition deals, and other subjects. It also shows how different companies are progressing in the global Spinal Fusion market in terms of revenue, production, sales, and market share.

Company Profiles and Sales Data: This part of the report is very important as it gives statistical as well as other types of analysis of leading manufacturers in the global Spinal Fusion market. It assesses each and every player studied in the report on the basis of main business, gross margin, revenue, sales, price, competitors, manufacturing base, product specification, product application, and product category.

Market Status and Outlook by Region: The report studies the status and outlook of different regional markets such as Europe, North America, the MEA, Asia Pacific, and South America. All of the regional markets researched about in the report are examined based on price, gross margin, revenue, production, and sales. Here, the size and CAGR of the regional markets are also provided.

Market by Product: This section carefully analyzes all product segments of the global Spinal Fusion market.

Market by Application: Here, various application segments of the global Spinal Fusion market are taken into account for research study.

Market Forecast: It starts with revenue forecast and then continues with sales, sales growth rate, and revenue growth rate forecasts of the global Spinal Fusion market. The forecasts are also provided taking into consideration product, application, and regional segments of the global Spinal Fusion market.

Upstream Raw Materials: This section includes industrial chain analysis, manufacturing cost structure analysis, and key raw materials analysis of the global Spinal Fusion market.

Marketing Strategy Analysis, Distributors: Here, the research study digs deep into behavior and other factors of downstream customers, distributors, development trends of marketing channels, and marketing channels such as indirect marketing and direct marketing.

Research Findings and Conclusion: This section is solely dedicated to the conclusion and findings of the research study on the global Spinal Fusion market.

Appendix: This is the last section of the report that focuses on data sources, viz. primary and secondary sources, market breakdown and data triangulation, market size estimation, research programs and design, research approach and methodology, and the publishers disclaimer.

Get Free Sample Copy of this report: https://www.reporthive.com/request_sample/2250326

COVID-19 impact on Spinal Fusion Market Share, Size, Revenue, Gross Margin and Growth Rate Analysis 2020-2026

Why Go For Report Hive Research?Report Hive Research delivers strategic market research reports, statistical surveys, industry analysis and forecast data on products and services, markets and companies. Our clientele ranges mix of global business leaders, government organizations, SMEs, individuals and Start-ups, top management consulting firms, universities, etc. Our library of 700,000 + reports targets high growth emerging markets in the USA, Europe Middle East, Africa, Asia Pacific covering industries like IT, Telecom, Semiconductor, Chemical, Healthcare, Pharmaceutical, Energy and Power, Manufacturing, Automotive and Transportation, Food and Beverages, etc. This large collection of insightful reports assists clients to stay ahead of time and competition. We help in business decision-making on aspects such as market entry strategies, market sizing, market share analysis, sales and revenue, technology trends, competitive analysis, product portfolio, and application analysis, etc.

Get in Touch with Us :

Report Hive Research

Speak to Research Analyst: +1-312-604-7084

See the article here:
Impact of Corona on Spinal Fusion Market Statistics, Investment Trends, Key Players and Forecast 2020-2026 | Cotton, Rayon, Blended - Cole of Duty

To Read More: Impact of Corona on Spinal Fusion Market Statistics, Investment Trends, Key Players and Forecast 2020-2026 | Cotton, Rayon, Blended – Cole of Duty
categoriaSpinal Cord Stem Cells commentoComments Off on Impact of Corona on Spinal Fusion Market Statistics, Investment Trends, Key Players and Forecast 2020-2026 | Cotton, Rayon, Blended – Cole of Duty | dataJune 12th, 2020
Read All

Canine Stem Cell Therapy Market to Expand with Significant CAGR – WorldsTrend

By daniellenierenberg

Health care stakeholders need to invest in value-based care, innovative care delivery models, advanced digital technologies. XploreMR will help you to know declarative, procedural, contextual, and somatic information about the Canine Stem Cell Therapy Market. It also provides a critical assessment of the performance of emerging and mature markets in a new publication titled Global Market Study on Canine Stem Cell Therapy: Ongoing Clinical Trials and Focus on Advancements to Push Adoption in Veterinary Clinics.

A synopsis of the global canine stem cell therapy market with reference to the global healthcare pharmaceutical industry

Despite the economic and political uncertainty in the recent past, the global healthcare industry has been receiving positive nudges from reformative and technological disruptions in medical devices, pharmaceuticals and biotech, in-vitro diagnostics, and medical imaging. Key markets across the world are facing a massive rise in demand for critical care services that are pushing global healthcare spending levels to unimaginable limits.

Click HERE To get SAMPLE PDF (Including Full TOC, Table & Figures) and many more Information:https://www.xploremr.com/connectus/sample/2360

A rapidly multiplying geriatric population; increasing prevalence of chronic ailments such as cancer and cardiac disease; growing awareness among patients; and heavy investments in clinical innovation are just some of the factors that are impacting the performance of the global healthcare industry. Proactive measures such as healthcare cost containment, primary care delivery, innovation in medical procedures (3-D printing, blockchain, and robotic surgery to name a few), safe and effective drug delivery, and well-defined healthcare regulatory compliance models are targeted at placing the sector on a high growth trajectory across key regional markets.

Parent Indicators Healthcare

Research Methodology

XploreMR utilizes a triangulation methodology that is primarily based on experimental techniques such as patient-level data, to obtain precise market estimations and insights on Molecule and Drug Classes, API Formulations and preferred modes of administration. Bottom-up approach is always used to obtain insightful data for the specific country/regions. The country specific data is again analysed to derive data at a global level. This methodology ensures high quality and accuracy of information.

Secondary research is used at the initial phase to identify the age specific disease epidemiology, diagnosis rate and treatment pattern, as per disease indications. Each piece of information is eventually analysed during the entire research project which builds a strong base for the primary research information.

Primary research participants include demand-side users such as key opinion leaders, physicians, surgeons, nursing managers, clinical specialists who provide valuable insights on trends and clinical application of the drugs, key treatment patterns, adoption rate, and compliance rate.

Quantitative and qualitative assessment of basic factors driving demand, economic factors/cycles and growth rates and strategies utilized by key players in the market is analysed in detail while forecasting, in order to project Year-on-Year growth rates. These Y-o-Y growth projections are checked and aligned as per industry/product lifecycle and further utilized to develop market numbers at a holistic level.

On the other hand, we also analyse various companies annual reports, investor presentations, SEC filings, 10k reports and press release operating in this market segment to fetch substantial information about the market size, trends, opportunity, drivers, restraints and to analyse key players and their market shares. Key companies are segmented at Tier level based on their revenues, product portfolio and presence.

Please note that these are the partial steps that are being followed while developing the market size. Besides this, forecasting will be done based on our internal proprietary model which also uses different macro-economic factors such as per capita healthcare expenditure, disposable income, industry based demand driving factors impacting the market and its forecast trends apart from disease related factors.

Get Full Access Of This Exclusive Report Right Now: https://www.xploremr.com/cart/2360/SL

Standard Report Structure

Target Audience

Market Taxonomy

The global canine stem cell therapy market has been segmented into:

Product Type:

Application:

End User:

Region:

Visit link:
Canine Stem Cell Therapy Market to Expand with Significant CAGR - WorldsTrend

To Read More: Canine Stem Cell Therapy Market to Expand with Significant CAGR – WorldsTrend
categoriaCardiac Stem Cells commentoComments Off on Canine Stem Cell Therapy Market to Expand with Significant CAGR – WorldsTrend | dataJune 12th, 2020
Read All

New Results From Landmark NURTURE Study Show That Pre-Symptomatic SMA Patients Treated With SPINRAZA (nusinersen) Continue to Demonstrate Sustained…

By daniellenierenberg

DetailsCategory: DNA RNA and CellsPublished on Wednesday, 10 June 2020 16:58Hits: 131

CAMBRIDGE, MA, USA I June 10, 2020 I Biogen Inc.(Nasdaq: BIIB) today announced new results from NURTURE, the longest study of pre-symptomatic patients with spinal muscular atrophy (SMA) that is transforming expectations of early treatment with SPINRAZA (nusinersen). In infants genetically diagnosed with SMA, new data demonstrate that early and sustained treatment with SPINRAZA for up to 4.8 years enabled unprecedented survival. Patients continued to maintain and make progressive gains in motor function compared to the natural course of the disease. These results are being presented at the virtual Cure SMA Research & Clinical Care Meeting taking place June 10-12, 2020.

