Search Results

Stem Cell Manufacturing Global Market Report 2022: Widespread Product Utilization in Effective Disease Management, Personalized Medicine, and Genome…

By daniellenierenberg

Company Logo

Global Stem Cell Manufacturing Market

Global Stem Cell Manufacturing Market

Dublin, Oct. 11, 2022 (GLOBE NEWSWIRE) -- The "Stem Cell Manufacturing Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2022-2027" report has been added to ResearchAndMarkets.com's offering.

The global stem cell manufacturing market size reached US$ 11.2 Billion in 2021. Looking forward, the publisher expects the market to reach US$ 18.59 Billion by 2027, exhibiting a CAGR of 8.81% during 2021-2027.

Stem cells are undifferentiated or partially differentiated cells that make up the tissues and organs of animals and plants. They are commonly sourced from blood, bone marrow, umbilical cord, embryo, and placenta. Under the right body and laboratory conditions, stem cells can divide to form more cells, such as red blood cells (RBCs), platelets, and white blood cells, which generate specialized functions.

They are widely used for human disease modeling, drug discovery, development of cell therapies for untreatable diseases, gene therapy, and tissue engineering. Stem cells are cryopreserved to maintain their viability and minimize genetic change and are consequently used later to replace damaged organs and tissues and treat various diseases.

Stem Cell Manufacturing Market Trends:

The global market is primarily driven by the increasing venture capital (VC) investments in stem cell research due to the rising awareness about the therapeutic potency of stem cells. Apart from this, the widespread product utilization in effective disease management, personalized medicine, and genome testing applications are favoring the market growth. Additionally, the incorporation of three-dimensional (3D) printing and microfluidic technologies to reduce production time and lower cost by integrating multiple production steps into one device is providing an impetus to the market growth.

Furthermore, the increasing product utilization in the pharmaceutical industry for manufacturing hematopoietic stem cells (HSC)- and mesenchymal stem cells (MSC)-based drugs for treating tumors, leukemia, and lymphoma is acting as another growth-inducing factor.

Story continues

Moreover, the increasing product application in research applications to produce new drugs that assist in improving functions and altering the progress of diseases is providing a considerable boost to the market. Other factors, including the increasing usage of the technique in tissue and organ replacement therapies, significant improvements in medical infrastructure, and the implementation of various government initiatives promoting public health, are anticipated to drive the market.

Key Players

Anterogen Co. Ltd.

Becton Dickinson and Company

Bio-Rad Laboratories Inc.

Bio-Techne Corporation

Corning Incorporated

FUJIFILM Holdings Corporation

Lonza Group AG

Merck KGaA

Sartorius AG

Takara Bio Inc.

Thermo Fisher Scientific Inc.

Key Questions Answered in This Report:

How has the global stem cell manufacturing market performed so far and how will it perform in the coming years?

What has been the impact of COVID-19 on the global stem cell manufacturing market?

What are the key regional markets?

What is the breakup of the market based on the product?

What is the breakup of the market based on the application?

What is the breakup of the market based on the end user?

What are the various stages in the value chain of the industry?

What are the key driving factors and challenges in the industry?

What is the structure of the global stem cell manufacturing market and who are the key players?

What is the degree of competition in the industry?

Key Market Segmentation

Breakup by Product:

Consumables

Culture Media

Others

Instruments

Bioreactors and Incubators

Cell Sorters

Others

Stem Cell Lines

Hematopoietic Stem Cells (HSC)

Mesenchymal Stem Cells (MSC)

Induced Pluripotent Stem Cells (iPSC)

Embryonic Stem Cells (ESC)

Neural Stem Cells (NSC)

Multipotent Adult Progenitor Stem Cells

Breakup by Application:

Research Applications

Life Science Research

Drug Discovery and Development

Clinical Application

Allogenic Stem Cell Therapy

Autologous Stem Cell Therapy

Cell and Tissue Banking Applications

Breakup by End User:

Pharmaceutical & Biotechnology Companies

Academic Institutes, Research Laboratories and Contract Research Organizations

Hospitals and Surgical Centers

Cell and Tissue banks

Others

Breakup by Region:

North America

United States

Canada

Asia-Pacific

China

Japan

India

South Korea

Australia

Indonesia

Others

Europe

Germany

France

United Kingdom

Italy

Spain

Russia

Others

Latin America

Brazil

Mexico

Others

Middle East and Africa

Key Topics Covered:

1 Preface

2 Scope and Methodology

3 Executive Summary

4 Introduction

5 Global Stem Cell Manufacturing Market

6 Market Breakup by Product

7 Market Breakup by Application

8 Market Breakup by End User

9 Market Breakup by Region

Here is the original post:
Stem Cell Manufacturing Global Market Report 2022: Widespread Product Utilization in Effective Disease Management, Personalized Medicine, and Genome...

categoriaBone Marrow Stem Cells commentoComments Off on Stem Cell Manufacturing Global Market Report 2022: Widespread Product Utilization in Effective Disease Management, Personalized Medicine, and Genome… dataOctober 13th, 2022
Read all

Rocket Pharmaceuticals Announces Presentations Highlighting Lentiviral Gene Therapies at the 29th Annual Congress of the European Society of Gene…

By daniellenierenberg

CRANBURY, N.J.--(BUSINESS WIRE)--Rocket Pharmaceuticals, Inc. (NASDAQ: RCKT), a leading late-stage biotechnology company advancing an integrated and sustainable pipeline of genetic therapies for rare childhood disorders with high unmet need, today announces data presentations at the 29th Annual Congress of the European Society of Gene & Cell Therapy (ESGCT) in Edinburgh, United Kingdom, taking place October 11-14, 2022. Presentations will include clinical data from Rockets lentiviral vector (LV)-based gene therapy programs for Leukocyte Adhesion Deficiency-I (LAD-I), Fanconi Anemia (FA) and Pyruvate Kinase Deficiency (PKD). Donald B. Kohn, MD, Distinguished Professor of Microbiology, Immunology & Molecular Genetics, Pediatrics, and Molecular & Medical Pharmacology at University of California, Los Angeles (UCLA) and Director of the UCLA Human Gene and Cell Therapy Program, will also give an Invited Talk incorporating previously disclosed data from the RP-L201 trial for LAD-I.

Positive Updated Safety and Efficacy Data from Phase 2 Pivotal Trial for Fanconi Anemia (FA)

The poster and presentation include updated safety and efficacy data from the Phase 2 pivotal trial of RP-L102, Rockets ex-vivo lentiviral gene therapy candidate for the treatment of FA.

Positive Top-line Clinical Data from Phase 2 Pivotal Trial for Severe Leukocyte Adhesion Deficiency-I (LAD-I)

The oral presentation includes previously disclosed efficacy and safety data at three to 24 months of follow-up after RP-L201 infusion for all patients and overall survival data for seven patients at 12 months or longer after infusion. RP-L201 is Rockets ex-vivo lentiviral gene therapy candidate for the treatment of severe LAD-I.

Interim Data from Ongoing Phase 1 Trial for Pyruvate Kinase Deficiency (PKD)

The poster and presentation include previously disclosed safety and efficacy data from the Phase 1 trial of RP-L301, Rockets ex-vivo lentiviral gene therapy candidate for the treatment of PKD.

Details for Rockets Invited Talk and poster presentations are as follows:

Title: Interim Results from an ongoing Phase 1/2 Study of Lentiviral-Mediated Ex-Vivo Gene Therapy for Pediatric Patients with Severe Leukocyte Adhesion Deficiency-I (LAD-I)Session: Clinical Trials (Plenary 2)Presenter: Donald B. Kohn, MD - University of California, Los Angeles, Distinguished Professor of Microbiology, Immunology & Molecular Genetics (MIMG), Pediatrics, and Molecular & Medical Pharmacology; Director of the UCLA Human Gene and Cell Therapy ProgramSession date and time: Wednesday, 12 October at 11:10-13:15 BSTLocation: Edinburgh International Conference Centre (EICC)Presentation Number: INV20

Title: Lentiviral-Mediated Gene Therapy for Patients with Fanconi Anemia [Group A]: Results from Global RP-L102 Clinical TrialsSession: Poster Session 1Presenter: Julin Sevilla MD, PhD - Fundacin para la Investigacin Biomdica, Hospital Infantil Universitario Nio JessSession date and time: Wednesday, 12 October at 19:30-21:00 BSTLocation: Edinburgh International Conference Centre (EICC)Poster Number: P139

Title: Preliminary Conclusions of the Phase I/II Gene therapy Trial in Patients with Fanconi Anemia-ASession: Blood Diseases: Haematopoietic Cell DisordersPresenter: Juan Bueren, PhD - Unidad de Innovacin Biomdica, Centro de Investigaciones Energticas, Medioambientales y Tecnolgicas (CIEMAT)Session date and time: Thursday, 13 October at 15:30-17:30 BSTLocation: Edinburgh International Conference Centre (EICC)Presentation Number: INV41

Title: Interim Results from an Ongoing Global Phase 1 Study of Lentiviral-Mediated Gene Therapy for Pyruvate Kinase DeficiencySession: Poster Session 2Presenter: Jos Luis Lpez Lorenzo, MD, Hospital Universitario Fundacin Jimnez DazSession date and time: Thursday, 13 October at 17:30-19:15 BSTLocation: Edinburgh International Conference Centre (EICC)Poster Number: P128

Abstracts for the presentations can be found online at: https://www.esgct.eu/.

About Fanconi Anemia

Fanconi Anemia (FA) is a rare pediatric disease characterized by bone marrow failure, malformations and cancer predisposition. The primary cause of death among patients with FA is bone marrow failure, which typically occurs during the first decade of life. Allogeneic hematopoietic stem cell transplantation (HSCT), when available, corrects the hematologic component of FA, but requires myeloablative conditioning. Graft-versus-host disease, a known complication of allogeneic HSCT, is associated with an increased risk of solid tumors, mainly squamous cell carcinomas of the head and neck region. Approximately 60-70% of patients with FA have a Fanconi Anemia complementation group A (FANCA) gene mutation, which encodes for a protein essential for DNA repair. Mutations in the FANCA gene leads to chromosomal breakage and increased sensitivity to oxidative and environmental stress. Increased sensitivity to DNA-alkylating agents such as mitomycin-C (MMC) or diepoxybutane (DEB) is a gold standard test for FA diagnosis. Somatic mosaicism occurs when there is a spontaneous correction of the mutated gene that can lead to stabilization or correction of a FA patients blood counts in the absence of any administered therapy. Somatic mosaicism, often referred to as natural gene therapy provides a strong rationale for the development of FA gene therapy because of the selective growth advantage of gene-corrected hematopoietic stem cells over FA cells.

About Leukocyte Adhesion Deficiency-I

Severe Leukocyte Adhesion Deficiency-I (LAD-I) is a rare, autosomal recessive pediatric disease caused by mutations in the ITGB2 gene encoding for the beta-2 integrin component CD18. CD18 is a key protein that facilitates leukocyte adhesion and extravasation from blood vessels to combat infections. As a result, children with severe LAD-I are often affected immediately after birth. During infancy, they suffer from recurrent life-threatening bacterial and fungal infections that respond poorly to antibiotics and require frequent hospitalizations. Children who survive infancy experience recurrent severe infections including pneumonia, gingival ulcers, necrotic skin ulcers, and septicemia. Without a successful bone marrow transplant, mortality in patients with severe LAD-I is 60-75% prior to the age of 2 and survival beyond the age of 5 is uncommon. There is a high unmet medical need for patients with severe LAD-I.

Rockets LAD-I research is made possible by a grant from the California Institute for Regenerative Medicine (Grant Number CLIN2-11480). The contents of this press release are solely the responsibility of Rocket and do not necessarily represent the official views of CIRM or any other agency of the State of California.

About Pyruvate Kinase Deficiency

Pyruvate kinase deficiency (PKD) is a rare, monogenic red blood cell disorder resulting from a mutation in the PKLR gene encoding for the pyruvate kinase enzyme, a key component of the red blood cell glycolytic pathway. Mutations in the PKLR gene result in increased red cell destruction and the disorder ranges from mild to life-threatening anemia. PKD has an estimated prevalence of 4,000 to 8,000 patients in the United States and the European Union. Children are the most commonly and severely affected subgroup of patients. Currently available treatments include splenectomy and red blood cell transfusions, which are associated with immune defects and chronic iron overload.

RP-L301 was in-licensed from the Centro de Investigaciones Energticas, Medioambientales y Tecnolgicas (CIEMAT), Centro de Investigacin Biomdica en Red de Enfermedades Raras (CIBERER) and Instituto de Investigacin Sanitaria de la Fundacin Jimnez Daz (IIS-FJD).

About Rocket Pharmaceuticals, Inc.

Rocket Pharmaceuticals, Inc. (NASDAQ: RCKT) is advancing an integrated and sustainable pipeline of investigational genetic therapies designed to correct the root cause of complex and rare childhood disorders. The Companys platform-agnostic approach enables it to design the best therapy for each indication, creating potentially transformative options for patients afflicted with rare genetic diseases. Rocket's clinical programs using lentiviral vector (LVV)-based gene therapy are for the treatment of Fanconi Anemia (FA), a difficult to treat genetic disease that leads to bone marrow failure and potentially cancer, Leukocyte Adhesion Deficiency-I (LAD-I), a severe pediatric genetic disorder that causes recurrent and life-threatening infections which are frequently fatal, and Pyruvate Kinase Deficiency (PKD), a rare, monogenic red blood cell disorder resulting in increased red cell destruction and mild to life-threatening anemia. Rockets first clinical program using adeno-associated virus (AAV)-based gene therapy is for Danon Disease, a devastating, pediatric heart failure condition. For more information about Rocket, please visit http://www.rocketpharma.com

Rocket Cautionary Statement Regarding Forward-Looking Statements

Various statements in this release concerning Rockets future expectations, plans and prospects, including without limitation, Rockets expectations regarding its guidance for 2022 in light of COVID-19, the safety and effectiveness of product candidates that Rocket is developing to treat Fanconi Anemia (FA), Leukocyte Adhesion Deficiency-I (LAD-I), Pyruvate Kinase Deficiency (PKD), and Danon Disease, the expected timing and data readouts of Rockets ongoing and planned clinical trials, the expected timing and outcome of Rockets regulatory interactions and planned submissions, Rockets plans for the advancement of its Danon Disease program and the safety, effectiveness and timing of related pre-clinical studies and clinical trials, may constitute forward-looking statements for the purposes of the safe harbor provisions under the Private Securities Litigation Reform Act of 1995 and other federal securities laws and are subject to substantial risks, uncertainties and assumptions. You should not place reliance on these forward-looking statements, which often include words such as "believe," "expect," "anticipate," "intend," "plan," "will give," "estimate," "seek," "will," "may," "suggest" or similar terms, variations of such terms or the negative of those terms. Although Rocket believes that the expectations reflected in the forward-looking statements are reasonable, Rocket cannot guarantee such outcomes. Actual results may differ materially from those indicated by these forward-looking statements as a result of various important factors, including, without limitation, Rockets ability to monitor the impact of COVID-19 on its business operations and take steps to ensure the safety of patients, families and employees, the interest from patients and families for participation in each of Rockets ongoing trials, our expectations regarding the delays and impact of COVID-19 on clinical sites, patient enrollment, trial timelines and data readouts, our expectations regarding our drug supply for our ongoing and anticipated trials, actions of regulatory agencies, which may affect the initiation, timing and progress of pre-clinical studies and clinical trials of its product candidates, Rockets dependence on third parties for development, manufacture, marketing, sales and distribution of product candidates, the outcome of litigation, and unexpected expenditures, as well as those risks more fully discussed in the section entitled "Risk Factors" in Rockets Annual Report on Form 10-K for the year ended December 31, 2021, filed February 28, 2022 with the SEC and subsequent filings with the SEC including our Quarterly Reports on Form 10-Q. Accordingly, you should not place undue reliance on these forward-looking statements. All such statements speak only as of the date made, and Rocket undertakes no obligation to update or revise publicly any forward-looking statements, whether as a result of new information, future events or otherwise.

View original post here:
Rocket Pharmaceuticals Announces Presentations Highlighting Lentiviral Gene Therapies at the 29th Annual Congress of the European Society of Gene...

categoriaBone Marrow Stem Cells commentoComments Off on Rocket Pharmaceuticals Announces Presentations Highlighting Lentiviral Gene Therapies at the 29th Annual Congress of the European Society of Gene… dataOctober 13th, 2022
Read all

Cellectis Presents Data on Two TALEN-based Gene Therapy Preclinical Programs for Patients with Sickle Cell Disease and Mucopolysaccharidosis type I at…

By daniellenierenberg

Cellectis Inc.

NEW YORK, Oct. 11, 2022 (GLOBE NEWSWIRE) -- Cellectis (the Company) (Euronext Growth: ALCLS - NASDAQ: CLLS), a clinical-stage biotechnology company using its pioneering gene-editing platform to develop life-saving cell and gene therapies, announced today that the Company will present both an oral and poster at the European Society of Gene and Cell Therapys (ESGCT) 29th Congress, to be held in Edinburgh from October 11-14, 2022.

