Stem Cell Therapy Market is Thriving Worldwide 2020 | Trends, Growth and Profit Analysis, Forecast by 2027 – The Daily Chronicle
By daniellenierenberg
New Jersey, United States, The Stem Cell Therapy Market report 2020 provides a detailed impression, describe the product industry scope and the market expanded insights and forecasts up to 2027. It shows market data according to industry drivers, restraints and opportunities, analyzes the market status, the industry share, size, future Trends and growth rate of the market. The Stem Cell Therapy Market report is categorized by application, end user, technology, product / service types, and other, as well as by region. In addition, the report includes the calculated expected CAGR of chitosan acetate-market derivative from the earlier records of the Stem Cell Therapy Market, and current market trends, which are organized with future developments.
Global Stem Cell Therapy Market was valued at USD 117.66 million in 2019 and is projected to reach USD 255.37 million by 2027, growing at a CAGR of 10.97% from 2020 to 2027.
1.Stem Cell Therapy Market, By Cell Source:
Adipose Tissue-Derived Mesenchymal Stem Cells Bone Marrow-Derived Mesenchymal Stem Cells Cord Blood/Embryonic Stem Cells Other Cell Sources
2.Stem Cell Therapy Market, By Therapeutic Application:
Musculoskeletal Disorders Wounds and Injuries Cardiovascular Diseases Surgeries Gastrointestinal Diseases Other Applications
3.Stem Cell Therapy Market, By Type:
Allogeneic Stem Cell Therapy Market, By Application Musculoskeletal Disorders Wounds and Injuries Surgeries Acute Graft-Versus-Host Disease (AGVHD) Other Applications Autologous Stem Cell Therapy Market, By Application Cardiovascular Diseases Wounds and Injuries Gastrointestinal Diseases Other Applications
The report provides detailed coverage of the Stem Cell Therapy Market, including structure, definitions, applications, and Industry Chain classifications. The Stem Cell Therapy Market analysis is provided for the international markets including development trends, competitive landscape analysis, investment plan, business strategy, opportunities and development status of key regions. Development policies and plans are discussed and manufacturing processes and cost structures analyzed. This report also includes information on import / export consumption, supply and demand, costs, industry share, policy, Price, Sales and gross margins.
Ask For Discount @https://www.verifiedmarketresearch.com/ask-for-discount/?rid=24113&utm_source=TDC&utm_medium=001
Stem Cell Therapy Market forecast up to 2027, with information such as company profiles, product picture and specification, capacity production, price, cost, revenue, and contact information. Upstream raw materials and equipment as well as downstream demand analyses are also carried out. The Stem Cell Therapy Market size, development trends and marketing channels are analyzed. Finally, the feasibility of new investment projects is assessed and general research results are offered.
The Stem Cell Therapy Market was created on the basis of an in-depth market analysis with contributions from industry experts. The report covers the growth prospects in the coming years and the discussion of the main providers.
To understand how the effects of COVID-19 are addressed in this report. A sample copy of the report is available at https://www.verifiedmarketresearch.com/product/Stem-Cell-Therapy-Market/?utm_source=TDC&utm_medium=001
Verified Market Researchis a leading Global Research and Consulting firm servicing over 5000+ customers. Verified Market Research provides advanced analytical research solutions while offering information enriched research studies. We offer insight into strategic and growth analyses, Data necessary to achieve corporate goals, and critical revenue decisions.
Our 250 Analysts and SMEs offer a high level of expertise in data collection and governance use industrial techniques to collect and analyze data on more than 15,000 high impact and niche markets. Our analysts are trained to combine modern data collection techniques, superior research methodology, expertise, and years of collective experience to produce informative and accurate research.
Mr. Edwyne Fernandes
US: +1 (650)-781-4080UK: +44 (203)-411-9686APAC: +91 (902)-863-5784US Toll-Free: +1 (800)-7821768
Email:[emailprotected]
Read more here:
Stem Cell Therapy Market is Thriving Worldwide 2020 | Trends, Growth and Profit Analysis, Forecast by 2027 - The Daily Chronicle
Complicated elbow repair has Twins’ Rich Hill back on the mound – Minneapolis Star Tribune
By daniellenierenberg
Rich Hill is trying different ways to make hitters uncomfortable while contributing to a team that has high expectations this season.
That part hasn't been perfect, but the 40-year-old Twins lefthander is coming off an outing on Sunday against Detroit during which he held the Tigers to two runs over five innings and left the game leading 5-2 before the bullpen had a rare multiplayer meltdown.
The fact that the oldest pitcher is baseball is even able take the mound this season is an achievement. Faced with Tommy John elbow surgery last October that threatened to knock him out for all of 2020, Hill ended up being a candidate for different type of elbow surgery that got him back on a mound in nine months.
"Absolutely pleased with my elbow," Hill said. "Feeling zero issues the entire time through rehab, through the throwing program, through any outing this season. The elbow has been great.
"Continue to keep moving in that upward fashion, and again, it's the four days in between, making sure that I'm getting in the work that I need to get in. The training staff has done a great job.
Instead of having Tommy John surgery, in which the ulnar collateral ligament is reconstructed using a ligament from a patient's forearm or hamstring and can knock a pitcher out of action for up to 16 months, a procedure called primary repair was used to strengthen the ligament instead of replacing it. A piece of tape that is coated with collagen is attached to the ligament and bone to assist in the repair and strengthening of the area. It is a less invasive surgery than the one named after John, the pitcher who was the first to have such a surgery in 1974. Therefore, the recovery time is shorter.
Making the call
Given his age and desire to chase a World Series, Hill was all ears once he learned of the possibility of the surgery. He spent nearly three months on the Los Angeles Dodgers' injured list last season because of a left forearm strain and still had trouble upon his return.
But the primary repair surgery is still relatively new, going back to 2011, in comparison to hundreds of Tommy John surgeries being performed since 1974. Only a handful of baseball players, including pitchers Seth Maness and Jesse Hahn and outfielder Brandon Guyer, have had the procedure. Hill consulted with several of the nation's top orthopedic surgeons including James Andrews, Neal El-Attrache and Timothy Kremchek to learn as much as he could about the procedure. He also spoke with Maness and Guyer.
"I gathered as much information as I could talked to maybe every major orthopedic surgeon in baseball," Hill said. "I think I talked to everyone across the country as far as orthos go. Understanding this has been a very successful surgery and I wanted to make sure the percentages were going in the right direction as far coming back as possible and making sure I would not be looking back and having something."
Unique case
Still, he had to be the right candidate for the procedure. Each UCL tear is different. If the tear is in the middle of the ligament, the tape might not be effective. A tear off the bone is considered the perfect candidate for primary repair.
And a surgeon will not know if a ligament can be treated with primary repair until after he or she can open up the damaged area and inspect the ligament. A Magnetic Resonance Imaging exam isn't enough.
"You can't look at it and say 'I want that one,'" said Dr. Jeffrey Dugas of the Andrews Sports and Orthopedic Center in Birmingham, Ala. "You've got to fit the mold for it. You have to have the right tissue, the right injury and that doesn't occur all the time. There are lots of people who still are better off with reconstruction."
Tissue issues
Dugas who performed the surgery on Hill, who previously had Tommy John surgery in 2011. Dugas took a look at the damage and determined primary repair was the way to go.
"Rich had previous reconstruction, so he had already had Tommy John surgery," Dugas said. "So he had more tissue than the average person who had never torn it before. He had his own tissue plus the graft. He had a ton of tissue to deal with.
"He had double or triple the amount of tissue."
On top of it all, Hill also underwent a stem cell injection, with the stem cells coming from his own bone marrow, to assist in the healing process. Hill stopped at nothing to get back on the mound this season.
Ups and downs
On New Year's Eve, he signed with the Twins, getting a contract worth $3 million with bonuses for games started and innings pitched, with both sides understanding he wouldn't be ready until July. As it turned out, that's when the truncated season started, cutting Hill's base salary to $1.1 million in a 60-game season.
After his first start, he missed three weeks because of shoulder fatigue, working at St. Paul to get back in the Twins' rotation. In five starts, he is 1-1 with a 3.86 ERA. He's been knocked out in the third and fourth innings in two of his outings, and opponents' line drive percentage of .290 is the highest against Hill in his career.
But Hill has spent his 16-year career adapting, being used as a starter with the Cubs, to being a reliever with the Red Sox, to being a starter again with the Dodgers and now with the Twins. And there was a stop in independent ball when things weren't working out for him.
Adding a pitch
Everyone knows Hill throws plenty of curveballs, a pitch he can change the shape of and speed. But he's broken out a cut fastball lately, throwing 18 over his last three starts. It's something else for hitters to think about and a pitch that could help him down the stretch in the heat of a pennant race.
Because that's what it was all about for Hill, getting healthy as fast as possible and getting another chance at the postseason while he still can.
"The last five years have just been an incredible experience of just being able to use that knowledge to now, where my body is strong and healthy again, to be able to continue to use that knowledge," Hill said, "and to ultimately it is to win a World Series and that's the biggest thing.
"Am I chasing a World Series? Yeah I am, and everyone here is chasing a World Series."
About Rich Hill
Age: 40
Size: 6-5, 220
Position: lefthanded starting pitcher
Hometown: Milton, Mass.
College: Michigan
Drafted: Reds, 36th round, 1999; Angels, seventh round, 2001; Cubs, fourth round, 2002 (signed).
Major league teams: Cubs (2005-08), Orioles (2009), Red Sox (2010-12, 2015), Indians (2013), Angels (2014), Yankees (2014), Oakland (2016), Dodgers (2016-2019), Twins (2020).
Career stats: 16 seasons, 289 games, 161 starts, 66-43, 3.82 ERA. In 10 postseason series, 13 games, 1-2, 3.06 ERA.
Oh, no! Hill had a no-hitter going in the 10th inning of a 2017 game that was ruined by a walk-off home run by Pittsburgh's Josh Harrison.
Follow this link:
Complicated elbow repair has Twins' Rich Hill back on the mound - Minneapolis Star Tribune
Annual Kamloops Multiple Myeloma March to be held on Sept. 13 – Kamloops This Week
By daniellenierenberg
Three years after retiring from the BC Forest Service in 2013,Bob Trudeau of Kamloops began experiencing extreme pain in his torso while out on his regular trail runs and backpacking treks in the area around his hometown
A fit, avid outdoorsman who followed a healthy and active lifestyle, Trudeau was concerned and decided to see his doctor. After a series of tests, he was dumbfounded to learn that the pain was the result of 11 fractured vertebrae a common symptom of the disease with which he would soon be diagnosed.
A few weeks later, on Jan. 3, 2017, Trudeau, then 59, was even more stunned when he received the diagnosis of multiple myeloma, a little-known and incurable cancer of the plasma cells.
It was like, Happy New Year, youve got myeloma, Trudeau said. To suddenly find out that I had an incurable cancer that Id never heard of was unbelievable. Ive always led a very active and healthy life. I just couldnt understand it. I was shocked.
Shortly after his diagnosis, Trudeau underwent intense chemotherapy in preparation for a stem cell transplant in August 2017 The transplant was a success he was in remission. Unfortunately, 18 months later, the myeloma resurfaced and he had to find another treatment regimen to keep the cancer in check.
Today, Trudeaus condition is stable and he is on a maintenance program consisting of a combination of immunotherapy and chemotherapy drugs.
Trudeau, who has returned to running, is co-leading the Kamloops Myeloma Support Group.
My wife, Jennifer and I have been wanting grandchildren for years and now it's happening! he said. We're very much enjoying little Jacob and being able to help our daughter.
Trudeau and his family will be raising funds for myeloma research and awareness of the disease when they take part in the fourthannual Kamloops Multiple Myeloma March, which will take place on Sunday, Sept. 13, at 9 a.m.
This years event has been modified to help stop the spread of COVID-19. In compliance with physical-distancing measures, participants are encouraged to hold their own walk in their neighbourhood at the same time as the regularly scheduled march onSept. 13. Trudeau plans to run and walk 50 kilometres on a trail he has mapped out around Kamloops.
Local participants have set their fundraising goal at $10,000. The national fundraising goal is set at $650,000.
The Multiple Myeloma March is now in its 12thyear. The annual five-kilometre event brings Canadian communities together to raise funds for research and to help improve the lives of those impacted by myeloma. Kamloops is one of a record 33 communities across the country to be included in this years event. Information can be found by clicking here.
Multiple myeloma, also known as myeloma, is thesecond-most common form of blood cancer. Myeloma affects a type of immune cell called the plasma cell, found in the bone marrow. Every day, nine Canadians are diagnosed, yet in spite of its growing prevalence, the disease remains relatively unknown.
While there is no cure, people with myeloma are living longer and better lives, thanks to recent breakthroughs in treatment. To learn more, or to donate, visitwww.myeloma.ca.
Continue reading here:
Annual Kamloops Multiple Myeloma March to be held on Sept. 13 - Kamloops This Week
3D bioprinting dual-factor releasing and gradient-structured constructs ready to implant for anisotropic cartilage regeneration – Science Advances
By daniellenierenberg
INTRODUCTION
Articular cartilage is an elastic connective tissue in the joint (1). Cartilage injury is extremely common, yet cartilage has limited self-healing capacity because of its low cellularity and avascular nature. Because damage to cartilage leads to knee joint dysfunction, resulting in substantial pain and disability in the arthritic joint, cartilage or joint reconstruction remains a considerable challenge.(1). Arthritic joints in clinical practice are replaced by total joint arthroplasty using metallic and synthetic prosthesis (2, 3). Existing joint prostheses do not remodel with host joint tissue and can lead to long-term failure by aseptic loosening or infection (4), which could only be addressed by biological regeneration of the joint. Recently, using mesenchymal stem cell (MSC) transplants and then stimulating the directional differentiation into chondrocytes is becoming the method of choice for cartilage repair (5, 6). Clinical studies have shown that joint cartilage damage always extends deeply into the subchondral bone and, thus, causes osteochondral defects in the knee joint, which can alter the joints biomechanical properties and influence the long-term performance of the cartilage tissue (7), indicating the significance of simultaneous repair of whole-layer anisotropic articular cartilage in successful knee repair. As articular cartilage transitions from the superficial zone to the deep zone, the extracellular matrix (ECM) of the cartilage is characterized by increased oxygen tension and nutrient availability, lower amounts of ECM constituents such as glycosaminoglycans (GAG), and increased presence of a different phenotype of chondrocyte population with hypertrophic and ossification markers such as RUNX2 (Runt-related transcription factor 2) and type X collagen (8, 9). The gradient and anisotropic structure in ECM deposition and cell type provides excellent permeability in deep zone (vessel ingrowth) as well as desired mechanical support (10). However, developing biomimetic constructs mimicking the gradient anisotropic structure and the signaling approaches in different layers to induce zonal-dependent chondrogenic differentiation and ECM deposition is very challenging in cartilage repair. Previous studies showed that scaffolds with small pore size (100 to 200 m) could better promote chondrogenesis in osteochondral regeneration (11). However, osteogenesis and angiogenesis were inhibited in these scaffolds with small pore sizes, showing less nutrient diffusion and worse tissue integration by decreased microvessel ingrowth in these scaffolds (12). Hydrogel has been reported for cartilage regeneration in many studies (13, 14), yet it is still difficult to construct large-scale tissue structures with hydrogel owing to inadequate structural integrity, mechanical stability, and printability (12). Here, we report developing three-dimensional (3D) bioprinted dual-factor releasing and gradient-structured MSC-laden constructs ready to implant for whole-layer cartilage regeneration.