The new data include nearly a year of additional follow-up for NURTURE study participants. As of February 2020, all patients treated (n=25; median age of 3.8 years old) were alive and remained free of permanent ventilation. In the absence of treatment, the majority of children with SMA Type 1 would, on average, not reach their second birthday. Additionally, all children who achieved the motor milestone of being able to walk independently (many within a normal timeframe) have maintained that ability from the first occurrence until the last visit.

The impact of early and sustained SPINRAZA treatment on these infants and their families is remarkable. Ive had the privilege to watch them grow into active young children, many of whom have experienced progress in motor function consistent with children their age who do not have SMA, said Kathryn Swoboda, M.D., the Katherine B. Sims, M.D., Endowed Chair in Neurogenetics and Director of the Neurogenetics Program, Massachusetts General Hospital. The new results from NURTURE continue to bolster the substantial benefit of both prompt diagnosis and early and longer-term treatment with SPINRAZA.

NURTURE is an ongoing, Phase 2, open-label study of 25 pre-symptomatic patients with the genetic diagnosis of SMA (most likely to develop SMA Type 1 or 2) who received their first dose of SPINRAZA before 6 weeks old. The study has been extended by an additional three years, enabling Biogen to evaluate the longer-term efficacy and safety of SPINRAZA through 8 years of age and further understand the impact of early treatment. More information on the NURTURE study (NCT02386553) is available onclinicaltrials.gov.

Additional results from the updated interim analysis as of February 2020 show:

About SPINRAZA (nusinersen)2-4 SPINRAZA is the first therapy approved to treat infants, children and adults with spinal muscular atrophy (SMA) and is approved in more than 50 countries. As of March 31, 2020, more than 10,000 individuals have been treated with SPINRAZA. It is the only SMA treatment to combine unsurpassed real-world experience with a robust level of clinical evidence across a broad spectrum of patient populations.

SMA is a rare, genetic, neuromuscular disease that is characterized by a loss of motor neurons in the spinal cord and lower brain stem that can result in severe, progressive muscle atrophy and weakness. Approximately one in 10,000 live births have a diagnosis of SMA, and people of all ages are impacted by the disease. It is a leading genetic cause of infant mortality.

SPINRAZA, a foundation of care in SMA, is an antisense oligonucleotide (ASO), developed using Ionis Pharmaceuticals proprietary technology that is designed to target a root cause of SMA by increasing the amount of full-length survival motor neuron (SMN) protein, which is critical to maintaining motor neurons. It is administered by intrathecal injection into the fluid surrounding the spinal cord where motor neurons reside to deliver the treatment where the disease starts.

SPINRAZA currently maintains a robust clinical data set in SMA based on data from approximately 300 patients across a broad range of SMA populations demonstrating a favorable benefit:risk profile. SPINRAZA was evaluated in two randomized, double-blind, sham-controlled studies of infantile and later-onset SMA (ENDEAR and CHERISH, respectively) and supported by open-label studies that include pre-symptomatic infants (NURTURE), individuals with later-onset SMA (CS2/CS12) and an extension study of individuals who previously participated in the clinical development program (SHINE). The most common adverse events observed were respiratory infection, fever, constipation, headache, vomiting and back pain. Hypersensitivity, meningitis and hydrocephalus have been observed in the post-marketing setting. Renal toxicity and coagulation abnormalities, including acute severe low platelet counts, have been observed after administration of some ASOs. Laboratory tests can monitor for these signs.

Biogen licensed the global rights to develop, manufacture and commercialize SPINRAZA from Ionis Pharmaceuticals, Inc. (Nasdaq: IONS), a leader in antisense therapeutics. Biogen and Ionis conducted an innovative clinical development program that moved SPINRAZA from its first dose in humans in 2011 to its first regulatory approval in five years.

About BiogenAt Biogen, our mission is clear: we are pioneers in neuroscience. Biogen discovers, develops and delivers worldwide innovative therapies for people living with serious neurological and neurodegenerative diseases as well as related therapeutic adjacencies. One of the worlds first global biotechnology companies, Biogen was founded in 1978 by Charles Weissmann, Heinz Schaller, Kenneth Murray and Nobel Prize winners Walter Gilbert and Phillip Sharp. Today Biogen has the leading portfolio of medicines to treat multiple sclerosis, has introduced the first approved treatment for spinal muscular atrophy, commercializes biosimilars of advanced biologics and is focused on advancing research programs in multiple sclerosis and neuroimmunology, Alzheimers disease and dementia, neuromuscular disorders, movement disorders, ophthalmology, immunology, neurocognitive disorders, acute neurology and pain.

We routinely post information that may be important to investors on our website at http://www.biogen.com. To learn more, please visit http://www.biogen.com and follow us on social media Twitter, LinkedIn, Facebook, YouTube.

References:

SOURCE: Biogen

Excerpt from:
New Results From Landmark NURTURE Study Show That Pre-Symptomatic SMA Patients Treated With SPINRAZA (nusinersen) Continue to Demonstrate Sustained...

To Read More: New Results From Landmark NURTURE Study Show That Pre-Symptomatic SMA Patients Treated With SPINRAZA (nusinersen) Continue to Demonstrate Sustained…
categoriaSpinal Cord Stem Cells commentoComments Off on New Results From Landmark NURTURE Study Show That Pre-Symptomatic SMA Patients Treated With SPINRAZA (nusinersen) Continue to Demonstrate Sustained… | dataJune 10th, 2020
Read All

Molecular alterations in the extracellular matrix in the brains of newborns with congenital Zika syndrome – Science

By daniellenierenberg

How Zika affects the extracellular matrix

In some cases, Zika virus (ZIKV) infection during pregnancy leads to a series of severe defects in the fetus collectively known as congenital Zika syndrome (CZS). These include microcephaly, defective neuronal migration, and impaired cortical development. Aguiar et al. combined genomic, transcriptomic, and proteomic analyses of blood and postmortem brains and demonstrated that ZIKV-infected neonates showed a reduction in collagen expression and an increase in adhesion factor expression, alterations in the extracellular matrix consistent with the brain defects seen in CZS. Together, these datasets form a useful resource for those investigating the molecular mechanisms underlying CZS in humans.

Zika virus (ZIKV) infection during pregnancy can cause a set of severe abnormalities in the fetus known as congenital Zika syndrome (CZS). Experiments with animal models and in vitro systems have substantially contributed to our understanding of the pathophysiology of ZIKV infection. Here, to investigate the molecular basis of CZS in humans, we used a systems biology approach to integrate transcriptomic, proteomic, and genomic data from the postmortem brains of neonates with CZS. We observed that collagens were greatly reduced in expression in CZS brains at both the RNA and protein levels and that neonates with CZS had several single-nucleotide polymorphisms in collagen-encoding genes that are associated with osteogenesis imperfecta and arthrogryposis. These findings were validated by immunohistochemistry and comparative analysis of collagen abundance in ZIKV-infected and uninfected samples. In addition, we showed a ZIKV-dependent increase in the expression of cell adhesion factors that are essential for neurite outgrowth and axon guidance, findings that are consistent with the neuronal migration defects observed in CZS. Together, these findings provide insights into the underlying molecular alterations in the ZIKV-infected brain and reveal host genes associated with CZS susceptibility.

Go here to read the rest:
Molecular alterations in the extracellular matrix in the brains of newborns with congenital Zika syndrome - Science

To Read More: Molecular alterations in the extracellular matrix in the brains of newborns with congenital Zika syndrome – Science
categoriaSpinal Cord Stem Cells commentoComments Off on Molecular alterations in the extracellular matrix in the brains of newborns with congenital Zika syndrome – Science | dataJune 10th, 2020
Read All

Augmenting Demand for Stem Cell Characterization and Analysis Tools to Bolster Global Market Revenue Growth During the Crisis Period of COVID 19 – The…

By daniellenierenberg

Stem cell characterization is the study of tissue-specific differentiation. Thera are various type of stem cell such as embryonic stem cell, epithelial stem cell and others. Further, various techniques are used to characterized stem cells such as immunological techniques, used for depiction of different population of stem cells. These techniques are generally based on immunochemistry using staining technique or florescent microscopy. Besides, stem cells characterization and analysis tools are used against target chronic diseases. In 2014, the San Diego (UCSD) Health System and Sanford Stem Cell Clinical Center at the University of California announced the launch of a clinical trial, in order to assess the safety of neural stem cellbased therapy in patients with chronic spinal cord injury.