Arianna Moiani, Ph.D., Senior Scientist & Team Leader Innovation Gene Therapy, will give an oral presentation on encouraging pre-clinical data that leverages TALEN gene editing technology to develop a hematopoietic stem and progenitor cell (HSPCs)-based gene therapy to treat sickle cell disease.

Eduardo Seclen, Ph.D., Senior Scientist & Team Leader, Gene Editing, will present a poster illustrating a TALEN-based gene editing approach that reprograms HSPCs to secrete alpha-L-iduronidase (IDUA), a therapeutic enzyme missing in Mucopolysaccharidosis type I (MPS-I).

The pre-clinical data presented at ESGCT further demonstrate our ability to leverage TALEN gene editing technology to potentially address genetic diseases, namely, sickle cell disease and lysosomal storage diseases. By correcting a faulty mutation or inserting a corrected gene at the HSPC level, we aim to provide a lifelong supply of healthy cells in a single intervention, said Philippe Duchateau, Ph.D., Chief Scientific Officer at Cellectis. These new milestones bring us one step closer to our goal: providing a cure to patients that have failed to respond to standard therapy.

Presentation details

Pre-clinical data presentation on a non-viral DNA delivery associated with TALEN gene editing that leads to highly efficient correction of sickle cell mutation in long-term repopulating hematopoietic stem cells

Sickle cell disease stems from a single point mutation in the HBB gene which results in sickle hemoglobin.

Cellectis leveraged its TALEN technology to develop a gene editing process that leads to highly efficient HBB gene correction via homology directed repair, while mitigating potential risks associated to HBB gene knock-out. Overall, these results show that non-viral DNA delivery associated with TALEN gene editing reduces the toxicity usually observed with viral DNA delivery and allows high levels of HBB gene correction in long-term repopulating hematopoietic stem cells.

Story continues

The oral presentation titled Non-viral DNA delivery associated to TALEN gene editing leads to highly efficient correction of sickle cell mutation in long-term repopulating hematopoietic stem cells, will be made on Thursday, October 13th, 8:30AM-10:45AM BST by Arianna Moiani, Ph.D., Senior Scientist & Team Leader Innovation Gene Therapy. The presentation can be found on the Cellectis website on the day of the presentation.

Presentation details

Pre-clinical data presentation on TALEN-mediated engineering of HSPC that enables systemic delivery of IDUA

Mucopolysaccharidosis type I (MPS-I) is caused by deficiencies in the alpha-L-iduronidase (IDUA) gene and it is associated with severe morbidity representing a significant unmet medical need.

Cellectis established a TALEN-basedex vivogene editing protocol to insert an IDUA-expression cassette into a specific locus of HSPC.

Editing rates in vivo were 6-9% sixteen weeks after injection, depending on the tissue analyzed (blood, spleen, bone marrow). Lastly, 8.3% of human cells were edited in the brain compartment.

Cellectis established a safe TALEN-based gene editing protocol procuring IDUA-edited HSPCs able to engraft, differentiate into multiple lineages and reach multiple tissues, including the brain.

The poster presentation titled TALEN-mediated engineering of HSPC enables systemic delivery of IDUA, will be made on Thursday, October 13th, 5:30PM - 7:15PM BST by Eduardo Seclen, Ph.D., Senior Scientist & Team Leader, Gene Editing, and can be found on Cellectis website.

About Cellectis

Cellectis is a clinical-stage biotechnology company using its pioneering gene-editing platform to develop life-saving cell and gene therapies. Cellectis utilizes an allogeneic approach for CAR-T immunotherapies in oncology, pioneering the concept of off-the-shelf and ready-to-use gene-edited CAR T-cells to treat cancer patients, and a platform to make therapeutic gene editing in hemopoietic stem cells for various diseases. As a clinical-stage biopharmaceutical company with over 22 years of experience and expertise in gene editing, Cellectis is developing life-changing product candidates utilizing TALEN, its gene editing technology, and PulseAgile, its pioneering electroporation system to harness the power of the immune system in order to treat diseases with unmet medical needs. Cellectis headquarters are in Paris, France, with locations in New York, New York and Raleigh, North Carolina. Cellectis is listed on the Nasdaq Global Market (ticker: CLLS) and on Euronext Growth (ticker: ALCLS).

For more information, visit http://www.cellectis.com. Follow Cellectis on social media: @cellectis, LinkedIn and YouTube.

For further information, please contact:

Media contacts:Pascalyne Wilson,Director,Communications,+33 (0)7 76 99 14 33, media@cellectis.comMargaret Gandolfo, Senior Manager, Communications, +1 (646) 628 0300

Investor Relation contact:Arthur Stril, Chief Business Officer, +1 (347) 809 5980, investors@cellectis.comAshley R. Robinson, LifeSci Advisors, +1 617430 7577

Forward-looking StatementsThis press release contains forward-looking statements within the meaning of applicable securities laws, including the Private Securities Litigation Reform Act of 1995. Forward-looking statements may be identified by words such as anticipate, believe, intend, expect, plan, scheduled, could, may and will, or the negative of these and similar expressions. These forward-looking statements, which are based on our managements current expectations and assumptions and on information currently available to management. Forward-looking statements include statements about the potential of our preclinical programs and product candidates. These forward-looking statements are made in light of information currently available to us and are subject to numerous risks and uncertainties, including with respect to the numerous risks associated with biopharmaceutical product candidate development. With respect to our cash runway, our operating plans, including product development plans, may change as a result of various factors, including factors currently unknown to us. Furthermore, many other important factors, including those described in our Annual Report on Form 20-F and the financial report (including the management report) for the year ended December 31, 2021 and subsequent filings Cellectis makes with the Securities Exchange Commission from time to time, as well as other known and unknown risks and uncertainties may adversely affect such forward-looking statements and cause our actual results, performance or achievements to be materially different from those expressed or implied by the forward-looking statements. Except as required by law, we assume no obligation to update these forward-looking statements publicly, or to update the reasons why actual results could differ materially from those anticipated in the forward-looking statements, even if new information becomes available in the future.

Attachment

Read more:
Cellectis Presents Data on Two TALEN-based Gene Therapy Preclinical Programs for Patients with Sickle Cell Disease and Mucopolysaccharidosis type I at...

categoriaBone Marrow Stem Cells commentoComments Off on Cellectis Presents Data on Two TALEN-based Gene Therapy Preclinical Programs for Patients with Sickle Cell Disease and Mucopolysaccharidosis type I at… dataOctober 13th, 2022
Read all

Horizon Therapeutics plc Announces New UPLIZNA (inebilizumab-cdon) Data in Neuromyelitis Optica Spectrum Disorder (NMOSD) to be presented at ECTRIMS…

By daniellenierenberg

DUBLIN--(BUSINESS WIRE)--Horizon Therapeutics plc (Nasdaq: HZNP) today announced that new UPLIZNA analyses will be presented at the 38th Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) 2022, Oct. 26-28. UPLIZNA is the first and only anti-CD19 B-cell-depleting humanized monoclonal antibody approved by the U.S. Food and Drug Administration (FDA) and European Commission (EC) for the treatment of adult patients with anti-aquaporin-4 (AQP4) antibody positive NMOSD.

Presentation Details:

In addition, Horizon will host a symposium Thursday, Oct. 27 from 8:45-9:45 a.m. CEST called Step into the new era of NMOSD, chaired by Hans-Peter Hartung, M.D., Ph.D. and featuring presentations from Jrme de Sze Ph.D., Brian Weinshenker, M.D., and Orhan Aktas, M.D. Topics will include NMOSD diagnosis and care, advantages of CD19 treatments and the clinical relevance of UPLIZNA in NMOSD.

About Neuromyelitis Optica Spectrum Disorder (NMOSD)

NMOSD is a unifying term for neuromyelitis optica (NMO) and related syndromes. NMOSD is a rare, severe, relapsing, neuroinflammatory autoimmune disease that attacks the optic nerve, spinal cord, brain and brain stem.1,2 Approximately 80% of all patients with NMOSD test positive for anti-AQP4 antibodies.3 AQP4-IgG binds primarily to astrocytes in the central nervous system and triggers an escalating immune response that results in lesion formation and astrocyte death.4

Anti-AQP4 autoantibodies are produced by plasmablasts and some plasma cells. These B-cell populations are central to NMOSD disease pathogenesis, and a large proportion of these cells express CD19.5 Depletion of these CD19+ B-cells is thought to remove an important contributor to inflammation, lesion formation and astrocyte damage. Clinically, this damage presents as an NMOSD attack, which can involve the optic nerve, spinal cord and brain.4,6 Loss of vision, paralysis, loss of sensation, bladder and bowel dysfunction, nerve pain and respiratory failure can all be manifestations of the disease.7 Each NMOSD attack can lead to further cumulative damage and disability.8,9 NMOSD occurs more commonly in women and may be more common in individuals of African and Asian descent.10,11

About UPLIZNA

INDICATION

UPLIZNA is indicated for the treatment of neuromyelitis optica spectrum disorder (NMOSD) in adult patients who are anti-aquaporin-4 (AQP4) antibody positive.

IMPORTANT SAFETY INFORMATION

UPLIZNA is contraindicated in patients with:

WARNINGS AND PRECAUTIONS

Infusion Reactions: UPLIZNA can cause infusion reactions, which can include headache, nausea, somnolence, dyspnea, fever, myalgia, rash or other symptoms. Infusion reactions were most common with the first infusion but were also observed during subsequent infusions. Administer pre-medication with a corticosteroid, an antihistamine and an anti-pyretic.

Infections: The most common infections reported by UPLIZNA-treated patients in the randomized and open-label periods included urinary tract infection (20%), nasopharyngitis (13%), upper respiratory tract infection (8%) and influenza (7%). Delay UPLIZNA administration in patients with an active infection until the infection is resolved.

Increased immunosuppressive effects are possible if combining UPLIZNA with another immunosuppressive therapy.

The risk of Hepatitis B Virus (HBV) reactivation has been observed with other B-cell-depleting antibodies. Perform HBV screening in all patients before initiation of treatment with UPLIZNA. Do not administer to patients with active hepatitis.

Although no confirmed cases of Progressive Multifocal Leukoencephalopathy (PML) were identified in UPLIZNA clinical trials, JC virus infection resulting in PML has been observed in patients treated with other B-cell-depleting antibodies and other therapies that affect immune competence. At the first sign or symptom suggestive of PML, withhold UPLIZNA and perform an appropriate diagnostic evaluation.

Patients should be evaluated for tuberculosis risk factors and tested for latent infection prior to initiating UPLIZNA.

Vaccination with live-attenuated or live vaccines is not recommended during treatment and after discontinuation, until B-cell repletion.

Reduction in Immunoglobulins: There may be a progressive and prolonged hypogammaglobulinemia or decline in the levels of total and individual immunoglobulins such as immunoglobulins G and M (IgG and IgM) with continued UPLIZNA treatment. Monitor the level of immunoglobulins at the beginning, during, and after discontinuation of treatment with UPLIZNA until B-cell repletion especially in patients with opportunistic or recurrent infections.

Fetal Risk: May cause fetal harm based on animal data. Advise females of reproductive potential of the potential risk to a fetus and to use an effective method of contraception during treatment and for 6 months after stopping UPLIZNA.

Adverse Reactions: The most common adverse reactions (at least 10% of patients treated with UPLIZNA and greater than placebo) were urinary tract infection and arthralgia.

For additional information on UPLIZNA, please see the Full Prescribing Information at http://www.UPLIZNA.com.

About Horizon

Horizon is a global biotechnology company focused on the discovery, development and commercialization of medicines that address critical needs for people impacted by rare, autoimmune and severe inflammatory diseases. Our pipeline is purposeful: We apply scientific expertise and courage to bring clinically meaningful therapies to patients. We believe science and compassion must work together to transform lives. For more information on how we go to incredible lengths to impact lives, visit http://www.horizontherapeutics.com and follow us on Twitter, LinkedIn, Instagram and Facebook.

References

See more here:
Horizon Therapeutics plc Announces New UPLIZNA (inebilizumab-cdon) Data in Neuromyelitis Optica Spectrum Disorder (NMOSD) to be presented at ECTRIMS...

categoriaSpinal Cord Stem Cells commentoComments Off on Horizon Therapeutics plc Announces New UPLIZNA (inebilizumab-cdon) Data in Neuromyelitis Optica Spectrum Disorder (NMOSD) to be presented at ECTRIMS… dataOctober 13th, 2022
Read all

Merck and Moderna Announce Exercise of Option by Merck for Joint Development and Commercialization of Investigational Personalized Cancer Vaccine -…

By daniellenierenberg

October 12, 2022 7:15 am ET

Companies on track to report data from the ongoing Phase 2 trial of mRNA-4157/V940 in combination with KEYTRUDA as adjuvant therapy in high-risk melanoma in 4Q 2022

CAMBRIDGE, M.A. and RAHWAY, N.J., October 12, 2022 Moderna, Inc. (Nasdaq: MRNA), a biotechnology company pioneering messenger RNA (mRNA) therapeutics and vaccines, and Merck (NYSE:MRK), known as MSD outside of the United States and Canada, today announced that Merck has exercised its option to jointly develop and commercialize personalized cancer vaccine (PCV) mRNA-4157/V940 pursuant to the terms of its existing Collaboration and License Agreement. mRNA-4157/V940 is currently being evaluated in combination with KEYTRUDA, Mercks anti-PD-1 therapy, as adjuvant treatment for patients with high-risk melanoma in a Phase 2 clinical trial being conducted by Moderna.

We have been collaborating with Merck on PCVs since 2016, and together we have made significant progress in advancing mRNA-4157 as an investigational personalized cancer treatment used in combination with KEYTRUDA, said Stephen Hoge, M.D., President of Moderna. With data expected this quarter on PCV, we continue to be excited about the future and the impact mRNA can have as a new treatment paradigm in the management of cancer. Continuing our strategic alliance with Merck is an important milestone as we continue to grow our mRNA platform with promising clinical programs in multiple therapeutic areas.

Under the agreement, originally established in 2016 and amended in 2018, Merck will pay Moderna $250 million to exercise its option for personalized cancer vaccines including mRNA-4157/V940 and will collaborate on development and commercialization. The payment will be expensed by Merck in the third quarter of 2022 and included in its non-GAAP results. Merck and Moderna will share costs and any profits equally under this worldwide collaboration.

This long-term collaboration combining Mercks expertise in immuno-oncology with Modernas pioneering mRNA technology has yielded a novel tailored vaccine approach, said Dr. Eliav Barr, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories. We look forward to working with our colleagues at Moderna to advance mRNA-4157/V940 in combination with KEYTRUDA as it aligns with our strategy to impact early-stage disease.

About mRNA-4157/V940

Personalized cancer vaccines are designed to prime the immune system so that a patient can generate a tailored antitumor response to their tumor mutation signature to treat their cancer. mRNA-4157/V940 is designed to stimulate an immune response by generating T cell responses based on the mutational signature of a patients tumor.

About KEYNOTE-942 (NCT03897881)

KEYNOTE-942 is an ongoing randomized, open-label Phase 2 trial that enrolled 157 patients with high-risk melanoma. Following complete surgical resection, patients were randomized to mRNA-4157/V940 (9 doses every three weeks) and KEYTRUDA (200 mg every three weeks) versus KEYTRUDA alone for approximately one year until disease recurrence or unacceptable toxicity. KEYTRUDA was selected as the comparator in the trial because it is considered a standard of care for high-risk melanoma patients. The primary endpoint is recurrence-free survival, and secondary endpoints include distant metastasis-free survival and overall survival. The Phase 2 trial is fully enrolled and primary data are expected in the fourth quarter of 2022.

About KEYTRUDA (pembrolizumab) Injection 100 mg

KEYTRUDA is an anti-programmed death receptor-1 (PD-1) therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,600 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patients likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications in the U.S.

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of adult and pediatric (12 years and older) patients with stage IIB, IIC, or III melanoma following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is:

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [Combined Positive Score (CPS) 1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic HNSCC with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult patients with relapsed or refractory classical Hodgkin lymphoma (cHL).

KEYTRUDA is indicated for the treatment of pediatric patients with refractory cHL, or cHL that has relapsed after 2 or more lines of therapy.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC):

Non-muscle Invasive Bladder Cancer

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High or Mismatch Repair Deficient Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options.

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC) as determined by an FDA-approved test.

Gastric Cancer

KEYTRUDA, in combination with trastuzumab, fluoropyrimidine- and platinum-containing chemotherapy, is indicated for the first-line treatment of patients with locally advanced unresectable or metastatic HER2-positive gastric or gastroesophageal junction (GEJ) adenocarcinoma.

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval of this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic esophageal or gastroesophageal junction (GEJ) (tumors with epicenter 1 to 5 centimeters above the GEJ) carcinoma that is not amenable to surgical resection or definitive chemoradiation either:

Cervical Cancer

KEYTRUDA, in combination with chemotherapy, with or without bevacizumab, is indicated for the treatment of patients with persistent, recurrent, or metastatic cervical cancer whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of adult patients with advanced renal cell carcinoma (RCC).