Different joint tissue constructs for joint reconstruction were fabricated using 3D bioprinting as previously reported with organ printing united system (OPUS; Novaprint) (15). To better mimic the native cartilage, we incorporated biochemical stimulus (BCS) with different growth factor releasing, and biomechanical stimulus (BMS) with small pore sizes to induce better chondrogenesis to create the dual-factor releasing and gradient-structured cartilage construct in the double stimulus (DS) group. We chose to test the combination of bone morphogenetic protein 4 (BMP4) and transforming growth factor3 (TGF3) in the cartilage construct in an established knee cartilage defect model given its potential generalizability in the regeneration of complex, inhomogeneous joint tissues. Poly(lactic-co-glycolic acid) (PLGA) (50:50 PLA/PGA) microspheres (S) were used to deliver TGF3 and BMP4 in hydrogel (Fig. 1, A and B). Briefly, poly(-caprolactone) (PCL) was molten to fabricate the physically gradient supporting structure for the scaffold, while MSC-laden hydrogel encapsulating PLGA microparticles carrying TGF3 or BMP4 in different layers was bioprinted into the microchannels between PCL fibers from different syringes (fig. S1). During plotting, the needle diameter, layer thickness, and speed for PCL printing were kept constant at 200 m, 200 m, and 180 mm/min, respectively. The fiber spacing was kept constant at 150 m (BMS group) or 750 m (BCS group) for nongradient (NG) scaffolds and varied gradually from 150 to 750 m throughout the gradient scaffolds (DS group) (fig. S1). The gradient microchannels between PCL range gradually from 150 m wide from the superficial zone of the cartilage, providing enough mechanical properties and smaller compartments favoring articular chondrocyte differentiation (11, 16), to 750 m wide in the deepest zone of the cartilage construct, maximizing diffusion of nutrients with better microvessel ingrowth and offering higher oxygen stress in the deep zone (Fig. 1B) (12). The fiber spacing was changed by 200 m every millimeter. The scaffolds were plotted in blocks of 4 4 4 mm for rabbit cartilage construct and 14 14 14 mm for human cartilage construct (Fig. 2A and movie S1).
(A) Schematic Illustration of the study design with 3D bioprinted dual-factor releasing and gradient-structured MSC-laden constructs for articular cartilage regeneration in rabbits. Schematic diagram of construction of the anisotropic cartilage scaffold and study design. (B) A computer-aided design (CAD) model was used to design the four-layer gradient PCL scaffolding structure to offer BMS for anisotropic chondrogenic differentiation and nutrient supply in deep layers (left). Gradient anisotropic cartilage scaffold was constructed by one-step 3D bioprinting gradient polymeric scaffolding structure and dual protein-releasing composite hydrogels with bioinks encapsulating BMSCs with BMP4 or TGF3 S as BCS for chondrogenesis (middle). The anisotropic cartilage construct provides structural support and sustained release of BMSCs and differentiative proteins for biomimetic regeneration of the anisotropic articular cartilage when transplanted in the animal model (right). Different components in the diagram are depicted at the bottom. HA, hyaluronic acid.
(A) Gross appearance of (a) human-scale and (b and c) rabbit-scale cartilage scaffold (b, NG with 150-m spacing; c, NG with 750-m spacing). Top view of the rabbit cartilage scaffold is also shown (d, NG with 150-m spacing; e, NG with 750-m spacing; f, gradient scaffold with 150- to 750-m spacing) atop of the SEM images (g, horizontal section; h, vertical section) taken for the 150-m NG scaffold to demonstrate the precise alignment of the PCL fibers in the printed scaffold. (B) Deconstruction of the gradient scaffold. The structure of the gradient scaffold was deconstructed into four layers. Microscopic appearance of the hydrogel-PCL composite structure in each layer demonstrated good interconnectivity and delicate, orderly aligned structure for each layer. (C and D) Good cell viability is shown respectively for superficial and deep layers after printing with live/dead assay (green, live cells; red, dead cells) (C) under a microscope and (D) under a confocal microscope. DAPI, 4,6-diamidino-2-phenylindole. (E) Cell spreading in superficial and deep layers with cytoskeleton staining. (F) Immunostaining for cartilage markers in superficial and deep layers. Expression of COL2A1 and PRG4, the lubrication markers, was significantly higher in the superficial layers with small pore size (a and b), while the chondrogenic cells in the deep layers (c and d) mostly presented with hypertrophic phenotype (COL10A1 expression). Photo credit: Ye Sun, First Affiliated Hospital of Nanjing Medical University.
Recombinant human TGF3 (rhTGF3) and rhBMP4 were microencapsulated in PLGA S (fig. S1) (17). TGF3 and BMP4 S were mixed in the cell-laden hydrogel (table S1), respectively, and printed into the microchannels between PCL fibers with different syringes (Fig. 2B and fig. S1). To chemically simulate the hypertrophic layer in native cartilage, we used PLGABMP4-encapsulated MSC-laden hydrogel in the deepest layer with a 750-m PCL fiber spacing, while PLGATGF3 was used for the other three layers of the cartilage construct. Scanning electron microscopy (SEM) images of PLGA S were taken, showing a less than 2-m diameter for most of the PLGA S. The PLGA-encapsulated MSC-laden hydrogel also showed nice printability as demonstrated (Fig. 2B and fig. S1A).
The final product of the human and rabbit cartilage construct demonstrated good interconnectivity and delicate, orderly aligned structure under the microscope, SEM, and in gross appearance for both PCL fibers and the printed hydrogel in between (Fig. 2, B to D). To validate S distribution in MSC-laden hydrogel, fluorophore-conjugated rhodamine was encapsulated into PLGA S and delivered to the hydrogel. At day 7, PLGArhodamine S showed well-proportioned distribution and minimal cell toxicity in the hydrogel printed between the PCL fibers under a confocal microscope (Fig. 2, C and D, and fig. S1B). Immunostaining for cartilage markers in the gradient scaffold was performed (Fig. 2, E and F). Resembling the native cartilage, the expression of COL2A1 (Collagen Type II Alpha 1 Chain) and PRG4 (Proteoglycan 4), the lubrication marker, was significantly higher in the superficial layers with small pore size, while the chondrogenic cells in the deep layers mostly presented with hypertrophic phenotype (COL10A1 expression) (Fig. 2F and fig. S2). Moreover, the compressive Youngs modulus of the NG-150 scaffold and the gradient scaffold were similar to that of the native cartilage and significantly higher than that of the NG-750 scaffold (fig. S3), demonstrating that smaller PCL fiber spacing plays an important role in enhancing the mechanical properties of the PCL-hydrogel composite scaffolds. In biomimetic regeneration of native articular cartilage, the gradient scaffold could provide anisotropic chondrogenesis in different layers and structural support for the newly formed cartilage tissue in compression, and allow nutrient supply and vessel ingrowth in the deep layers.
To examine the effects of BMP4, TGF3, and their S on bone marrow stromal cell (BMSC) viability and proliferation, we cultured BMSCs in the composite hydrogel for 7 days (fig. S4). Spheres showed controlled release of TGF3 first, followed by BMP4. Relatively rapid TGF3 release in the three layers with smaller PCL fiber spacing and slower release of BMP4 in the deepest layer were sustained over 60 days in vitro (fig. S5). Similar viability and proliferation rate of BMSCs were demonstrated for BMP4 and TGF3 compared with control through 7 days in the hydrogel (fig. S4, A, C, and D). Compared with empty S, S encapsulating BMP4 and TGF3 also showed minimal toxicity to BMSC viability and proliferation in the hydrogel (fig. S4, B, E, and F). Cell viability and proliferation were further examined in the printed scaffolds (Fig. 3, A to E). Scaffold fabrication with gradient structure (Fig. 3A, left) and delicate alignment of hydrogel printing (Fig. 3A, right) were separately conducted. Printed cell-laden hydrogel causes cell alignment in a longitudinal direction of the printed paths, forming a reticular network with cell interaction (Fig. 3B). The PCL pillar structure in the final construct further stabilized the 3D printed BMSC organization, inducing a compaction phenomenon of the patterns of cell alignment in the cell-laden hydrogel (Fig. 3C). Survival of BMSCs throughout the final cartilage construct with gradient structure was examined at 60 min (day 0), 1 day, 7 days, and 21 days after printing (Fig. 3, I to K). Live/dead cell assays showed 95% cell viability on day 0, which was maintained over 75% through days 3 to 21 (Fig. 3D). Cell proliferation, assessed using the alamarBlue assay system, increased over a 21-day period, similar to the proliferation of control cells encapsulated in a fibrin construct (Fig. 3E). Immunostaining of cytoskeleton showed cell spreading, both in the hydrogel and the PCL fibers throughout the four layers of the construct (Fig. 3C). At day 21, good 3D anchoring to the PCL fiber cylinder was observed for the BMSCs released from the hydrogel (Fig. 3F). These data indicate that the one-step 3D bioprinted dual-factor releasing and gradient-structurally optimized cartilage scaffold preserved cell viability during the printing process and provided a favorable microenvironment for BMSC proliferation, spreading, and condensation for differentiation into chondrocytes in vitro.
(A) Schematic of anisotropic cartilage scaffold construction with fabrication of gradient scaffolding structure (left) and large-scale printing of aligned protein-releasing BMSC-laden hydrogel (right). Scale bar, 1 mm. (B) Gross appearance of PLGA Sencapsulated BMSC-laden hydrogel under a microscope (top). Printed cell-laden hydrogel causes cell alignment in a longitudinal direction of the printed paths, forming a reticular network with cell interaction (bottom). (C) Live/dead cell assays showed 95% cell viability maintained through day 1 to 21 for all four layers with gradient spacing (4th row, 150-m spacing; 3rd row, 350-m spacing; 2nd row, 550-m spacing; 1st row, 750-m spacing). Immunostaining of cytoskeleton (rightmost column) showed cell spreading both in the hydrogel and on the PCL fibers throughout the four layers of the construct. Scale bar, 500 m. (D and E) Quantified cell viability and proliferation in the printed scaffolds. (F) Cell anchoring in the scaffolds. (a to c) At day 21, good 3D anchoring to the PCL fiber cylinder was observed for the MSC cells released from the hydrogel. (d to f) Similar cell anchoring was observed for PCL fibers in adjacent layers. (b), (c), (e), and (f) are 3D demonstration of cell anchoring in (a) and (d), respectively. Scale bars, 100 m. Photo credit: Ye Sun, First Affiliated Hospital of Nanjing Medical University.
Before in vivo application of the scaffold, we ascertained whether spatiotemporal delivery of rhTGF3 and rhBMP4 induced layer-specific BMSC differentiation into chondrocytes that present with hyaline articular and hypertrophic phenotype. Articular chondrocytes with hyaline and hypertrophic phenotype were first derived from rabbit BMSCs in vitro. Hyaline chondrocytes concurrently produced both aggrecan and type II collagens, while hypertrophic chondrocytes produced type I collagen and type X collagen. Sequential application of rhTGF3 for 2 weeks in culture, followed by rhTGF3 for another 4 weeks (TGF3 group), induced differentiation of BMSCs into chondrocytes that synthesized aggrecan and type II collagens, suggesting hyaline articular chondrocyte-like cells. BMSCs sequentially treated with rhTGF3 and rhBMP4 demonstrated significantly higher type I collagen, type X collagen, and aggrecan protein expressions than the control (Fig. 4A and fig. S6). Moreover, cells in the TGF3-induced tissue were fibroblastic, whereas those induced with BMP4 were larger and arranged in a cobblestone pattern (Fig. 4A), similar to hypertrophic chondrocytes previously generated in culture (5). Condensation of BMSCs that indicated differentiation was observed at 4 weeks (fig. S6B). Both treatments induced BMSC differentiation and yielded a cartilaginous matrix that stained positively for toluidine blue and alcian blue in condensed BMSCs, indicative of a proteoglycan-rich, cartilage-like ECM.
(A) Chondrogenic differentiation of condensed rMSCs with toluidine blue (TB) and alcian blue (AB) staining. (B) Scaffolds were transplanted subcutaneously for 12 weeks. (C) To validate the cartilage-generating capability, scaffolds were incubated and observed for 12 weeks in vitro, indicating better cartilage-generating potential for the physically gradient protein-releasing scaffold (movie S2). (D) Youngs modulus of the scaffolds compared with native cartilage after 12 weeks. Data are presented as averages SD (n = 6). *P < 0.05 between the NG-750 group and other groups; #P < 0.05 between the native cartilage group and other groups. (E) In the generated cartilage tissues, spatiotemporally released dual-factors induced zone-specific expression of PRG4, aggrecan, and collagens II and X and showed resemblance with native joint cartilage. (F) (a to c) Toluidine blue staining of the 3D printed cartilage constructs (a, top view; b, side view; c, bottom view) after culture in chondrogenic medium for 6 weeks in vitro. (d to g) Toluidine blue and (h to k) alcian blue staining was applied for each layer of the gradient scaffold. (l to p) Safranin O (SO) and (q to t) toluidine blue staining of cartilage tissue between PCL fibers (green curved line) in different layers of the 3D printed cartilage constructs after subcutaneous implantation. Photo credit: Ye Sun, First Affiliated Hospital of Nanjing Medical University.
Cartilage scaffolds incorporating rhTGF3 and rhBMP4 for spatiotemporally controlled release were also examined in different groups of scaffolds transplanted in vivo subcutaneously for 12 weeks (Fig. 4, B to F). To validate the cartilage-generating capability of the composite scaffold, the protein-carrying scaffolds were incubated and observed for 12 weeks in vitro (Fig. 4C). All scaffolds, physically gradient or NG, showed cartilage-like tissue development surrounding the scaffolds, whereas the BCS and BMS scaffolds developed 1/4 to 1/3 thickness cartilage tissue, while the DS scaffold showed almost full-thickness coverage of cartilage-like tissue around the construct (movie S2), indicating a significantly better cartilage-generating potential in vitro and a better prospect of its cartilage matrix integration in vivo for the physically gradient protein-releasing scaffold (Fig. 4C). The compressive Youngs modulus of the BMS scaffold and the DS scaffold were similar to that of the native cartilage and significantly higher than that of the BCS scaffold with large pore sizes (Fig. 4D), demonstrating that smaller PCL fiber spacing plays an important role in enhancing the mechanical properties of the PCL-hydrogel composite scaffolds. The enhanced mechanical properties are promising for biomimetic regeneration of native articular cartilage and provide structural support for the newly formed cartilage tissue.
After 12 weeks in vivo, spatiotemporally released rhTGF3 and rhBMP4 in the DS scaffold induced zone-specific expression of PRG4, aggrecan, and collagen II and X assayed with immunofluorescence, showing resemblance with native joint cartilage (Fig. 4E). Superficial zone marker PRG4, with a gradient manner throughout the four layers, was presented mainly in the superficial layer with the smallest PCL compartments (Fig. 4E, first column, 150 m 150 m). Abundant cartilaginous matrix with collagen type II and aggrecan was present in a gradient manner primarily in the superficial layers with TGF3 delivery, whereas hypertrophic marker collagen type X was primarily expressed in the deepest zone (Fig. 4E, second to fourth columns). Cartilaginous matrix was demonstrated and stained positive for toluidine blue for the scaffold (Fig. 4F, a to c). To determine the production of GAG in each layer of the gradient scaffold, we applied toluidine blue staining (Fig. 4F, d to g) and alcian blue staining (Fig. 4F, h to k). The whole gradient scaffold body stained positive (Fig. 4F, a to c), with a gradient staining intensity from the superficial layer to the deepest layer (Fig. 4F, d to k), indicating a gradient cartilaginous matrix formation resembling the native cartilage matrix. Safranin O staining and toluidine blue staining of the generated cartilage tissue sections showed the production of a cartilaginous matrix between PCL fibers in different layers of the 3D printed cartilage constructs after subcutaneous implantation in vivo (Fig. 4F, j to s). The chondrocytes in the newly formed tissue demonstrated similar morphological characteristics to those in native cartilage. A large fraction of generated chondrocytes in the TGF3-induced tissue were fibroblastic, whereas those induced with BMP4 in the deepest layers were larger and arranged in a cobblestone pattern, similar to hypertrophic chondrocytes generated in the culture plate (Fig. 4F, l to t). All cells located within typical chondrocyte lacunae, surrounded by cartilaginous matrix.