The factors driving the growth of stem cell characterization and analysis tools market due to increasing chronic disorders such as cancer, a diabetes and others. In addition, increasing awareness about among people about the therapeutic potency of stem cells characterization in the management of effective diseases is anticipated to increase the demand for stem cell characterization and analysis tools. Further, there are various technologies such as flow cytometry which is used to characterize the cell surface profiling of human-bone marrow and other related purposes are expected to increase the growth of stem cell characterization and analysis tools market. In addition, increasing investment by private and public organization for research activities are likely to supplement the market growth in near future.

Get Free Sample Copy With Impact Analysis Of COVID-19 Of Market Report @https://www.persistencemarketresearch.com/samples/31444

On the other hand, the unclear guidelines and the technical limitation for the development of the product are expected to hamper the growth of stem cell characterization and analysis tools market.

Rapid increase in corona virus all around the world is expected to hamper the growth of stem cell characterization and analysis tools market. The virus outburst has become one of the threats to the global economy and financial markets. The impact has made immense decrease in revenue generation in the field of all healthcare industry growth for the market in terms of compatibility and it has led in huge financial losses and human life which has hit very hard to the core of developing as well as emerging economies in healthcare sector. It further anticipated that such gloomy epidemiological pandemic environment is going to remain in next for at least some months, and this is going to also affect the life-science market which also include the market of stem cell characterization and analysis tools market.

Based on the Products and Service Type, stem cell characterization and analysis tools market are segmented into:

Based on the Technology, stem cell characterization and analysis tools market are segmented into:

Based on the Applications, stem cell characterization and analysis tools market are segmented into:

Based on the End User, stem cell characterization and analysis tools market are segmented into:

Based on the segmentation, human embryonic stem cell is expected to dominate the market due to their indefinite life span and higher totipotency as compared to other stem cells. Further, on the basis of technology segmentations, cell production is anticipated to increase the demand for stem cell characterization and analysis tools due to their emerging applications for stem cells in drug testing in the management of the effective diseases. Furthermore, on the basis of application segmentations, oncology is expected to show significant growth rate due to increase in the number of pipelines products for the treatment of cancers or tumors. Based on the end user, pharmaceutical and biotechnology companies are expected to dominate the market due to rising global awareness about the therapeutics research activities.

You Can Buy This PMR Healthcare Report From Here @https://www.persistencemarketresearch.com/checkout/31444

Geographically, the global stem cell characterization and analysis tools market is segmented into regions such as Latin America, Europe, North America, South Asia, East Asia Middle East & Africa and Oceania. North America is projected to emerge as prominent market in the global stem cell characterization and analysis tools market due to growing cases of target chronic diseases and increasing investments for research activities. Europe is the second leading region to dominate the market due to technological advancement and also surge in therapeutic activities, funded by government across the world. Asia-pacific is likely to witness maximum growth in near future due to increasing disposable income and with the development of infrastructure.

Some of the major key players competing in the global stem cell characterization and analysis tools market are Osiris Therapeutics, Inc., Caladrius Biosciences, Inc., U.S. Stem Cell, Inc., Astellas Pharma Inc., TEMCELL Technologies Inc., BioTime Inc., Cellular Engineering Technologies Inc., Cytori Therapeutics, Inc., and BrainStorm Cell Therapeutics Inc.

Rustil is a regular contributor to blog , Specializing in Industry Research and Forecast

See the original post:
Augmenting Demand for Stem Cell Characterization and Analysis Tools to Bolster Global Market Revenue Growth During the Crisis Period of COVID 19 - The...

To Read More: Augmenting Demand for Stem Cell Characterization and Analysis Tools to Bolster Global Market Revenue Growth During the Crisis Period of COVID 19 – The…
categoriaSpinal Cord Stem Cells commentoComments Off on Augmenting Demand for Stem Cell Characterization and Analysis Tools to Bolster Global Market Revenue Growth During the Crisis Period of COVID 19 – The… | dataJune 10th, 2020
Read All

Autologous Bone Marrow Transplantation and Metformin, a Hope for the Cure of Multiple Sclerosis – Gilmore Health News

By daniellenierenberg

On Friday, June 5, a few days after World MS Day on May 30, there was a day of online conferences and workshops to learn more about multiple sclerosis. It was an opportunity to shed light on autologous bone marrow transplantation, a little known treatment that could cure multiple sclerosis.

Neuron

Multiple sclerosis (MS) is a neurodegenerative autoimmune disease that causes stiffness, pain, and fatigue. It is the main cause of disability, exclusion from the labor market, and social exclusion among young people, as it occurs mainly among people between 25 and 35 years old. According to the National MS Society, approximately 1 million people in the United States suffer from MS.

Currently, there is no treatment to cure MS, but there is hope: Autologous bone marrow transplantation or autologous hematopoietic stem cell transplantation. This treatment allows patients to go from the more common forms of multiple sclerosis into remission. If carried out early enough, it enables at least partial recovery from the disability.

Read Also: Combo of Diabetes and Hypertension Drugs Causes Cancer Cell Death, Researchers Find

The aim of this treatment is to rebuild a new immune system in patients. This includes intensive chemotherapy followed by reinjection of the patients hematopoietic stem cells. Several studies conducted between 2015 and 2019 on this technique have shown that 83.3 of patients with the relapsing-remitting form had no attack in the four years following auto-transplantation and three years after transplantation 78% of patients with secondary progressive multiple sclerosis and 66% of patients with primary progressive multiple sclerosis experienced no worsening of their disability, Mediapart continues.

One of the main obstacles to this treatment remains the difficulty of access. Many patients testify that their neurologist often finds this method too experimental and too risky. Another factor that discourages the use of autologous bone marrow transplantation is the risk-benefit ratio, which is considered unbalanced. Transplant-related mortality is between 5 and 10%, which justifies doctors preference for a treatment that is considered safer.

Read Also: Diabetes: Metformin Transfers Blood Sugar From the Blood to the Intestines

Another treatment has shown encouraging results in multiple sclerosis. This is a drug for diabetes, metformin, which rejuvenates stem cells to convert them into myelin-producing cells and thus help combat multiple sclerosis. These results have been published in the journal Cell Stem Cell, and it is expected that the tests, which are currently only carried out on mice, will also be carried out on humans within a year. I am very optimistic, study author Professor Robin Franklin told The Guardian newspaper.

References

Metformin Restores CNS Remyelination Capacity by Rejuvenating Aged Stem Cells

https://blogs.mediapart.fr/noelle-tassy/blog/300520/journee-mondiale-de-la-sep-et-si-parlait-du-traitement-dont-ne-parle-pas

Autologous Hematopoietic Cell Transplantation in Multiple Sclerosis: Changing Paradigms in the Era of Novel Agents

Go here to read the rest:
Autologous Bone Marrow Transplantation and Metformin, a Hope for the Cure of Multiple Sclerosis - Gilmore Health News

To Read More: Autologous Bone Marrow Transplantation and Metformin, a Hope for the Cure of Multiple Sclerosis – Gilmore Health News
categoriaBone Marrow Stem Cells commentoComments Off on Autologous Bone Marrow Transplantation and Metformin, a Hope for the Cure of Multiple Sclerosis – Gilmore Health News | dataJune 10th, 2020
Read All

Hematopoietic Stem Cell Transplantation (HSCT) Market Trends 2020: In-Depth Analysis of Industry Growth & Forecast Up To 2026 – Cole of Duty

By daniellenierenberg

The Hematopoietic Stem Cell Transplantation (HSCT) Market research report enhanced worldwide Coronavirus COVID19 impact analysis on the market size (Value, Production and Consumption), splits the breakdown (Data Status 2014-2020 and 6 Year Forecast From 2020 to 2026), by region, manufacturers, type and End User/application. This Hematopoietic Stem Cell Transplantation (HSCT) market report covers the worldwide top manufacturers like (Regen Biopharma Inc, China Cord Blood Corp, CBR Systems Inc, Escape Therapeutics Inc, Cryo-Save AG, Lonza Group Ltd, Pluristem Therapeutics Inc, ViaCord Inc) which including information such as: Capacity, Production, Price, Sales, Revenue, Shipment, Gross, Gross Profit, Import, Export, Interview Record, Business Distribution etc., these data help the consumer know about the Hematopoietic Stem Cell Transplantation (HSCT) market competitors better. It covers Regional Segment Analysis, Type, Application, Major Manufactures, Hematopoietic Stem Cell Transplantation (HSCT) Industry Chain Analysis, Competitive Insights and Macroeconomic Analysis.