KEYTRUDA, in combination with lenvatinib, is indicated for the first-line treatment of adult patients with advanced RCC.

KEYTRUDA is indicated for the adjuvant treatment of patients with RCC at intermediate-high or high risk of recurrence following nephrectomy, or following nephrectomy and resection of metastatic lesions.

Endometrial Carcinoma

KEYTRUDA, in combination with lenvatinib, is indicated for the treatment of patients with advanced endometrial carcinoma that is not MSI-H or dMMR, who have disease progression following prior systemic therapy in any setting and are not candidates for curative surgery or radiation.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR, as determined by an FDA-approved test, who have disease progression following prior systemic therapy in any setting and are not candidates for curative surgery or radiation.

Tumor Mutational Burden-High Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [10 mutations/megabase] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

Cutaneous Squamous Cell Carcinoma

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) or locally advanced cSCC that is not curable by surgery or radiation.

Triple-Negative Breast Cancer

KEYTRUDA is indicated for the treatment of patients with high-risk early-stage triple-negative breast cancer (TNBC) in combination with chemotherapy as neoadjuvant treatment, and then continued as a single agent as adjuvant treatment after surgery.

KEYTRUDA, in combination with chemotherapy, is indicated for the treatment of patients with locally recurrent unresectable or metastatic TNBC whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test.

Selected Important Safety Information for KEYTRUDA

Severe and Fatal Immune-Mediated Adverse Reactions

KEYTRUDA is a monoclonal antibody that belongs to a class of drugs that bind to either the PD-1 or the PD-L1, blocking the PD-1/PD-L1 pathway, thereby removing inhibition of the immune response, potentially breaking peripheral tolerance and inducing immune-mediated adverse reactions. Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue, can affect more than one body system simultaneously, and can occur at any time after starting treatment or after discontinuation of treatment. Important immune-mediated adverse reactions listed here may not include all possible severe and fatal immune-mediated adverse reactions.

Monitor patients closely for symptoms and signs that may be clinical manifestations of underlying immune-mediated adverse reactions. Early identification and management are essential to ensure safe use of antiPD-1/PD-L1 treatments. Evaluate liver enzymes, creatinine, and thyroid function at baseline and periodically during treatment. For patients with TNBC treated with KEYTRUDA in the neoadjuvant setting, monitor blood cortisol at baseline, prior to surgery, and as clinically indicated. In cases of suspected immune-mediated adverse reactions, initiate appropriate workup to exclude alternative etiologies, including infection. Institute medical management promptly, including specialty consultation as appropriate.

Withhold or permanently discontinue KEYTRUDA depending on severity of the immune-mediated adverse reaction. In general, if KEYTRUDA requires interruption or discontinuation, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Consider administration of other systemic immunosuppressants in patients whose adverse reactions are not controlled with corticosteroid therapy.

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis. The incidence is higher in patients who have received prior thoracic radiation. Immune-mediated pneumonitis occurred in 3.4% (94/2799) of patients receiving KEYTRUDA, including fatal (0.1%), Grade 4 (0.3%), Grade 3 (0.9%), and Grade 2 (1.3%) reactions. Systemic corticosteroids were required in 67% (63/94) of patients. Pneumonitis led to permanent discontinuation of KEYTRUDA in 1.3% (36) and withholding in 0.9% (26) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Pneumonitis resolved in 59% of the 94 patients.

Pneumonitis occurred in 8% (31/389) of adult patients with cHL receiving KEYTRUDA as a single agent, including Grades 3-4 in 2.3% of patients. Patients received high-dose corticosteroids for a median duration of 10 days (range: 2 days to 53 months). Pneumonitis rates were similar in patients with and without prior thoracic radiation. Pneumonitis led to discontinuation of KEYTRUDA in 5.4% (21) of patients. Of the patients who developed pneumonitis, 42% interrupted KEYTRUDA, 68% discontinued KEYTRUDA, and 77% had resolution.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis, which may present with diarrhea. Cytomegalovirus infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. Immune-mediated colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (1.1%), and Grade 2 (0.4%) reactions. Systemic corticosteroids were required in 69% (33/48); additional immunosuppressant therapy was required in 4.2% of patients. Colitis led to permanent discontinuation of KEYTRUDA in 0.5% (15) and withholding in 0.5% (13) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Colitis resolved in 85% of the 48 patients.

Hepatotoxicity and Immune-Mediated Hepatitis

KEYTRUDA as a Single Agent

KEYTRUDA can cause immune-mediated hepatitis. Immune-mediated hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.4%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 68% (13/19) of patients; additional immunosuppressant therapy was required in 11% of patients. Hepatitis led to permanent discontinuation of KEYTRUDA in 0.2% (6) and withholding in 0.3% (9) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Hepatitis resolved in 79% of the 19 patients.

KEYTRUDA With Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider monitoring more frequently as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased alanine aminotransferase (ALT) (20%) and increased aspartate aminotransferase (AST) (13%) were seen at a higher frequency compared to KEYTRUDA alone. Fifty-nine percent of the patients with increased ALT received systemic corticosteroids. In patients with ALT 3 times upper limit of normal (ULN) (Grades 2-4, n=116), ALT resolved to Grades 0-1 in 94%. Among the 92 patients who were rechallenged with either KEYTRUDA (n=3) or axitinib (n=34) administered as a single agent or with both (n=55), recurrence of ALT 3 times ULN was observed in 1 patient receiving KEYTRUDA, 16 patients receiving axitinib, and 24 patients receiving both. All patients with a recurrence of ALT 3 ULN subsequently recovered from the event.

Immune-Mediated Endocrinopathies

Adrenal Insufficiency

KEYTRUDA can cause primary or secondary adrenal insufficiency. For Grade 2 or higher, initiate symptomatic treatment, including hormone replacement as clinically indicated. Withhold KEYTRUDA depending on severity. Adrenal insufficiency occurred in 0.8% (22/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.3%) reactions. Systemic corticosteroids were required in 77% (17/22) of patients; of these, the majority remained on systemic corticosteroids. Adrenal insufficiency led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.3% (8) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Hypophysitis

KEYTRUDA can cause immune-mediated hypophysitis. Hypophysitis can present with acute symptoms associated with mass effect such as headache, photophobia, or visual field defects. Hypophysitis can cause hypopituitarism. Initiate hormone replacement as indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Hypophysitis occurred in 0.6% (17/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.2%) reactions. Systemic corticosteroids were required in 94% (16/17) of patients; of these, the majority remained on systemic corticosteroids. Hypophysitis led to permanent discontinuation of KEYTRUDA in 0.1% (4) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Thyroid Disorders

KEYTRUDA can cause immune-mediated thyroid disorders. Thyroiditis can present with or without endocrinopathy. Hypothyroidism can follow hyperthyroidism. Initiate hormone replacement for hypothyroidism or institute medical management of hyperthyroidism as clinically indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Thyroiditis occurred in 0.6% (16/2799) of patients receiving KEYTRUDA, including Grade 2 (0.3%). None discontinued, but KEYTRUDA was withheld in <0.1% (1) of patients.

Hyperthyroidism occurred in 3.4% (96/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (0.8%). It led to permanent discontinuation of KEYTRUDA in <0.1% (2) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. Hypothyroidism occurred in 8% (237/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (6.2%). It led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.5% (14) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. The majority of patients with hypothyroidism required long-term thyroid hormone replacement. The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC, occurring in 16% of patients receiving KEYTRUDA as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. The incidence of new or worsening hypothyroidism was higher in 389 adult patients with cHL (17%) receiving KEYTRUDA as a single agent, including Grade 1 (6.2%) and Grade 2 (10.8%) hypothyroidism.

Type 1 Diabetes Mellitus (DM), Which Can Present With Diabetic Ketoacidosis

Monitor patients for hyperglycemia or other signs and symptoms of diabetes. Initiate treatment with insulin as clinically indicated. Withhold KEYTRUDA depending on severity. Type 1 DM occurred in 0.2% (6/2799) of patients receiving KEYTRUDA. It led to permanent discontinuation in <0.1% (1) and withholding of KEYTRUDA in <0.1% (1) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Immune-Mediated Nephritis With Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Immune-mediated nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.1%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 89% (8/9) of patients. Nephritis led to permanent discontinuation of KEYTRUDA in 0.1% (3) and withholding in 0.1% (3) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Nephritis resolved in 56% of the 9 patients.

Immune-Mediated Dermatologic Adverse Reactions

KEYTRUDA can cause immune-mediated rash or dermatitis. Exfoliative dermatitis, including Stevens-Johnson syndrome, drug rash with eosinophilia and systemic symptoms, and toxic epidermal necrolysis, has occurred with antiPD-1/PD-L1 treatments. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate nonexfoliative rashes. Withhold or permanently discontinue KEYTRUDA depending on severity. Immune-mediated dermatologic adverse reactions occurred in 1.4% (38/2799) of patients receiving KEYTRUDA, including Grade 3 (1%) and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 40% (15/38) of patients. These reactions led to permanent discontinuation in 0.1% (2) and withholding of KEYTRUDA in 0.6% (16) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 6% had recurrence. The reactions resolved in 79% of the 38 patients.

Other Immune-Mediated Adverse Reactions

The following clinically significant immune-mediated adverse reactions occurred at an incidence of <1% (unless otherwise noted) in patients who received KEYTRUDA or were reported with the use of other antiPD-1/PD-L1 treatments. Severe or fatal cases have been reported for some of these adverse reactions. Cardiac/Vascular: Myocarditis, pericarditis, vasculitis;Nervous System: Meningitis, encephalitis, myelitis and demyelination, myasthenic syndrome/myasthenia gravis (including exacerbation), Guillain-Barr syndrome, nerve paresis, autoimmune neuropathy;Ocular: Uveitis, iritis and other ocular inflammatory toxicities can occur. Some cases can be associated with retinal detachment. Various grades of visual impairment, including blindness, can occur. If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada-like syndrome, as this may require treatment with systemic steroids to reduce the risk of permanent vision loss;Gastrointestinal: Pancreatitis, to include increases in serum amylase and lipase levels, gastritis, duodenitis;Musculoskeletal and Connective Tissue: Myositis/polymyositis, rhabdomyolysis (and associated sequelae, including renal failure), arthritis (1.5%), polymyalgia rheumatica;Endocrine: Hypoparathyroidism;Hematologic/Immune: Hemolytic anemia, aplastic anemia, hemophagocytic lymphohistiocytosis, systemic inflammatory response syndrome, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), sarcoidosis, immune thrombocytopenic purpura, solid organ transplant rejection.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% of 2799 patients receiving KEYTRUDA. Monitor for signs and symptoms of infusion-related reactions. Interrupt or slow the rate of infusion for Grade 1 or Grade 2 reactions. For Grade 3 or Grade 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

The rest is here:
Merck and Moderna Announce Exercise of Option by Merck for Joint Development and Commercialization of Investigational Personalized Cancer Vaccine -...

categoriaCardiac Stem Cells commentoComments Off on Merck and Moderna Announce Exercise of Option by Merck for Joint Development and Commercialization of Investigational Personalized Cancer Vaccine -… dataOctober 13th, 2022
Read all

iPS-Cell Based Cell Therapies for Genetic Skin Disease

By daniellenierenberg

AMSBIO has published an interview with Professor Marius Wernig from Stanford University, Pathology Stem Cell Institute that discusses what could be the worlds first widely applicable curative treatment for Epidermolysis Bullosa (EB).

This rare genetic disease causes chronic and incredibly painful skin wounds that often lead to an aggressive form of skin cancer and eventual death.

While various cell-therapy approaches have been attempted, Professor Wernig and collaborators identified the need for induced pluripotent stem cells (iPSCs), and how they could become used to treat EB in a more efficient, applicable, and commercially viable manner.

In the past, the only way Professor Wernigs research group could grow iPSCs cells with a normal karyotype over longer periods of time was on mouse feeder cells with serum. This combination of mouse cell co-culture and undefined bovine serum set was not a suitable methodology as it was almost impossible to perform in compliance with FDA safety standards.

Professor Wernig describes how StemFit Basic03 clinical grade stem cell culture medium, available from AMSBIO has allowed his research group to safely expand their cells using an FDA compliant protocol. While there are still hurdles to climb before a cure for EB is fully realised, using StemFit Basic03 has solved the challenge of reproducibly growing clinical grade iPSCs.

Read the full interview.

Completely free of animal- and human-derived components StemFit Basic03 provides highly stable and reproducible culture condition for Induced Pluripotent Stem and Embryonic Stem cells under feeder-free conditions during the reprogramming, expansion, and differentiation phases of stem cell culture. StemFit Basic03 combines high colony forming efficiency with lower than standard media volume consumption to offer cost effective colony expansion when compared to leading competitors.

More information online

View original post here:
iPS-Cell Based Cell Therapies for Genetic Skin Disease

categoriaIPS Cell Therapy commentoComments Off on iPS-Cell Based Cell Therapies for Genetic Skin Disease dataOctober 5th, 2022
Read all

MeiraGTx Announces the Upcoming Presentation of 15 Abstracts at the European Society of Gene and Cell Therapy (ESGCT) 2022 Annual Congress – Yahoo…

By daniellenierenberg

MeiraGTx

Multiple Poster Presentations Highlight Versatility and Novelty of MeiraGTxs Technology Platforms for Gene and Cell Therapy

LONDONandNEW YORK, Oct. 04, 2022 (GLOBE NEWSWIRE) -- MeiraGTx Holdings plc(Nasdaq: MGTX), a vertically integrated, clinical stage gene therapy company, today announced the Company will exhibit 15 poster presentations at the European Society of Gene and Cell Therapy (ESGCT) 2022 Annual Congress, which will be held from October 11-14, 2022, in Edinburgh, Scotland.

The posters will include data from MeiraGTxs novel gene regulation platform, including the first data demonstrating the potential to regulate CAR-T, as well as data from the Companys promoter platforms and several new, optimized pre-clinical programs addressing severe unmet needs for indications such as amyotrophic lateral sclerosis (ALS) and Wilsons disease. In addition, the Company will have presentations on its proprietary viral vector manufacturing technology and potency assay development.

Were pleased to present data illustrating the depth and versatility of MeiraGTxs scientific platforms, said Alexandria Forbes, Ph.D., president and chief executive officer of MeiraGTx. The 15 published abstracts at this years ESGCT Congress reflect the extraordinary productivity of our research efforts in developing new technologies and applying them to the design of optimized genetic medicines, as well as innovation in manufacturing and process development technology. I am particularly excited for us to present our riboswitch gene regulation technology applied to cell therapy for the first time, in this case the regulation of CAR-Ts, which is a huge area of scientific and clinical interest, continued Dr. Forbes. We look forward to presenting these data highlighting our innovative platform technologies and broad R&D capabilities.

Abstract Title (P101): AI-driven promoter optimization at MeiraGTxSession Title: Advances in viral and non-viral vector designDate: October 12, 2022

Story continues

Abstract Title (P124): Promoter Engineering Platform at MeiraGTxSession Title: Advances in viral and non-viral vector designDate: October 13, 2022

Abstract Title (P243): UPF1 delivered by novel expression-enhanced promoters protects cultured neurons in a genetic ALS modelSession Title: CNS and sensoryDate: October 12, 2022

Abstract Title (P254): Optimization and scale-up of AAV2-AQP1 production using a novel transient transfection agentSession Title: Developments in manufacturing and scale upDate: October 13, 2022

Abstract Title (P264): Designing and screening formulations to improve manufacturability and distribution of AAV gene therapiesSession Title: Developments in manufacturing and scale upDate: October 13, 2022

Abstract Title (P270): Use of anion exchange chromatography to provide high empty AAV capsid removal and product yieldsSession Title: Developments in manufacturing and scale upDate: October 13, 2022

Abstract Title (P320): Multivariate analysis for increased understanding of MeiraGTx upstream processSession Title: Developments in manufacturing and scale upDate: October 13, 2022

Abstract Title (P362): Development of AAV-UPF1 gene therapy to rescue ALS pathophysiology using microfluidic platformsSession Title: Disease models (iPS derived and organoids)Date: October 13, 2022

Abstract Title (P399): Titratable and reversible control of CAR-T cell receptor and activity by riboswitch via oral small moleculeSession Title: Engineered T and NK CARs and beyondDate: October 12, 2022

Abstract Title (P436): Novel riboswitches regulate AAV-delivered transgene expression in mammals via oral small molecule inducersSession Title: Gene and epigenetic editingDate: October 13, 2022

Abstract Title (P553): Development of optimized ATP7B gene therapy vectors for the treatment of Wilsons Disease with increased potencySession Title: Metabolic diseasesDate: October 12, 2022

Abstract Title (P554): A CNS-targeted gene therapy for the treatment of obesitySession Title: Metabolic diseasesDate: October 13, 2022

Abstract Title (561): Riboswitch-controlled delivery of therapeutic hormones for gene therapySession Title: Metabolic diseasesDate: October 12, 2022

Abstract Title (P622): Riboswitch-controlled delivery of therapeutic antibodies for gene therapySession Title: OtherDate: October 13, 2022

Abstract Title (P630): Improving AAV in vitro transducibility for cell-based potency assay developmentSession Title: OtherDate: October 13, 2022

About MeiraGTxMeiraGTx (Nasdaq: MGTX) is a vertically integrated, clinical stage gene therapy company with six programs in clinical development and a broad pipeline of preclinical and research programs. MeiraGTx has core capabilities in viral vector design and optimization and gene therapy manufacturing, and a transformative gene regulation platform technology which allows tight, dose responsive control of gene expression by oral small molecules with dynamic range that can exceed 5000-fold. Led by an experienced management team, MeiraGTx has taken a portfolio approach by licensing, acquiring, and developing technologies that give depth across both product candidates and indications. MeiraGTxs initial focus is on three distinct areas of unmet medical need: ocular, including inherited retinal diseases and large degenerative ocular diseases, neurodegenerative diseases, and severe forms of xerostomia. Though initially focusing on the eye, central nervous system, and salivary gland, MeiraGTx plans to expand its focus to develop additional gene therapy treatments for patients suffering from a range of serious diseases.