Rabbits were used as animal models to evaluate the knee repair capacity of the cartilage scaffolds. Cartilage scaffolds were constructed by one-step 3D bioprinting gradient polymeric supporting structure and different protein-releasing composite hydrogels with bioinks encapsulating BMSCs with BMP4 or TGF3, providing structural support and sustained release of BMSCs and differentiative proteins for biomimetic regeneration of the native articular cartilage (Fig. 5). As shown in Fig. 5A (first row), a full-thickness cartilage defect was created in the knee joint. The scaffold was implanted into the defect to test for cartilage tissue regeneration. Cartilage repair with the DS scaffold showed much better gross appearance at 8, 12, and 24 weeks compared with the BCS and BMS scaffolds (Fig. 5A, second to fourth rows). During the 24-week posttransplantation period, magnetic resonance imaging (MRI) was made for the operated knee joint, demonstrating significantly better resolution of subchondral edema and healing of the articular surface after 24 weeks for the DS group (Fig. 5A, fifth row). In addition, the chondroprotective effects of the scaffolds were compared (18). The gradient scaffold group showed better chondroprotective effects with a significantly higher histological grading compared with the NG groups over the 24 weeks in vivo (Fig. 5, B to E). Better repairing effects were demonstrated with gradient scaffolds compared with NG groups over 24 weeks (Fig. 5, B to E). Compared with the control group, the gradient group also showed better cartilage regeneration capabilities (fig. S7) and chondroprotection with significantly minor damage to the femoral condyle and tibial plateau (Fig. 5, D and E). Examination of intra-articular inflammatory response showed no significant difference in interleukin-1 and tumor necrosis factor level among different groups, maintaining at a relatively low level during the 24-week cartilage healing (fig. S8, A and B, and table S2). After the 24-week healing, histomorphological analysis was conducted for the generated cartilage. As shown in Fig. 5B, the DS scaffold regenerated fully hyaline-like cartilage in the defect site as evidenced by intense staining for GAGs and better cell filling in hematoxylin and eosin (H&E) staining (Fig. 5B). Type 1 and III collagens were also demonstrated in the regenerated cartilage with picrosirius red staining and compared with the native cartilage (Fig. 5B). Immunohistochemical staining of markers (PRG4 and type II and X collagens) for chondrocyte phenotype was conducted in the generated cartilage tissue sections in different groups compared with the native cartilage (fig. S8C). In the superficial zone, only the DS scaffolds showed PRG4 staining in the superficial chondrocytes in the generated cartilage tissue. Meanwhile, gradient expression of type II and X collagens, resembling the native cartilage, was also demonstrated from the superficial zone to the deep zone of the newly formed cartilage in the DS group, indicating successful construction of the anisotropic layered cartilage with different chondrocyte phenotypes and gradient ECM deposition by the 3D bioprinted dual-factor releasing and gradient-structured MSC-laden scaffold. Furthermore, neocartilage in the DS group showed more similar appearance to normal cartilage than other groups (Fig. 5B and fig. S8C). The above results indicated that the DS anisotropic scaffold had a better cartilage-repairing effect than the BCS or BMS groups and maintained better joint function after transplantation.
(A) Scaffold implantation process and gross appearance of the repair cartilage at 8, 12, and 24 weeks. MRI was made for the operated knee joint (fifth row), demonstrating significant better resolution of subchondral edema and healing of the articular surface (white arrowheads) for joint transplanted with DS scaffolds. (B to F) Chondroprotective effects of the scaffolds were compared by (B) histological scoring evaluation of the repaired cartilage tissue during in vivo implantation. (C) Mankin score and (D) ICRS (International Cartilage Repair Society) histological score of articular cartilage in the femoral condyle (FC) and tibial plateau (TP) in both groups with scaffold implantation. *P < 0.05 between the native group and other groups. #P < 0.05 between the BCS group and the DS group. Data are presented as averages SD (N = 6). (A) Histomorphological analysis of the neocartilage tissue at 24 weeks. PR, picrosirius red. The left bottom panels are higher-resolution pictures of the formed neocartilage outline in the colored square boxes. (a to e) Sections were stained with (a) H&E, (b) Safranin O, (c) TB, and (d) AB staining to indicate the presence of proteoglycans in different groups compared with native cartilage. (e) Picrosirius red was used to stain collagens I and III. The brown irregular area at the interface under the formed neocartilage was undegraded PCL material as supporting structure for the scaffolds. Photo credit: Ye Sun, First Affiliated Hospital of Nanjing Medical University.
As native articular cartilage transitions from the superficial zone to the deep zone, different phenotypes of chondrocyte population were presented with higher lubrication and GAGs (PRG4, ACAN expression) in the superficial layers and ossification (RUNX2, COL10A1 expression) in the deep layers. In the present study, we further tested the anisotropic properties of the generated cartilage and compared it with the native cartilage. In the superficial layer, immunostaining demonstrated greater PRG4 and ACAN expression in the DS group and the native cartilage compared with other two groups (Fig. 6, A to C). Meanwhile, higher expression of ossification markers (RUNX2 and COL10A1) were also observed for the group with implanted dual-factor releasing and gradient-structured scaffold (Fig. 6, D to F). These results indicate that the dual-factor releasing and gradient-structured scaffold could better restore the anisotropic properties of the native cartilage with different chondrogenic and ossification markers in specific layers. Moreover, resembling the ingrown microvessels in the deep layers of the native cartilage, the DS scaffold could better promote microvessel ingrowth compared with the group with small pore sizes, indicating better nutrient supply and tissue integration with large pore sizes in the deep zone (Fig. 6, G and H).
(A to C) In the superficial layer, immunostaining demonstrated greater PRG4 and ACAN expression in the DS group and the native cartilage compared with other two groups. (D to F) Meanwhile, higher expression of ossification markers (RUNX2 and COL10A1) were also observed for the group with implanted dual-factor releasing and gradient-structured scaffold in deep layers. (G and H) Moreover, the DS scaffold could better promote microvessel ingrowth compared with the group with small pore sizes, indicating better nutrient supply and tissue integration with large pore sizes in the deep zone. *P < 0.05 between the native group and other groups. #P < 0.05 between the DS group and other groups. BC, biochemical stimulus; BS, biomechanical stimulus. **P < 0.01; ##P < 0.01.
In conclusion, we have generated 3D bioprinted anisotropic constructs with structural integrity for joint reconstruction and articular cartilage regeneration and further tested the functional knee articular cartilage construct in a rabbit cartilage defect model with 6-month follow-up. Human-scale cartilage constructs with the structural integrity needed and that are ready for surgical implantation were created by sequentially printing protein-releasing and MSC-laden hydrogels with synthetic PCL polymer with gradient structures, a technique that could also be applied to the regeneration of the whole joint. In previous studies, relative nonuniformity was possible when hydrogel was printed alone without PCL as scaffolding support. Although hydrogel could serve as a carrier of cells and growth factors, it alone was quite not suitable for construction of complex biomimetic tissues with required mechanical properties. The combined printing with PCL scaffolding offered the uniformity for the hydrogel and the mechanical properties needed for in vivo study. In the present study, the cell-laden hydrogel allows well-proportioned distribution of MSCs and the protein-encapsulated S and thus protects cell viability and promotes its differentiation and expansion in the scaffold (17). Meanwhile, the adjacent PCL scaffolding provides adequate mechanical support and architectural integrity, offering a stable microenvironment for the 3D anchored MSC cells within the hydrogel to differentiate and form the tissue with their secreted cartilage matrix that replaces the hydrogel as it slowly degrades (15).
However, the release of the growth factors from the embedded S was not tracked in vivo after the scaffold transplantation. The intra-articular environment in vivo would definitely lead to faster disintegration of the S in the hydrogel. In this case, the PCL scaffolding would offer a much more stable microenvironment for cell and growth factor release than hydrogel alone. Lineage tracing studies have provided compelling evidence that articular chondrocytes derive from interzone cells in regions of condensing chondrogenic mesenchyme (19), similar to our observations that the MSCs, in the presence of TGF3 and BMP4, condense in the small compartments with surrounding PCL fibers as supporting structure and develop into articular chondrocytes that express genes expressed in cartilage layers. The MSC-derived articular chondrocytes were able to generate and maintain stable cartilage phenotype in vivo when transplanted into the knee defect site. The ECM composition of TGF3- or BMP4-induced cartilage tissues in the bioprinted scaffold shared many characteristics of native articular cartilage, including the gradient expression of type II collagen, superficial localization of PRG4, and abundant presence of type X collagen in the deep zone, indicative of regenerated superficial zone articular cartilage and deep zone hypertrophic cartilage in the constructs. In summary, we have generated 3D bioprinted constructs with structural integrity for joint reconstruction and articular cartilage regeneration and further tested the functional knee articular cartilage construct in a rabbit cartilage defect model with 6-month follow-up. Generating 3D bioprinted functional constructs as prosthesis for joint replacement or cartilage repair provides an opportunity to integrate the feasibility of MSC- and 3D bioprintingbased therapy for injured or degenerative joints. Evaluation will be needed to assess the function of the joint constructs in animal experiments and whether the functional cartilage phenotypes could be sustained in daily function. For translation, we envision the surgeons could incorporate surgery and 3D bioprinting by performing a mini-invasive arthroscopy procedure to replace the damaged or degenerated articular cartilage with 3D bioprinted cartilage scaffold or by performing joint replacement surgery using 3D bioprinted joint scaffolds.
BMSCs were isolated from rabbit bone marrow aspirates. Briefly, marrow aspirates (20-ml volume) were harvested and immediately transferred into plastic tubes. Isolated rMSCs were expanded in minimum essential medium containing fetal bovine serum (10%), d-glucose (4.5 mg/ml), nonessential amino acids (0.1 mM), sodium pyruvate (1 mM), Hepes buffer (100 mM), penicillin (100 Ul/ml), streptomycin (100 g/ml), and l-glutamate (0.29 mg/ml). Medium was changed twice a week, and rMSCs were used at passage 2 for the following experiments. TGF3 (10 ng/ml) was added in the medium for 2 weeks, and then TGF3 was replaced with BMP4 (50 ng/ml) in some of the cultures for another 4 weeks. Medium was also changed twice a week. Immunofluorescence staining of chondrogenic markers (Col1A1, Col2A1, Aggrecan, and Col10A1) was conducted to compare the generated chondrocyte phenotype and observed under confocal microscopy (Leica, Japan). The expression of chondrogenesis markers (SOX9, Col1A1, and Col2A1), superficial zone chondrocyte markers (ACAN, PRG4, CILP2, GDF5, and Col22A1), and deep zone chondrocyte markers(Col10A1, RUNX2, and ALP) after TGF3 or BMP4 incubation for 6 weeks was analyzed by real-time polymerase chain reaction (RT-PCR) using an ABI 7300 RT-PCR system (Applied Biosystems, USA). Six-week-old tissues generated under both conditions were stained with toluidine blue and alcian blue for proteoglycan production. The stained images were taken using a light microscope (Leica Microsystems, Germany).
Different joint tissue constructs for joint reconstruction were fabricated using 3D bioprinting with OPUS (Novaprint). 3D bioprinting cell-laden hydrogels together with biodegradable polymers was conducted for specific articular joint. The motion program and alignment of cell-laden hydrogel and PCL fibers were demonstrated in the printing process of anisotropic cartilage tissues in movie S1. Bioprinting rabbit-derived MSC-laden hydrogels together with physically and chemically gradient biodegradable polymers was conducted for knee cartilage repair using OPUS. The rMSCs suspension (a total of 1 107 cells) was loaded into the composite hydrogel (table S1). The printing chamber was kept at a constant 17C. The native cartilage structure inspired us to produce four-layer 3D structures by placing together cell-laden hydrogel and PCL (~100-m diameter for hydrogel and ~200-m diameter for PCL) to construct a composite cartilage scaffold (17). Needle sizes for the hydrogel and PCL were 100 and 200 m, respectively. Briefly, PCL was molten (~60C) to fabricate the physically gradient supporting structure for the scaffold, while MSC-laden hydrogel (~37C) encapsulating PLGA microparticles carrying TGF3 or BMP4 in different layers was bioprinted into the microchannels between PCL fibers from different syringes (movie S1). During plotting, the needle diameter, layer thickness, and speed for PCL printing were kept constant at 200 m, 200 m, and 180 mm/min, respectively, as previously reported (15). The extrusion pressure for PCL and hydrogel was 1.2 to 1.8 kPa and 0.5 to 0.8 kPa, respectively. The fiber spacing was kept constant at 150 or 750 m for NG scaffolds and varied gradually from 150 to 750 m throughout the gradient scaffolds. The gradient microchannels between PCL range gradually from 150 m wide from the superficial zone of the cartilage to 750 m wide in the deep zone of the cartilage construct. The fiber spacing was changed every millimeter. The scaffolds were plotted in blocks of 4 4 4 mm for rabbit cartilage construct and 14 14 14 mm for human cartilage construct.
rhTGF3 and rhBMP4 were microencapsulated in PLGA (50:50 PLA/PGA) S to deliver TGF3 (20 ng/ml) and BMP4 (100 ng/ml) in hydrogel as previously described (15, 17). TGF3 and BMP4 S were mixed in the cell-laden hydrogel (table S1), respectively, and printed into the microchannels between PCL fibers with different syringes. To chemically simulate the deep layer in native cartilage, PLGABMP4-encapsulated MSC-laden hydrogel was used in the deepest layer with a 750-m PCL fiber spacing, while PLGATGF3 was used for the other three layers of the cartilage construct. Generated PLGA S was shown with SEM. Printability was also shown with a test run for the PLGA-encapsulated MSC-laden hydrogel. Release kinetics of TGF3 and BMP4 from PLGA S were measured by incubating S (10 mg/ml) encapsulating TGF3 (0.1% bovine serum albumin) or BMP4 [in phosphate-buffered saline (PBS)] at 37C with mild agitation for up to 60 days. Upon centrifugation at 2500 revolutions per minute for 5 min, supernatant of the PLGA S incubation solution was collected. Released TGF3 and BMP4 concentration was measured using enzyme-linked immunosorbent assay kits following the manufacturers protocols (15). To validate S distribution in MSC-laden hydrogel, fluorophore-conjugated rhodamine was encapsulated into PLGA S and delivered to the hydrogel. At day 7, PLGA rhodamine S and cell viability (live/dead assay) in the hydrogel was observed under a confocal microscope.
To validate the cartilage-generating capability of the composite scaffold, the protein-carrying scaffolds were incubated and observed for 12 weeks in vitro. Photographs of cartilage-like tissue development surrounding the scaffolds were taken to show the cartilage-generating potential in vitro of the scaffolds. Mechanical measurements on scaffolds and native cartilage were carried out with a single-column static instrument (Instron 5843, USA) equipped with two flat compression stages and a 10-N load cell.
To see the differences within the rMSCs cultured in the different areas of the gradient scaffolds, after 6 weeks under differentiation conditions, the constructs were collected, washed three times with PBS, and cut in four portions of 1 mm in height. The images of each layer were taken using a light microscope. The viability of the BMSCs on the scaffolds were analyzed with live/dead assay and observed under confocal microscopy for 3, 7, and 21 days, while the morphology of cells was observed under confocal microscopy at end point (21 days). Briefly, The MSCs in the scaffold were fixed with 4% paraformaldehyde and treated with rhodamine phalloidin (Thermo Fisher Scientific, USA) to stain the F-actin for 1 hour and incubated with DAPI (Thermo Fisher Scientific, USA) to stain the nucleus for 5 min in turn. Cell proliferation in the constructs was assessed with alamarBlue assay kit (DAL1100; Life Technologies) according to the manufacturers instruction as previously described (12).
Biochemical studies were performed to the full and partitioned scaffolds. Toluidine blue and alcian blue staining were applied to determine the production of GAGs in each layer of the gradient scaffold. The sections for the different layers were prepared and then treated with Safranin O and toluidine blue staining to identify GAG formation in each layer. Immunofluorescence staining of chondrocyte markers (PRG4, Col2A1, aggrecan, and Col10A1) was conducted for layer-specific chondrogenesis and observed under confocal microscopy.
Different groups of scaffolds were transplanted under the dorsal skin of nude mice in vivo subcutaneously for 12 weeks. The cartilage scaffolds were retrieved after 12 weeks in vivo, and zone-specific expressions of PRG4, aggrecan, and type II and X collagens were assayed with immunofluorescence. GAG production was determined with toluidine blue and alcian blue staining.