Get Free Sample PDF (including COVID19 Impact Analysis, full TOC, Tables and Figures)of Hematopoietic Stem Cell Transplantation (HSCT)[emailprotected]https://www.researchmoz.us/enquiry.php?type=S&repid=2276986

Hematopoietic Stem Cell Transplantation (HSCT) Market report offers comprehensive assessment of 1) Executive Summary, 2) Market Overview, 3) Key Market Trends, 4) Key Success Factors, 5) Hematopoietic Stem Cell Transplantation (HSCT) Market Demand/Consumption (Value or Size in US$ Mn) Analysis, 6) Hematopoietic Stem Cell Transplantation (HSCT) Market Background, 7) Hematopoietic Stem Cell Transplantation (HSCT) industry Analysis & Forecast 20202026 by Type, Application and Region, 8) Hematopoietic Stem Cell Transplantation (HSCT) Market Structure Analysis, 9) Competition Landscape, 10) Company Share and Company Profiles, 11) Assumptions and Acronyms and, 12) Research Methodology etc.

Scope of Hematopoietic Stem Cell Transplantation (HSCT) Market:In 2019, the market size of Hematopoietic Stem Cell Transplantation (HSCT) is million US$ and it will reach million US$ in 2025, growing at a CAGR of from 2019; while in China, the market size is valued at xx million US$ and will increase to xx million US$ in 2025, with a CAGR of xx% during forecast period.

In this report, 2018 has been considered as the base year and 2019 to 2025 as the forecast period to estimate the market size for Hematopoietic Stem Cell Transplantation (HSCT).

On the basis on the end users/applications,this report focuses on the status and outlook for major applications/end users, shipments, revenue (Million USD), price, and market share and growth rate foreach application.

Peripheral Blood Stem Cells Transplant (PBSCT) Bone Marrow Transplant (BMT) Cord Blood Transplant (CBT)

On the basis of product type, this report displays the shipments, revenue (Million USD), price, and market share and growth rate of each type.

Allogeneic Autologous

Do You Have Any Query Or Specific Requirement? Ask to Our Industry[emailprotected]https://www.researchmoz.us/enquiry.php?type=E&repid=2276986

Geographically, the report includes the research on production, consumption, revenue, Hematopoietic Stem Cell Transplantation (HSCT) market share and growth rate, and forecast (2020-2026) of the following regions:

Important Hematopoietic Stem Cell Transplantation (HSCT) Market Data Available In This Report:

Strategic Recommendations, Forecast Growth Areasof the Hematopoietic Stem Cell Transplantation (HSCT) Market.

Challengesfor the New Entrants,TrendsMarketDrivers.

Emerging Opportunities,Competitive Landscape,Revenue Shareof Main Manufacturers.

This Report Discusses the Hematopoietic Stem Cell Transplantation (HSCT) MarketSummary; MarketScopeGives A BriefOutlineof theHematopoietic Stem Cell Transplantation (HSCT) Market.

Key Performing Regions (APAC, EMEA, Americas) Along With Their Major Countries Are Detailed In This Report.

Company Profiles, Product Analysis,Marketing Strategies, Emerging Market Segments and Comprehensive Analysis of Hematopoietic Stem Cell Transplantation (HSCT) Market.

Hematopoietic Stem Cell Transplantation (HSCT) Market ShareYear-Over-Year Growthof Key Players in Promising Regions.

What is the (North America, South America, Europe, Africa, Middle East, Asia, China, Japan)production, production value, consumption, consumption value, import and exportof Hematopoietic Stem Cell Transplantation (HSCT) market?

To Get Discount of Hematopoietic Stem Cell Transplantation (HSCT) Market:https://www.researchmoz.us/enquiry.php?type=D&repid=2276986

Contact:

ResearchMozMr. Rohit Bhisey,Tel: +1-518-621-2074USA-Canada Toll Free: 866-997-4948Email:[emailprotected]

Browse More Reports Visit @https://www.mytradeinsight.blogspot.com/

Read the original here:
Hematopoietic Stem Cell Transplantation (HSCT) Market Trends 2020: In-Depth Analysis of Industry Growth & Forecast Up To 2026 - Cole of Duty

To Read More: Hematopoietic Stem Cell Transplantation (HSCT) Market Trends 2020: In-Depth Analysis of Industry Growth & Forecast Up To 2026 – Cole of Duty
categoriaBone Marrow Stem Cells commentoComments Off on Hematopoietic Stem Cell Transplantation (HSCT) Market Trends 2020: In-Depth Analysis of Industry Growth & Forecast Up To 2026 – Cole of Duty | dataJune 10th, 2020
Read All

Microneedling therapeutic stem cells into damaged tissues – Science Codex

By daniellenierenberg

(LOS ANGELES) -- Mesenchymal stem cells (MSCs) are multipotent in that they naturally replenish the cell types that build our bone, cartilage and adipose tissues. However, their much broader regenerative potential, based on their capacity to migrate and engraft in injured tissues and secrete factors that enhance the formation of new blood vessels, suppress inflammation and cell death, and promote healing, makes them exquisite candidates for cell-based therapies for diseases as varied as cardiovascular, liver, bone and cartilage diseases, lung and spinal cord injuries, autoimmune diseases and even cancer and skin lesions.

MSCs provoke no or negligible adverse reactions in patients that receive them from healthy donors, and can be easily isolated from human tissues, expanded to clinical scales, biopreserved, and stored for point-of-care delivery. This efficiency in preparing medical grade MSCs contrasts with the relative inefficiency with which they currently can be delivered to target tissues in patients. Clinicians often need to administer massive numbers of MSCs with high precision to reach sufficient numbers of cells that successfully engraft and remain functional over time.

To overcome this bottleneck, researchers have developed materials-based approaches in which MSCs are embedded in biomaterial scaffolds that then can be implanted as "patches" in minimally invasive procedures into damaged tissues. However, those cells are often limited in their ability to migrate, overcome tissue barriers, and successfully engraft in tissue microenvironments where their action is needed most. In principle, injection approaches can introduce MSCs into tissues via hypodermic needles in a more targeted manner, but any direct injection to the tissue is invasive and can cause inadvertent tissue damage and side effects like the formation of scar tissue.

Now, a new study reported in Advanced Functional Materials by a team at the Terasaki Institute for Biomedical Innovation in Los Angeles and the University of California, Los Angeles (UCLA) has developed a minimally invasive approach, which deploys "microneedles" that provide a bioactive depot of MSCs. By embedding comparatively low numbers of MSCs in a gel-like material that prolongs their viability and functionality, and targeting damaged tissues with high spatial precision, the researchers showed their approach to accelerate wound healing in a mouse model with excised skin segments.

"Microneedles have been successfully used in the past to painlessly deliver drugs to target tissues such as skin, blood vessels and eyes. We demonstrate here with 'Detachable Microneedle Depots' that an analogous approach can deploy therapeutic cells at target sites," said co-corresponding author Ali Khademhosseini, the Director and CEO of the Terasaki Institute who was previously Director of the UCLA Center for Minimally Invasive Therapeutics. "To achieve this, we developed an entirely new microneedle patch that supports stem cells' viability, responsiveness to wound stimuli, and ability to accelerate wound healing."

At the beginning of their study, Khademhosseini and his co-workers hypothesized that embedding MSCs in a biocompatible and biodegradable biomaterial matrix could help create a hydrated environment with the mechanical properties that stem cells need in order to remain alive and functioning over a longer time. The researchers started by engineering a matrix of gelatin fibers that are cross-linked to each other into a network that could accommodate MSCs. The biomaterial mimicked the normal extracellular environment of tissues that MSCs normally reside in, and it helped to remodel the specific matrix environment in a way that allowed MSCs to take up nutrients and communicate with damaged tissue via soluble factors that they normally receive and dispatch.