For more information, please visit http://www.meiragtx.com.

Forward Looking StatementThis press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. All statements contained in this press release that do not relate to matters of historical fact should be considered forward-looking statements, including, without limitation, statements regarding our product candidate development and our pre-clinical data and reporting of such data and the timing of results of data, including in light of the COVID-19 pandemic, as well as statements that include the words expect, will, intend, plan, believe, project, forecast, estimate, may, could, should, would, continue, anticipate and similar statements of a future or forward-looking nature. These forward-looking statements are based on managements current expectations. These statements are neither promises nor guarantees, but involve known and unknown risks, uncertainties and other important factors that may cause actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements, including, but not limited to, our incurrence of significant losses; any inability to achieve or maintain profitability, raise additional capital, repay our debt obligations, identify additional and develop existing product candidates, successfully execute strategic priorities, bring product candidates to market, expansion of our manufacturing facilities and processes, successfully enroll patients in and complete clinical trials, accurately predict growth assumptions, recognize benefits of any orphan drug designations, retain key personnel or attract qualified employees, or incur expected levels of operating expenses; the impact of the COVID-19 pandemic on the status, enrollment, timing and results of our clinical trials and on our business, results of operations and financial condition; failure of early data to predict eventual outcomes; failure to obtain FDA or other regulatory approval for product candidates within expected time frames or at all; the novel nature and impact of negative public opinion of gene therapy; failure to comply with ongoing regulatory obligations; contamination or shortage of raw materials or other manufacturing issues; changes in healthcare laws; risks associated with our international operations; significant competition in the pharmaceutical and biotechnology industries; dependence on third parties; risks related to intellectual property; changes in tax policy or treatment; our ability to utilize our loss and tax credit carryforwards; litigation risks; and the other important factors discussed under the caption Risk Factors in our Quarterly Report on Form 10-Q for the quarter ended June 30, 2022, as such factors may be updated from time to time in our other filings with the SEC, which are accessible on the SECs website at http://www.sec.gov. These and other important factors could cause actual results to differ materially from those indicated by the forward-looking statements made in this press release. Any such forward-looking statements represent managements estimates as of the date of this press release. While we may elect to update such forward-looking statements at some point in the future, unless required by law, we disclaim any obligation to do so, even if subsequent events cause our views to change. Thus, one should not assume that our silence over time means that actual events are bearing out as expressed or implied in such forward-looking statements. These forward-looking statements should not be relied upon as representing our views as of any date subsequent to the date of this press release.

Contacts

Investors:MeiraGTxInvestors@meiragtx.com

Media:Jason Braco, Ph.D.LifeSci Communicationsjbraco@lifescicomms.com

Read the rest here:
MeiraGTx Announces the Upcoming Presentation of 15 Abstracts at the European Society of Gene and Cell Therapy (ESGCT) 2022 Annual Congress - Yahoo...

categoriaIPS Cell Therapy commentoComments Off on MeiraGTx Announces the Upcoming Presentation of 15 Abstracts at the European Society of Gene and Cell Therapy (ESGCT) 2022 Annual Congress – Yahoo… dataOctober 5th, 2022
Read all

Mesenchymal stem cells market is projected to grow at a CAGR of 13.82% by 2032: Visiongain Research Inc – GlobeNewswire

By daniellenierenberg

Visiongain has published a new report entitled Mesenchymal Stem Cells Market 2022-2032. It includes profiles of Mesenchymal Stem Cells Market and Forecasts Market Segment by Type {Product (Cell & Cell Lines, Kits Media & Reagents, Others), Services}, Market segment by Source (Bone Marrow, Adipose Tissue, Cord Blood, fallopian Tube, Fetal Liver, Lung, Peripheral Blood, Other Sources), Market Segment by Indication (Bone & Cartilage Repair, cardiovascular Disease, Cancer, GvHD, Inflammatory & Immunological Diseases, Liver Diseases, Other Diseases), Market Segment by Application (Disease Modelling, Drug Discovery & Development, Stem Cell Banking, Tissue Engineering, Toxicology Studies, Other Applications) plus COVID-19 Impact Analysis and Recovery Pattern Analysis (V-shaped, W-shaped, U-shaped, L-shaped), Profiles of Leading Companies, Region and Country.

The mesenchymal stem cells market was valued at US$2.44 billion in 2021 and is projected to grow at a CAGR of 13.82% during the forecast period 2022-2032.

Rising Awareness About Therapeutic Potential of Mesenchymal Stem CellsThe mesenchymal stem cell (MSC) market has a huge potential for expansion as it's the most prevalent stem cell type used in regenerative medicine. MSCs are now the most commonly used stem cell type in clinical trials and the most researched stem cell type in the scientific literature. MSC-based therapies are also gaining popularity due to the rapidly aging population and rising prevalence of chronic diseases. Mesenchymal Stem cells play a significant role in effective management of disease and research initiatives in specialized areas such as genomic testing and personalized medicine. As a result of rising awareness of the therapeutic potential of stem cells and the scarcity of effective therapeutic treatments for rare diseases there is rise in investment leading to the growth of the market, however significant operational cost associated with the mesenchymal stem cell expansion and banking is anticipated to hinder the market growth.

Download Exclusive Sample of Report @

Mesenchymal Stem Cells Market Report 2022-2032

How has COVID-19 had a Significant Negative Impact on the Mesenchymal Stem Cells Market?

The biotechnology industry has experienced evolutionary changes with regards to the operational management. Typical biopharmaceutical companies manufacturing products for mesenchymal stem cell development had a better response to staff disruptions and challenges evolving due to COVID-19.

There was an impact on the research & development activities and clinical trials as there were interruptions in the new patient enrolment for the active clinical trial. However, the business focused on inventing new therapies for the treatment of COVID-19 disease. In the past years, MSCs have established itself to be an effective technique to treat pulmonary disease, including COVID-19. MSC derived stem cell therapies have showed the potential for the treatment of the Covid 19 disease. Therefore, an increase in the number of clinical trials using MSCs has been observed. Countries such as the US, the UK, Belgium, France, Spain and Mexico are conducting clinical trials with mesenchymal stem cells to be used in the treatment of COVID-19.

How will this Report Benefit you?

Visiongains 281-page report provides 117 tables and 184 charts/graphs. Our new study is suitable for anyone requiring commercial, in-depth analyses for the mesenchymal stem cells market, along with detailed segment analysis in the market. Our new study will help you evaluate the overall global and regional market for Mesenchymal Stem Cells Market. Get financial analysis of the overall market and different segments including type, Source, Indication, Application, and company size and capture higher market share. We believe that there are strong opportunities in this fast-growing mesenchymal stem cells market. See how to use the existing and upcoming opportunities in this market to gain revenue benefits in the near future. Moreover, the report will help you to improve your strategic decision-making, allowing you to frame growth strategies, reinforce the analysis of other market players, and maximise the productivity of the company.

What are the Current Market Drivers?

MSCs in the Development of Engineered Tissues and OrganshMSCs are considered as one of the prominent bio fabrication materials for decades as they are proved safe and effective in treating various injuries and diseases such as bone or cartilage regeneration, stroke & cancer. Bioprinting is a rapidly expanding tissue engineering area with a lot of promise for product customization and addressing the global tissue and organ scarcity, with a global market of $1.82 billion USD predicted by 2022. hMSCs have also been found to be capable of being guided toward hepatocyte differentiation thus indicating huge demand for hMSCs as tissue engineering of organ develops. The requirement for hMSC in engineered tissue and organ applications is, of course, reliant on cell generation, differentiation, and maturation technologies for the parenchymal cells required for organ function and thus it is expected that the increased availability of hMSC sources as a result of manufacturing technology advancements will pave the way for quick improvement and growth of the mesenchymal stem cells market.

Rise in Focus Towards Regenerative Medicine TherapiesMSCs are a good cell source for tissue regeneration because of the following characteristics. MSCs can be sourced from various tissue, including umbilical cord, fetal liver, bone marrow, and synovium. MSCs have the ability to develop into practically any end-stage lineage cell, allowing them to seed specific scaffolds. MSCs are potential immune tolerant agents as they have characteristics such as anti-inflammatory, immunoregulatory & immunosuppressive. Several clinical papers back up MSC-based cell therapy's potential efficacy; while its efficacy is still restricted, the results are encouraging.

MSCs have been investigated and used extensively in regenerative medicine. MSCs have moved closer to therapeutic applications for disease therapy and tissue repair in recent years due to improvements in extraction, culture, and differentiation procedures , therefore future research into better biomaterials and effective inducing factors will help MSCs advance in their regenerative medicine applications.

Get Detailed TOC @

Mesenchymal Stem Cells Market Report 2022-2032

Where are the Market Opportunities?

MSC Therapy to Treat Multiple SclerosisThe therapeutic application of MSCs in treating Multiple Sclerosis has proved to provide huge potential by improving clinical symptoms, thereby stabilizing the disease progression. MSCs have properties such as immunomodulator, tissue-protector and repair promotion has proved MSCs to be an attractive therapy option in the treatment of Multiple Sclerosis as well as in other conditions such as inflammation and tissue injury.

MSCs when administered, combat the inflammation in body and regulate the immune system which will further prevent myelin degradation. Clinical trials demonstrating the application of MSCs in Multiple Sclerosis patients have shown increased energy levels, improved flexibility, strength, and mobility. It has also been observed that if MSCs are administered intravenously may have the ability to halt diseases progression for an extended time duration.

MSCs offer intrinsic benefits over hematopoietic stem cells, that MSCs can differentiate into a cell types, release immunoregulatory molecules and promote release of exosome and growth factors

Competitive LandscapeThe major players operating in the mesenchymal stem cells market are Thermo Fischer Scientific Inc., Merck KGaA (Millipore Sigma), STEMCELL Technologoes Inc., Cytori Therapeutics Inc. (Plus Therapeutics Inc.), Cyagen Biosciences, PromoCell GmbH, Celprogen Inc. Stemedica Cell Technologies Inc., Cell Application Inc., Lonza, Celltex Therapeutics Corporation. These major players operating in this market have adopted various strategies comprising M&A, investment in R&D, collaborations, partnerships, regional business expansion, and new product launches.

Recent Developments

Avoid missing out by staying informed order our report now.

To find more Visiongain research reports on the Pharma sector, click on the following links:

Do you have any custom requirements we can help you with?Any need for a specific country, geo region, market segment or specific company information? Contact us today, we can discuss your needs and see how we can help:dev.visavadia@visiongain.com

About Visiongain

Visiongain is one of the fastest-growing and most innovative independent market intelligence providers around, the company publishes hundreds of market research reports which it adds to its extensive portfolio each year. These reports offer in-depth analysis across 18 industries worldwide. The reports, which cover 10-year forecasts, are hundreds of pages long, with in-depth market analysis and valuable competitive intelligence data. Visiongain works across a range of vertical markets with a lot of synergies. These markets include automotive, aviation, chemicals, cyber, defence, energy, food & drink, materials, packaging, pharmaceutical and utilities sectors. Our customised and syndicatedmarket research reportsoffer a bespoke piece of market intelligence customised to your very own business needs.

Contact:Dev VisavadiaPR at Visiongain Reports LimitedTel: + 44 0207 336 6100Email: dev.visavadia@visiongain.com

Read the original here:
Mesenchymal stem cells market is projected to grow at a CAGR of 13.82% by 2032: Visiongain Research Inc - GlobeNewswire

categoriaBone Marrow Stem Cells commentoComments Off on Mesenchymal stem cells market is projected to grow at a CAGR of 13.82% by 2032: Visiongain Research Inc – GlobeNewswire dataSeptember 27th, 2022
Read all

Jasper Therapeutics Announces Positive Clinical Data from Investigator Sponsored Study of JSP191 Conditioning in Fanconi Anemia Patients at IEWP…

By daniellenierenberg

REDWOOD CITY, Calif., Sept. 26, 2022 (GLOBE NEWSWIRE) -- Jasper Therapeutics, Inc. (NASDAQ: JSPR), a biotechnology company focused on hematopoietic cell transplant therapies, today announced that data from the companys investigator-sponsored study of JSP191 as a conditioning agent in the treatment of Fanconi Anemia were presented at the annual conference of the Inborn Errors Working Party (IEWP), a research group of the European Society of Blood and Marrow Transplantation, held on September 23-25, 2022, in Paris, France.

The study is a Phase 1/2 clinical trial (NCT04784052) utilizing JSP191 to treat Fanconi Anemia patients in bone marrow failure requiring allogeneic transplant with non-sibling donors. The objective of the study is to develop cell therapy for Fanconi Anemia which enables enhanced donor hematopoietic and immune reconstitution with decreased toxicity by transplanting TCR ab+ T-cell/CD19+ B-cell depleted stem cells from a donor, after using JSP191 as a part of conditioning. Primary outcome measures include the number of patients without treatment-emergent adverse events following the administration of JSP191.

In the data series presented, 100% complete donor chimerism was achieved through six months for the first patient and at one month for the second patient. Neutrophil engraftment was reached on day 11 for both patients and platelet engraftment was achieved on days 9 and 14. JSP191 was cleared by day 9 after dosing and no treatment-related adverse events or toxicities were observed.

Patients affected by Fanconi anemia have increased sensitivity to conventional conditioning regimens and radiation due to innate defects in DNA repair, said Ronald Martell, President, and CEO of Jasper Therapeutics. JSP191 offers a targeted conditioning strategy that eliminates the need for radiation or alkylating agents like busulfan. Initial data from this study suggest that a conditioning regimen that includes JSP191 has the potential to achieve successful donor transplant with no JSP191-related adverse events or toxicities reported to date. The positive update presented gives us increased confidence in JSP191, which has now shown promise as a conditioning agent in four indications including acute myeloid leukemia, myelodysplastic syndromes, severe combined immunodeficiency, and Fanconi anemia. We look forward to continuing support for Stanfords investigation of JSP191 and advancing our broader pipeline for JSP191 to the next phase of development.

The details of the oral presentation are as follows:

Title: JSP 191 clinical trial updateSession Name: Conditioning for HSCT in IEIPresenter: Rajni Agarwal-Hashmi, M.D., Professor of Pediatrics and Stem Cell Transplantation, the Stanford University School of MedicineDate/Time: Saturday, September 24, 2022, 2 pm CESTLocation: The Imagine Institute in Paris, France

About Fanconi AnemiaFanconi Anemia (FA) is a rare but serious blood disorder that prevents the bone marrow from making sufficient new red blood cells. The disorder can also cause the bone marrow to make abnormal blood cells. FA typically presents at birth or early in childhood between five and ten years of age. Ultimately it can lead to serious complications, including bone marrow failure and severe aplastic anemia. Cancers such as AML and MDS are other possible complications. Treatment may include blood transfusions or medicine to create more red blood cells, but a hematopoietic stem cell transplant (HSCT) is the only cure.

About JSP191

JSP191 is a humanized monoclonal antibody in clinical development as a conditioning agent that blocks stem cell factor receptor signaling leading to clearance of hematopoietic stem cells from bone marrow, creating an empty space for donor or genetically modified transplanted stem cells to engraft. To date, JSP191 has been evaluated in more than 100 healthy volunteers and patients. Four clinical trials for acute myeloid leukemia (AML)/ myelodysplastic syndromes (MDS), severe combined immunodeficiency (SCID), sickle cell disease (SCD) and Fanconi anemia are currently ongoing. The Company plans a new study of JSP191 as a second-line therapeutic in lower-risk MDS patients in 2022 as well as to a pivotal study in AML/MDS transplant in early 2023. Enrollment in additional studies are planned in patients with chronic granulomatous disease and GATA2 MDS who are undergoing hematopoietic cell transplantation as well as a study of JSP191 as a chronic therapeutic for low to intermediate risk MDS patients.