Adult male New Zealand white rabbits weighing 3.0 to 3.5 kg were used for the study in vivo. Rabbits were randomized into three groups (two knees of each rabbit were used): NG-750 (BCS group), NG-150 scaffold (BMS group), and the gradient scaffold (DS group). After anesthesia, the knee joint of the rabbits was exposed after dislocating the patella. A cylindrical defect (4-mm diameter, 4-mm depth) on the trochlear groove of the distal femur was created using corneal trephine. Then, suited 3D bioprinted BCS, BMS, or DS scaffolds were implanted matching with the defect. Forced flexion and extension were conducted for the operated knee to confirm the localization of the implanted scaffolds in the defect. Last, the operated knee joint was closed with suture (4-0 thread), and antibiotics were given intramuscularly for prophylactic infection. After the operation, rabbits were allowed to move freely in their single cages and fed with standard food and water. Eight, 12, and 24 weeks later, rabbits were euthanized for further study. The protocol was approved by the local Institutional Animal Care and Use Committee and complied with the Guide for the Care and Use of Laboratory Animals, revised in 2010 and published by the National Academy of Sciences.
Serial sections (4 mm thick) were cut sagittally through the center of the operative site and stained with H&E, toluidine blue, Safranin O and fast green, toluidine blue, alcian blue, and picrosirius red according to standard protocols. Immunohistochemical staining of markers (PRG4, RUNX2, and collagens II and X) for chondrocyte phenotype and microvessel ingrowth (CD31 and smooth muscle actin) was conducted according to standard protocols in the generated cartilage tissue sections in different groups compared with the native cartilage. The stained images were taken, and regenerated cartilage thickness (n = 6 for each) was calculated for different bioprinted scaffolds using a light microscope. A modified method was used to evaluate the histological repair of articular cartilage defects (18).
Acknowledgments: Funding: This work was funded by the National Key R&D Program of China (nos. 2018YFB1105600 and 2018YFA0703000), the China National Natural Science Funds (nos. 51631009 and 81802122), the Chinese postdoctoral funding (no. 2019M661559), and the Funds from Shanghai Jiao Tong University for the Clinical and Translational Research Center for 3D Printing Technology. Author contributions: Y.S. and Y.Y. contributed equally to conceiving the study and designing the experiments. W.J. helped design the 3D bioprinted scaffolds. B.W. helped synthesize the growth factorencapsulated microspheres. Y.S. and Q.W. conducted the animal experiment. Y.S. and Y.Y. analyzed the data and wrote the manuscript. K.D. helped edit the manuscript and provided oversight. All authors read and approved the final manuscript. Competing interests: The authors declare that they have no competing interests. Data materials and availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.
Read the rest here:
3D bioprinting dual-factor releasing and gradient-structured constructs ready to implant for anisotropic cartilage regeneration - Science Advances
Innovative treatments for heart failure – Open Access Government
By daniellenierenberg
Concerning heart failure (HF), the current COVID-19 pandemic is having a dramatic effect on the daily life of each individual, ranging from social distancing measures applied in most countries to getting severely diseased due to the virus. Cardiovascular Disease (CVD) is among the most common conditions in people that die of the infection. The burden of CVD accounts for over 60 million people in the EU alone, therefore, it is the leading cause of death in the world.
Although COVID-19 shows us the direct impact of a potential treatment for peoples health, CVD is a stealthy pandemic killer. HF is a chronic disease condition in which the heart is not able to fill properly or efficiently pump blood throughout your body, caused by different stress conditions including myocardial infarction, atherosclerosis, diabetes and high blood pressure. Several measures are commonly used to treat heart disease, such as lifestyle changes and medications like beta-blockers and ACE inhibitors, yet these typically only slow down the progression of the disease.
Biomedical research is exploring new avenues by combining scientific insights with new technologies to overcome chronic diseases like HF. Among the most appealing and promising technologies are the use of cardiac tissue engineering and extracellular vesicles-mediated repair strategies.
Upon an initial cell loss post-infarction, it is appealing to replace this massive loss in contractile cells for new cells and thereby not treating patients symptoms, but repairing the cause of the disease. Cardiac cell therapy has been pursued for many years with variable results in small initial trials upon injection into patients. Different cell types have been used to help the myocardium in need, but the most promising approaches aim to use induced pluripotent cells (iPS) from reprogrammed cells from the patient themselves that can be directed towards contractile myocardial cells. These cells in combination with natural materials, in which the cells are embedded in the heart, can be used for tissue engineering strategies (1). Together with different international partners, Sluijters team are trying to develop strategies to use these iPS-derived contractile cells for myocardial repair via direct myocardial injection (H2020-Technobeat-66724) or to make a scaffold that can be used as a personalised biological ventricular assist device (H2020-BRAV-874827). A combination of engineering and biology to mimic the native myocardium aims to replace the chronically ill tissue for healthy and well-coupled heart tissue that can enhance the contractile performance of the heart.
Recently, a Dutch national programme started, called RegMedXB, in which the reparative treatment of the heart is aimed to be performed outside the patients body. During the time the heart is outside the body; the patient is connected to the heart-lung machine, and after restoring function, it will be re-implanted. The so-called Cardiovascular Moonshot aims to create a therapy that best suits the individual patient, by having their heart beating in a bioreactor, outside the body. Although it sounds very futuristic, many small lessons will be learned to feet novel therapeutic insights.
The initial injection of stem cells did result in a nice improvement of myocardial performance. We have now learned that rather than these delivered cells helping the heart themselves, the release of small lipid carriers called extracellular vesicles (EVs) (2) from these cells occur. These EVs carry different biological molecules, including nucleotides, proteins and lipids, and are considered to be the bodies nanosized messengers for communication. The use of stem cell-derived EVs are now being explored as a powerful means to change the course of the disease. Via these small messengers, natural biologics are delivered to diseased cells and thereby help them to overcome the stressful circumstances. EVs carry reparative signals that can be transferred to the diseased heart and thereby change the course of heart disease in some patients.
Within the EVICARE program (3) (H2020-ERC-725229), Sluijters team are using stem cell-derived EVs to change the response of the heart to injury. Also, to understand which heart cells and processes are being affected, they use materials to facilitate a slow release of biomaterials over an extended period rather than a single dose, which is probably essential for a chronic disease like HF. For now, improved blood flow is the main aim but the team have seen other effects as well, such as cardiovascular cell proliferation (4) by which the heart cells themselves start to repair the organ.
The use of EVs basically aims to enhance the endogenous repair mechanisms of the heart. These natural carriers can be mimicked with synthetic materials, or used as a hybrid of the two, thereby creating an engineered nanoparticle, that is superior in the intracellular delivery of genetic materials. The possibility of loading different biological materials allows a further tuning of its effectiveness and use in different disease conditions, creating a new off-the-shelf delivery system for nanomedicine to treat cancer and CVD (H2020-Expert-825828).
As is true of the current COVID-19 pandemic, HF is also a growing chronic disease that affects millions of people worldwide. The chronic damaged myocardium needs reparative strategies in the future to lower the social burden for patients, but also to keep the economic consequences affordable. New scientific insights with cutting edge technological developments will help to address these needs of CVD patients and their families.
References
(1) Madonna R, Van Laake LW, Botker HE, Davidson SM, De Caterina R, Engel FB, Eschenhagen T, Fernandez-Aviles F, Hausenloy DJ, Hulot JS, Lecour S, Leor J, Menasch P, Pesce M, Perrino C, Prunier F, Van Linthout S, Ytrehus K, Zimmermann WH, Ferdinandy P, Sluijter JPG. ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovasc Res. 2019 Mar 1;115(3):488-500.
(2) Sluijter JPG, Davidson SM, Boulanger, CM, Buzs EI, de Kleijn DPV, Engel FB, Giricz Z, Hausenloy DJ, Kishore R, Lecour S, Leor J, Madonna R, Perrino C, Prunier F, Sahoo S, Schiffelers RM, Schulz R, Van Laake LW, Ytrehus K, Ferdinandy P. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2018 Jan 1;114(1):19-34.
(3) https://www.sluijterlab.com/extracellular-vesicle-inspired-ther
(4) Maring JA, Lodder K, Mol E, Verhage V, Wiesmeijer KC, Dingenouts CKE, Moerkamp AT, Deddens JC, Vader P, Smits, AM, Sluijter JPG, Goumans MJ. Cardiac Progenitor Cell-Derived Extracellular Vesicles Reduce Infarct Size and Associate with Increased Cardiovascular Cell Proliferation. J Cardiovasc Transl Res. 2019 Feb;12(1):5-17.
Please note: this is a commercial profile.
Editor's Recommended Articles
Original post:
Innovative treatments for heart failure - Open Access Government
Scientists May Have Discovered a Way to to Slow Aging by Direct Reprogramming of Human Cells – SciTechDaily
By daniellenierenberg
Skin fibroblasts were successfully reprogrammed into the smooth muscle cells (red) and endothelial cells (white) which surround blood vessels. The cells nuclei are shown in blue. Credit: Bersini, Schulte et al. CC by 4.0
Salk study is the first to reveal ways cells from the human circulatory system change with age and age-related diseases.
Salk scientists have used skin cells called fibroblasts from young and old patients to successfully create blood vessels cells that retain their molecular markers of age. The teams approach, described in the journal eLife on September 8, 2020, revealed clues as to why blood vessels tend to become leaky and hardened with aging, and lets researchers identify new molecular targets to potentially slow aging in vascular cells.
The vasculature is extremely important for aging but its impact has been underestimated because it has been difficult to study how these cells age, says Martin Hetzer, the papers senior author and Salks vice president and chief science officer.
Research into aging vasculature has been hampered by the fact that collecting blood vessel cells from patients is invasive, but when blood vessel cells are created from special stem cells called induced pluripotent stem cells, age-related molecular changes are wiped clean. So, most knowledge about how blood vessel cells age comes from observations of how the blood vessels themselves change over time: veins and arteries become less elastic, thickening and stiffening. These changes can contribute to blood pressure increases and a heightened risk of heart disease with age.
From left: Martin Hetzer and Simone Bersini. Credit: Salk Institute
In 2015, Hetzer was part of the team led by Salk President Rusty Gage to show that fibroblasts could be directly reprogrammed into neurons, skipping the induced pluripotent stem cell stage that erased the cells aging signatures. The resulting brain cells retained their markers of age, letting researchers study how neurons change with age.
In the new work, Hetzer and his colleagues applied the same direct-conversion approach to create two types of vasculature cells: vascular endothelial cells, which make up the inner lining of blood vessels, and the smooth muscle cells that surround these endothelial cells.
We are among the first to use this technique to study the aging of the vascular system, says Roberta Schulte, the Hetzer lab coordinator and co-first author of the paper. The idea of developing both of these cell types from fibroblasts was out there, but we tweaked the techniques to suit our needs.
The researchers used skin cells collected from three young donors, aged 19 to 30 years old, three older donors, 62 to 87 years old, and 8 patients with Hutchinson-Gilford progeria syndrome (HGPS), a disorder of accelerated, premature aging often used to study aging.
The resulting induced vascular endothelial cells (iVECs) and induced smooth muscle cells (iSMCs) showed clear signatures of age. 21 genes were expressed at different levels in the iSMCs from old and young people, including genes related to the calcification of blood vessels. 9 genes were expressed differently according to age in the iVECs, including genes related to inflammation. In patients with HGPS, some genes reflected the same expression patterns usually seen in older people, while other patterns were unique. In particular, levels of BMP-4 protein, which is known to play a role in the calcification of blood vessel, were slightly higher in aged cells compared to younger cells, but more significantly higher in smooth muscle cells from progeria patients. This suggests that the protein is particularly important in accelerated aging.
The results not only hinted at how and why blood vessels change with age, but confirmed that the direct-conversion method of creating vascular endothelial and smooth muscle cells from patient fibroblasts allowed the cells to retain any age-related changes.
One of the biggest theoretical implications of this study is that we now know we can longitudinally study a single patient during aging or during the course of a treatment and study how their vasculature is changing and how we might be able to target that, says Simone Bersini, a Salk postdoctoral fellow and co-first author of the paper.
To test the utility of the new observations, the researchers tested whether blocking BMP4 which had been present at higher levels in smooth muscle cells developed from people with HGPS could help treat aging blood vessels. In smooth muscle cells from donors with vascular disease, antibodies blocking BMP4 lowered levels of vascular leakiness one of the changes that occurs in vessels with aging.
The findings point toward new therapeutic targets for treating both progeria and the normal age-related changes that can occur in the human vascular system. They also illustrate that the direct conversion of fibroblasts to other mature cell types previously successful in neurons and, now, in vascular cells is likely useful for studying a wide range of aging processes in the body.
By repeating what was done with neurons, weve demonstrated that this direct reprogramming is a powerful tool that can likely be applied to many cell types to study aging mechanisms in all sorts of other human tissues, says Hetzer, holder of the Jesse and Caryl Philips Foundation Chair.
The team is planning future studies to probe the exact molecular mechanisms by which some of the genes they found to change with age control the changes seen in the vasculature.
Reference: Direct reprogramming of human smooth muscle and vascular endothelial cells reveals defects associated with aging and Hutchinson-Gilford progeria syndrome by Simone Bersini, Roberta Schulte, Ling Huang, Hannah Tsai and Martin W Hetzer, 8 September 2020, eLife.DOI: 10.7554/eLife.54383
Other researchers on the study were Ling Huang and Hannah Tsai of Salk. The work was supported by grants from the National Institutes of Health, the NOMIS Foundation and an AHA-Allen Initiative in Brain Health and Cognitive Impairment award made jointly through the American Heart Association and the Paul G. Allen Frontiers Group. Simone Bersini was supported by the Paul F. Glenn Center for Biology of Aging Research at the Salk Institute.
Read the original:
Scientists May Have Discovered a Way to to Slow Aging by Direct Reprogramming of Human Cells - SciTechDaily
The one thing all beauty therapists should know about exfoliating – Professional Beauty
By daniellenierenberg
The one thing all beauty therapists should know about exfoliatingWhen were young, our cells typically take 28 days to complete the cell turnover cycle. This begins in the lowest layer of the epidermis the stratum germinativum where the stem cells are housed. From here the skin cells migrate through each layer of the epidermis until they reach the outermost layer the stratum corneum.
This process takes about 14 days, after which the cells stay in the stratum corneum for approximately another 14 days for a 28 day total cycle. At this point, the skin begins to slough off these dead skin cells, which will be replaced by new ones a process known as desquamation.
As we age, the desquamation cycle naturally slows down and leaves us with a build-up of dull, dry and dehydrated cells. Exfoliation helps speed up desquamation, making it an essential part of every clients skin care regimen.
Chemical and physical exfoliants both remove the dulling, dead skin cells that accumulate on skins surface, revealing brighter, fresher-looking skin. Regular exfoliation can also help stimulate skin cell renewal, encouraging the cells to come to skins surface more quickly.
Additionally, removing dead cells serves to increase the penetration of hydrating ingredients and other targeted treatments.
While this is common knowledge among beauty therapists, clients are often unaware of this benefit. For example, if youve ever heard a client say that their skincare products arent working anymore, its likely that a build-up of dead skin cells is preventing active ingredients from being absorbed and acting effectively on the skin. The solution: regular exfoliation.
If your clients suffer with dull, flaky skin, dryness or dehydration, then you may reach for a hydrating masque in treatment to remedy these symptoms, but if you havent exfoliated first, then dead cell build-up can act as a barrier, stopping hydrating ingredients from being effectively absorbed.
The quickest way to smooth and renew your skin is with an exfoliant. However, did you know that its critical to replenish lost moisture in the barrier within 60 seconds after exfoliating or skin will become dehydrated? WithDermalogicas Hydro Masque Exfoliantyou dont need to worry about applying two separate formulas as it combines both regimen steps in one.