The other part of the challenge was to introduce the literal "needle" quality into the cell-delivering device that would enable it to gently penetrate tissues in order to reach their target sites. To this aim, the researcher encased the softer MSC-containing gelatin matrix with a second, much harder biomaterial known as poly(lactic-co-glycolic)acid, in short PLGA. Once the needles were brought into place in a wound bed, the "PLGA shell", which also is biocompatible and biodegradable, slowly degraded, but during the process kept the MSC-containing gelatin matrix in place, allowing MSCs to release their therapeutic factors through emerging gaps in the shell into the damaged tissue. The team showed that in the composite microneedle 90% of MSCs were kept viable for 24 hours, and that, importantly the cells did not lose their potential as stem cells ("stemness"), which was critical for their healing properties.

Finally, the team set out to investigate their microneedle concept in a mouse skin wound model in which a defined excision is made in the epidermal tissue layers. To be able to strategically place individual microneedles within the wound bed, a simple and effective deployment mechanism was devised by attaching an array of microneedles on a small strip of scotch tape with their pointy ends facing away from the tape. Precisely positioning the tape with its patterned microneedle surface on the wound, allowed the individual microneedles to penetrate into the wound bed. Then, the tape was peeled off, causing the microneedles to detach and remain embedded in the wound tissue. Khademhosseini and his co-workers summarized the device's salient features by naming it: "Detachable Hybrid Microneedle Depot" (d-HMND).

In the mouse model, the MSC-loaded d-HMND device indeed stimulated a number of critical parameters associated with wound healing. Compared to an equal number of MSCs injected directly into wounded skin, and a version of the d-HMND device that did not contain any MSCs (cell-free), the MSC-containing d-HMND accelerated the contraction of the wound and re-growth of the epidermal skin layers (re-epithelialization). The researchers used a panel of histological and molecular markers to confirm over a period of 14 days that the device suppressed inflammation, and stimulated tissue remodeling, the formation of new blood vessels, and re-growth of hair - all vital signs of a robust wound healing response.

"In future scenarios, d-HMNDs could be rapidly fabricated in clinical laboratories shortly before use, applied to treat skin injuries, and explored more broadly as treatments for a variety of other disorders, including melanoma and other dermatological disorders that could benefit from the power of MSC cells," said Khademhosseini. "The concept would even be compatible with using patient-derived cells in more personalized device approaches." Khademhosseini and his colleagues are exploring further uses of this technology as part of the Terasaki Institute's research program.

Go here to read the rest:
Microneedling therapeutic stem cells into damaged tissues - Science Codex

To Read More: Microneedling therapeutic stem cells into damaged tissues – Science Codex
categoriaSkin Stem Cells commentoComments Off on Microneedling therapeutic stem cells into damaged tissues – Science Codex | dataJune 10th, 2020
Read All

Major skin cancer research study to begin at The Hormel Institute – Austin Daily Herald – Austin Herald

By daniellenierenberg

Dr. Rebecca Morris, leader of the Stem Cells and Cancer lab at The Hormel Institute, received a multi-year grant to study stem cells originating in adult bone marrow and their possible effects on skin diseases, including cancer. The grant, from the Nation Institute of Healths National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), awarded Morris with $373,688 over two years for her research project Identification of Novel Epidermal Progenitors.

Morris said this research is significant because it will contribute new understanding of epithelial biology, and blood and bone marrow in general, provide possible new targets for epithelial cancer prevention and control, validate liquid biopsy of blood as a diagnostic tool, and help her and her team to achieve their goal of preventing and alleviating chronic skin diseases including cancer, psoriasis, and epidermolysis bullosa.

Many years ago, I contributed basic research on identification and isolation of adult tissue stem cells from skin epidermis, and demonstrated their role in skin cancer initiation and promotion, Morris said. Now, I am again thrilled to be on the edge of discovery of a new population of epithelial stem cells and have the opportunity to determine their roles in regeneration and cancer.

Cells in the body that cover surfaces (like the epidermis, or top layer of skin) or line spaces (like ducts in mammary gland or lining of the colon) are called epithelial cells. In adults, most cancers originate from these epithelial cells. However, new research has identified certain bone marrow derived epithelial cells (BMDECs) in normal, healthy human subjects.

Morris and her team do not believe anyone has yet described the features and nature of these cells, or analyzed their function.

The research team has hypothesized that the epithelial cells from the bone marrow are epithelial stem cells. They therefore hope to demonstrate that BMDECs include a novel population of adult tissue stem cells that can be gathered to chronically compromised epithelium, such as skin cancer or psoriasis, and regenerate it.

Skin cancer is by far the most common type of cancer in the United States, with millions of people diagnosed each year. As we enter summer, it is important to remember simple steps like staying out of the sun during the middle of the day, staying in the shade, and wearing sunscreen can help reduce your skin cancer risk.

Next steps for Morriss research include determining how these blood borne epithelial cells are recruited to the skin, the recruiting molecules, how the recruitment can be good or bad, and how to modulate their recruitment to alleviate disease.

Follow this link:
Major skin cancer research study to begin at The Hormel Institute - Austin Daily Herald - Austin Herald

To Read More: Major skin cancer research study to begin at The Hormel Institute – Austin Daily Herald – Austin Herald
categoriaSkin Stem Cells commentoComments Off on Major skin cancer research study to begin at The Hormel Institute – Austin Daily Herald – Austin Herald | dataJune 10th, 2020
Read All

Pressure Tools Boost Collagen – Truth In Aging

By daniellenierenberg

Recently, I have been impressed by the unlikely efficacy of pressure tools such as the Pause Fascia StimulatingTool ($115 in the shop) and the KNESKO Quartz Roller and mask set ($115 in the shop). I say unlikely because these tools have no underlying technology and require only a little pressure as you move them over the skin. They really appear to firm and rejuvenate, but there was no research to back this up. Until now.

I was super excited to come across some research conducted by beauty giant, Shiseido and Jichi University in Japan. Their studies revealed that the application of pressure to the skin stimulates the proliferation of stem cells and ultimately boosts collagen.

The research noted that stem cells are more prolific near the sebaceous glands in the skin and dubbed these stem cell reservoirs. When they applied pressure to the skin, the stem cells in the reservoirs proliferated. And not just by a few, the number of stem cells was increased significantly.

Thats all well and good, but does an increased number of stem cells result in better and/or younger looking skin? So the team then investigated whether the cells proliferated by pressure would function in the dermal layer.

For dermal cells to function properly, they need to connect to each other and reconstruct a network. When the researchers observed the cells in pressurized skin, they did indeed connect to each other and they reconstructed a network.

And the really good news is that cells that have reconstructed a network produce collagen. The the production of collagen allows the dermis to regain its elasticity and firmness.

So now we have it, tools that allow us to apply gentle pressure to our skin are helping us stimulate collagen production.

Become a member to read this article in full

Your membership includes:

Read the original:
Pressure Tools Boost Collagen - Truth In Aging

To Read More: Pressure Tools Boost Collagen – Truth In Aging
categoriaSkin Stem Cells commentoComments Off on Pressure Tools Boost Collagen – Truth In Aging | dataJune 10th, 2020
Read All

Senolytic drugs: can this antibiotic treat symptoms of ageing? – Health Europa

By daniellenierenberg

Professor Michael P Lisanti, Chair in Translational Medicine at the University of Salford, has been an active research scientist for more than 30 years and is an expert in the field of cellular senescence. In 2018 Lisanti, along with his wife and research partner Professor Federica Sotgia, co-authored a paper entitled Azithromycin and Roxithromycin define a new family of senolytic drugs that target senescent human fibroblasts, which identified the FDA-approved antibiotic azithromycin as a senolytic drug: a compound which can be used to treat the symptoms of ageing.

Their research was made possible through generous funding contributions from Lunella Biotech, Inc, a Canadian-based pharmaceutical developer which fosters medical innovation; the Foxpoint Foundation, also based in Canada; and the Healthy Life Foundation, a UK charity which funds research into ageing and age-related conditions. Lisanti speaks to HEQ about his work and the future of senescence studies.

We started out focusing on cancer, but the relationship between cancer and ageing led us to shift our focus towards senescence, the process by which cells chronologically age and go into cell cycle arrest. Senescence leads to chronic inflammation: the cells secrete a lot of inflammatory mediators, which allows the cells to become almost infectious; so then neighbouring normal cells become senescent it has a kind of cataclysmic effect. As you age especially as you approach around 50 you begin to accumulate more senescent cells, which are thought to be the root cause of ageing; this then leads to various ageing-associated diseases, such as heart disease, diabetes, dementia and cancer, the most life threatening conditions in the Western world.