About Jasper Therapeutics

Jasper Therapeutics is a biotechnology company focused on the development of novel curative therapies based on the biology of the hematopoietic stem cell. The company is advancing two potentially groundbreaking programs. JSP191, an anti-CD117 monoclonal antibody, is in clinical development as a conditioning agent that clears hematopoietic stem cells from bone marrow in patients undergoing hematopoietic cell transplantation. It is designed to enable safer and more effective curative allogeneic hematopoietic cell transplants and gene therapies. In parallel, Jasper Therapeutics is advancing its preclinical mRNA Stem Cell Graft Platform which is designed to overcome key limitations of allogeneic and autologous gene-edited stem cell grafts. Both innovative programs have the potential to transform the field and expand hematopoietic stem cell therapy cures to a greater number of patients with life-threatening cancers, genetic diseases, and autoimmune diseases than is possible today. For more information, please visit us at jaspertherapeutics.com.

Forward-Looking Statements

Certain statements included in this press release that are not historical facts are forward-looking statements for purposes of the safe harbor provisions under the United States Private Securities Litigation Reform Act of 1995. Forward-looking statements are sometimes accompanied by words such as believe, may, will, estimate, continue, anticipate, intend, expect, should, would, plan, predict, potential, seem, seek, future, outlook and similar expressions that predict or indicate future events or trends or that are not statements of historical matters. These forward-looking statements include, but are not limited to, statements regarding the potential long-term benefits of hematopoietic stem cells (HSC) engraftment following targeted single-agent JSP191 conditioning in the treatment of severe combined immunodeficiency (SCID) and Jaspers ability to potentially deliver a targeted non-genotoxic conditioning agent to patients with SCID. These statements are based on various assumptions, whether or not identified in this press release, and on the current expectations of Jasper and are not predictions of actual performance. These forward-looking statements are provided for illustrative purposes only and are not intended to serve as, and must not be relied on by an investor as, a guarantee, an assurance, a prediction or a definitive statement of fact or probability. Actual events and circumstances are difficult or impossible to predict and will differ from assumptions. Many actual events and circumstances are beyond the control of Jasper. These forward-looking statements are subject to a number of risks and uncertainties, including general economic, political and business conditions; the risk that the potential product candidates that Jasper develops may not progress through clinical development or receive required regulatory approvals within expected timelines or at all; risks relating to uncertainty regarding the regulatory pathway for Jaspers product candidates; the risk that clinical trials may not confirm any safety, potency or other product characteristics described or assumed in this press release; the risk that Jasper will be unable to successfully market or gain market acceptance of its product candidates; the risk that Jaspers product candidates may not be beneficial to patients or successfully commercialized; patients willingness to try new therapies and the willingness of physicians to prescribe these therapies; the effects of competition on Jaspers business; the risk that third parties on which Jasper depends for laboratory, clinical development, manufacturing and other critical services will fail to perform satisfactorily; the risk that Jaspers business, operations, clinical development plans and timelines, and supply chain could be adversely affected by the effects of health epidemics, including the ongoing COVID-19 pandemic; the risk that Jasper will be unable to obtain and maintain sufficient intellectual property protection for its investigational products or will infringe the intellectual property protection of others; and other risks and uncertainties indicated from time to time in Jaspers filings with the SEC. If any of these risks materialize or Jaspers assumptions prove incorrect, actual results could differ materially from the results implied by these forward-looking statements. While Jasper may elect to update these forward-looking statements at some point in the future, Jasper specifically disclaims any obligation to do so. These forward-looking statements should not be relied upon as representing Jaspers assessments of any date subsequent to the date of this press release. Accordingly, undue reliance should not be placed upon the forward-looking statements.

Contacts:John Mullaly (investors)LifeSci Advisors617-429-3548jmullaly@lifesciadvisors.com

Jeet Mahal (investors)Jasper Therapeutics650-549-1403jmahal@jaspertherapeutics.com

Excerpt from:
Jasper Therapeutics Announces Positive Clinical Data from Investigator Sponsored Study of JSP191 Conditioning in Fanconi Anemia Patients at IEWP...

categoriaBone Marrow Stem Cells commentoComments Off on Jasper Therapeutics Announces Positive Clinical Data from Investigator Sponsored Study of JSP191 Conditioning in Fanconi Anemia Patients at IEWP… dataSeptember 27th, 2022
Read all

Creative Medical Technology Announces Peer Reviewed Publication of Positive Results for StemSpine Study – Yahoo Finance

By daniellenierenberg

--Two-Year Follow-Up Results Confirm Significant Efficacy and No Serious Adverse Effects in Patients who Underwent the StemSpine Procedure for Treating Chronic Lower Back Pain --

PHOENIX, Sept. 26, 2022 /PRNewswire/ -- Creative Medical Technology Holdings, Inc. ("Creative Medical Technology" or the "Company") (NASDAQ: CELZ), a leading biotechnology company focused on a regenerative approach to immunotherapy, endocrinology, urology, neurology, and orthopedics, today announced the peer reviewed publication of positive, two-year follow-up data for the Company's StemSpine study, showing significant efficacy of the StemSpine procedure for treating chronic lower back pain without any serious adverse effects reported.

Creative Medical Technology Holdings, Inc. Logo (PRNewsfoto/Creative Medical Technology Hol)

The StemSpine publication demonstrates the clinical use of the patented procedure that utilizes a patient's own bone marrow aspirate for the treatment of chronic lower back pain. There were no safety related concerns at up to two years follow-up. The StemSpine procedure resulted in an efficacy rate of 87% in the treated patients in terms of decreased pain and increased mobility.

"The positive two-year data from our StemSpine study is very encouraging and may help alleviate the current opioid crisis related to prescription medication abuse for chronic lower back pain," said Timothy Warbington, President and CEO of the Company. "To our knowledge, this is the first demonstration of the clinical efficacy of injecting bone marrow aspirate into areas surrounding the disc, which may repair, remodel and improve the blood supply around the disc and lower back area. We believe StemSpine represents an attractive non-surgical option for many of the millions of Americans who suffer from chronic lower back pain and look forward to further translation."

The StemSpine patent also covers the use of off the shelf adult donor stem cells (allogeneic) for this indication.

The publication may be found at http://www.creativemedicaltechnology.com.

Story continues

About Creative Medical Technology Holdings

Creative Medical Technology Holdings, Inc. is a biotechnology company specializing in regenerative medicine in the fields of immunotherapy, endocrinology, urology, neurology, and orthopedics. For further information about the Company, please visit http://www.creativemedicaltechnology.com.

Forward Looking Statements

This news release may contain forward-looking statements including but not limited to comments regarding the timing and content of upcoming clinical trials and laboratory results, marketing efforts, funding, etc. Forward-looking statements address future events and conditions and, therefore, involve inherent risks and uncertainties. Actual results may differ materially from those currently anticipated in such statements. See the periodic and other reports filed by Creative Medical Technology Holdings, Inc. with the Securities and Exchange Commission and available on the Commission's website at http://www.sec.gov.

Cision

View original content to download multimedia:https://www.prnewswire.com/news-releases/creative-medical-technology-announces-peer-reviewed-publication-of-positive-results-for-stemspine-study-301632695.html

SOURCE Creative Medical Technology Holdings, Inc.

Read the rest here:
Creative Medical Technology Announces Peer Reviewed Publication of Positive Results for StemSpine Study - Yahoo Finance

categoriaBone Marrow Stem Cells commentoComments Off on Creative Medical Technology Announces Peer Reviewed Publication of Positive Results for StemSpine Study – Yahoo Finance dataSeptember 27th, 2022
Read all

Stem Cells Market Size Expected to Reach USD 19.31 Billion by 2028: Increasing Number of Clinical Trials Across the Globe – Digital Journal

By daniellenierenberg

The global stem cell market size is expected to reach USD 19.13 Billion in 2028 at a CAGR of 8.4% during the forecast period, according to the latest report by Reports and Data.

The globalstem cell marketsize is expected to reach USD 19.13 Billion in 2028 at a CAGR of 8.4% during the forecast period, according to the latest report by Reports and Data. Growing adoption of stem cell therapies to treat chronic and rare diseases, rising number of clinical trials for regenerative medicine globally, and rapid progress in stem cell research are key factors expected to drive market revenue growth over the forecast period. In addition, increasing investment by major pharmaceutical and biotechnology companies, advancements in regenerative medicine, and development of advanced gene editing and tissue engineering techniques are also expected to contribute to revenue growth of the market going ahead.

Stem cells are unspecialized cells that have the ability to develop into different types of cells such as liver cells, muscle cells, and brain cells, among others. Stem cells have remarkable ability of self-renewal in undifferentiated state and can differentiate into various cell types with specific functions under appropriate triggers. Stem cells have played a major role in regenerative medicine, with increasing focus on stem cells of human origin such as adult stem cells, somatic stem cells, and embryonic stem cells. These cells can be used to regenerate human cells, organs, and tissues and have the capability to restore normal function after disease or debilitating injury. During embryonic development, stem cells can form cells of all three germ layers mesoderm, endoderm, and ectoderm. They play a crucial role in repair system of body and normal turnover of regenerative organs such as skin and blood, and this has boosted their importance in medical therapies for the treatment of various degenerative illnesses.

Get a sample of the report @https://www.reportsanddata.com/sample-enquiry-form/2981

Increasing investment to accelerate stem cell research, rapid adoption of stem cell therapies for the treatment of chronic and neurodegenerative disorders, and the increasing number of clinical trials across the globe are some key factors expected to drive market growth Our Expert Review

Recent advancements in stem cell biology and research have enhanced the application scope of stem cell therapy in treating diseases wherein currently available medical therapies have failed to cure, prevent progression, or alleviate symptoms. This is also a key factor expected to contribute to revenue growth of the market over the forecast period. However, ethical issues and political controversies, concerns related to immunity, and stringent regulatory policies associated with stem cell research are some key factors expected to restrain market growth to a certain extent over the forecast period.

Some Key Highlights from the Report:

Asia Pacific is expected to lead the market growth over the coming years owing to rapid advancements in the healthcare sector in APAC countries such as India, China, and Japan. North America is anticipated to register the highest market growth over the forecast period attributed to the increasing availability of robust healthcare and clinical settings, legalization of medical marijuana, favorable reimbursement scenario, presence of key market players, and rapid technological advancements in the region.

The growing popularity of over-the-counter medications driving market growth

Growing incidence of acute and chronic diseases and lesser access to advanced medical facilities owing to low disposable income levels are driving the demand for over-the-counter medications. Availability of generic and low-cost alternatives to medical therapies are some other factors playing a major role in driving demand for over-the-counter medications.

Restriction on product launches and R&D activities to hamper the market growth

The imposition of strict government regulations and shortage of funds has put a halt on product launches and R&D activities and is expected to restrain market growth over the forecast period. In addition, the launch of expensive drugs and therapies and increasing regulations regarding safety and approvals are also hampering the market growth.

Competitive Landscape:

The global market comprises various market players operating at regional and global levels. These key players are adopting various strategies such as R&D investments, license agreements, partnerships, mergers and acquisitions, collaborations, and joint ventures to gain a robust footing in the market.

Top Companies Profiled in the Report:

Celgene Corporation, Virgin Health Bank, ReNeuron Group plc, Biovault Family, Mesoblast Ltd, Precious Cells International Ltd, Caladrius, Opexa Therapeutics, Inc., Neuralstem, Inc., and Pluristem.

Stem Cells Market Segmentation:

Product Outlook (Revenue, USD Billion; 2018-2028)

Technology Outlook (Revenue, USD Billion; 2018-2028)

Therapy Outlook (Revenue, USD Billion; 2018-2028)

Application Outlook (Revenue, USD Billion; 2018-2028)

Regional Outlook:

Frequently asked questions addressed in the report:

Thank you for reading our report. For more details please connect with us and our team will ensure the report is customized to meet all the needs of clients. The report also offers a comprehensive regional analysis and specific countries can be included in the report according to the requirements.

Explore Latest Trending Research Reports By Reports and Data:

3D Printing in Healthcare Market, By Technology Type (Material Extrusion, Photopolymerization, Powder Bed Fusion, Material Jetting, Binder Jetting, Sheet Lamination, Directed Energy Deposition), By Application, By End User (Hospitals and Clinics, Pharmaceutical Companies, Research Institutes), and By Region Forecast to 2028

Ambulatory Surgery Center (ASC) MarketAnalysis By Type (Hospital-Based Ambulatory Surgery Centers, Free-Standing Ambulatory Surgery Centers, Others) By Specialty, By Treatment, And By Region Forecasts To 2028

Bioresorbable Coronary Stents MarketBy Product Type (Polymeric, Metallic), By Brand, By Application (Coronary artery disease, Peripheral artery disease), By Absorption Rate, By End User (Hospitals, Surgical Centres, Others) And Region, Forecast 2020 To 2028

About Reports and Data

Reports and Data is a market research and consulting company that provides syndicated research reports, customized research reports, and consulting services. Our solutions purely focus on your purpose to locate, target, and analyze consumer behavior shifts across demographics, across industries, and help clients to make smarter business decisions. We offer market intelligence studies ensuring relevant and fact-based research across multiple industries, including Healthcare, Touch Points, Chemicals, Products, and Energy. We consistently update our research offerings to ensure our clients are aware of the latest trends existent in the market. Reports and Data has a strong base of experienced analysts from varied areas of expertise. Our industry experience and ability to develop a concrete solution to any research problems provides our clients with the ability to secure an edge over their respective competitors.

Media ContactCompany Name: Reports and DataContact Person: John WatsonEmail: Send EmailPhone: +1-212-710-1370Address:40 Wall St. 28th floor City: New York CityState: NY 10005Country: United StatesWebsite: https://www.reportsanddata.com/report-detail/stem-cells-market

View post:
Stem Cells Market Size Expected to Reach USD 19.31 Billion by 2028: Increasing Number of Clinical Trials Across the Globe - Digital Journal

categoriaIPS Cell Therapy commentoComments Off on Stem Cells Market Size Expected to Reach USD 19.31 Billion by 2028: Increasing Number of Clinical Trials Across the Globe – Digital Journal dataSeptember 27th, 2022
Read all

Israeli Biotech Firm Plans to Create Human Embryos to Harvest Organs, Field Experts Say There are Ethical Concerns – CBN.com

By daniellenierenberg

An Israeli biotech company that recently created mouse embryos using stem cells, hasannounced plans to make human embryos to harvest tissue for organ transplants and anti-aging procedures. But an ethical scientist and stem cell expert with the Charlotte Lozier Institute told CBN News that these strides in stem cell research are a "real call for concern".

Renewal Bio is pursuing advances in stem-cell technology and artificial womb development with the help of Jacob Hanna, a biologist at the Weizmann Institute of Science in Rehovot.

In a peer-reviewed scientific journal, Cell, Hanna explained that without the use of sperm, egg, or fertilization, stem cells placed in a Petri dish spontaneously joined together, outside of the womb, and assembled embryos with beating hearts, intestinal tracts, and brains.

"Remarkably, we show that embryonic stem cells generate whole synthetic embryos, meaning this includes the placenta and yolk sac surrounding the embryo," Hanna said. "We are truly excited about this work and its implications."

Hanna noted that the synthetic embryos were not "real" embryos and did not have the potential to develop into live animals. But that is partly because they don't have the technology, right now, to do so. He did admit that the synthetic mouse embryos are "95% similar to normal mouse embryos."

"My contention would be the technique to create them may be synthetic, but if you have something growing [that has]a beating heart and a nervous system and limbs and digits and other organs that look exactly like the organism you would take out of the womb, its an embryo," Dr. David Prentice, Ph.D. from the Charlotte Lozier Institute told CBN News.

Prentice is the vice president and research director at the Charlotte Lozier Institute and was a founding advisory board member for the Midwest Stem Cell Therapy Center, a unique comprehensive stem cell center in Kansas that he was instrumental in creating.

He told CBN News that using the term synthetic to describe the embryos is misleading.

"It's being disingenuous to make us think that these are not actual organisms," Prentice explained.

"They're coming up with new and different ways to make an embryo is the bottom line," he noted. "And by calling it synthetic, you might say we are lulled into a false sense of security that 'oh there not experimenting on embryos [and]we don't have any problems with them doing this with mice.' But as they've said in their papers they also want to do this with humans."

And Prentice is right about why the firm wants to advance its research.

Hanna admits to taking his "ground-breaking" technology to the next level and creating human embryos. The purpose is to harvest tissue to be used in transplant treatments meant to lengthen a person's life and health.

He's behind Renewal Bio, a startup to make "humanity younger and healthier".

"The vision of the company is 'can we use these organized embryo entities that have early organs to get cells that can be used for transplantation?' We view it as perhaps a universal starting point," Hanna said.

CBN News reached out to Renewal Bio for comment and CEO Omri Amirav-Drory, Ph.D. said they were "not really ready to speak too much about the company."

Hanna told MIT Technology Review they plan to grow human embryos that are the equivalent of a 40 to 50-day-old pregnancy or about two months old. It is an age Hanna considers to be "the best entity to make organs and proper tissue."

Those embryonic blood cells would then be collected, multiplied, and transferred to an individual to help with "infertility, genetic diseases, and longevity", according to the company's website.

"There's a real call for concern here that whether they are making these the old fashion way with an egg and a sperm or they're making it by mixing stem cells together," Lozier explained. "You're still talking about instrumental use of a human being to harvest their spare parts."