DermalogicasHydro Masque Exfoliantisa hydrating and exfoliating five-minute masque that smooths and renews for healthy looking skinand offers a personalised way to exfoliate via unique touch-activated bamboo spheres.
The spheres can be moved to the areas you think clients need more exfoliation where the skin is drier or rougher in texture. The ultra-fine bamboo filled spheres dissolve upon application of light pressure, delivering a gentle level of physical exfoliation. The spheres also contain a hydrating polysaccharide and glycerin to protect the skins moisture barrier, usually depleted by exfoliating. This allows a customised exfoliating experience in contrast to dual action formulas that have no isolation of the exfoliating actives.
Another unique aspect ofthe product isthat it delivers instant and long-lasting hydration immediately as you exfoliate. The hydro-cream base of the masque contains lots of hydrating ingredients to deliver moisture and barrier restoring properties.
Snow mushroom holds 450 times its weight in water, infusing skin with hydration, and it is also rich in antioxidants and Vitamin D. The masque also contains jojoba ester and amino acids derived from sugar beets to hydrate and strengthen the skins natural barrier, with cucumber extract providing a soothing, refreshing finish.
In clinical studies,Hydro Masque Exfoliantis proven to give a smoother feeling and more hydrated skin after just one use, with 80% of consumers saying their skin felt smoother and they liked the appearance of their skin.
Exfoliation is an important regimen step for healthier, more luminous skin, just dont forget to hydrate too.
Sponsored story
Visit link:
The one thing all beauty therapists should know about exfoliating - Professional Beauty
Got uneven skin tone? There’s a cult natural range with vitamin C that’s changing the game. – Mamamia
By daniellenierenberg
As we move into spring, the seasonal change and being indoors more often can leave our skin feeling a little lacklustre.
If you've also got uneven skin tone, you might find yourself reaching for vitamin C products to bring that long-lost glow back to your skin. (I know I have.)
Yep, you know what I mean - dull spots or patches that make an unwelcome visit on your face. Somuch fun.
You've probably seen a few skincare ranges with vitamin C as a key ingredient, but some have harsh and unnatural chemicals too. In fact, slathering harsh chemicals on your face to try achieve a more radiant, even complexion can do more harm than good if you're not exactly sure what you're putting onto your skin.
That's why Andalou Naturals' Brightening range is the perfect example of a high-performance cult natural skincare range that addresses concerns like uneven skin tone and pigmentation, all while using potent, vitamin C-rich ingredients that pack some serious punch. Oh, it's cruelty-free too.
Andalou Clementine + C Illuminating Toner. Image: Supplied
According to a recent trial*, 86 per cent of people saw a more radiant and luminous complexion, while 73 per cent saw a more even skin tone and reduced pigmentation in 28 days when using Andalou's Brightening Range.
It's been so high in demand that the famous Brightening Pumpkin Honey Glycolic Face Mask, which Mamamia reviewed back in April, recently sold out on their website(it's back now, thankfully). While they can't make their pumpkins grow any faster, if you can't get it online you can also get it from your local Chemist Warehouse or Priceline.
You've probably seen the Andalou's Brightening Range popping up on your Instagram, with model Natalia Kalinowski, author and lifestlye influencer Sjana Elise Earp, and model and lifestyle influencer Ruby Tuesday Matthews, all singing its praises.
Original post:
Got uneven skin tone? There's a cult natural range with vitamin C that's changing the game. - Mamamia
Application of Immunotherapy to $7 Billion Lower Back Pain Market Patented by Creative Medical Technology Holdings – PRNewswire
By daniellenierenberg
PHOENIX, Sept. 8, 2020 /PRNewswire/ --(OTC CELZ) -- Creative Medical Technology Holdings Inc. announced today receipt of a Notice of Allowance from the United States Patent and Trademark Office for its patent application, "Perispinal Perfusion by Administration of T Regulatory Cells Alone or in Combination with Angiogenic Cell Therapies."
The patent covers the use of activated T regulatory cells for inducing an increase in blood circulation in areas surrounding the disc of patients with lower back pain. It is believed that a significant proportion of patients suffering from lower back pain have abnormally poor circulation, which does not effectively remove waste products and irritants. Restoration of circulation in the lower back is associated with reduction of pain.
The Company acquired a previously granted US Patent # 9,598,673 covering use of various types of stem cells, autologous and allogeneic, for treating lower back pain. The Company has completed an autologous cell therapy pilot study in the area of lower back pain utilizing this patented technology and is currently in the process of assembling data for publication.
"Creative Medical Technology Holdings is developing a critical mass of issued intellectual property covering multiple cell therapy treatments of lower back pain as well as other indications," said Timothy Warbington, President and CEO of the Company. "Testimony to the size of the lower back pain market is the $1 Billion Mesoblast-Grunenthal deal for a pre-review cell therapy product1. We are enthusiastic to add this new therapy to our expanding portfolio of rapid-to-commercialize cellular therapies."
Creative Medical Technology Holdings has previously commercialized its CaverStemR technology involving personalized bone marrow cellular therapy for erectile dysfunction. This technology is covered by issued patent # 8,372,797 and a clinical trial demonstrating safety with signals of efficacy published in the peer-reviewed literature2.
"Immunotherapy is one segment of the biotechnology industry that is expanding at an exponential rate," said Donald Dickerson, CFO of the Company. "The recent Nobel Prize in the area of Immunotherapy of Cancer, as well as the current valuations of immunotherapy companies, validates the approaches that we have been developing, and now patenting. Essentially our approach is to use stem cells, or immunotherapy to enable the body to heal itself."
"The Company welcomes the biotechnology/life sciences community and key opinion leaders to contact us to discuss potential collaboration on our patented technologies in this amazing space," Mr. Warbington said further.
About Creative Medical Technology Holdings
Creative Medical Technology Holdings, Inc. is a commercial stage biotechnology company specializing in stem cell technology in the fields of urology, neurology and orthopedics and trades on the OTC under the ticker symbol CELZ. For further information about the company, please visit http://www.creativemedicaltechnology.com.
Forward Looking Statements
OTC Markets has not reviewed and does not accept responsibility for the adequacy or accuracy of this release. This news release may contain forward-looking statements including but not limited to comments regarding the timing and content of upcoming clinical trials and laboratory results, marketing efforts, funding, etc. Forward-looking statements address future events and conditions and, therefore, involve inherent risks and uncertainties. Actual results may differ materially from those currently anticipated in such statements. See the periodic and other reports filed by Creative Medical Technology Holdings, Inc. with the Securities and Exchange Commission and available on the Commission's website at http://www.sec.gov.
Creativemedicaltechnology.comwww.StemSpine.com http://www.Caverstem.com http://www.Femcelz.com
2 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6958721/
SOURCE Creative Medical Technology Holdings, Inc.
Originally posted here:
Application of Immunotherapy to $7 Billion Lower Back Pain Market Patented by Creative Medical Technology Holdings - PRNewswire
Graduate Devastated After Learning 5,000 Miles From Home That Her ‘Jetlag’ Is Aggressive Leukemia – Comic Sands
By daniellenierenberg
A graduate has revealed how her ultimate adventure became a nightmare when she was told her jetlag" was in fact leukemia so aggressive it had invaded 90 percent of her blood, when she was 5,000 miles from home.
After gaining a Fine Art degree at Newcastle University, Ella Dawson jetted to Colombia for a seven-week backpacking trip.
Putting the exhaustion, nausea and dizziness she experienced shortly after arriving down to jetlag, it was only when mysterious bruises sprang up all over her body, that Dawson saw a doctor in the city of Santa Marta.
Ella during CAR-T treatment (PA Real Life/Collect)
Now receiving a complex and innovative treatment called CAR-T, which removes and reprograms" her blood cells to fight cancer, the medic sent her for a series of blood tests resulting in her leukemia diagnosis in August 2019.
By the time I got my diagnosis, I was so unwell that I was expecting a bombshell," she said.
But it was such a chaotic situation that I almost didn't have any time to process everything. I was thousands of miles away from home, having to use my phone to translate, while doctors explained what was going to happen."
Ella recovering back home (PA Real Life/Collect)
Even now, I still struggle with the idea that I have cancer. It almost feels like there's a stigma around it, especially when you're young and, on all of the leaflets I was given, everybody looked so unwell and depressed," she continued.
It's not been easy, but I've been determined to make the most of the good times and strive for moments of normality when I can. It's what's got me through."
Looking back, Dawson believes her cancer symptoms first began to show in around April 2019, when she returned home for the Easter holidays and felt run down and fatigued.
Ella at an art exhibition she held as part of her university course (PA Real Life/Collect)
I was usually quite fit and would go to the gym four times a week, but I found myself struggling to keep up," she said.
Busy studying, she put her symptoms down to final year stress.
Dawson has had an under-active thyroid, which can also cause tiredness, muscle aches and weakness, according to the NHS.
Ella recovering back home (PA Real Life/Collect)
I thought my tiredness was just a combination of the two," she said.
Once her degree show was over in June and she moved back to Huddersfield, she was soon distracted by thoughts of the seven-week trip around Colombia.
In the weeks leading up to her departure in August, she became increasingly worn down and kept catching bugs and colds. On one particularly memorable occasion, feeling so dizzy after just 30 minutes of horseback riding that she almost passed out.
I saw the doctor to be on the safe side and she took my blood pressure," she said.
Everything looked normal, so I was told it was likely just the heat making me feel faint. The doctor said to come back a week later if I felt worse, but I'd be in Colombia by then, so I couldn't."
The day I left for my trip, I looked and felt absolutely knackered, but I just kept telling myself that once I got there and relaxed, I'd be fine."
Ella in Colombia (PA Real Life/Collect)
Touching down in Bogota, Dawson felt so exhausted that she spent the first three days of her trip in bed.
I could barely walk, let alone get out to explore. I spoke to the staff at the hostel where I was staying at and they reassured me that, because Bogota has a high altitude, a lot of people struggle to acclimatize when they first arrive," she said.
That, plus the jetlag, made perfect sense, so I didn't worry too much."
Ella in Colombia (PA Real Life/Collect)
After around a week, Dawson began to rally and was able to make her way around the country as planned.
But things changed drastically during a six-hour trek through the jungle.
Usually I'd be bounding ahead, but I was having to stop and sit down every five minutes. My body couldn't cope. It was too late to turn back, so I had to keep going. By the end, I felt so dizzy and nauseous," she said.
Ella on the six-hour hike in Colombia (PA Real Life/Collect)
Over the following week, Dawson's condition dramatically declined.
I couldn't even walk to the shop or stand up for long enough to make myself dinner. I was in pain all the time," she said.
My bones were aching and I was covered in so many bruises that I looked like I'd been hit by a bus."
Ella on the six-hour hike in Colombia (PA Real Life/Collect)
Worried, Dawson decided to visit a doctor, who told her that she probably had a low platelet count and ran some blood tests, sending the results back to her GP in the UK for a second opinion, which took four days to obtain.
By that point, she felt so unwell she had decided to go home and was on the verge of booking a flight when she received a phone call from the Colombian doctor, urging her not to travel.
I had no idea what was going on. I was told, 'don't get on a plane come straight to hospital,'" she said. The hostel manager was fantastic and sorted out a car to take me there and helped me ensure all my insurance was in order."
Today is #WorldLeukemiaDay Help raise awareness of leukaemia and its symptoms. Find out more here https://t.co/Di8yYWNV7C
Dawson was admitted to intensive care, where further tests were run before she was transferred to a larger, more specialist hospital the following day.
There, she was told that she had leukemia, a form of cancer affecting the bone marrow and blood cells.
Medics also explained that her blood platelet levels were dangerously low, making flying home too risky.
The bruise-like spots on Ella's legs (PA Real Life/Collect)
They said if they couldn't get my platelet count up and soon I'd have to start chemotherapy in Colombia," she added.
By that point, Dawson's mom Jane and dad Kevin had been told her diagnosis by her doctor in the UK and were flying over to be by her side.
They arrived about a day-and-a-half after I'd been given the news," she said. It made me realize how much I'd missed them."
Ella in hospital (PA Real Life/Collect)
Over the next week, Ella had seven blood transfusions and five bags of donor platelets pumped through her body.
Thankfully, the treatment stabilized her enough to fly home.
There had been talk of using a medical plane, but we didn't need one in the end," she said. I was put in first class, so I could lie down, but I was so exhausted that I slept the whole way."
Ella leaving hospital (PA Real Life/Collect)
Once back in the UK, Dawson went to Huddersfield Royal Infirmary for a biopsy before being transferred to St James' University Hospital in Leeds, where it was confirmed she had acute lymphoblastic leukemia (ALL), which is characterized by an overproduction of immature white blood cells.
According to the charity Leukemia Care, who have been tirelessly supporting Ella throughout her journey, ALL accounts for less than one percent of cancer cases in the UK.
I wasn't given a stage, but I later found out that, at the time of my diagnosis, 90 percent of my blood had been invaded by cancer cells," she added.
Ella after losing her hair (PA Real Life/Collect)
In September 2019, Dawson began chemotherapy, which left her immune system so compromised that she had to stay in hospital in isolation.
When I started chemo, I was given a six-month treatment plan, which helped me to get my head around things," she said.
But around a month in, after the first round, it was clear it wasn't working, so doctors said they needed to change to a different type."
That was very difficult the chopping and changing. As doctors wanted to respond to what was happening immediately in front of them, we could only plan a month or so ahead, which made it hard to wrap my mind around."
In November, Dawson started her adapted treatment regime, which involved having four different types of chemotherapy every day for five days.
That was one of the worst times so far. My whole body was in excruciating pain. I'd get splitting headaches, blurred vision and lost all my hair," she said.
Ella in hospital for the second round of her treatment (PA Real Life/Collect)
In December, she was discharged being told shortly afterwards that she was in morphological remission, which happens when the number of blast cells found in the bone marrow is less than five percent.
Next, she was due to have a stem cell transplant, the preparation for which involved having two rounds of a treatment that meant immunotherapy drugs were constantly infused into her body through a portable pump.
I had to take it everywhere with me. I even went clubbing with it a few times," she said.
Ella with her immunotherapy drug bag (PA Real Life/Collect)
Two days before her stem cell transplant date in 2020, pre-operative tests showed that Dawson had relapsed.
I didn't believe them at first as I felt absolutely fine," she said.
Doctors then decided to refer me for CAR-T treatment, but as it involved harvesting my blood cells and sending them away to be reprogrammed to fight the cancer, the [virus] created some delays in getting them back."
While I waited, doctors struggled to keep the cancer at bay. It was developing really fast."
Ella's radiotherapy head mask (PA Real Life/Collect)
Tests found cancer cells in my spinal fluid, so I had to have two lumbar punctures a week to drain it, which was awful, but it did clear it. I also had five days' worth of radiotherapy on my right eye as a precaution after it became inflamed," she said.
Finally, in June, Dawson began CAR-T treatment at Manchester's Christie Hospital and is now awaiting tests to see how successful it has been with her consultants remaining hopeful that it has eradicated all traces of cancer from her body.
Currently recovering at home with her family, Dawson is keen to shine a light on Leukemia Care's "Spot Leukemia" campaign to raise awareness of the six most common signs of the disease.
Ella getting her cells harvested for CAR-T treatment (PA Real Life/Collect)
I am the perfect example of somebody who never believed this would happen to me," she said.
It's important to listen to your body and learn when to push yourself and when to rest."
I also want anybody reading this who might be going through what I did to know that, while it sometimes feels impossible to stay positive, by keeping moving and finding the bright side where you can, you can get through."
Ella now (PA Real Life/Collect)
Staying positive has very much been aided by the excellent care I've received from the teams at St. James Hospital in Leeds and The Christie in Manchester, so I want to thank them, too," she continued.