The goal, therefore, would be to remove the senescent cells. It is possible to use a genetic trick to remove senescent cells from mice: this causes them to live longer by preventing ageing-associated diseases; but it is not possible to use the same genetic trick for humans. We would therefore need a drug that only kills or removes senescent cells; and that could then potentially lead to rejuvenation, thereby extending the patients healthy lifespan.

We set up a drug assay using normal, commercially available, human fibroblasts: MRC-5, which comes from the lungs, and BJ-1, which comes from the skin. The idea was to artificially induce ageing, which we did using a compound called BrdU. This compound is a nucleoside: it incorporates into the DNA and that leads to DNA damage; and the DNA damage in turn induces the senescence phenotype. The overarching concept was to create a population of cells artificially that were senescent; and then to compare primary cells that were normal with cells which were senescent, with the goal of identifying drugs which could only selectively kill the senescent cells and not harm the normal cells.

We had previously observed positive results in tests on the metabolic effects of antibiotics, so our drug screening identified two drugs called azithromycin and roxithromycin, which constitute a new family of senolytic drugs. Theyre both clinically approved drugs azithromycin has been around longer; and has a strong safety profile and we looked at other members of the same drug family such as erythromycin, which is the parent compound, but erythromycin has no senolytic activity. The characteristics we were looking for appeared to be relatively restricted to azithromycin, which in our observation was very efficiently killing the senescent cells. As we reported in the paper, it had an efficacy of approximately 97%, meaning that it was able to facilitate the growth of the normal cells, while concurrently selectively killing the senescent cells.

We tested the drug on normal and senescent cells which were otherwise identical. The senescent cells underwent apoptosis programmed cell death so that led us to the conclusion that the drug selectively kills the senescent cells, while at the same time the normal cells are able to continue to proliferate. That selective effect of removing exclusively the senescent cells is what we were searching for; because in this instance we would want a drug that could potentially be used in humans and which would only kill senescent cells.

Obviously, we would have to do clinical trials going forward, but the first step should be to identify the pharmaceutical application. Given that this drug appears to selectively kill and remove the senescent cells, it could be used potentially to prevent ageing-associated disease; and it could therefore potentially extend the human lifespan, especially in terms of reducing diseases and conditions like diabetes, heart disease, dementia and even cancer.

Cystic fibrosis is the most common genetic disease in humans; patients with cystic fibrosis are prone to bacterial lung infections. Researchers started to explore the possibility of using azithromycin preventatively in patients with cystic fibrosis; and they found that, while it didnt necessarily affect patients susceptibility to infection, it did prevent lung fibrosis where the lungs become stiff and the patient is unable to breathe and in doing so, extended the patients lifespan. These studies were focused on myofibroblasts, which at the time werent really seen as senescent; whereas the literature now acknowledges a general consensus that myofibroblasts are indeed senescent cells.

We havent specifically examined anything relating ageing to antimicrobial resistance; but azithromycin is an antibiotic, which is not ideal within the context of AMR. Potentially in the future, once researchers identify what it is about the azithromycin that is causing the senescent cells to die, they could develop future drugs azithromycin is a stepping stone in this context, but what it shows is proof of principle that a drug can be identified which selectively kills senescent cells. This indicates that senescent cells are clearly biochemically distinct from the normal cells, and that it is possible to find a drug that selectively kills them and that is relatively safe. It provides a starting point for further new drug discovery to identify other drugs which might also be selective.

Ideally, we would want a drug which is not an antibiotic; but that means further research will be necessary to find additional drugs or to refine the senolytic activity which weve discovered in this drug. We are in the early stages; the point is that it is experimentally feasible and this would then lend itself to doing new clinical trials in the future, because azithromycin is relatively safe and it probably wont need to be administered over a long period of time to remove senescent cells you might not need to use it for any longer than you would as an antibiotic.

This research has been supported by the Foxpoint Foundation (Canada), the Healthy Life Foundation (UK), and Lunella Biotech, Inc. (Canada).

Professor Michael P Lisanti is Chair of Translational Medicine at the University of Salford School of Science, Engineering & Environment, UK. His current research programme is focused on eradicating cancer stem cells (CSCs); and anti-ageing therapies, in the context of age-associated diseases, such as cancer and dementia.

Lisanti began his education at New York University, US, graduating magna cum laude in chemistry (1985); before completing an MD-PhD in cell biology and genetics at Cornell University Medical College, US (1992). In 1992, he moved to MIT, US, where he worked alongside Nobel laureate David Baltimore and renowned cell biologist Harvey Lodish as a Whitehead Institute fellow (1992-96).

His career has since taken him to the Albert Einstein College of Medicine, US (1997-2006), the Kimmel Cancer Center, US (2006-12), and the University of Manchester, UK (2012-16), where he served as the Muriel Edith Rickman chair of breast oncology, director of the Breakthrough Breast Cancer and the Breast Cancer Now Research Units, and founder and director of the Manchester Centre for Cellular Metabolism.

Lisanti has contributed to 564 publications in peer-reviewed journals and been cited more than 90,000 times. A list of his works can be found at: https://pubmed.ncbi.nlm.nih.gov/?term=lisanti+mp&sort=date

Professor Federica Sotgia currently serves as chair in cancer biology and ageing at the University of Salford School of Science, Engineering and Environment, UK, where she focuses on, inter alia, the role of the tumour microenvironment in cancer and the metabolic requirements of tumour-initiating cells.

Sotgia graduated magna cum laude with an MS in biological sciences (1996) from the University of Genova, Italy, where she later completed a PhD in medical genetics (2001). She moved to the Albert Einstein College of Medicine, US, in 1998, originally as a visiting student and then postdoctoral fellow, and she was appointed an instructor in 2002.

Sotgia has since worked as an assistant professor at the Kimmel Cancer Center, US (2006-12), a senior lecturer at the University of Manchester, UK (2012-16), and a Professor in biomedical science at the University of Salford (2016-present).

She has contributed to 206 publications in peer-reviewed journals and been cited upwards of 27,000 times.

A list of her works can be found at: https://pubmed.ncbi.nlm.nih.gov/?term=sotgia+f&sort=date

Professor Michael P Lisanti, MD-PhD, FRSA, FRSBChair in Translational MedicineSchool of Science, Engineering & EnvironmentUniversity of Salford+44 (0)1612 950 240M.P.Lisanti@salford.ac.uk

This article is from issue 13 of Health Europa. Clickhere to get your free subscription today.

View post:
Senolytic drugs: can this antibiotic treat symptoms of ageing? - Health Europa

To Read More: Senolytic drugs: can this antibiotic treat symptoms of ageing? – Health Europa
categoriaSkin Stem Cells commentoComments Off on Senolytic drugs: can this antibiotic treat symptoms of ageing? – Health Europa | dataJune 10th, 2020
Read All

Doctors revealed details of the new rescue of Michael Schumacher – The Times Hub

By daniellenierenberg

Legendary German racing driver expects to implement the next batch of stem cells into heart tissue

Sevenfold champion of Formula 1 Michael Schumacher will have to go through another operation, according to GrandPX with reference to the Italian source Contro Copertina. As noted cardiac surgeon, Dr. Phillip Menashe, who was already engaged in treatment of the legendary German racer earlier, Schumacher will conduct the experimental operation on the introduction of stem cells into heart tissue.

Last year it was reported that Michael has already passed a similar procedure. The goal is to restore the nervous system Michael, said Menashe.

Neurosurgeon Dr. Nikola Acciari told that a famous former pilot Ferrari also suffers from muscle atrophy and osteoporosis. Over the last 20 years science has made enormous progress in the field of stem cell treatment. But it doesnt change the fact that we still know little about the human brain. We cant tell what results it will bring, said the doctor.

Michael Schumacher. Photo skysports.com

Recall Michael Schumacher suffered a severe head injury in December 2013 in the result of a fall at a ski resort in France. Since then Schumacher, who in January turned 51, never appeared in public.

About the state of his health there is no reliable information because the family prefers to keep it a secret. However, last fall it became known that Michael Schumacher is secretly transported to a clinic in Paris. In this case an unnamed member of the medical personnel told reporters: He is conscious.