Other field experts contend that Hanna's experiments are a step too far and not necessary.

"It's absolutely not necessary, so why would you do it?" Nicolas Rivron, a stem-cell scientist at the Institute of Molecular Biotechnology in Vienna said. He argues that scientists should only create "the minimal embryonic structure necessary" to yield cells of interest.

Prentice pointed out to CBN News that there are more ethical ways to get the same kind of cells.

"Something may be constructed or manufactured ethically and have an ethical source...and you could feel very good about your research because you haven't crossed an ethical line until somebody says 'well let's use it this way'," he explained.

In his next set of experiments, Hanna plans to use his own blood or skin cells and those of his team as the starting point for human embryos.

"It does raise a problem for the stem cell field in general and maybe scientists need to ask that question 'should I do this experiment?' rather than 'can I do this experiment?'," Prentice said.

***Please sign up forCBN Newslettersand download theCBN News appto ensure you keep receiving the latest news from a distinctly Christian perspective.***

Continue reading here:
Israeli Biotech Firm Plans to Create Human Embryos to Harvest Organs, Field Experts Say There are Ethical Concerns - CBN.com

categoriaSkin Stem Cells commentoComments Off on Israeli Biotech Firm Plans to Create Human Embryos to Harvest Organs, Field Experts Say There are Ethical Concerns – CBN.com dataSeptember 19th, 2022
Read all

Induced Pluripotent Stem Cells Market Reaches at a CAGR of 8.0% in the Forecast Periods [2021-2031] – BioSpace

By daniellenierenberg

The induced pluripotent stem cells production market has been estimated to reach a CAGR of 8.0% in the foreseeable years from 2021to 2031.

The revenue generation opportunities in the induced pluripotent stem cells production market are attributed to an increased number of R & D activities by numerous organizations and companies to explore iPSCs potential in cell therapeutics that are targeted to treat various diseases.

Induced pluripotent stem cells come with various advantages compared to ESCs (Embryonic Stem Cells), for instance, maximum flexibility in research applications that are based on cells and avoiding the ethical implication associated to stem cells. These advantages of the industry services are likely to contribute to expansion opportunities in the induced pluripotent stem cell production market in the following years.

Increasing uses of iPSCs and robust pipelines for the cell therapeutics that are derived from iPSC have also been projected to serve as revenue generators in the induced pluripotent stem cells production market in the coming years.

In recent years, regenerative medicines are gaining popularity across the globe. In addition to this, iPSCs have been used at an increased rate to regenerate tissue-specific cells to transplant to patients who are experiencing various injuries. The researchers have also been taking an interest to use iPSCs for ex-vivo expansion of different blood components. These factors are likely to contribute to growth opportunities in the induced pluripotent stem cells production market.

Global Induced Pluripotent Stem Cells Market: Overview

Induced pluripotent stem cells (iPSCs) hold profound potential in replacing the use of embryonic stem cells (ESCs) as important tool for drug discovery and development, disease modeling, and transplantation medicine. Advent of new approaches in reprogramming of somatic cells to produce iPSCs have considerably advanced stem cell research, and hence the induced pluripotent stem cells market. The iPSC technology has shown potential for disease modeling and gene therapy in various areas of regenerative medicine. Notable candidates are Parkinsons disease, spinal cord trauma, myocardial infarction, diabetes, leukemia, and heart ailments.

Over the past few years, researchers have come out with several clinically important changes in reprogramming process; a case in point is silencing retroviruses in the human genome. Molecular mechanisms that underlie reprogramming have gained better understanding. However, the tools based on this growing understanding are still in nascent stage. Several factors affect the efficiency of reprogramming, most notably chromosomal instability and tumor expression. These have hindered researchers to utilize the full therapeutic potential of iPSCs, reflecting an unmet need, and hence, a vast potential in the induced pluripotent stemcellsmarket.

GET BROCHURE OF THE REPORT

Global Induced Pluripotent Stem Cells Market: Growth Dynamics

The growing application of induced pluripotent stem cells in generating patient-specific stem cells for drug development and human disease models is a key dynamic shaping their demands. Growing focus on personalized regenerative cell therapies among medical researchers and healthcare proponents in various countries have catalyzed their scope of induced pluripotent stem cells market. Advent of new methods to induce safe reprogramming of cells have helped biotechnology companies improve the clinical safety and efficacy of the prevailing stem cells therapies. The relentless pursuit of alternative source of cell types for regenerative therapies has led industry players and the research fraternity to pin hopes on iPSCs to generate potentially a wide range of human cell types with therapeutic potential.

Advances pertaining to better utilizing of retrovirus and lentivirus as reprogramming transcription factors in recent years have expanded the avenue for players in the induced pluripotent stem cells market. Increasing focus on decreasing the clinical difference between ESCs and iPSCs in all its entirety has shaped current research in iPSC technologies, thus unlocking new, exciting potential for biotechnology and pharmaceutical industries.

GET TABLE OF CONTENT OF THE REPORT

Global Induced Pluripotent Stem Cells Market: Notable Development

Over the past few years, fast emerging markets in the global induced pluripotent stem cells are seeing the advent of patents that unveil new techniques for reprogramming of adult cells to reach embryonic stage. Particularly, the idea that these pluripotent stem cells can be made to form any cells in the body has galvanized companies to test their potential in human cell lines. Also, a few biotech companies have intensified their research efforts to improve the safety of and reduce the risk of genetic aberrations in their approved human cell lines. Recently, this has seen the form of collaborative efforts among them.

Lineage Cell Therapeutics and AgeX Therapeutics have in December 2019 announced that they have applied for a patent for a new method for generating iPSCs. These are based on NIH-approved human cell lines, and have been undergoing clinical-stage programs in the treatment of dry macular degeneration and spinal cord injuries. The companies claim to include multiple techniques for reprogramming of animal somatic cells.

Such initiatives by biotech companies are expected to impart a solid push to the evolution of the induced pluripotent stem cells.

Global Induced Pluripotent Stem Cells Market: Regional Assessment

North America is one of the regions attracting colossal research funding and industry investments in induced pluripotent stem cells technologies. Continuous efforts of players to generate immune-matched supply of pluripotent cells to be used in disease modelling has been a key accelerator for growth. Meanwhile, Asia Pacific has also been showing a promising potential in the expansion of the prospects of the market. The rising number of programs for expanding stem cell-based therapy is opening new avenues in the market.

GET DISCOUNT ON THE LATEST REPORT

TMR Research has rich experience in developing state-of-the-art reports for a wide array of markets and sectors. The brilliance of the experts at TMR Research and their alacrity to conduct thorough research and create phenomenal reports makes TMR Research better than others.

5-Point Growth Formula

The 5-point growth formula developed by TMR Research provides an insight to the stakeholders and CXOs about the current situation in the market. The growth formula makes the report a perfect companion for the stakeholders and CXOs.

The 5-point growth formula includes the following points:

Current and Future Threats

Along with studying the opportunities necessary for growth, threats are also an important aspect to look upon for the companies and stakeholders in a specific sector. TMR Research studies every negative aspect that will hinder the growth of a specific area of business and includes it in the report. The stakeholders and CXOs will have the benefit of assessing the threat and take the necessary steps to prevent the hindrance caused due to the threats.

Accurate Trend Analysis

Keeping up with the latest trends is crucial in any business or sector. While stakeholders are aware of the trends that are on the surface, TMR Researchers find trends that are deeply entrenched in the particular market or sector. The reports are constantly updated with the latest trends so that the stakeholders and CXOs can derive benefits from the trends and generate good revenues.

Regional Assessment

Demography forms an important part of the growth pattern of all the markets. Diving deep into the demographics enables maximum output from specific areas. The TMR Research team assesses every region and picks out the vital points that have a large impact on the growth of a market.

Industrial Analogy

The analysts at TMR Research conduct an all-round analysis on the competitive landscape of the market. The observations recorded by the analysts are added to the reports so that every stakeholder gets a glimpse of the competitive scenario and frame their business plans according to the situation.

COVID-19 Impact

The COVID-19 outbreak has changed the growth projections of numerous sectors and businesses. The analysts at TMR Research have conducted a conscientious survey on the markets after the pandemic struck. The analysts have put forth their brilliant and well-researched opinions in the report. The opinions will help the stakeholders to plan their strategy accordingly.

The reports offer answers to the top 7 questions that revolve around the growth of the market

About TMR Research

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Contact:

Rohit Bhisey

TMR Research,

3739 Balboa St # 1097,

San Francisco, CA 94121

United States

Tel: +1-415-520-1050

Visit Site: https://www.tmrresearch.com/

Read the original here:
Induced Pluripotent Stem Cells Market Reaches at a CAGR of 8.0% in the Forecast Periods [2021-2031] - BioSpace

categoriaSpinal Cord Stem Cells commentoComments Off on Induced Pluripotent Stem Cells Market Reaches at a CAGR of 8.0% in the Forecast Periods [2021-2031] – BioSpace dataSeptember 19th, 2022
Read all

NexImmune to Present at the H.C. Wainwright 24th Annual Global Investment Conference

By Dr. Matthew Watson

GAITHERSBURG, Md., Sept. 09, 2022 (GLOBE NEWSWIRE) -- NexImmune, Inc. (Nasdaq: NEXI), a clinical-stage biotechnology company developing a novel approach to immunotherapy designed to orchestrate a targeted immune response by directing the function of antigen-specific T cells, today announced that Kristi Jones, Chief Executive Officer, will present at the H.C. Wainwright 24th Annual Global Investment Conference on Monday, September 12 at 11:00 am ET.

See more here:
NexImmune to Present at the H.C. Wainwright 24th Annual Global Investment Conference

categoriaGlobal News Feed commentoComments Off on NexImmune to Present at the H.C. Wainwright 24th Annual Global Investment Conference dataSeptember 11th, 2022
Read all

Rejuvenation Roundup August 2022 – Lifespan.io News

By daniellenierenberg

EARD2022 is over, but the research and events continue. Heres a summary of everything thats happened in August.

We are hiring! We are currently looking for a full-time chief of staff, a full-time data-driven Senior Marketing Manager, a part-time Youtube sponsorship/partnership acquisition lead, a social media intern, a part-time grant writer, and volunteers to support various programs. If you are interested in learning more about any of these positions, please contact us with your resume and salary expectations.

Announcing the Longevity Prize: The Longevity Prize is a series of prizes designed to honor the researchers who are helping to build a future in which age-related diseases are a thing of the past. This new initiative aims to accelerate progress in the rejuvenation biotechnology field and encourage innovation.

Stephanie Dainow to Present at the 9th ARDD Conference: On August 22, 2022, Lifespan.io Executive Director Stephanie Dainow participated in the Decentralized Science and Blockchain session as a part of the Emerging Tech Workshop at the worlds largest annual Aging Research and Drug Discovery conference (9th ARDD).

Longevity Camp: The Longevity Summer Camp is a four-day retreat featuring people from many longevity-related walks of life. Recently, somewhere between the former gold mining town of Nevada City and the infamous Donner Pass, a unique gathering took place.

Cells Return from Death: Cells, dead for an hour under warm conditions, have been revived. Questions about when life begins have been hot topics for awhile, but there is also debate about when life ends.

Rapamycin and Metformin: Rapamycin and metformin, two well-studied drugs in aging research, can be combined for synergistic effects in mice. Rapamycin and metformin are viewed by many as the two most promising anti-aging drugs, but now scientists have found that these drugs can work hand in hand.

Steve Horvath on the Present and Future of Epigenetic Clocks: Dr. Steve Horvath is the inventor of the epigenetic clock and, currently, principal investigator at Altos Labs. We talked about the recent developments in this immensely important field, including pan-mammalian clocks, two-species clocks, and single-cell clocks, along with the challenges the field faces.

Prof. Albert-Lszl Barabsi on Network Medicine: Albert-Lszl Barabsi is the Robert Gray Dodge Professor of Network Science at Northeastern University, and he also holds an appointment in the Department of Medicine at Harvard Medical School. We talked about a revolutionary network medicine approach that can greatly enhance our ability to understand biological processes and seek cures for disease.

Martin ODea Talks About the Longevity Summit: We recently had the opportunity to speak to Martin ODea about a new longevity-focused event happening in Irelands capital city on September 18th-20th. Martin holds an MBS and is a business lecturer at Dublin Business School in Dublin, Ireland. He is also the author of Beyond the Subjectivity Trap.

Dr. Aubrey de Grey Will Speak at the Longevity Summit Dublin: We recently caught up with Dr. Aubrey de Grey and talked to him about the upcoming Dublin Longevity Summit and how things are looking on the advocacy landscape.

Old Plasma Dilution Reduces Human Biological Age: The Journal Club has returned to our Facebook page with your host, Dr. Oliver Medvedik. This month, we have investigated a paper, Old plasma dilution reduces human biological age: a clinical study, in which Irina Conboy and her team investigated the effects of therapeutic plasma exchange on aging in people.

Vitamin D Fails to Improve Bone Health in Mega-Study: A high-quality, randomized, controlled trial found no effect of vitamin D supplementation or blood levels on the incidence of fractures in an aging population.

Hesperetin Upregulates Metabolism and Longevity in Mice: Researchers publishing in Journal of Biomedical Science have concluded that hesperetin, a compound found in various herbs, improves longevity in mice by promoting the expression of the pro-longevity gene Cisd2.

Caloric Restriction Improves Immune System Function: A new study published in Mechanisms of Aging and Development has shown that caloric restriction effectively restores T cell abundance in aged mice. Caloric restriction has become a well-known anti-aging intervention, as it can reverse several hallmarks of aging and extend lifespan in different animal models.

Ghrelin Is Associated with Worse Muscle Aging in Mice: A team of researchers publishing through Multidisciplinary Digital Publishing Institute has described an association between ghrelin and skeletal muscle aging in mice. Ghrelin is a peptide containing 28 amino acids. Its main function is to stimulate the appetite through receptors in the hypothalamus.

Sauna Combined with Exercise Improves Cardiovascular Health: In a randomized, controlled trial, scientists have shown that sauna and exercise, when taken together, might have a synergistic, beneficial effect on cardiovascular health and cholesterol levels. Sauna bathing has been credited with many health benefits, predominantly for the cardiovascular system.

Developing Nanobodies to Fight Parkinsons Disease: A team of researchers publishing in Nature Communications has described nanobodies that can destroy the -synuclein aggregates that characterize Lewy bodies, which are associated with dementia and Parkinsons disease. Traditional antibody therapies, while promising in some studies, are too large to enter cells in order to affect the aggregates there.

Scientists Move the Boundaries of Post-Mortem Recovery: Researchers have been able to achieve substantial recovery of cellular and organismal activity in pigs that had been dead for a full hour. Advances in resuscitation have already moved the boundaries of life and death, making it possible to revive a person several minutes after the heart stops beating.

An In-Depth Review of Skin Aging Genes: In a new systematic review published in Scientific Reports, multiple genes driving skin aging were identified. The authors start by explaining the intrinsic (genetic and chronological) and extrinsic (environmental) factors that drive skin aging.

Hypertension Is Associated with Brain Drainage Changes: Researchers publishing in Aging have found that enlarged perivascular spaces in the brain are correlated with vascular disorders. These spaces, which are part of the brains glymphatic system, allow for the drainage of potentially dangerous metabolites such as beta amyloid.

Rapamycin-Loaded Microneedles Reverse Hair Loss in Mice: Scientists have successfully regrown hair in a mouse model of hair loss using custom-made plastic microneedles loaded with rapamycin and epigallocatechin gallate (EGCG), an active ingredient in green tea.

Identifying Mitonuclear Genes for Longevity: Publishing in GeroScience, a team of researchers that included Nir Barzilai and Matt Kaeberlein examined genes that may affect both mitochondria and lifespan.

Dietary Restrictions Do Not Help Cognitive Function in Mice: A new study published in Neurobiology of Aging has shown that neither caloric restriction nor intermittent fasting improve late-life cognition in genetically diverse mice, but the effect depends on genetic composition.

Combining Senolytic Pathways Has Synergistic Effects: A team of researchers have explained in Aging how multiple compounds that target the BCL-2 protein family are considerably more effective against senescent cells than each compound by itself.

New Synthetic Molecule Alleviates Alzheimers in Mice: Scientists have synthesized a molecule that alleviates Alzheimers in a mouse model by targeting inflammation. Two of the most prominent and probably interconnected symptoms of Alzheimers disease are the accumulation of amyloid beta (A) and chronic neuroinflammation.

The Relationship Between Stroke and Inflammation: Publishing in Aging, a team of Chinese researchers has provided evidence showing a relationship between systemic inflammation and prognosis after a stroke. As the researchers point out, strokes are the leading cause of death in China.

Almost Half of Cancer Deaths Worldwide are Preventable: Researchers have shown that 44.4% of cancer deaths worldwide can be attributed to preventable risk factors, including behavioral and environmental ones. It is well known that many cancer cases occur due to behavioral and environmental and factors such as smoking and pollution, which makes them theoretically preventable.