Dawson is working closely with the charity Leukemia Care's 'Spot Leukemia' campaign to raise awareness of leukemia. Find out more at http://www.spotleukaemia.org.uk
View original post here:
Graduate Devastated After Learning 5,000 Miles From Home That Her 'Jetlag' Is Aggressive Leukemia - Comic Sands
FDA Grants Orphan Drug Designation to Novel Bcl-2 inhibitor in CLL – Targeted Oncology
By daniellenierenberg
A novel Bcl-2 inhibitor, APG-2575, has been granted an Orphan Drug designation (ODD) by the FDA for the treatment of patients with chronic lymphocytic leukemia (CLL), announced Ascentage Pharma in a press release.1
This marks the second ODD for APG-2575, after 1 was granted to the drug in July 2020 for the treatment of Waldenstrm Macroglobulinemia (WM).2
At present, CLL still presents considerable unmet medical needs. APG-2575 is a key drug candidate in Ascentage Pharma's pipeline targeting apoptosis. The APG-2575 received this ODD from the FDA shortly after the first ODD in WM, and this designation will be helpful in enhancing our communication with the FDA and expediting our development of APG-2575 in these rare cancer diseases," said Yifan Zhai, MD, PhD, chief medical officer, Ascentage Pharma, in a statement.1 All the policy support and incentives as a result of this ODD will help us accelerate the global clinical development of APG-2575, which we hope will soon offer additional treatment options for patients with CLL."
In hematologic malignancies, APG-2575 may selectively block Bcl-2 as a way to renew the apoptosis process in cancer cells. The first study of APG-2575 in CLL, as well as in small lymphocytic leukemia (SLL), is currently recruiting 35 patients with relapsed or refractory disease. In the phase 1b dose-escalation study (NCT04215809), patients will receive APG-2575 alone or in combination with other therapeutic agents. The primary end point of the study is dose-limiting toxicity, and the secondary end point is the maximum tolerated dose of APG-2575.
The study will follow a non-randomized 3 + 3 design at a starting dose of 200 mg given on day 1 of a 28-day cycle. The dose will be increased to 400 mg, followed by 600 mg, 800 mg, and 1200 mg.
To be included in the trial, patients must be 18 years or older with a histologically confirmed diagnosis of CLL/SLL, and ECOG performance status of 2 or lower, adequate bone marrow function, and a serum creatinine level of 1.5upper limit of normal. In part 1, patients will be eligible for dose escalation if they have received 3 or fewer prior lines of systemic therapy. Female patients are required to be postmenopausal for 2 years or surgically sterile prior to beginning treatment in the study.
Patients are excluded from this study if they have undergone allogeneic stem cell transplant within 90 days of joining the study, have active graft-versus-host-disease or are in need of immunosuppressive therapy, and/or have Richter's syndrome. The study also excludes patients with certain prior therapies and comorbidities that may interfere with APG-2575 treatment.
Multiple cancer centers in the United States are involved in the phase 1b study of APG-2575 including the Mayo Clinic in Scottsdale Arizona, City of Hope in Duarte, California, Dana-Farber Cancer Institute in Boston, Massachusetts, Novant Health in Charlotte, North Carolina, Grabrail Cancer Center in Canton, Ohio, Cleveland Clinic in Cleveland, Ohio, and Swedish Health in Seattle, Washington.
Outside of the realm CLL/SLL, APG-2575 is being investigated in other hematologic malignancies like WM, AML, and T-cell prolymphocytic leukemia. Studies of APG-2575 in these disease states are currently recruiting patients in centers in the United States, Australia, and China.
References:
1. Ascentage Pharma's Bcl-2 inhibitor apg-2575 granted Orphan Drug designation by the FDA for the treatment of chronic lymphocytic leukemia. News release. Ascentage Pharmaceuticals. September 7, 2020. Accessed September 8, 2020. https://prn.to/2ZiOqFJ
2. Ascentage Pharmas Bcl-2 inhibitor apg-2575 granted Orphan Drug Designation by the FDA for the treatment of waldenstrm macroglobulinemia. News release. Ascentage Pharmaceuticals. July 15, 2020. Accessed September 8, 2020. https://bit.ly/329A5gL
Read the rest here:
FDA Grants Orphan Drug Designation to Novel Bcl-2 inhibitor in CLL - Targeted Oncology
How the coronavirus causes ‘carnage’ in the heart – The Daily Briefing
By daniellenierenberg
New research shows that the novel coronavirus can essentially dice the muscle fibers of the human heart into pieces, sparking concerns about the potential for heart failure among Covid-19 survivors, Elizabeth Cooney reports for STAT News.
Resources to support your CV telehealth strategy
For the study, which was published preprint on bioRxiv and has not yet been peer reviewed, researchers added the new coronavirus, SARS-CoV-2, to three types of human heart cellscardiomyocytes, cardiac fibroblasts, and endothelial cellsthat were grown in lab dishes from stem cells.
Only the cardiomyocytes, which are muscle cells, showed indication of viral infection that spread to other muscle cells, the researchers said. However, what they found in the infected cells was remarkable: The sarcomeres, which are the long muscle fibers that keep the heart beating, had been sliced into small bits. According to the researchers, the fibers looked as if they had been surgically sliced.
The researchers also found black holes where DNA was supposed to be in the nucleus of the infected cells. The researchers said they found similar, but not identical, changes when they observed autopsy specimens from patients with Covid-19, the disease caused by the novel coronavirus.
It's unclear whether the heart is able to reassemble the sarcomeres after they're severed, but that might be possible after the coronavirus infection clears, the researchers said. However, the researchers said they felt an urgency to share their results as quickly as possible, because their findings may help to further scientists' understanding of how the coronavirus causes heart damagesand possibly how to prevent or treat the injuries.
"When we saw this disruption in those microfibers that was when we made the decision to pull the trigger and put out this preprint," Todd McDevitt, a senior investigator at Gladstone Institutes and a co-author of the study, said. "I'm not a scientist who likes to stoke these things [but] I did not sleep, honestly, while we were finishing this paper and putting it out there."
Bruce Conklin, also a senior investigator at Gladstone and a co-author of the study, said the virus caused "carnage in the human cells" unlike anything seen with other diseases. "Nothing that we see in the published literature is like this in terms of this exact cutting and precise dicing," he explained.
Conklin said the findings should alter the way providers and scientists think about the novel coronavirus and Covid-19. "We should think about this as not only a pulmonary disease, but also potentially a cardiac one."
Gregg Fonarow, interim chief of the UCLA Division of Cardiology and director of the Ahmanson-UCLA Cardiomyopathy Center, said the study is "really important and elegant work, helping to define the potential mechanisms by which SARS-CoV-2 is leading to the observed heart damage and clinical manifestations."
Sahil Parikh, an interventional cardiologist at Columbia University Irving Medical Center, called findings "provocative," but added, "[t]he challenge here is that this paper has not been peer-reviewed by people who are experts in cardiology, who have not had a chance to tear it apart." She said, "I am reluctant to make a lot out of a pre-publication manuscript, no matter how provocative the finding."
The researchers who worked on the study agreed that their work should be reviewed, and they've submitted the study to a leading scientific journal (Cooney, STAT News, 9/4).
See the rest here:
How the coronavirus causes 'carnage' in the heart - The Daily Briefing
COVID-19 Drug Discovery and Development Why Diverse Strategies Are Critical – Technology Networks
By daniellenierenberg
There is no silver bullet at the moment, and there might never be, said World Health Organization Director-General Tedros Adhanom at a virtual press conference at the beginning of August. While it was this bleak sound bite that made the headlines, Tedros also had words of praise for the progress made towards identifying treatments that aid the recovery of COVID-19 patients with the most serious forms of the disease.Research towards treatments for COVID-19 has been developing at a phenomenal speed, even though it feels as though solutions cant come soon enough; the widespread transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had significant health, economic and social impacts across the globe, and as of September 8th more than 27 million cases and 890,000 deaths have been recorded in 188 countries.
Research groups across the world have set about identifying drugs for the treatment of COVID-19, by screening both novel and existing drugs for their ability to alleviate symptoms and stem viral replication. Here, we provide an update on ongoing global efforts to develop and test drugs for the treatment of COVID-19 and explore the range of strategies being employed.
COVID-19 is a disease which can leave you with anything between a mild sniffle to an unpleasant combination of high fever, heavy fatigue, and lung inflammation and damage. The drivers of clinical symptoms can be roughly divided into two categories: the virus itself and the hyperinflammatory response to the virus that occurs in the most severely ill people. Consequently, efforts to identify appropriate treatments are often focused on one category, and sometimes, a particular patient group or stage of disease. Given the nature of COVID-19, it is highly likely that a combination of drugs (drug cocktail) will be needed to both neutralize the virus and suppress the symptoms of COVID-19. Antiviral treatments may target viral components directly, or other cellular processes involved in viral infection or replication. To date, interventional studies for COVID-19 have attempted to achieve a wide range of goals, including:
Addressing the threat of new and potentially life-threatening pathogens requires deep understanding and accurate, reproducible techniques for developing better tests, vaccines, and treatments. Agilent provides the complete breadth of systems, consumables, software, services, and knowledge you need to support your success.
Sponsored Content
Meet the scientists on the frontline with coronavirus. Video credit: Sanford Burnham Prebys Medical Discovery Institute
Of the ~12,000 compounds screened, 100 inhibited SARS-CoV-2 replication in mammalian cells, 21 of which did so in a dose-response fashion. Achieving a sufficiently high dose concentration to elicit antiviral effects in vivo was predicted to be practical and possible for 13 of these compounds based on EC50 values in various cell lines. The most potent of these were evaluated for antiviral activity in human induced pluripotent stems cell (iPSC)-derived pneumocyte-like cells (five candidates) and in an ex vivo lung culture system (one candidate). The latter candidate is called apilimod, a small molecule inhibitor of an enzyme (phosphoinositide 5-kinase or PIKfyve, an endosomal lipid kinase) important to the endocytic pathway in which SARS-CoV-2 travels along during its journey through the cell. Encouragingly, apilimod potently antagonized viral replication in these tissues, and the findings are in agreement with those of another research group. This month, Kang et al. published an article in PNAS, describing the potent inhibition of SARS-CoV-2 by apilimod, providing further evidence to suggest PIKfyve-inhibition as a potential strategy that could limit infection and disease pathogenesis. The authors also noted that apilimod has passed safety tests in previous clinical trials for nonviral indications.
Chanda highlights the incredible pace at which this work was produced. Typically, a project like this would take years, rather than months. He points out that by wanting to do something quickly, there were sacrifices (and not just weekends). For example, they ran with the assay and the cell lines that allowed them to produce results quickly. This is the reason we put the entire dataset out there not one/three/20 molecules, we put all 100 molecules out there. These are the ones we found because of our experimental system, but please keep testing the others because youll probably find other things that work, said Chanda.
To design multiple peptide sequences that can competitively bind to the SARS-CoV-2 receptor binding domain, the University of Michigan research group used a protein design system called EvoDesign.EvoDesign is the first de novo protein design protocol developed in our lab; it performs design simulation by combining the evolution-based information collected from protein databases and an accurate physics- and knowledge-based energy function, namely EvoEF2, for computing atomic interactions such as van der Waals forces, electrostatics, hydrogen bonding, and desolvation energies, said Huang.
Overall, these sophisticated computational tools represent a promising new avenue for the de novo development of drug discovery studies.
Read more:
COVID-19 Drug Discovery and Development Why Diverse Strategies Are Critical - Technology Networks
Global Hematopoietic Stem Cells Transplantation Market to Witness Rapid Development During the Period 2017 2025 – The News Brok
By daniellenierenberg
Hematopoietic stem cells are young or immature blood cells found to be living in bone marrow. These blood cells on mature in bone marrow and only a small number of these cells get to enter blood stream. These cells that enter blood stream are called as peripheral blood stems cells. Hematopoietic stem cells transplantation is replacement of absent, diseased or damaged hematopoietic stem cells due to chemotherapy or radiation, with healthy hematopoietic stem cells. Over last 30 years hematopoietic stem cells transplantation market seen rapid expansion and constant expansion with lifesaving technological advances. Hematopoietic stem cells transplantation is also known blood and marrow transplantation which brings about reestablishment of the patients immune and medullary function while treating varied range of about 70 hematological and non-hematological disorders. In general hematopoietic stem cells transplantation is used in treatment of hereditary, oncological, immunological and malignant and non-malignant hematological diseases.
There are two types of peripheral blood stem cell transplants mainly autologous and allogeneic transplantation. In autologous transplants patients own hematopoietic stem cells are harvested or removed before the high-dose treatment that might destroy the patients hematopoietic stem cells. While in allogeneic transplants stem cells are obtained from a tissue type of matched or mismatched donor. Hematopoietic stem cells are harvested from blood or bone marrow and is then frozen to use later. Depending upon the source of hematopoietic stem cells, worldwide there are three types of hematopoietic stem cells transplants namely bone marrow transplant (BMT), peripheral blood stem cell transplant and cord blood transplant. Major drivers in the hematopoietic stem cells transplantation market are establishment of strong and well developed network of hematopoietic stem cells transplantation organizations having global reach and presence has recognized NGO named Worldwide Network for Blood and Marrow Transplantation Group (WBMT) in official relation with World Health Organization (WHO) and rapid increase in number of transplants. Major restraints in hematopoietic stem cells transplantation market is high cost of transplantation and lack of funding for WBMT and other organizations such as regional, national and donor.
To remain ahead of your competitors, request for a sample [emailprotected]
https://www.persistencemarketresearch.com/samples/14563
The global market for Hematopoietic stem cells transplantation market is segmented on basis of transplant type, application, disease indication, end user and geography:
To receive extensive list of important regions, Request Methodology here @
https://www.persistencemarketresearch.com/methodology/14563
Based on transplantation type, hematopoietic stem cells transplantation market is segmented into allogeneic and autologous. Hematopoietic stem cells transplantation market is also segmented by application type into bone marrow transplant (BMT), peripheral blood stem cell transplant and cord blood transplant. The market for hematopoietic stem cells transplantation is majorly driven by bone marrow transplant (BMT) segment. Based on end user hematopoietic stem cells transplantation market is segmented into hospitals and specialty centers. Peripheral blood stem cell transplant type holds the largest market for hematopoietic stem cells transplantation. Hematopoietic stem cells transplantation market is further segmented by disease indication into three main categories i.e. lymphoproliferative disorders, leukemia, and non-malignant disorders. Segment lymphoproliferative disorder holds largest share amongst the three in Hematopoietic stem cells transplantation market. On the basis of regional presence, global hematopoietic stem cells transplantation market is segmented into five key regions viz. North America, Latin America, Europe, Asia Pacific, and Middle East & Africa. Europe leads the global hematopoietic stem cells transplantation market followed by U.S. due to easy technological applications, funding and high income populations. Other reasons for rise in hematopoietic stem cells transplantation market is high prevalence of lymphoproliferative disorders and leukemia; demand for better treatment options; and easy accessibility and acceptance of population to new technological advances. Transplantation rates in high income countries are increasing at a greater extent but continued rise is also seen in low income countries and expected to rise more. Hematopoietic stem cells transplantation market will have its potential in near future as being a perfect alternative to traditional system in many congenital and acquired hematopoietic disorders management. While India, China and Japan will be emerging as potential markets. An excellent and long term alternative to relief by side effects of chemotherapy, radiotherapy and immune-sensitive malignancies is another driver for hematopoietic stem cells transplantation market. The key players in global hematopoietic stem cells transplantation market are Lonza, Escape Therapeutics, Cesca Therapeutics Inc., Regen BioPharma, Inc., Invitrx Inc, StemGenex, Lion Biotechnologies, Inc., CellGenix GmbH, Actinium Pharmaceuticals, Inc., Pluristem, Kite Pharma, Novartis AG.You Can Request for TOC Here @ https://www.persistencemarketresearch.com/toc/14563
Explore Extensive Coverage of PMR`s
Life Sciences & Transformational HealthLandscape
About us:
Persistence Market Research (PMR) is a third-platform research firm. Our research model is a unique collaboration of data analytics andmarket research methodologyto help businesses achieve optimal performance.
To support companies in overcoming complex business challenges, we follow a multi-disciplinary approach. At PMR, we unite various data streams from multi-dimensional sources. By deploying real-time data collection, big data, and customer experience analytics, we deliver business intelligence for organizations of all sizes.