Subscribe to our telegram

Only the most important and interesting

Subscribe

Read more from the original source:
Doctors revealed details of the new rescue of Michael Schumacher - The Times Hub

To Read More: Doctors revealed details of the new rescue of Michael Schumacher – The Times Hub
categoriaCardiac Stem Cells commentoComments Off on Doctors revealed details of the new rescue of Michael Schumacher – The Times Hub | dataJune 10th, 2020
Read All

Merck Provides Update on Phase 3 KEYNOTE-361 Trial Evaluating KEYTRUDA (pembrolizumab) as Monotherapy and in Combination with Chemotherapy in Patients…

By daniellenierenberg

KENILWORTH, N.J.--(BUSINESS WIRE)--Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced that the Phase 3 KEYNOTE-361 trial evaluating KEYTRUDA, Mercks anti-PD-1 therapy, in combination with chemotherapy for the first-line treatment of patients with advanced or metastatic urothelial carcinoma (bladder cancer) did not meet its pre-specified dual primary endpoints of overall survival (OS) or progression-free survival (PFS), compared with standard of care chemotherapy. In the final analysis of the study, there was an improvement in OS and PFS for patients treated with KEYTRUDA in combination with chemotherapy (cisplatin or carboplatin plus gemcitabine) compared to chemotherapy alone; however, these results did not meet statistical significance per the pre-specified statistical plan. The monotherapy arm of the study was not formally tested, since superiority was not reached for OS or PFS in the KEYTRUDA combination arm. The safety profile of KEYTRUDA in this trial was consistent with previously reported studies, and no new safety signals were identified. Results will be presented at an upcoming medical meeting and will be discussed with regulatory authorities.

In this study, KEYTRUDA in combination with chemotherapy in previously untreated patients with advanced or metastatic bladder cancer was rigorously tested against an active control of the current standard of care chemotherapy combination regimen, said Dr. Roy Baynes, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories. While we are disappointed in these study results, KEYTRUDA has been established as an important option in the treatment of metastatic bladder cancer, and we are committed to continuing our research to help more patients with this disease. We are grateful to the patients and investigators for their participation in this study.

KEYTRUDA has three FDA-approved bladder cancer indications across multiple types and stages of bladder cancer. Additionally, Merck has an extensive clinical development program in bladder cancer and is continuing to evaluate KEYTRUDA as monotherapy and in combination with other anti-cancer therapies across several disease settings (i.e., metastatic, muscle invasive bladder cancer, and non-muscle invasive bladder cancer).

About KEYNOTE-361

KEYNOTE-361 (ClinicalTrials.gov, NCT02853305) is a randomized, open-label, Phase 3 trial evaluating KEYTRUDA as monotherapy and in combination with chemotherapy versus chemotherapy alone, the current standard of care, for the first-line treatment of advanced or metastatic urothelial carcinoma. The dual primary endpoints are OS and PFS. Secondary endpoints include duration of response, disease control rate, overall response rate and safety. The study enrolled 1,010 patients who were randomized to receive:

About Bladder Cancer

Bladder cancer begins when cells in the urinary bladder start to grow uncontrollably. As more cancer cells develop, they can form a tumor and spread to other areas of the body. Urothelial carcinoma, the most common type of bladder cancer, starts in the urothelial cells that line the inside of the bladder. It is estimated there were more than 549,000 new cases of bladder cancer and nearly 200,000 deaths from the disease globally in 2018. In the United States, it is estimated there will be more than 81,000 new cases of bladder cancer and nearly 18,000 deaths from the disease in 2020. The five-year survival rate for advanced or metastatic bladder cancer (stage IV) is estimated to be approximately 5%.

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Small Cell Lung Cancer

KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) 10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High (MSI-H) Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Selected Important Safety Information for KEYTRUDA

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.

Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)

Immune-Mediated Hepatitis

KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.

Hepatotoxicity in Combination With Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.

Immune-Mediated Endocrinopathies

KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (<0.1%). Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.

Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

Immune-Mediated Nephritis and Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.

Immune-Mediated Skin Reactions

Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.

Other Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.

The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barr syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.

Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptorblocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.

In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).

In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (20%) with KEYTRUDA was diarrhea (28%).

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (20%) was fatigue (25%).

In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (20%) were fatigue (33%), constipation (20%), and rash (20%).

In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those 1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).

In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. Serious adverse reactions occurred in 42% of patients; those 2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).

In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those 2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).

In KEYNOTE-057, KEYTRUDA was discontinued due to adverse reactions in 11% of 148 patients with high-risk NMIBC. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.4%). Serious adverse reactions occurred in 28% of patients; those 2% were pneumonia (3%), cardiac ischemia (2%), colitis (2%), pulmonary embolism (2%), sepsis (2%), and urinary tract infection (2%). The most common adverse reactions (20%) were fatigue (29%), diarrhea (24%), and rash (24%).

Adverse reactions occurring in patients with gastric cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

Adverse reactions occurring in patients with esophageal cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).

Adverse reactions occurring in patients with hepatocellular carcinoma (HCC) were generally similar to those in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of ascites (8% Grades 3-4) and immune-mediated hepatitis (2.9%). Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (20%), ALT (9%), and hyperbilirubinemia (10%).

Originally posted here:
Merck Provides Update on Phase 3 KEYNOTE-361 Trial Evaluating KEYTRUDA (pembrolizumab) as Monotherapy and in Combination with Chemotherapy in Patients...

To Read More: Merck Provides Update on Phase 3 KEYNOTE-361 Trial Evaluating KEYTRUDA (pembrolizumab) as Monotherapy and in Combination with Chemotherapy in Patients…
categoriaCardiac Stem Cells commentoComments Off on Merck Provides Update on Phase 3 KEYNOTE-361 Trial Evaluating KEYTRUDA (pembrolizumab) as Monotherapy and in Combination with Chemotherapy in Patients… | dataJune 10th, 2020
Read All

Nanion Technologies and Nexel Partner to Open a New Reference Demonstration Laboratory in South Korea – Labmate Online

By daniellenierenberg

Nanion Technologies and Nexel are pleased to announce a partnership, focused on combining Nanions CardioExcyte 96 and FLEXcyte 96 cell monitoring technology with Nexels hiPSC-derived cells for demonstration purposes. Bringing together the two companies infrastructure and expertise serves to meet the growing demand for a reliable, high throughput cell monitoring technology in Asia.

The Nanion- Nexel partnership brings together profound skills in comprehensivein vitroelectrophysiology technology and development of human induced pluripotent stem cells (hiPSCs), with focus on cardiomyocytes. Under the partnership, Nexel opens a reference demonstration laboratory for Nanions systems at Nexels headquarters in Seoul, whereby both companies aim to significantly upscale support of their clients in Asia.

Dr Choong-Seong Han, CEO of Nexel, said: Nexel is proud to start this partnership with Nanion Technologies. We believe it will further build on the excellent relationship we have developed together in the last year. The Cardiosight-S cardiomyocytes have been fully validated on the CardioExcyte 96 and FLEXcyte 96 systems and our expert scientists are dedicated to provide the best demo settings as well as product experience for customers, as part of the collaboration. We hope interest in both Nanions and Nexels offerings will increase with our collaborative efforts.

Frank Henrichsen, Director of Global Sales of Nanion Technologies added: We are very eager to strengthen our position in the Asian market and especially in Korea. In Nexel, we see a valuable partner to help us develop our presence, in this case through opening their laboratories and enabling the use Nanions technology for demo purposes at their premises. Combining Nexels hiPSC-derived cardiomyocytes and cardiacin vitroassays with Nanions CardioExcyte 96 and FLEXcyte 96 systems, we are confident that our customers will get an excellent package solution for use in safety pharmacology and toxicology assays. We are also very happy that Nexel has already implemented the systems into their quality control procedure of Cardiosight-S cardiomyocytes.

See the article here:
Nanion Technologies and Nexel Partner to Open a New Reference Demonstration Laboratory in South Korea - Labmate Online

To Read More: Nanion Technologies and Nexel Partner to Open a New Reference Demonstration Laboratory in South Korea – Labmate Online
categoriaCardiac Stem Cells commentoComments Off on Nanion Technologies and Nexel Partner to Open a New Reference Demonstration Laboratory in South Korea – Labmate Online | dataJune 10th, 2020
Read All

Here Are a Bunch of Photos of Cops Not Wearing Masks – Futurism

By daniellenierenberg

At a protest in Queens, I asked a police officer why he wasnt wearing a mask.