Rapamycin and Metformin Show Synergy in Mice: Scientists have found that rapamycin and metformin work hand in hand in diabetes-prone mice, boosting each others effectiveness and blocking side effects. Both have been in use for various indications for decades and have decent safety profiles.

Plasma Dilution Appears to Rejuvenate Humans: Published in GeroScience, a groundbreaking study from the renowned Conboy lab has confirmed that plasma dilution leads to systemic rejuvenation against multiple proteomic aspects of aging in human beings. This paper takes the view that much of aging is driven by systemic molecular excess of signaling molecules, antibodies, and toxins.

Mitochondrial Drug Alleviates Atherosclerosis in Mice: Scientists have drastically improved various symptoms of atherosclerosis in mice by precisely targeting mitochondria with a plant-derived antioxidant. Atherosclerosis, the accumulation of plaques on arterial walls, is one of the deadliest age-related diseases.

Intravenous Stem Cells Alleviate Guinea Pig Osteoarthritis: Scientists have shown that intravenous delivery of mesenchymal stem cells, which has some advantages over the more conventional intra-articular injection, alleviates age-related osteoarthritis and decreases inflammation in guinea pigs. Osteoarthritis, a degenerative joint disease, is one of the most common causes of disability in old age.

Glycans as Biomarkers of Aging: In a new review published in Clinica Chimica Acta, researchers from the University of Zagreb discuss immunoglobulin G glycans, the changes that their composition undergoes with aging, and their potential as biomarkers of aging. One of the reviews co-authors is Prof. Gordan Lauc, who gave a presentation on them at EARD2022.

A wearable electrochemical biosensor for the monitoring of metabolites and nutrients: The monitoring of metabolites for the early identification of abnormal health conditions could facilitate applications in precision nutrition.

Epigenome-wide association study analysis of calorie restriction in humans, CALERIE TM Trial analysis: DNA methylation changes may contribute to caloric restrictions effects on aging.

Association of Leisure Time Physical Activity Types and Risks of All-Cause, Cardiovascular, and Cancer Mortality Among Older Adults: There were significant associations between participating in 7.5 to less than 15 MET hours per week of any activity and mortality risk.

Ginkgo biloba extract EGb 761 plus acetylcholinesterase inhibitors improved cognitive function in patients with mild cognitive impairment: These findings suggest that combined therapy with EGb 761 plus AChEI may provide added cognitive and functional benefits in patients with MCI.

Suppression of trimethylamine N-oxide with DMB mitigates vascular dysfunction, exercise intolerance, and frailty associated with a Western-style diet in mice: These therapies may be promising for mitigating the adverse effects of a Western diet on physiological function and thereby reducing the risk of chronic diseases.

Canagliflozin retards age-related lesions in heart, kidney, liver, and adrenal gland in genetically heterogenous male mice: Canagliflozin can be considered a drug that acts to slow aging and should be evaluated for potential protective effects against many other late-life conditions.

Fecal microbiota transplantation can improve cognition in patients with cognitive decline and Clostridioides difficile infection: This study revealed important interactions between the gut microbiome and cognitive function. Moreover, it suggested that FMT may effectively delay cognitive decline in patients with dementia.

Mitochondrial dynamics maintain muscle stem cell regenerative competence throughout adult life by regulating metabolism and mitophagy: As mitochondrial fission occurs less frequently in the satellite cells in older humans, these findings have implications for regeneration therapies in sarcopenia.

Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation: These findings demonstrate that the plasticity of the aging brain can be selectively and sustainably exploited using repetitive and highly focalized neuromodulation

Supplementing Glycine and N-Acetylcysteine (GlyNAC) in Older Adults Improves Aging Hallmarks: By combining the benefits of glycine, NAC and GSH, GlyNAC is an effective nutritional supplement that improves and reverses multiple age-associated abnormalities to promote health in aging humans.

VitaDAO Funds ApoptoSENS Project for $253,000: Preventing the dysfunction of natural killer cells may be a promising area to explore in the fight against cellular senescence. Researchers are hoping to define the correlation between the increase in senescent cells and the onset or worsening of disease in humans.

VitaDAO Backs Research into Chronic Oral Disease: Periodontal disease affects more than 47% of adults aged 30 and over. For people over 65 years of age, that number rises to over 70%, making periodontitis one of the most commonly observed age-related illnesses. Jonathan Ans lab seeks to research inflammation-targeting compounds that can help treat periodontal disease.

Researchers Propose Five New Hallmarks of Aging: Publishing in Aging five months after their panel discussion in Copenhagen, many well-known researchers have explained their reasons for wishing to add new hallmarks of aging to the existing paradigm.

SENS Research Foundation Announces Ending Aging Forum 2022: SENS Research Foundation has announced this years Ending Aging Forum, which will be held through a virtual conference platform with an immersive environment.

Longevity Investors Conference: Organized and sponsored by Maximon, the Longevity Investors Conference is focused on the investment aspects of longevity. The LIC welcomes everyone with an interest in the financial aspects of the longevity sector, including venture capitalists, asset managers, and managers of private equity funds and private banks.

Longevity Summit Dublin: This conference will feature two days of inspiring research developments along with top longevity entrepreneurs, biotech companies, longevity investors, and researchers from around the world.

Read more:
Rejuvenation Roundup August 2022 - Lifespan.io News

categoriaSkin Stem Cells commentoComments Off on Rejuvenation Roundup August 2022 – Lifespan.io News dataSeptember 3rd, 2022
Read all

Benitec Biopharma Releases Full Year 2022 Financial Results and Provides Operational Update

By Dr. Matthew Watson

HAYWARD, Calif., Sept. 02, 2022 (GLOBE NEWSWIRE) -- Benitec Biopharma Inc. (NASDAQ: BNTC) (“Benitec” or “the Company”), a development-stage, gene therapy-focused, biotechnology company developing novel genetic medicines based on its proprietary DNA-directed RNA interference ("ddRNAi") platform, today announced financial results for its Fiscal Year ended June 30, 2022. The Company has filed its annual report on Form 10-K for the quarter ended June 30, 2022, with the U.S. Securities and Exchange Commission.

Follow this link:
Benitec Biopharma Releases Full Year 2022 Financial Results and Provides Operational Update

categoriaGlobal News Feed commentoComments Off on Benitec Biopharma Releases Full Year 2022 Financial Results and Provides Operational Update dataSeptember 3rd, 2022
Read all

Longeveron Receives Intent to Grant Notice from the European Patent Office for Methods to Monitor Efficacy of Lomecel-B – BioSpace

By daniellenierenberg

MIAMI, Aug. 25, 2022 (GLOBE NEWSWIRE) -- LongeveronInc. (NASDAQ: LGVN),a clinical stage biotechnology company developing cellular therapies for chronic, aging-related and life-threatening conditions, today announced that the European Patent Office (EPO) has issued a notice of its intent to grant the Company a patent (EP Application No. 15861319.0) related to methods to treat endothelial dysfunction and monitor the efficacy of allogeneic mesenchymal cell therapies, also known as medicinal signaling cells (MSCs). The cells are administered to patients with cardiovascular disease through the monitoring of a protein, Vascular Endothelial Growth Factor (VEGF), which is a signal protein produced by many cells that stimulates the formation of blood vessels.

We are extremely pleased to receive this notice from the European patent office, said Chris Min, M.D., Ph.D., Interim Chief Executive Officer and Chief Medical Officer at Longeveron. This patent will bolster our robust intellectual property portfolio and support our goal of delivering effective cell therapies for a range of aging-related and life-threatening conditions.

The patent is titled Methods for Monitoring Efficacy of Allogeneic Mesenchymal Stem Cell Therapy in a Subject. Longeverons lead investigational product is Lomecel-B, a cell therapy product derived from MSCs. Many of Longeverons clinical studies point to Lomecel-B exerting effects through pro-vascular functions and/or reducing endothelial dysfunction, a condition where the lining of blood vessels is abnormal leading to diminished health of blood vessels and blood flow regulation.

The Company is evaluating the use of MSCs to treat several indications, including Hypoplastic Left Heart Syndrome (HLHS), a rare and life-threatening congenital heart defect that affects approximately 1,000 babies per year. Longeveron received both a Rare Pediatric Disease Designation and Orphan Drug Designation from the United States Food and Drug Administration in 2021 for Lomecel-B for the treatment of infants with HLHS. Longeveron is currently evaluating Lomecel-B for HLHS in a Phase 2a trial.

Longeveron is also conducting a trial of Lomecel-B in patients with Alzheimers Disease in the US and for aging frailty in Japan.

Now that the European Patent Office has issued an Intention to Grant, Longeveron will await grant of the patent and then begin the process of registering the patent in a number of nation members of the European Patent Organization. In those jurisdictions where the patent is registered, the patent is expected to expire in November of 2035.

About Longeveron Inc.

Longeveron is a clinical stage biotechnology company developing cellular therapies for specific aging-related and life-threatening conditions. The Companys lead investigational product is the Lomecel-B cell-based therapy product, which is derived from culture-expanded medicinal signaling cells (MSCs) that are sourced from bone marrow of young, healthy adult donors. Longeveron believes that by using the same cells that promote tissue repair, organ maintenance, and immune system function, it can develop safe and effective therapies for some of the most difficult disorders associated with the aging process and other medical disorders. Longeveron is currently sponsoring Phase 1 and 2 clinical trials in the following indications: Alzheimers disease, hypoplastic left heart syndrome (HLHS), Aging Frailty, and Acute Respiratory Distress Syndrome (ARDS). Additional information about the Company is available at http://www.longeveron.com.

Cautionary Note Regarding Forward-Looking Statements

Certain statements in this press release that are not historical facts are forward-looking statements made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995, which reflect management's current expectations, assumptions, and estimates of future performance and economic conditions, and involve risks and uncertainties that could cause actual results to differ materially from those anticipated by the statements made herein. Forward-looking statements are generally identifiable by the use of forward-looking terminology such as "believe," "expects," "may," "looks to," "will," "should," "plan," "intend," "on condition," "target," "see," "potential," "estimates," "preliminary," or "anticipates" or the negative thereof or comparable terminology, or by discussion of strategy or goals or other future events, circumstances, or effects. Factors that could cause actual results to differ materially from those expressed or implied in any forward-looking statements in this release include, but are not limited to, statements about the ability of Longeverons clinical trials to demonstrate safety and efficacy of the Companys product candidates, and other positive results; the timing and focus of the Companys ongoing and future preclinical studies and clinical trials and the reporting of data from those studies and trials; the size of the market opportunity for the Companys product candidates, including its estimates of the number of patients who suffer from the diseases being targeted; the success of competing therapies that are or may become available; the beneficial characteristics, safety, efficacy and therapeutic effects of the Companys product candidates; the Companys ability to obtain and maintain regulatory approval of its product candidates; the Companys plans relating to the further development of its product candidates, including additional disease states or indications it may pursue; existing regulations and regulatory developments in the U.S., Japan and other jurisdictions; the Companys plans and ability to obtain or protect intellectual property rights, including extensions of existing patent terms where available and its ability to avoid infringing the intellectual property rights of others; the need to hire additional personnel and the Companys ability to attract and retain such personnel; the Companys estimates regarding expenses, future revenue, capital requirements and needs for additional financing; the Companys need to raise additional capital, and the difficulties it may face in obtaining access to capital, and the dilutive impact it may have on its investors; the Companys financial performance, and the period over which it estimates its existing cash and cash equivalents will be sufficient to fund its future operating expenses and capital expenditures requirements. Further information relating to factors that may impact the Company's results and forward-looking statements are disclosed in the Company's filings with the Securities and Exchange Commission, including Longeverons Annual Report on Form 10-K for the year ended December 31, 2021, filed with the SEC on March 11, 2022, and the Companys Quarterly Reports on Form 10-Q for the periods ended March 31, 2022, and June 30, 2022. The forward-looking statements contained in this press release are made as of the date of this press release, and the Company disclaims any intention or obligation, other than imposed by law, to update or revise any forward-looking statements, whether as a result of new information, future events, or otherwise.

Investor Contact:

Elsie YauStern IR, Inc.212-698-8700elsie.yau@sternir.com

More:
Longeveron Receives Intent to Grant Notice from the European Patent Office for Methods to Monitor Efficacy of Lomecel-B - BioSpace

categoriaBone Marrow Stem Cells commentoComments Off on Longeveron Receives Intent to Grant Notice from the European Patent Office for Methods to Monitor Efficacy of Lomecel-B – BioSpace dataAugust 26th, 2022
Read all

Global Cell Banking Outsourcing Market to Grow at a CAGR of ~18% during 2022-2031; Market to Expand Owing to the Development of Advanced Cell…

By daniellenierenberg

New York, Aug. 23, 2022 (GLOBE NEWSWIRE) -- Kenneth Research has published a detailed market report on Global Cell Banking Outsourcing Market for the forecast period, i.e., 2022 2031, which includes the following factors:

Global Cell Banking Outsourcing Market Size:

The global cell banking outsourcing market generated the revenue of approximately USD 7200.1 million in the year 2021 and is expected to garner a significant revenue by the end of 2031, growing at a CAGR of ~18% over the forecast period, i.e., 2022 2031. The growth of the market can primarily be attributed to the development of advanced preservation techniques for cells, and increasing adoption of regenerative cell therapies for the treatment of chronic diseases such as cancer. Additionally, factors such as growing demand for gene therapy, and increasing worldwide prevalence of cancer are expected to drive the market growth. According to the World Health Organization, nearly 10 million people died of cancer across the globe in 2020. The most recurrent cases of deaths because of cancer were lung cancer which caused 1.80 million deaths, colon, and rectum cancer which caused 916 000 deaths, liver cancer which caused 830 000 deaths, stomach cancer which caused 769 000 deaths, and breast cancer which caused 685 000 deaths. Furthermore, it was noticed that about 30% of cancer cases in low and lower-middle income nations are caused by cancer-causing diseases such the human papillomavirus (HPV) and hepatitis.

Get a Sample PDF of This Report @ https://www.kennethresearch.com/sample-request-10070777

Global Cell Banking Outsourcing Market: Key Takeaways

Increasing Geriatric Population across the Globe to Boost Market Growth

Increasing demand for stem cell therapy, and increasing biopharmaceutical production are estimated to fuel the growth of the global cell banking outsourcing market. Among the geriatric population around the world, the demand of stem cell therapy is at quite a high rate. Hence, growing geriatric population across the globe is also expected be an important factor to influence the market growth. According to the data by World Health Organisation (WHO), the number and proportion of geriatric population, meaning the people aged 60 years and older in the population is rising. The number of people aged 60 years and older was 1 billion in 2019. This number is estimated to increase to 1.4 billion by 2030 and 2.1 billion by 2050.

In addition to this, increasing prevalence of chronic diseases, supportive initiatives by governments around the world, and growing awareness about stem cell banking are predicted to be major factors to propel the growth of the market. The growth of the global cell banking outsourcing market, over the forecast period, can be further ascribed to the rising investments in the R&D activities to continuously bring up more feasible solutions for medical procedures. According to research reports, since 2000, global research and development expenditure has more than tripled in real terms, rising from approximately USD 680 billion to over USD 2.5 trillion in 2019.

Browse to access In-depth research report on Global Cell Banking Outsourcing Market with detailed charts and figures: https://www.kennethresearch.com/report-details/cell-banking-outsourcing-market/10070777

Global Cell Banking Outsourcing Market: Regional Overview

The global cell banking outsourcing market is segmented into five major regions including North America, Europe, Asia Pacific, Latin America, and the Middle East and Africa region.

Advanced Healthcare Facilities Drove Market in the North America Region

The market in the North America region held the largest market share in terms of revenue in the year 2021. The growth of the market in this region is majorly associated with the increasing number of pharmaceutical companies & manufacturers in the region, and increasing awareness for the use of stem cells as therapeutics. Increasing number of bone marrow and cord blood transplants throughout the region is also estimated to positively influence the market growth. It was noted that, 4,864 unrelated and 4,160 related bone marrow and cord blood transplants were performed in the United States in 2020.

Increasing Prevalence of Chronic Diseases to Influence Market Growth in the Asia Pacific Region

On the other hand, market in the Asia Pacific region is estimated to grow with the highest CAGR during the forecast period. The market in this region is driven by the increasing investment in biotechnology sector by government and private companies specifically in countries such as China, India, and Japan. Moreover, the increasing pool of patient with chronic diseases, such as cancer, and the ongoing research & development activities for cancer treatment is expected to propel the growth of the market. Further, increasing percentage of regional health expenditure contributing to the GDP is also estimated to be a significant factor to influence the growth of the cell banking outsourcing market in the Asia Pacific region. As per The World Bank, in the year 2019, share of global health expenditure in East Asia & Pacific region accounted to 6.67% of GDP.

Get a Sample PDF of the Global Cell Banking Outsourcing Market @ https://www.kennethresearch.com/sample-request-10070777

The study further incorporates Y-O-Y growth, demand & supply and forecast future opportunity in:

Middle East and Africa (Israel, GCC [Saudi Arabia, UAE, Bahrain, Kuwait, Qatar, Oman], North Africa, South Africa, Rest of Middle East and Africa).