Our client success stories feature a range of clients from Fortune 500 companies to fast-growing startups. PMRs collaborative environment is committed to building industry-specific solutions by transforming data from multiple streams into a strategic asset.
Contact us:
Naved BegPersistence Market ResearchAddress 305 Broadway, 7th Floor, New York City,NY 10007 United StatesU.S. Ph. +1-646-568-7751USA-Canada Toll-free +1 800-961-0353Sales[emailprotected]Websitehttps://www.persistencemarketresearch.com
Read this article:
Global Hematopoietic Stem Cells Transplantation Market to Witness Rapid Development During the Period 2017 2025 - The News Brok
The great beauty reset: how to reboot your skin – Financial Times
By daniellenierenberg
Im not saying my skin has aged significantly this year but my six-year-old recently asked me why I had asix-pack on my forehead. After six months of stressful days, sleepless nights and home-school nightmares, its become apparent that matters need taking in hand. And theres something about the early autumn, with its nip in the air, and its new-found appreciation for proper, non-negotiable routines that feels right for a skincare overhaul.
Fortunately, the seasons big skincare launches abound with new ways to reset your skin, from serious, sleeves-rolled-up jump-starting regimens, which last up to a month and deliver a rapid burst of intense reconditioning, to new strategies that claim todetoxify your daily regime without your having to somuch as cut down on caffeine.
Sorting out most modern-day skincare complaints from sluggish cell turnover caused by tiredness and stress to overstimulated skin (a result of using products not suited to one another), to undeserved lacklustre complexions caused by outdated products requires a bit of areboot. It could be a facial; it could be a peel. But inthedays when weve all become beauty hobbyists, performing DIY facials like pros, it could also be a pleasurable at-home experience for the price of a couple ofdecent salon treatments.
Dr Anita Sturnham, a London-based GP specialising in dermatology who launched her own excellent skincare line,Decree, last year, became so aware of how many of herpatients especially those suffering with breakouts, pigmentation and dehydration needed a thorough overhaul that she recently launched her own two-week Skin Reset Kit. Sturnham believes 90 per cent of the skin issues she sees are self-inflicted simply by using the wrong products and that stripping your skincare right back is an essential step for getting the best from your skin.
Another recent reset kit is Budapest brand Omoroviczas The Cure programme, which in nine days cycles through anacid phase (to resurface), a remineralise phase (tostimulate microcirculation) and a reconstruct phase (forrenewed elasticity). You can repeat it every three months, ideally to coincide with the change of seasons.
One of the best known brands for an intensive treatment is that of anthropologist-turned-dermatologist Dr Phillip Levy. A Geneva-based wound-healing specialist,he believes that only via resetting can you achieve some of the most visible anti-ageing results andhis Ultimate Stem Cell Spring Homecure (the springmeans spring clean but it can bestarted any time)is legendary. Manyofthe cures we have studied over the years seem to be everyday products nicely repackaged, he says.But to have something truly transformational, theyneed go deep enough to stimulate your own collagen, elastin and hyaluronic acid production, and last four weeks or even eight or more.
Its true that these regimes work best when they feel elevated from the everyday. And when it comes to products with a built-in sense of occasion, no one does it better than Sisley. Even before you get to the science and the scents, and the textures it has a particular French earnestness that makes every product feel like an event. Which must make LIntgral Anti-Age La Cure, its new skin-resetting regimen, at 775 for a four-week supply, a veritable tapis rouge.
For each of the four week-long phases Impulse, Reset, Consolidate, Renaissance theres a phial of creamy serum, about the size of an eye cream. You use each one for seven days, applying eight pumps of product morning and night (this feels a lot, and it takes a few minutes to properly sink in). You can follow with eye cream or moisturiser if you want to, but I didnt feel the need. The bottles have been slightly overfilled so as to ensure you dont run out, but when you get to the end of the seventh day, you must start the next one nonetheless. (This feels wasteful, but I was assured by Sisleys training manager Lorna Green that I could save up these last drops and use them a couple of weeks after the course, as a further boost).
The formulation works on the skins mitochondria the batteries where cellular energy is stored. Theylose the ability to restore themselves over time, particularly during intense periods of stress and hormonal changes, so following either one of those would be an ideal time to try it. The breakthrough wasthe discovery of the mechanisms of a process called autophagy (for which Japanese biologist Yoshinori Ohsumi won the Nobel Prize for medicine in2016), whereby damaged cell components such as mitochondria destroy themselves to protect the rest ofthe cell. La Cure boosts the elimination of these wasteelements, allowing the healthy cells left behind tosoak up energy and regenerate promoting the appearanceof healthier, more youthful skin. In skincare terms, this is no mean feat.
Where the real technology is happening, it wont be long before they eclipse the big jars of moisturiser completely
It sounds intense and its certainly super-active: by the end of the first week I had a small, yet determined, spot on my chin (which I cannot believe was a coincidence) and a little more redness than usual, too. The following week, cell detoxification week, my skin was starting to feel unusually smooth. By the end of the fourth week, my skin was smoother and clearer than I can ever remember. Its also, though, a real example of skincare as self-care: as much as the thought of a radically rejuvenated complexion, the daily reminder that youve sidelined your usual clutter of products in favour of something exceptional is almost enough to bring on a glow.
With any reset complete, the focus should then be on keeping your skin detoxified and renewed. One update worth looking at is a serum. Whereas the luxurious facecream at the end of your regime used to be the jewel in any skincare crown, these dayslightweight serums are where the real technology ishappening, and it wont be long before they eclipse thebig jars of moisturiser completely.
While serums used to be a targeted addition to your face cream specifically for age spots, say, or wrinkles the best new ones are genuinely impressive all-rounders. Este Lauder has just revamped Advanced Night Repair, one of the first ever mainstream skin serums and a product so ubiquitous that among beauty editors it has acronym status. (See also: Cliniques DDML, aka Dramatically Different Moisturizing Lotion). And in October, Suqqu, which hails from Japan where serums have been the mainstay of skincare much longer than here will launch Vialume, its most advanced line yet, containing glucosamine and amino-acid derivatives designed to targetall five key characteristics of great skin: moisture, firmness, smoothness, translucency and brightness.
Another product gaining increasingly scientific status is face oil, which should no longer be dismissed as the preserve of the militantly natural beauty brigade. Augustinus Bader, the world-leading wound-healing specialist whose Rich Cream was the runaway skincare success of 2018, has just launched The Face Oil, which contains a slew of delicious-sounding oils argan, babassu, hazelnut, karanja as wellas a healthy dose of TFC8, the complex of vitamins, amino acids and synthesised molecules that has made Baders products famous. Meanwhile, RVive Glow Elixir Hydrating Radiance Oil is bronze in colour and slightly shimmering although unusually, it leaves no evidence of glittery particles. Alongside a cocktail of seed oils, it contains the brands signature Bio-Renewal Protein, rendering it a real skincare/make-up hybrid and a great transitional product for this time of year.
Another need-to-know and a great option particularly for younger skin is Rihannas new Fenty Skin line. Theres Total Cleansr, which would work especially well as the first step of a double-cleanse, and Fat Water, which Ri-Ri calls a toner-serum hybrid but its the Hydra Vizor daily moisturiser that triumphs. This so-called Invisible Moisturizer has an SPF30 that leaves no white cast to the skin whatsoever, primarily because the product has a gorgeous pinkish hue and a blurring effect. The ghostly pallor left behind by so many SPF products is a particular challenge to people of colour and this range was designed to work seamlessly with make-up on all skin tones. It also smells great juicy with just the slightest medicinal tinge and comes in a refillable tube.
The recently launched skincare brand U Beauty wants to reset not just your skin, but the way you think about your whole regime. Were all doing too much, says founder Tina Craig, who until two years ago was working as an influencer/ambassador for the worlds biggest skincare brands but admits being as confused as anyone about what to use; she had ended up with a 13-step skincare routine. I started noticing that everyone Iknew had skin that looked translucent, which is not how it should look, she says. Then I looked at my grandma and relatives in Korea, and their skin was not like that. It was thick. Dense. Firm.
U Beauty is her answer to what she calls the cosmeticconfusion. Its first product, the Resurfacing Compound (which sold out three times on UK stockist Net-aPorter), was designed to replace toner, vitamin C, hyaluronicacid, AHAs, physical exfoliants, antioxidant serums and retinol products. From this month, theres alsoSuper Smart Hydrator, a moisturising serum that seeks out damaged cells and only treats the skin where itneeds it. Bookend these two with cleanser and SPF, saysCraig, and youre good to go.
Finally, could we reset the way we use products altogether? New US brand Noble Panacea is overseenby ascientific heavyweight: Sir Fraser Stoddart, who was awarded the 2016 Nobel Prize in chemistry. A microscopic delivery system releases its active ingredients into the skinin a programmed sequence, and it comes in individualdoses packed in mini sachets to ensure the optimal amount of these ingredients stays potent until theminute it reaches your skin.
On the one hand, they feel counter to the idea of luxury face creams more like a free sample from a beauty hall but on the other, the boxes made from renewable materials and ultra-hygienic 0.5ml doses feel modern and Covid-safe. (You can send them for recyling in a complimentary envelope to TerraCycle, with which the brand has partnered). And if nothing else, as its global ambassador ithas snapped up the actress Jodie Comer, who must havebeen pursued by every beauty company under the sun and as far as I can tell, theres no sign of a six-pack on her forehead.
View post:
The great beauty reset: how to reboot your skin - Financial Times
27 De-Stressing Vegan Products to Help You Get Through The Rest of 2020 – VegNews
By daniellenierenberg
Well, weve made it more than halfway through the yearcan you believe it? Schools are once again starting up (online and in-person), the weather is crisper (and drier), election season is in full throttle (register to vote!), and the global pandemic continues to ravage (please wear a mask!). As we begin to settle into September, its more important than ever to take care of our bodies and minds so we can show up at full capacity for ourselves in the present. Take a moment and check-in with yourself today, whether its with a calming, immune-boosting coffee mix-in or a CBD-infused bath soak. Wake me up when September (and 2020) ends!
1. African Botanics Revitalizing Therapy GelHunched over your laptop all day? Aside from investing in a laptop stand, utilize this invigorating gel from South African-made, eco-luxury skincare brand African Botanics to soothe neck and shoulder aches. This miracle-in-a-chic-tube promises to reduce swelling, promote circulation, and provide a cooling, thermal feeling so you can restore muscles for the next workday.
2. Clevr Golden SuperLatteCancel the caffeine jitters and opt for a turmeric-and-oat-milk latte. Naturally sweetened with monk fruit and chock-full of warming spices, this Clevr spin on trendy golden milk lattes hits the spot for a comforting, post-lunch pick-me-up.
3. OUAI Chill PillsIts Friday night and youre not going anywhere, so whats there to do? Light some candles, play some jazz, draw a hot bath, and drop in these adorable OUAI Chill Pills for some seriously luxurious me-time. Each jasmine-and-rose-scented vegan tablet is filled with hemp, jojoba, and safflower seed oil to leave skin ultra moisturized.
4. Apothkary Chill The F* Out Herbal SupplementAs fall seeps in and we get closer to peppermint mocha season, this stress-reducing, serotonin-boosting elixir from Apothkary tastes like a peppermint hot chocolate mix. While we reminisce of the snowy holidays ahead, two powerhouse adaptogensreishi and ashwagandhawork wonders to relieve our pent-up anxiety.
5. Shanti Rejuvenate Roll On With Hemp CBDAyurvedic essential oils and Colorado-sourced hemp blend seamlessly to bring clarity to stressed-out brains in this Shanti Wellness roll-on. The small, easy-to-use packaging provides relief for those on-the-go so you can be chill whatever the occasion (long lines for the grocery store, strangers refusing to wear a mask, disposable gloves all over the ground the usual).
6. Activist Skincare Healing Water Toning MistThe vegan skincare connoisseurs at Activist believe self-care is fuel for the activism we should all be doing every day. So while youre making calls, advocating for marginalized communities, and attending protests (safely and with a mask), remember to take a moment for yourself. Add this hydrating, hyaluronic mist to your desk essentials for a small, calming break. The matte glass, recyclable bottle adds an elegant design to your workstation and the refreshing scent of cucumbers instantly calms.
7. Tata Harper Aromatic Irritability TreatmentIs your work-from-home buddy chewing their cereal as loudly as possible before youve had your cup of coffee? Instead of blasting your headphones, try this essential oil blend from natural beauty queen Tata Harper. Dab a few drops onto palms, rub together, and inhale deeply for an instant mood-lifting hit of balancing jasmine, fresh geranium, and soothing cypress.
8. Facialworks Sonic Wave + Coast Is Clear DuoMissing your monthly facials? Orange County-based, non-toxic spa specialists Facialworks brings the expertise straight to your home. With its extraction duo, you can prepare skin for a painless mini-facial and use the ultrasonic skin spatula to cleanse, get rid of blackheads or pimples, and infuse serums for maximum absorption. Clear skin, here we come!
9. The Good Patch Be Calm PatchPatches are the new It item for wellness brandsfrom pimple zappers to calming mood boosters like this menthol-infused stick-on from The Good Patch. Simply peel and stick on your wrist (or other veiny part of your skin) for over eight hours and feel nerves calm by the mix of hemp and other natural ingredients.
10.ORPHEUS Resurrection All-In-One SerumInspired by the regenerative powers of the haberlea rhodopensis flower found in the mountains of Bulgaria, family-run business ORPHEUS spent more than 20 years researching the properties of the rare blossom. Now, theyve packed the unique plants stem cells into this all-in-one serum to craft a richly intensive, calming experience for stressed-out skin. Thats pretty much all you could ask for in a bottle.
11. Missionary Chocolates CBD TrufflesA chocolate a day keeps the doctor away or something like that. Naturopathic physician Melissa Berrys Portland-based Missionary Chocolates crafts the meltiest hemp-derived fair-trade chocolates for the ultimate mid-day pick-me-up. Plus, with its cute packaging, you can send your loved ones a treat to get through the hard days.
12. The Nue Co Magnesium SprayStaring at the ceiling for hours when bedtime rolls around? Its cooljust spray this sleep aid spray from The Nue Co. made with high-quality magnesiuma mineral that is essential for over 325 biochemical reactions in the bodyand youll soon stop counting sheep. You can also use it as a post-workout aid for faster muscle recovery.
13. Life & Apples Wellness Journal Planners are a useful tool to track your busy schedule, but they can also be beneficial for checking in with yourself. Made of eco-friendly, vegan materials, this 90-day rose gold journal makes it simple to track habits, plan healthy meals, and set weekly goals. Plus, you can write down what youre grateful for to begin day on a bright note.
14. Four Sigmatic Lions Mane ElixirCaffeine levels through the roof? Same here. Thats why Im turning to lions mane, a favorite mushroom among researchers and herbalists touting benefits such as boosting mood, supporting cognitive function, and providing physical energy. Add to smoothies, decaf coffee, and tea to get a boost of brain-healthy nootropics.
15. Derma-E Vitamin C Bright Eyes Hydro Gel PatchesNon-stop screen-time is sure to wreak havoc on your eye health. When suffering from tired, baggy eyes, turn to Derma-Es moisture-intensive gel patches before your morning Zoom call. These sparkly yellow gels contain allantoin to increase smoothness, caffeine to reduce puffiness, and vitamins C and B3 to target fine lines, wrinkles, and dullness.
16. Rosebud Awaken CBD Bath SoakIf youre one of the rare types that like to take baths in the mornings, this uplifting, magnesium-rich soak is for you. With notes of bergamot and orange essential oils, 50mg of CBD, and calming Epsom salts, heck, Im considering waking up an hour earlier (wish me luck) to run a warm bath and start the day on a much chiller note.
17. REN Clean Skincare Atlantic Kelp and Magnesium Salt Anti-Fatigue Exfoliating Body ScrubExfoliate your hard-working body with a fresh body scrub from sustainability-focused REN Clean Skincare designed to gently polish and smooth skin with fresh sea and Epsom salts. Breathe in sage, cypress, geranium, and rosemary for an uplifting start to the day.