Coronas over, he replied.

As Black Lives Matter protests against police violence and systematic racism erupted across the country, an unfortunate trend has emerged: while police often show up heavily armed and wearing riot gear, they seldom wear medical masks or other face coverings to prevent COVID-19 from spreading.

By not wearing masks, police are putting themselves and others at a greater risk of catching the coronavirus, experts told Time.

If a state, if a county, if a city is telling the general public to wear masks, Johns Hopkins health researcher Amesh Adalja told Time, then the police officers must follow that same law.

While a number of public health experts have argued that protestors are unlikely to cause a huge explosion in coronavirus infections, that assumes that everyone takes basic common-sense measures like keeping distance where possible and wearing a medical mask that keeps them from spreading pathogens.

Some cops are skipping masks entirely. Others are wearing them wrong, by pulling them down to expose their noses or mouths.

And while being outdoors likely reduces the risk of transmission, tightly clustered police and the protestors they arrest become public health hazards. Meanwhile, as of May 4, the NYPD had spent $12 million on medical masks this year alone, pointing to a major waste of time and resources given how few cops actually wore them.

I attended multiple protests and vigils throughout New York City. At all of them, the majority of police opted to skip the face mask or wear it improperly.

Videos from other protests, like this one of Austin police opening fire on a crowd of peaceful protestors, highlight that the problem of police ignoring their masks is a national issue.

Original post:
Here Are a Bunch of Photos of Cops Not Wearing Masks - Futurism

To Read More: Here Are a Bunch of Photos of Cops Not Wearing Masks – Futurism
categoriaSkin Stem Cells commentoComments Off on Here Are a Bunch of Photos of Cops Not Wearing Masks – Futurism | dataJune 9th, 2020
Read All

The Bio Revolution is changing business and society – STAT – STAT

By daniellenierenberg

Imagine a world in which we can produce meat without animals, cure previously incurable diseases by editing an individuals genetic fabric, and manufacture industrial chemicals in yeast factories. The foundational technologies that could make all this possible largely exist. Rapid and ever-cheaper DNA sequencing has deepened our understanding of how biology works and tools such as CRISPR are now being used to recode biology to treat diseases or make crops less vulnerable to climate change. This is what we call the Bio Revolution.

Explored in a new McKinsey Global Institute research report, which we helped co-author, the Bio Revolution is already benefiting society. A confluence of breakthroughs in biological science and ever faster and more sophisticated computing, data analytics, and artificial intelligence technologies has powered scientific responses to the Covid-19 pandemic. Scientists sequenced the virus genome in weeks rather than months, as was the case in previous outbreaks. Bio innovations are enabling the rapid introduction of clinical trials of vaccines, the search for effective therapies, and a deep investigation of the transmission patterns of the virus.

The report estimates that bio innovations could alleviate between 1% and 3% of the total global burden of disease in the next 10 to 20 years from these applications roughly the equivalent of eliminating the global disease burden of lung cancer, breast cancer, and prostate cancer combined. Over time, if the full potential is captured, 45% of the global disease burden could be addressed using science that is conceivable today.

advertisement

As much as 60% of the physical inputs to the global economy today are either biological (such as wood for construction or animals bred for food) or nonbiological (such as cement or plastics) but could, in principle, be produced over time using biology. Nylon can already be made using genetically engineered yeast instead of petrochemicals, for instance, leather is being made from mushroom roots, and bacteria have made a type of cement.

This Bio Revolution has the potential to be as transformative to business and economies as the Digital Revolution that proceeded it, creating value in every sector, disrupting value chains, and creating new business opportunities. Businesses clearly see the potential investment in a new generation of biological technologies had already surged to more than $20 billion by 2018.

advertisement

Many applications are being commercialized. We identified a visible initial pipeline of about 400 use cases, almost all scientifically feasible today, that could create a direct economic impact of $2 trillion to $4 trillion in the next 10 to 20 years more than half of which is outside health, in sectors as diverse as agriculture and textile manufacturing.

The confluence of biology and computing is already creating new capabilities. Computing is accelerating discovery and throughput in biology. An explosion of biological data due to cheaper sequencing is being used by biotech companies and research institutes that are increasingly using robotic automation and sensors in labs. Biotech company Zymergen, for example, has found that throughput in biological screening can be increased up to 10 times. Advanced analytics, more powerful computational techniques, and AI are also being deployed to generate more acute insights during the R&D process.

New biology-based manufacturing is already cutting costs, improving performance, and reducing the impact on the environment and the natural world. In cosmetics, for instance, Amyris is now making squalane, a moisturizing oil used in many skin-care products, by fermenting sugars using genetically engineered yeast instead of processing liver oil from deep-sea sharks, which was not only expensive but threatened the species with extinction. In textiles, U.S. startup Tandem Repeat is producing self-repairing, biodegradable, and recyclable fabric using proteins encoded by squid genes.

The Bio Revolution could utterly change the food business as plant-based proteins and lab-grown meat gain popularity and in the process cut greenhouse gas emissions from deforestation and animal husbandry. One study found that cultured meat could reduce greenhouse gas emissions by 80% or more compared with conventional meat if all of the energy used in manufacturing comes from carbon-free sources.

Cultured meat and seafood are made using tissue-culture technology, a lab process by which animal cells are grown in vitro. Producers still face a major technical challenge in finding a cost-effective way of growing cells. New players such as Finless Foods, Mosa Meat, Memphis Meats, and Meatable are experimenting with different approaches, including using synthetic molecules and pluripotent stem cells to replace expensive growth factors. Cultured meat and seafood could be cost-competitive with conventional animal production systems within 10 years.

In agriculture, greater understanding of the role of the microbiome offers opportunities to improve operational efficiency and output. By profiling bacteria and fungi in the soil, Trace Genomics, for one, produces insights that help choose tailored seeds and nutrients, and enables early prediction of soil diseases. In consumer markets, ongoing research into the relationship between the gut microbiome and the skin is being used to personalize skin care. Singapore-based genomics firm Imagene Lab, for instance, offers a personalized serum based on the results of its skin DNA tests that assess traits such as premature collagen breakdown.

Such examples give a sense of the breadth of applicability of bio innovation, but there is a significant caveat: risk. Biology will preserve life through innovative treatments tailored to our genomes and microbiomes, but biology could also be the greatest threat to life if it is used to create bioweapons or genetically engineered viruses that can do lasting damage to the health of humans or ecosystems. The CRISPR gene-editing tool is revolutionizing medicine and is being applied to agriculture with great effect. But consider that CRISPR kits are now available to buy on the Internet for $100 and so-called biohackers are using them at home.

Like the Digital Revolution, the Bio Revolution comes with risks but of a different order of magnitude. If citizens already have misgivings about data being gathered about their shopping habits, how much more nervous will they be about genetic data gathered from their bodies for medical treatment or ancestry tracing data that couldnt be more personal.

Another risk is that biological organisms are, by their nature, self-sustaining and self-replicating. Genetically engineered microbes, plants, and animals may be able to reproduce and sustain themselves over the long term, potentially affecting entire ecosystems. Once Pandoras box is opened and we have already cracked the lid we may have little control over what happens next.

Unless such risks are managed, it is possible that the full potential of the Bio Revolution may not materialize. We estimate that about 70% of the total potential impact could hinge on societal attitudes and the way innovation is governed under existing regulatory regimes. Yet if the risks can be managed and mitigated, the Bio Revolution can reshape our world. Scientists, in conjunction with forward-thinking companies, are now harnessing the power of nature to solve pressing problems in medicine, agriculture, and beyond, and helping craft a response to global challenges from pandemics to climate change.

Matthias Evers is a senior partner and global leader of research and development in McKinsey & Companys pharmaceuticals and medical products practice. Michael Chui is a partner at the McKinsey Global Institute, McKinseys business and economics research arm.

See the original post here:
The Bio Revolution is changing business and society - STAT - STAT

To Read More: The Bio Revolution is changing business and society – STAT – STAT
categoriaSkin Stem Cells commentoComments Off on The Bio Revolution is changing business and society – STAT – STAT | dataJune 9th, 2020
Read All

Page 298«..1020..297298299300..310320..»


Copyright :: 2025