Global Cell Banking Outsourcing Market, Segmentation by Bank Phase

The bank storage segment held the largest market share in the year 2021 and is expected to maintain its share by growing with a notable CAGR during the forecast period. The market growth is anticipated to be driven by the development of effective preservation technologies such as cryopreservation technique. Cryopreservation is a technique in which low temperature is used to preserve the living cells and tissue for a longer time. With the growing healthcare expenditure per capita across the world, demand for bank storage increasing notably. As sourced from The World Bank, in 2019, worldwide health expenditure per capita was USD 1121.97.

Access full Report Description, TOC, Table of Figure, Chart, etc. @ https://www.kennethresearch.com/sample-request-10070777

Global Cell Banking Outsourcing Market, Segmentation by Product

The adult cell banking segment is estimated to hold a substantial market share in the global cell banking outsourcing market during the forecast period. The growth of this segment can be attributed to the significant prevalence of chronic diseases among the adults around the globe. For instance, according to the National Library of Medicine 71.8% of adult population suffered from cardiovascular diseases, 56% had diabetes, and 14.7% adults had arthritis as of 2020.

Global Cell Banking Outsourcing Market, Segmentation by Cell Type

Global Cell Banking Outsourcing Market, Segmentation by Bank Type

Few of the well-known market leaders in the global cell banking outsourcing market that are profiled by Kenneth Research are SGS SA, WuXi AppTec, LifeCell International Pvt. Ltd., BSL Bioservice, LUMITOS AG, Cryo-Cell International, Inc., REPROCELL Inc, CORDLIFE GROUP LIMITED, Reliance Life Sciences, and Clean Biologics and others.Enquiry before Buying This Report @ https://www.kennethresearch.com/sample-request-10070777

Recent Developments in the Global Cell Banking Outsourcing Market

Browse More Related Reports:

Immunoassays in R&D Market Segmentation by Application (Cancer Research, Infectious Diseases, Autoimmune Diseases, Endocrinology, and Others); by End-Use (Academic Laboratories & Institutions, Biotechnology & Pharmaceutical Companies, and Others); and by Product & Services (Analyzers, Software & Services, and Kits & Reagents)-Global Demand Analysis & Opportunity Outlook 2031

Global Vaginal Slings Market Segmentation by End-Use (Clinics, Hospitals, and Ambulatory Surgical Centers); and by Slings Type (Conventional, and Advanced Vaginal Slings)-Demand Analysis & Opportunity Outlook 2031

Chemotherapy Market Segmentation by Cancer Type (Lung, Breast, Stomach, and Ovarian Cancer, and Others); by Gender Type (Male, and Female); and by Product Type (Pump, Cannula, Catheter, and Others)-Global Demand Analysis & Opportunity Outlook 2022-2031

Lancet Market Segmentation by Type (Push Button Safety, Pressure Activated Safety, Personal, and Side Button Safety); by Application (Glucose Testing, Hemoglobin Testing, and Coagulation Testing); and by End Users (Homecare, Hospitals & Clinics, Blood Banks, and Others)-Global Demand Analysis & Opportunity Outlook 2031

eClinical Solutions Market Segmentation by Product Type {Clinical Data Management Systems (CDMS), Electronic Data Capture (EDC), Clinical Trial Management Systems (CTMS), Electronic Clinic Outcome Assessment0 (eCOA), Randomization & Trial Supply Management (RTSM), Electronic Patient-Reported Outcome (ePRO), Electronic Trial Master File (eTMF), and Clinical Analytics Platform}; by Delivery Mode (Web-based, On-Premise, and Cloud); and by End users {Pharma & Biotech, Hospitals, and Contract Research Organizations (CROs)}-Global Demand Analysis & Opportunity Outlook 2031

About Kenneth Research

Kenneth Research is a leading service provider for strategic market research and consulting. We aim to provide unbiased, unparalleled market insights and industry analysis to help industries, conglomerates and executives to take wise decisions for their future marketing strategy, expansion and investment, etc. We believe every business can expand to its new horizon, provided a right guidance at a right time is available through strategic minds. Our out of box thinking helps our clients to take wise decision so as to avoid future uncertainties.

Contact for more Info:

AJ Daniel

Email: info@kennethresearch.com

U.S. Phone: +1 313 462 0609

Web: https://www.kennethresearch.com/

Read more here:
Global Cell Banking Outsourcing Market to Grow at a CAGR of ~18% during 2022-2031; Market to Expand Owing to the Development of Advanced Cell...

categoriaBone Marrow Stem Cells commentoComments Off on Global Cell Banking Outsourcing Market to Grow at a CAGR of ~18% during 2022-2031; Market to Expand Owing to the Development of Advanced Cell… dataAugust 26th, 2022
Read all

Global Stem Cells Group Expands Its Stem Cell Therapy and Regenerative Medicine Centers to Indonesia – GlobeNewswire

By daniellenierenberg

LAS VEGAS, NV, Aug. 01, 2022 (GLOBE NEWSWIRE) -- via NewMediaWire Meso Numismatics, Inc. (Meso Numismatics or the Company) (MSSV), a technology company specializing in Biotech and Numismatics, is pleased to announce additional global expansion by opening stem cell therapy and regenerative medicine facilities in Indonesia. The new facilities emphasize Global Stem Cells Group's objective of introducing its therapies and technology to meet market demands in populous parts of the world.

In partnership with the Dr. Yanti Aesthetic Clinics, which currently has 6 branches across Indonesia, this latest GSCG expansion will promote high standards of service in regenerative medicine across the country. As part of this effort, through GSCG the International Society for Stem Cells Applications (ISSCA) has granted Dr. Yanti Aesthetic Clinics membership and use of its brand, products, therapies, and training on how to apply stem cell therapies.

This new partnership seeks to expand the Global Stem Cells Group (GSCG) brand and create centers of excellence in cell therapy to meet the high demand within the vast Asian markets, said David Christensen, CEO of MSSV. GSCG is rapidly expanding its global operations as it seeks to become a significant player in the lucrative regenerative medicine industry. To achieve our expansion plans, our organization is partnering with healthcare providers specializing in regenerative medicine with at least five years of experience in the healthcare sector.

Video: https://youtu.be/T2CFjsps9qk

The vision behind the effort.

The Indonesia addition is the latest part of an expanding medical network of partners, and it will formalize and strengthen ties, establishing a global center of excellence to guarantee that we effectively use the underlying basic stem cell technology for medical conditions, where traditional therapeutic approaches seem to have failed. This is consistent with GSCG's overall strategy for developing regenerative medicine through data-driven studies, disease modeling, and cell-based therapeutics.

The Dr. Yanti Aesthetic Clinic is a key partnership because it provides the organizational and physical infrastructure needed to disseminate need-based stem cell locally. And Global Stem Cells Group's outstanding cell and stem cell biology and disease pathophysiology give an edge to patients for which they are prescribed.

The opening in Indonesia also presents the perfect opportunity to translate breakthrough therapies from basic discoveries to useful products by drawing upon the skills and local knowledge promoted within Dr. Yanti Aesthetic Clinics.

GSCG group managing director, Benito Novas, provided a clear description of the new strategic direction and objectives. "Our goal is to make regenerative medicine benefits a reality for both doctors and patients all around the world. We recently launched a very similar effort in Pakistan. Additional announcements are planned in the near future as we attempt to expand our presence." Meso Numismatics and Global Stem Cells Group Expand its Global Footprint

The current market outlook.

Stem cell therapy is striving to become an increasingly effective clinical solution to treat conditions that traditional or mainstream medicine offers only within palliative care and pain management. Patients all over the world are searching for a natural regenerative alternative without the potential risks and side effects sometimes associated with mainstream pharmaceuticals. With the opening of each new treatment center in populous regions such as Indonesia, GSCG is working to help stem cell therapy and regenerative medicine to eventually move from alternative and elective procedures to mainstream protocols.

This new clinic effort will play a significant role in the development of regenerative medicine in Indonesia and indeed the rest of the world by adding yet another opportunity for continuous improvement through research and development, Christensen continued. By adding busy clinics in population centers, we plan to consistently generate high volumes of reliable clinical data to assist us with the development and refinement of even more medicines and treatments.

About Dr. Yanti Aesthetic Clinics

Dr. Yanti Aesthetic Clinics is a premier cosmetic and aesthetics clinic based in Kelapa Gading, Jakarta Utara. Since its inception in 2004 in Surabaya by Dr. Khoe Yanti Khusmiran, the clinic has expanded to over 6 branches throughout Indonesia. Dr. Yanti clinics provide a range of skin and body enhancement treatments through minimally invasive and non-invasive procedures the expertise of which are a natural fit for the addition of a variety of stem cell therapies.

"Indonesians have a growing need for the latest medical technology that is reliable, potent, has reduced side effects, and leverages the bodys own healing biochemistry to resolve injury and aging, said Dr. Yanti. We are honored to be a part of GSCG, which has a proven 10-year track record in the market with a strong and growing international reputation. This new partnership is expected to create a wide variety of custom treatment options we can offer our patients and treat injury and illness in ways we could not before.

The newly formed partnership will deliver revolutionary medicines through Dr. Yanti clinics to assist patients in avoiding permanent harm and live a healthier life, while changing the paradigm from asymptomatic treatments to cures that may improve and restore quality of life.

More about Global Stem Cells Group

GSCG delivers leadership in regenerative medicine research, patient applications, and training through our strategic global networks. We endeavor to enable physicians to treat otherwise incurable diseases using stem cell therapy and to improve the quality of life and care across the world.

For this reason, GSCG works with innovative, next-generation therapy providers like Dr. Yanti Aesthetic Clinics to give access to one-of-a-kind holistic and safe treatment options.

More information regarding this transaction and the Global Stem Cells Group may be found at GSCG.

This press release should be read in conjunction with all other filings on http://www.sec.gov

For more information on Global Stem Cells Group please visit: http://www.stemcellsgroup.com

About Meso Numismatics: Meso Numismatics, Corp is an emerging Biotechnology and numismatic technology company. The Company has quickly become the central hub for rare, exquisite, and valuable inventory for not only the Meso region, but for exceptional items from around the world.

Meso has now added Biotechnology to its portfolio and will continue to grow the company in this new direction. With the Company's breadth of business experience and technology team, the Company will continue to help companies grow.

Forward-Looking Statements

Some information in this document constitutes forward-looking statements or statements which may be deemed or construed to be forward-looking statements, such as the closing of the share exchange agreement. The words plan, "forecast", "anticipates", "estimate", "project", "intend", "expect", "should", "believe", and similar expressions are intended to identify forward-looking statements. These forward-looking statements involve, and are subject to known and unknown risks, uncertainties and other factors which could cause the Company's actual results, performance (financial or operating) or achievements to differ from the future results, performance (financial or operating) or achievements expressed or implied by such forward-looking statements. The risks, uncertainties and other factors are more fully discussed in the Company's filings with the U.S. Securities and Exchange Commission. All forward-looking statements attributable to Meso Numismatics, Inc., herein are expressly qualified in their entirety by the above-mentioned cautionary statement. Meso Numismatics, Inc. disclaims any obligation to update forward-looking statements contained in this estimate, except as may be required by law.

For further information, please contact:investor.relations@mssvinc.com Telephone: (800) 956-3935

See more here:
Global Stem Cells Group Expands Its Stem Cell Therapy and Regenerative Medicine Centers to Indonesia - GlobeNewswire

categoriaSkin Stem Cells commentoComments Off on Global Stem Cells Group Expands Its Stem Cell Therapy and Regenerative Medicine Centers to Indonesia – GlobeNewswire dataAugust 2nd, 2022
Read all

Cell Separation Technologies Market Expands with Rise in Prevalence of Chronic Diseases, States TMR Study – GlobeNewswire

By daniellenierenberg

Wilmington, Delaware, United States, July 18, 2022 (GLOBE NEWSWIRE) -- Transparency Market Research Inc.: The market value of the global cell separation technologies market is estimated to be over US$ 20.3 Bn by 2031, according to a research report by Transparency Market Research (TMR). Hence, the market is expected expand at a CAGR of 11.9% during the forecast period, from 2022 to 2031.

According to the TMR insights on the cell separation technologies market, the prevalence of chronic disorders including obesity, diabetes, cardiac diseases, cancer, and arthritis is being increasing around the world. Some of the key reasons for this situation include the sedentary lifestyle of people, increase in the older population, and rise in cigarette smoking and alcohol consumption across many developed and developing nations. These factors are expected to help in the expansion of the cell separation technologies market during the forecast period.

Players in the global cell separation technologies market are increasing focus on the launch of next-gen products. Hence, they are seen increasing investments in R&Ds. Moreover, companies are focusing on different strategies including acquisitions and strengthening their distribution networks in order to stay ahead of the competition.

Request Brochure of Cell Separation Technologies Market Research Report https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=1925

As per the Imperial College London, chronic diseases are expected to account for approximately 41 million deaths per year, which seven out of 10 demises worldwide. Of these deaths, approximately 17 million are considered to be premature. Hence, surge in cases of chronic diseases globally is resulting into increased need for cellular therapies in order to treat such disease conditions, which, in turn, is boosting the investments toward R&Ds, creating sales opportunities in the cell separation technologies market.

Cell Separation Technologies Market: Key Findings

Request for Analysis of COVID-19 Impact on Cell Separation Technologies Market https://www.transparencymarketresearch.com/sample/sample.php?flag=covid19&rep_id=1925

Cell Separation Technologies Market: Growth Boosters

Cell Separation Technologies Market: Regional Analysis

Get Exclusive PDF Sample Copy of Cell Separation Technologies Market Report https://www.transparencymarketresearch.com/sample/sample.php?flag=S&rep_id=1925

Cell Separation Technologies Market: Key Players

Some of the key players profiled in the report are:

Make an Enquiry Before Buying https://www.transparencymarketresearch.com/sample/sample.php?flag=EB&rep_id=1925

Cell Separation Technologies Market Segmentation

Modernization of healthcare in terms of both infrastructure and services have pushed the healthcare industry to new heights, Stay Updated with Latest Healthcare Research Reports by Transparency Market Research:

Cell Culture Market: Rise in outsourcing activities and expansion of biopharmaceutical manufacturers are expected to drive the cell culture market during the forecast period

Cell Culture Media, Sera, and Reagents Market: The global cell culture media, sera, and reagents market is majorly driven by growth and expansion of biotechnology & pharmaceutical companies and academic & research institutes.

Stem Cells Market: The global stem cells market is majorly driven by rising applications of stem cells in regenerative medicines. Increase in the number of chronic diseases such as cardiac diseases, diabetes, cancer, etc.

Cell Line Authentication and Characterization Tests Market: Increase in the geriatric population and surge in incidence of chronic diseases are projected to drive the global cell line authentication and characterization tests market.

CAR T-cell Therapy Market: The CAR T-cell therapy market is expected to clock a CAGR of 30.6% during the assessment period. The CAR T-cell therapy is known as a revolutionary treatment option for cancer, owing to its remarkably effective and durable clinical responses.

Cell & Tissue Preservation Market: Rise in investments in the field of regenerative medicine research is estimated to propel the market. Human blood, tissues, cells, and organs own the capability to heal damaged tissues and organs with long-term advantages.

Placental Stem Cell Therapy Market: Placental stem cell therapy market is driven by prominence in treatment of age-related disorders/diseases and increase in awareness about stem cell therapies are projected to drive the global market in the near future.

Biotherapeutics Cell Line Development Market: The market growth will be largely driven by research and development activities due to which, new solutions and technologies have gradually entered the market.

About Transparency Market Research

Transparency Market Research, a global market research company registered at Wilmington, Delaware, United States, provides custom research and consulting services. Our exclusive blend of quantitative forecasting and trends analysis provides forward-looking insights for thousands of decision makers. Our experienced team of Analysts, Researchers, and Consultants use proprietary data sources and various tools & techniques to gather and analyze information.

Our data repository is continuously updated and revised by a team of research experts, so that it always reflects the latest trends and information. With a broad research and analysis capability, Transparency Market Research employs rigorous primary and secondary research techniques in developing distinctive data sets and research material for business reports.

For More Research Insights on Leading Industries, Visit Our YouTube Channel and hit subscribe for Future Update - https://www.youtube.com/channel/UC8e-z-g23-TdDMuODiL8BKQ

Contact

Rohit BhiseyTransparency Market Research Inc.CORPORATE HEADQUARTER DOWNTOWN,1000 N. West Street,Suite 1200, Wilmington, Delaware 19801 USATel: +1-518-618-1030USA Canada Toll Free: 866-552-3453Website:https://www.transparencymarketresearch.comBlog:https://tmrblog.comEmail:sales@transparencymarketresearch.com

Go here to see the original:
Cell Separation Technologies Market Expands with Rise in Prevalence of Chronic Diseases, States TMR Study - GlobeNewswire

categoriaCardiac Stem Cells commentoComments Off on Cell Separation Technologies Market Expands with Rise in Prevalence of Chronic Diseases, States TMR Study – GlobeNewswire dataJuly 25th, 2022
Read all

Copyright :: 2024