18. No B.S. Charcoal Detox Peel-Off MaskTheres just something so satisfying about a peel-off mask, but when it takes forever to take off while also causing wincing pain, wed rather avoid it altogether. Enter: cruelty-free and vegan skincare brand No B.S.s purifying, activated charcoal mask. In less than 20 minutes, watch the clean, pH-balanced formulation gently peel away the days impurities and reveal smooth, bright skin.
19. Buddha Teas Peppermint CBD TeaRather than using hemp oil like many other CBD teas, Buddha Teas figured out a way to use dispersible water-soluble CBD, ensuring optimal bioavailability and maximum absorption of the calming, non-psychoactive compound. With flavors such as Turmeric & Ginger, Matcha Green, and Peppermint, grab your tea setsits time for relaxation!
20. Pacifica Overnight Vegan Collagen Recovery CreamYour skin repairs itself at night, making the products used for your nighttime ritual all the more important. For those needing a little more glow, this Pacifica recovery cream infuses vegan collagen, essential lipids, antioxidants, and flower extracts to work some magic during your beauty sleep. Glowing, radiant skin, were dreaming of you!
21. Future Kind Vegan Sleep SupplementsStress hits hard at night when youre trying to get your Zzzs, which is why brothers and nutritionists Shaun & Eliot Cunningham developed Future Kinds eight-ingredient, all-natural sleep supplement that promises to have you feeling energized the next morningnot sluggishthanks to the addition of L-theanine.
22. Peak + Valley Balance My Stress BlendThrough the use of adaptogens such as reishi mushroom, eleuthero root, and ashwagandha, Black-owned wellness brand Peak + Valleys chocolaty, earthy stress blend pairs well with an afternoon tea or a warm cup of oat milk to protect the immune system and decrease fatigue.
23. HERBIVORE CALM Soaking SaltsEveryones favorite Himalayan pink salt blends with ylang-ylang and vanilla to soothe the body with this bath soak from plant-based, sustainable skincare brand HERBIVORE. Dont forget to recycle the chic glass bottle to reduce waste.
24. Heartsong Herbs Anxiety Away SupplementUsing regenerative growing practices to preserve soil and create stronger, more potent plants, small farm Heartsong Herbs takes its agriculture seriously. Crafting high-quality tinctures, the apothecarys Anxiety Away pairs herbs such as skullcap, passionflower, blue vervain, and lemon balm to ease away worries and help you feel grounded.
25. Kin Euphorics High RhodeNot in the mood for another lengthy Zoom happy hour and the inevitable hangover in the A.M.? Dont fret, you can still catch up with friends without the pressure. Grab a can of non-alcoholic High Rhodean herbaceous drink promising a state of bliss through a holistic mix of adaptogens, nootropics, and botanics. Kiss the morning-after headaches goodbye!
26. Naipo Massage GunWe cant go to a spa for an hour-long deep-tissue massage, so why not bring it home? This Naipo massager puts in the work and all you have to do is hold it over tense muscles to alleviate stiffness and relieve any pain. The portable design plus long battery life means you can keep it near you at all times for when the soreness starts to set in.
27. Asop Istros Aromatique Room Spray Weve all had to keep our imaginations alive during the months-long quarantine, so spend a few minutes daydreaming a walk through a lively, smoky Greek bazaar to get the creative juices flowing during a mid-day slump. Cult-favorite plant-based skincare brand Asops room spray should help with notes of pink pepper, lavender, tobacco.
Aruka Sanchir (@arukasanchir)is the Beauty & Style Editor at VegNews and shes always trying out new calming products to find her ultimate Zen.
Please support independent vegan media and get the very best in news, recipes, travel, beauty, products, and more.Subscribe now to the worlds #1 plant-based magazine!
Read the original post:
27 De-Stressing Vegan Products to Help You Get Through The Rest of 2020 - VegNews
Japan Approves iPS Cell Therapy Trial for Spinal Cord …
By daniellenierenberg
The Japanese governments health ministry has given the go-ahead for a trial of human induced pluripotent stem cells to treat spinal cord injury, Reutersreports today (February 18).Researchers at Keio University plan to recruit four adults who have sustained recent nerve damage in sports or traffic accidents.
Its been 20 years since I started researching cell treatment. Finally we can start a clinical trial, Hideyuki Okano of Keio University School of Medicine told a press conference earlier today, The Japan Timesreports. We want to do our best to establish safety and provide the treatment to patients.
The teams intervention involves removing differentiated cells from patients and reprogramming them via human induced pluripotent stem cells (iPSCs) into neural cells. Clinicians will then inject about 2 million of these cells into each patients site of injury. The approach has been successfully tested in a monkey, which recovered the ability to walk after paralysis, according to the Times.
Its not the first time Japan has approved the use of iPSCs in clinical trials. Last year, researchers at Kyoto University launched a trial using the cells to treat Parkinsons disease. And in 2014, a team at the RIKEN Center for Developmental Biology led the first transplant of retina cells grown from iPSCs to treat a patients eye disease.
Read the original:
Japan Approves iPS Cell Therapy Trial for Spinal Cord ...
Global Skin Care Cosmetic Market 2020-2026 is Growing Rapidly and Expected to Witness a Sustainable Growth over 2027 – Scientect
By daniellenierenberg
Reportspedia announces a new report titled GlobalSkin Care Cosmetic Market, which outlines the rationale standpoint of the unpretentious forces of the market. It announces the addition of another new dimension to this industry explaining the performance of the major players. The Skin Care Cosmetic Market has also been segmented on the basis of the provincial players, out of which some are well established while some have newly entered the global market. These players have established actions such as research and development, determined to bring in new services that can efficiently compete with the other established players.
Get a sample of Skin Care Cosmetic Market @
Top Key Players:
The Body Shop International PLCKao CorporationUnilever PLCAvon Products IncJohnson & JohnsonProcter & GambleBeiersdorf AGLOreal S.A.The Estee Lauder Companies Inc
Geographically, the following regions are covered in this report:
United States, Canada, Germany, UK, France, Spain, Russia, Turkey, Switzerland, Sweden, Poland, Belgium, China, Japan, South Korea, Australia, India, Taiwan, Indonesia, Thailand, Philippines, Malaysia, Brazil, Mexico, Argentina, Columbia, Chile, Saudi Arabia, UAE, Egypt, Nigeria, South Africa and Rest of the World
The global Skin Care Cosmetic Market report covers the market landscape and its growth over the upcoming years and discussion of the Prominent Companies effective in this market. This report has been organized based on a detailed market analysis with inputs from industry experts. The report delivers a 360-degree overview of the market, listing numerous factors limiting, driving the market during the forecast period.
Get a Huge discount on this Skin Care Cosmetic Market Research Report:
https://www.reportspedia.com/discount_inquiry/discount/59849
Skin Care Cosmetic Market Segment by Type:
Sensitive Skin CareDry Skin CareInfants Skin CareOthers
Skin Care Cosmetic Market Segment by Application:
Stem Cells Protection Against UVFlakiness ReductionRehydrate the Skin SurfaceMinimize wrinklesIncrease the viscosity of Aqueous
The global Skin Care Cosmetic Market is predicted to witness of enormous growth in the next six years. The growing level of competition among the players and the growing focus on the advance of new products are likely to offer promising growth during the prediction period. The research study on the global Skin Care Cosmetic Market deals with a complete overview, highlighting the key aspects that are projected to surge the growth of the market in the near future.
Inquire Before Buying @:
Key Takeaways of the report
Some Points from Table of Contents
Global Skin Care Cosmetic Market Insight and Forecast to 2027
Chapter 1Skin Care Cosmetic Market Report Overview
Chapter 2Global Growth Trends
Chapter 3Market Competition by Manufacturers
Chapter 4Skin Care Cosmetic by Regions
Chapter 5Skin Care Cosmetic by Region
Chapter 6Skin Care Cosmetic Market by Type (2020-2027)
Chapter 7Skin Care Cosmetic Market by Application (2020-2027)
strong>Chapter 8Company Profiles and Key Figures in Skin Care Cosmetic Business
Chapter 9Production and Supply Forecast
Chapter 10 Marketing Channel, Distributors, and Customers
Chapter 11 Industry Trends and Advanced Strategy
Chapter 12Conclusions
Chapter 13Appendix
Get a Complete Table of Content, Just click on the below link @:
Read this article:
Global Skin Care Cosmetic Market 2020-2026 is Growing Rapidly and Expected to Witness a Sustainable Growth over 2027 - Scientect
Researchers teamed up to develop a ‘three in one’ HIV treatment and the NIH is throwing in $14.6M – Endpoints News
By daniellenierenberg
The NIH is pitching $14.6 million into a three for one HIV research program led by USC and the Fred Hutchinson Cancer Research Center that aims to strike the need for daily medication or even achieve a home run cure.
The five-year grant will back preclinical studies that combine gene editing with technology to improve bone marrow transplants. The potential therapy would engineer a patients own stem cells to fight HIV, and stimulate them to produce new immune cells once reintroduced to the patient.
A home run would be that we completely cure people of HIV, Paula Cannon, a USC professor of molecular microbiology and immunology and co-director of the program, said in a statement. What Id be fine with is the idea that somebody no longer needs to take anti-HIV drugs every day because their immune system is keeping the virus under control, so that it no longer causes health problems and, importantly, they cant transmit it to anybody else.
Hans-Peter Kiem, the Stephanus Family Endowed Chair for Cell and Gene Therapy at Fred Hutch, is the co-director. Harvard University professor David Scadden and Magenta Therapeutics are also collaborating on the project.
The approach was inspired by three patients who appear to have been cured of the virus all of whom received blood stem cell transplants from donors who carried a mutation in the CCR5 gene. One of them, dubbed the Berlin patient, has been off antiretroviral drugs since 2007.
I think of the Berlin patient as proof of principle that replacing the immune system with one thats HIV-resistant by removing CCR5 is a possible way to treat somebody, Cannon said.
The program will study the use of gene editing to remove CCR5 from patients stem cells a process which is already in clinical trial for HIV treatment at City of Hope National Medical Center in Duarte, CA. The stem cells will also be engineered to release antibodies and antibody-like molecules that block HIV.
In addition, the grant will fund a Fred Hutch teams endeavor to adapt CAR-T cell therapy to create stem cells whose progeny target HIV-infected cells.
As for preparing a patient for the transplant,Magenta is working on antibody-drug conjugates to replace mild chemotherapy or radiotherapy typically given before the procedure. And Scadden is researching an injectable gel that could help immune cells repopulate more quickly, avoiding a delay.
HIV infection, which currently affects about 1.2 million Americans, has proved to be exceedingly difficult to cure. In July, Merck and Dewpoint inked a deal that allows the pharma to use the Boston-based biotechs biomolecular condensate technology to develop treatments, and potentially a cure, for the HIV virus. The NIH-funded group is hoping to at least control the virus enough to eliminate the need for daily meds. But at best, theyre also eyeing a long sought-after cure.
This grant funds a team with an overarching goal of developing what our perfect HIV gene therapy would look like, Cannon said. All of these pieces could happen separately, but the fact that the NIH has funded us as a team means that the sum will be so much bigger than the parts.
Go here to see the original:
Researchers teamed up to develop a 'three in one' HIV treatment and the NIH is throwing in $14.6M - Endpoints News
Father of Three with Incurable Cancer is Helping Researchers Get One Step Closer to a Cure – The Suburban Newspaper
By daniellenierenberg
In 2016, Danny Wade, a successful marketing professional and an active and doting father to his three young children, aged 11, 8 and 6, checked himself into the emergency department when he began experiencing severe, inexplicable bone pain and unusual fatigue.
Two days later, after undergoing a battery of tests, Danny was diagnosed with multiple myeloma, a little-known and incurable cancer of the plasma cells. He was just 42 years old.
"I was shocked when I got the news, Danny recalls. What upset me most was when the doctor told me that the average life expectancy for myeloma patients was only five to seven years. The thought that I would not see my children grow up was devastating. I knew I had to fight for my life.
Thats exactly what Danny has been doing. Within six months of being diagnosed, Danny went through a difficult high-dose chemotherapy regimen to prepare for an autologous stem cell transplant using his own stem cells. Then in 2017 after further tests, Dannys doctors recommended that his best option for survival was to undergo another transplant with stem cells from a healthy donor. He took his doctors advice and underwent the procedure. Fortunately, he was eligible to participate in a clinical trial at Maisonneuve-Rosemont Hospital where he received a breakthrough therapy involving bi-weekly injections that he will continue to take for a year.
Dannys condition is relatively stable at this time, and he extremely thankful to still be alive. He is thrilled to watch his children grow and to resume being an active part of their lives. He credits his survival to the life-saving treatments that he has access to and the love and support he receives from his partner, Anik. With my beloved Anik by my side, Ive had the courage to get through this nightmare and to have faith that I can get through whatever else the future holds.
Danny is eager to do what he can to help others living with myeloma. I made a promise that once I was doing well, I would do everything in my power to help find a cure so that other patients dont have to live through the horrors I have," says Danny. Danny is a member of the organizing committee of the Montreal Support Group, and recently co-founded the South Shore Myeloma Support Group.
Over the past four years, Danny has seen, first-hand, the life-changing impact that advances in myeloma research are having on the lives of those living with this incurable cancer. Thats why he and his family are more intent than ever to raise as much awareness and funds for myeloma as they can, and will be participating in Myeloma Canadas 12th annual Montreal Multiple Myeloma March on Sunday, September 20, at 10 am.
This years Montreal March has been modified to help stop the spread of COVID-19. In compliance with physical distancing measures, participants are encouraged to hold their own walk in their neighbourhood at the same time as the regularly scheduled March on September 20. Danny and his fellow Montreal Marchers have set their fundraising goal at $60,000 to help further crucial research for this deadly blood cancer that affects nine new Canadians every day.
Myeloma research has produced extremely promising results over the past two decades. In fact, for the first time, theres a cure in sight, says Dr Richard LeBlanc, Medical Hematologist and Oncologist, and holder of the Myeloma Canada Chair in Multiple Myeloma Research at the Universit de Montral. We cant afford to let the current situation stop the progress weve made and put vulnerable people living with myeloma at risk, which is why its more crucial than ever to invest in research and find a cure.
The Multiple Myeloma March, Myeloma Canadas flagship fundraiser is now in its 12th year. The annual five-kilometer event brings Canadian communities together to raise essential funds for research and to help improve the lives of all Canadians impacted by myeloma. Montreal is one of a record 33 communities across the country to be included in this years Multiple Myeloma March. The national fundraising goal is set at $650,000. To learn more about how this event will be working, please click here.
While this years March will undoubtedly be different because of the pandemic, its crucial to stay positive, says Martine Elias, Executive Director of Myeloma Canada. Fundraising has taken a huge hit for many organizations. We need to do all we can to increase awareness and raise essential funds for research that will improve the lives of Canadians impacted by myeloma, and bring us closer to a cure, Martine added. As we mark Myeloma Canadas 15th anniversary, we celebrate the strength of our incredible community. More than ever, were counting on our supporters to help us achieve our goal of $650,000. Canadians impacted by this incurable cancer are depending on us.
This year, a minimum of 50% of funds raised by the Multiple Myeloma March will go directly to support Myeloma Canadas Myeloma Research Priority Setting Partnership (PSP), the first program of its kind in myeloma. The PSP will use input provided by the Canadian myeloma community to identify and define investments in myeloma research over the next 18 months. The balance raised will go toward supporting various myeloma research projects and initiatives that are pivotal for improving quality of life and moving the needle toward a cure.
Multiple myeloma, also known as myeloma, is the second most common form of blood cancer. Myeloma affects a type of immune cell called the plasma cell, found in the bone marrow. Every day, nine Canadians are diagnosed, yet in spite of its growing prevalence, the disease remains relatively unknown. While there is no cure, people with myeloma are living longer and better lives, thanks to recent breakthroughs in treatment. To find the cure, more funding and research are required. To learn more, or to donate, please visit http://www.myeloma.ca
Myeloma Canada
AB
Go here to see the original:
Father of Three with Incurable Cancer is Helping Researchers Get One Step Closer to a Cure - The Suburban Newspaper